REGULATION: 2017

EC8452

ELECTRONIC CIRCUITS II

OBJECTIVES:

- To give a comprehensive exposure to all types of amplifiers and oscillators constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To study about feedback amplifiers and oscillators principles
- To design oscillators.
- To study about turned amplifier.
- To understand the analysis and design of LC and RC oscillators, amplifiers, multi vibrators, power amplifiers and DC convertors.

UNIT I - FEEDBACK AMPLIFIERS AND STABILITY

Feedback Concepts – gain with feedback – effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers – analysis of series-series, shunt-shunt and shunt-series feedback amplifiers-stability problem-Gain and Phase-margins-Frequency compensation.

UNIT II - OSCILLATORS

Barkhausen criterion for oscillation – phase shift, Wien bridge - Hartley & Colpitt's oscillators – Clapp oscillator-Ring oscillators and crystal oscillators – oscillator amplitude stabilization.

UNIT III - TUNED AMPLIFIERS

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers -Analysis of capacitor coupled single tuned amplifier - double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth - Stagger tuned amplifiers - Stability of tuned amplifiers - Neutralization - Hazeltine neutralization method.

UNIT IV WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

Pulse circuits – attenuators – RC integrator and differentiator circuits – diode clampers and clippers –Multivibrators - Schmitt Trigger- UJT Oscillator.

UNIT V POWER AMPLIFIERS AND DC CONVERTERS

Power amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB Power amplifier using MOSFET –DC/DC convertors – Buck, Boost, Buck-Boost analysis and design

TOTAL: 45 PERIODS

OUTCOMES:

After studying this course, the student should be able to:

- Analyze different types of amplifier, oscillator and multivibrator circuits
- Design BJT amplifier and oscillator circuits
- Analyze transistorized amplifier and oscillator circuits
- Design and analyze feedback amplifiers
- Design LC and RC oscillators, tuned amplifiers, wave shaping circuits, multivibrators, power amplifier and DC convertors.

TEXT BOOKS:

1. Sedra and Smith, —Micro Electronic Circuitsl; Sixth Edition, Oxford University Press, 2011. (UNIT I, III, IV, V)

2. Jacob Millman, _Microelectronics ', McGraw Hill, 2nd Edition, Reprinted, 2009. (UNIT I, II, IV, V)

REFERENCES

1. Robert L. Boylestad and Louis Nasheresky, —Electronic Devices and Circuit Theoryl, 10th Edition, Pearson Education / PHI, 2008.

2. David A. Bell, —Electronic Devices and Circuits, Fifth Edition, Oxford University Press, 2008.

3. Millman J. and Taub H., —Pulse Digital and Switching Waveformsl, TMH, 2000.

4. Millman and Halkias. C., Integrated Electronics, TMH, 2007.

JIT-JEPPIAAR/ECE/Mrs.S.Mary Cynthia/IInd Yr/SEM 04/EC8452/ELECTRONIC CIRCUITS II/UNIT 1-5/QB+Keys/Ver3.0

L T P C 3003

9

9

9

9

9

Subject Code: EC8452 Subject Name: ELECTRONIC CIRCUITS II

Year/Semester: II /04 Subject Handler: Mrs.M.Benisha

UNIT I-FEEDBACK AMPLIFIERS AND STABILITY

Feedback Concepts – gain with feedback – effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers – analysis of series-series, shunt-shunt and shunt-series feedback amplifiers-stability problem-Gain and Phase-margins-Frequency compensation.

PART * A				
Q.No.	Questions			
1.	Define feedback and its types. BTL1 A portion of the output signal is taken from the output of the amplifier and is combined with the normal input signal. This is known as feedback. There are two types Positive Feedback If the feedback signal is in phase with input signal, then the net effect of the feedback will increase the input signal given to the amplifier. This type of feedback is said to be positive or regenerative feedback. Negative Feedback If the feedback signal is out of phase with the input signal then the input voltage applied to the basic amplifier is decreased and correspondingly the output is decreased. This			
	type of feedback is known as negative or degenerative feedback.			
2	 List the different types of feedback topologies. (Nov 2011) BTL1 Voltage – series feedback topology Voltage – shunt feedback topology Current – series feedback topology Current – shunt feedback topology. 			
3	 What are the effects of negative feedback? (Or) What are the advantages and disadvantages of negative feedback? (Nov 2012, Nov 2016) BTL1 Advantages: It improves the stability of the circuit. It improves the frequency response of the amplifier. It improves the percentage of harmonic distortion. It improves the signal to noise ratio (SNR). It reduces the gain of the circuit. Disadvantages: Reduced circuit overall gain. Reduced stability at high frequency. 			
	Define positive feedback. BTL1 If the feedback signal is in phase with input signals, then the net effect of the feedback will			
4	increase the input signal given to the amplifier. This type of feedback is said to be positive or regenerative feedback.			

r						
	When the output voltage is sampled by connecting the feedback network in shunt across the					
	output, the connection is referred to as Voltage or Node Sampling.					
	Loop Sampling:					
	When the output voltage is sampled by connecting the feedback network in series across the					
	output, the connection is referred to as Current or Loop Sampling.					
Define Frequency compensation and its types. BTL1						
	If the feedback amplifier has more than two poles, it can be unstable. The technique is used to					
	make unstable feedback amplifier to stable is called Frequency compensation.					
	There are two types,					
6	• Dominant pole compensation: In this compensation technique if dominant pole is					
	introduced into the amplifier so that phase shift is less than -1800 when the loop gain is					
	unity.					
	• Miller compensation: It is implemented by connecting a capacitor between input and					
	output of a gain stages of a multistage amplifier.					
	What is the nature of input and output resistance in negative feedback? BTL1					
	Voltage series feedback:					
	Input impedance: $Zif = Zi * (1+A \beta)$					
	Output impedance: $Zof = Zo / (1+A\beta)$					
	Voltage shunt feedback:					
	Input impedance: $Rif = Ri * (1+A \beta)$					
7	Output impedance: $Zof = Zo * (1 + A \beta)$					
,	Current series feedback:					
	Input impedance: $\operatorname{Rif} = \operatorname{Zi} / (1 + A \beta)$					
	Output impedance: $Zof = Zo / (1+A \beta)$					
	Current shunt feedback:					
	Input impedance: $\operatorname{Rif} = \operatorname{Ri} / (1 + A \beta)$					
	Output impedance: $Rof = Ro * (1+A \beta)$					
	Mention the three basic networks that are connected around the basic amplifier to					
	implement feedback concept. (NOV/DEC'12) BTL2					
8						
0	Mixing Network					
	Sampling Network					
	Feedback Network					
9	What is the purpose of mixer network in feedback amplifier? BTL1					
	The mixer network is used to combine feedback signal and input at input of an amplifier.					
	Define Sensitivity and Desensitivity of gain in feedback amplifiers. (April 2011) BTL1					
	Sensitivity: The fractional change in amplification with feedback divided by the fractional					
10	change in amplification without feedback is called the sensitivity of the transfer gain.					
10	Desensitivity: Desensitivity is defined as the reciprocal of sensitivity. It indicates the factor by					
	which the voltage gain has been reduced due to feedback network. Desensitivity factor $D = 1+A$					
	β					
	β . Where A = Amplifier gain and β = Feedback factor.					
	State the Nyquist criterion for stability of feedback amplifiers. BTL1					
	• The amplifier is unstable if the curve encloses the point -1+j0. The system is called as					
11	unstable system.					
	• The amplifier is stable if the curve encloses the point -1+jo. That system is called as					
	stable system.					

[
	Identify the topology for the circuit drawn in Fig. BTL3
12	
	$V_o = 0$, does not make feedback zero, $I_o = 0$ makes feedback zero; Feedback is fed in shunt with
	$v_0 = 0$, does not make recuback zero, $v_0 = 0$ makes recuback zero, recuback is red in shuft with input signal so its Current shuft feedback .
	The voltage gain of an amplifier without feedback is 60 dB and decreases to 40 dB with
	feedback. Determine the feedback factor of the feedback network. BTL5
	From $A_{vf} = \frac{A_v}{1+\beta A_v}$
13	$1+\beta A_{v}$
	$\beta = \frac{A_v - A_{vf}}{A_v - A_{vf}} = \frac{60 - 40}{4} = 8.33 \times 10^{-3}$
	$\beta = \frac{A_v - A_{vf}}{A_v A_{vf}} = \frac{60 - 40}{60x40} = 8.33x10^{-3}$
	Give the expression for gain of an amplifier with feedback. BTL1
14	$Avf = AV/1 + AV\beta$
	Where, Avf – feedback voltage gain. AV – Voltage gain.
	β - Feedback factor What is learn gain on return ratio? DTL 1
	What is loop gain or return ratio? BTL1 A path of a signal from input terminals through basic amplifier, through the feedback network
15	and back to the input terminals forms a loop. The gain of this loop is the product -A β . This gain
	is known as loop gain or return ratio.
17	What is the effect of negative feedback on bandwidth? BTL1
16	Bandwidth of amplifier with feedback is greater than bandwidth of amplifier without feedback.
	Why gain bandwidth product remains constant with the introduction of negative feedback?
17	BTL1 Since bandwidth with negative feedback increases by factor (1+A β) and gain decreases by same factor, the gain-bandwidth product of an amplifier does not alter, when negative feedback is introduced.
	A feedback amplifier has an open loop gain of 600 and feedback factor $\beta = 0.01$. Find the
	closed loop gain with feedback. BTL1
18	$Avf = AV/1 + AV\beta$
	= 600/(1+600*0.01)
	= 85.714.
	The distortion in an amplifier is found to be 3%, when the feedback ratio of negative
	feedback amplifier is 0.04. When the feedback is removed, the distortion becomes 15%.
	Find the open and closed loop gain. BTL5
19	Solution: $R = 0.04$
	Given: $\beta = 0.04$ Distortion with foodback = 3%
	Distortion with feedback = 3%, Distortion without feedback = 15%
	Distortion without reedback = 15% $D = 15/3 = 5$: Where $D = 1+A \beta = 5$
	$D = 13/3 = 5$: WHERE $D - 1 \pm A p = 3$ -IEPPIAAR/ECE/Mrs S Mary Cynthia/II nd Yr/SEM 04/EC8452/ELECTRONIC CIRCUITS II/UNIT 1-5/OB+Keys/Ver3.0

	Voltage gain of an amplifier without feedback is 60dB. It decreases to 40dB with feedback.
	Calculate the feedback factor. BTL5
	Solution:
	Given: $Av = 60dB$ and $Avf = 40 dB$.
20	We know that,
	$Avf = AV / 1 + AV\beta$
	$\beta = (AV - Avf) / (AVAvf)$
	=(60-40)/(60*40)
	$\beta = 0.00833.$
	What is Nyquist diagram? BTL1
21	The plot which shows the relationship between gain and phase-shift as a function of frequency is
	called as Nyquist diagram.
	Write the steps which are used to identify the method of feedback topology. BTL1
	• Identify topology (type of feedback)
	• To find the type of sampling network.
	• To find the type of mixing network
22	• Find the input circuit.
22	• Find the output circuit.
	• Replace each active device by its h-parameter model at low frequency.
	• Find the open loop gain (gain without feedback), A of the amplifier.
	• Indicate Xf and Xo on the circuit and evaluate $\beta = Xf.XO$.
	• Calculate A, and β , find D, Ai, Rif, Rof, and Rof'.
	What are the types of distortions in an amplifier? BTL1
23	• Frequency
	• Noise and non-linear
	What is the effect of lower cut-off frequency & upper cut-off frequency with negative
	feedback? BTL1
24	Lower cut off frequency with feedback is less than lower cut off frequency without
24	feedback by factor $(1+\text{Amid }\beta)$
	Upper cut off frequency with feedback is greater than upper cut off frequency
	without feedback by factor $(1+\text{Amid }\beta)$
25	Define feedback factor or feedback ratio. BTL1
20	The ratio of the feedback voltage to output voltage is known as feedback factor or feedback ratio.
	PART B
	Explain with neat diagram, the two stage voltage series feedback amplifier and determine
	the AV, AVf. (13M) (May 2018) BTL2
	Answer: Page 545 - S.Salivahanan
	FET Common drain Amplifier: -(2M)
	• The feedback signal - voltage Vf across R,
1	• The sampled signal - voltage Vo across R.
1	• To find the input circuit, set Vo= 0, and hence Vs appears directly between G and S.
	• To find the output circuit, set Ii = 0, and hence R appears only in the output loop.
	Low – frequency model Source Follower (3M)

	f_h = upper cut off frequency without using feedback.					
	After the negative feedback is applied,	(3M)				
	$A_{HF} = A_H / (1 - A_H \beta)$					
	$A_{HF} = \frac{A_{mF}}{1 - j\frac{f}{fH}}$					
	$A_{HF} = \frac{1}{1 - i \frac{f}{f}}$					
	511					
	Where,					
	$F_H = f_h [1 + Amid \beta] = Upper cut off frequency using feedback.$					
	$A_{mf} = Amid / [1 + ALmid\beta] = Mid band gain with feedback.$					
	$F_{\rm H} > f_{\rm h}$ i.e.,					
	Upper cut off frequency – increased- due to - negative feedback- Band width is increased	ed.				
	Bandwidth Plot:	(1M)				
	Gair(dB) Feedback					
	0.707 Aud					
	0.707 A _{nal}					
	With feedback					
	Again					
	0.707 A fuat					
	$f_{LF} f_{L}$ f_{HF} f_{HF}					
	← BW →					
	← Bwf →					
3	feedback is introduced, find the new bandwidth and gain. (b) If the bandwidth restricted to 1 MHZ, find the feedback ratio. (8M) BTL5 Answer: Page 544 - S. Salivahanan Solution: Given A=125, BW=250KHZ & β =4%=0.04 (a) We know that, BWf = (1+A β) BW = (1+125 X 0.04) X 250 X 103 = 1.5MHz Gain with feedback, Af = A / 1+A β =125 / 1+ (125 X 0.04) Af = 20.83 (b) BWf = (1+A β) BW 1 * 10 ⁶ = (1+125 β) * 250 * 10 ³ = (1+125 β) = 1 * 106/250 * 10 ³ β = 3/125 = 0.024	(4M) (4M)				
	$\beta = 2.4\%$					
	Sketch the block diagram of a feedback amplifier, and derive the expressions for	gain with				
	positive feedback and negative feedback. (9M) (May 2017). BTL3					
	Answer: Page 532 - S. Salivahanan					
	Introduction:	(2M)				
4	• The input signal = Xs					
4	• The output signal = $Xo = A Xi$					
	• Feedback signal = $Xf = \beta Xo$					
	• Difference signal = $Xd = Xs-Xf = Xi$					
	 Gain of the amplifier without feedback A = Xo / Xi 					
	-					
	• The feedback factor = $\beta = Xf / Xo$ • EPDIA A P/CE/Mrs & Mary Currentia/Unit Xr/SEM 04/EC/2452/ELECTRONIC CIRCUITS U/UNIT 1.5/OP / Kow/A					

	voltage of 0.2volt. On removal of feedback, it needs only 0.1V input to give the same output.					
	Determine a. gain without feedback, b. Gain with feedback, c. Feedback ratio (6M)					
	Answer: Page 538 - S. Salivahanan					
	Alswer: Fage 556 - 5. Salvananan A=50 BTL5					
	Solution:					
		$(2\mathbf{M})$				
	a. Gain without feedback, A= output voltage / input voltage = $5/0.1$	(2M)				
	b. Gain with feedback, Af = output voltage / input voltage = $5/0.2$	(2M)				
	$\therefore Af = 25$					
	c. We know that, $AF = A / 1 + \beta A$	(2M)				
	$=25 / 1 + 25\beta$					
	β=0.02					
	Determine the voltage gain and input impedance with feedback for a voltage	series				
	feedback having the following parameters; $A = -100$; $R_i = 10 k\Omega$; $R_o = 20 k\Omega$;					
	$\beta = -0.1$; (ii) $\beta = -0.5$. (13M) BTL5					
	Angreen Dage 552 S. Salinghange					
	Answer: Page 552 - S. Salivahanan					
	$A_{vf} = \frac{A_v}{1 + \beta A_v} = \frac{-100}{11} = -9.09$	(2M)				
	$R_{if} = R_i(1 + \beta A_v) = 10x11 = 110 \ k\Omega$	(2M)				
11						
	$R_{of} = \frac{R_o}{1+\beta A_v} = \frac{20}{11} = 1.81 \ k$	(2M)				
	$A_{vf} = \frac{A_v}{1 + \beta A_v} = \frac{-100}{51} = -1.96$	(2M)				
	$R_{if} = R_i (1 + \beta A_v) = 10x51 = 510 \ k\Omega$	$(2\mathbf{M})$				
	$\kappa_{if} - \kappa_i (1 + \rho A_v) - 10001 - 510 kM$	(2M)				
	$R_{of} = \frac{R_o}{1+\beta A_n} = \frac{20}{51} = 0.392 \ k\Omega$	(3M)				
	$1+\beta A_v$ 51					
	PART * C					
	Compare all the four feedback amplifiers with neat diagrams. (15M) BTL4					
	Answer: Page 552 - S. Salivahanan					
	Block Diagram:	(8M)				
	Z_{ie} Z_{oe} Z_{ie} Z_{oe}	(0101)				
	V_{e}^{+} V_{e}^{+} U_{A} -network (2) $V_{e}^{+} \neq Z_{L}$ V_{e}^{+} $(1)A$ -network (2)					
	$V_{s} \stackrel{(+)}{\leftarrow} \downarrow \downarrow$					
	V_f (1) F-network (2) V_o V_f (1) F-network (2)					
1						
	(a) (b)					
	Z_{ic} Z_{ic} Z_{ic} Z_{ic} Z_{ic}					
	$I_{j} \qquad \qquad I_{o} \leftarrow V_{o} \gtrless Z_{L}$					
	1) F-network 2 V_o 1) F-network 2					

	$\beta = Vf / Vo = (-Io Re) / Io$	(2M)			
	$= - \operatorname{Re}$	(2111)			
	Since the input signal Vi without feedback is the Vs, then				
	$Gm = Io/Vi = (-hfe \cdot Ib) / Vs$				
	= -hfe / (Rs + hie + Re) (A)				
	$D = 1+\beta * Gm = 1+(hfe*Re)/(Rs+hie+Re)$	(2M)			
	D = [Rs + hie + (1+hfe)Re] / (Rs + hie + Re)				
Gmf = Gm / D					
	Gmf = -hfe / [Rs + hie + (1+hfe) Re]				
	If (1+hfe)*Re>> Rs+hie, and				
	Since hfe >> 1 ; then Gmf ~ $-1/\text{Re}$; Gmf ~ $1/\beta$.				
	Voltage gain	(2M)			
		(2101)			
	$Avf = (Io^{*}RL) / Vs = Gmf^{*}RL = (-hfe^{*}RL) / [Rs + hie + (1+hfe)^{*}Re]$				
	Avf ~ - RL / Re; the voltage gain is stable if RL, Re are stable resistors.				
	Ri = Rs + hie + Re.				
	$\operatorname{Rif} = \operatorname{Ri} * D = \operatorname{Rs+hie+} (1 + \operatorname{hfe}) \operatorname{Re}.$	(1M)			
	Since $\text{Ro} = \infty$, then $\text{Rof} = \text{Ro} (1+\beta \text{ Gm}) = \infty$.	(1M)			
	Hence $R'of = RL \parallel Rof = RL$.				
	An alternative derivation is R'of = R'o $(1+\beta \text{ Gm})/(1+\beta \text{ GM})$				
	Since Gm represents the short circuit Trans conductance, then $Gm = \lim_{R\to 0} GM$				
	From equation (A), GM is independent of RL,				
	And hence $Gm = GM$ and $R'of = R'o = RL$				
		the			
	Draw the circuits of voltage shunt and current series feedback amplifiers and derive	ule			
	expression for input impedance Rif. (10M) (Dec 12) BTL1				
	Answer: Page 561 - S. Salivahanan				
	Voltage shunt feedback connection. (or) Shunt Shunt feedback:-				
	Output voltage - directly proportional - Input current - "Trans resistance amplifier".				
	i.e., $A = Vo / Ii$ (or) $Vo = A Ii$.				
	Block Diagram:	(2M)			
	li				
	Transresistance				
	$ $ IS (\blacklozenge) Amplifier(A) $ $ R _L > V ₀				
	$Rm = V_o / Ii$				
3					
J	\downarrow If = β V ₀				
	Feedback Network				
	(β)				
		(1) ()			
	Voltage Gain:	(1M)			
	A = Vo / Ii = Gain of amplifier without feedback.				
$\beta = \text{If} / \text{Vo}$					
$Is = Ii + If$ $= Ii + \beta Vo$					
	$Is = Ii(1 + A\beta)$				
	Af = Vo / Is = Gain of amplifier with feedback.				

Assume - source voltage - transferred - output terminals - Vs shorted i.e $Vs = 0$, resulting -
current Io into the circuit.
Vs = Vi + Vf
$Zof = Zo[1 + A\beta]$
Output impedance - amplifier with feedback- Output impedance - increased by a factor of (1 + A
β).

UNIT II – OSCILLATORS					
Barkhausen criterion for oscillation – phase shift, Wien bridge - Hartley & Colpitt's oscillators - Clapp oscillator-Ring oscillators and crystal oscillators – oscillator amplitude stabilization. PART * A					
			Q.No.	Questions	
1.	Define on Accillator singuit DTI 1				
1.	An Oscillator is a circuit, which basically act as a Generator, generating the output signal wh				
	oscillates with a constant amplitude and constant desired frequency.				
	Classify Oscillators based on different criterions. BTL2				
	Based on waveform generated:				
	Sinusoidal Oscillator.				
	Non-Sinusoidal Oscillator or Relaxation Oscillator Example: Square				
2	wave, Triangular wave, Rectangular wave etc. According to principle				
2.	involved:				
	Negative resistance Oscillator,				
	Feedback Oscillator.				
	According to frequency generated:				
	• Audio frequency oscillator - 20Hz – 20KHz				
	• Radio frequency oscillator - 30 KHz – 30 MHz				
	• Ultrahigh frequency oscillator - 30 MHz – 3GHz				
	Microwave Oscillator - 3 GHZ above				
	Crystal oscillator				
	Name the various types of feedback oscillators. BTL1				
	RC oscillators – Types				
	RC phase shift oscillator				
3.	Wein bridge oscillator				
	LC oscillators – Types • Tuned collector oscillator				
	Tuned emitter oscillator				
	Tuned collector base oscillator				
	Hartley oscillator				
	Colpitts oscillator				
	Clapp oscillator.				
4.	Discuss the conditions to be satisfied for oscillation. (Nov 2017) BTL6				
	The total phase shift of an oscillator should be 360° for feedback, product of open loop gain				
	& feedback factor should be unity. Oscillator should satisfy Barkhausen criterion.				
	Define piezoelectric effect. BTL1				
5.	When applying mechanical energy to some type of crystals called piezoelectric crystals				
	the mechanical energy is converted into electrical energy is called piezoelectric effect.				
	What is Miller crystal oscillator? Explain its operation? BTL1				
	It is nothing but a Hartley oscillator with its feedback Network is replaced by a crystal. Cryst				
6.	normally has higher frequency reactance due to the miller capacitance that are in effect between the				
	transistor terminal.				

7.	Define Barkhausen Criteria. (May 2014) (April 2015, April 2017) (Nov 2017) BTL1 1. The total phase shift around a loop, as the signal proceeds from input through amplifier, feedback network back to input again, completing a loop, is precisely 0^0 or 360^0 . 2. The magnitude of the product of the open loop gain of the amplifier (A) and the feedback factor β is unity. i.e., A $\beta = 1$.		
8.	 Name two low frequency and high frequency Low frequency oscillators are RC phase shift oscillator Wein bridge oscillator High frequency oscillators are Hartley oscillator Colpitts oscillator 	oscillators. (Nov 2017) BTL1	
9.	List the advantages of crystal oscillators. BT Frequency stability is greater. Hence, they artransmitters and receivers.	L1 re used in watches, communication	
10.	 List the advantages of the RC phase shift os The circuit is simple to design Can produce output over AF range Produces sinusoidal output waveforr It is fixed frequency oscillation. 		
11.	Identify which oscillator uses both positive and negative feedback. BTL3 Wein bridge oscillator		
12.	Discuss about the construction of Armstrong oscillator. BTL6 It is a type of <i>LC</i> oscillator. In this oscillator, a transformer is used, whose primary acts as L in the circuit while the voltage across the secondary is used as a feedback.		
13.	Listthefactorsthataffectth(Nov-2016)BTL1•Change in temperature•Change in load•Change in power supply	ne frequency stability of an oscillator.	
14.	 List the essential parts of an oscillator. BTL1 Tank circuits (or) oscillatory circuit. Amplifier (Transistor amplifier) and Feedback circuit. 		
15	 List the disadvantages of crystal oscillator. BTL1 It is suitable for only low power circuits. Large amplitude of vibrations may crack the crystal. The change in frequency is only possible replacing the crystal with another one by different frequency. 		
16	Compare an oscillator & an amplifier. BTL Oscillator	4 Amplifier	

	They are self-generating circuits. The generate waveforms like sine, square and triangular waveforms of their own, without having input signal.	They are not self-generating circuits. They need a signal at the input and they just increase the level of the input waveform.	
	It has infinite gain	It has finite gain.	
	Oscillator uses positive feedback	Amplifier uses negative feedback	
17.	 List the disadvantages of RC phase shift oscillator. (April 2008) BTL1 It is ideal for frequency adjustment over a wide range. It requires a high β transistor to overcome losses in the network. 		
18.	Explain about resonant circuit oscillators. BTL5 LC oscillators are known as resonant circuit oscillator because the frequency of operation of LC oscillator is nothing but a resonant frequency of tank circuit or LC tank circuit which produces sustained, oscillation at resonant circuit oscillator output.		
19.	Justify the need of RC phase shift in a RC phase shift oscillator. BTL5 The amplifier used causes a phase shift of 180 then the feedback network should create phase shift of 180° , to satisfy the Barkhausen criterion. Hence in phase shift oscillators, three sections of RC circuit are connected in cascade, each introducing a shift of 60, thus introducing a total phase shift 180° , due to feedback network, a phase shift of 180° is introducing providing a total phase shift of 360° .		
20.	Wein Bridge oscillator is used for operation at 10 KHz. If the value of resistance R is 100 kΩ, Evaluate the value of C required (Nov 2008). BTL5 F=1/(2πRC) C= 159.155PF		
21.	Discuss about frequency stability of an oscillato The analysis of the dependence of the oscill capacitance, temperature etc. is called frequen	lating frequency on the various factors like stray	
22.	In a RC phase shift oscillator, if R1 =R2 =R3= 200k and C1=C2=C3=100pf, Estimate the frequency of the oscillator. (April 2010). BTL5 The frequency of oscillator is $F=1/(2\pi RC) = 7.957 kHZ$		
	A crystal has the following parameters $L=0.5$ H, C=0.05pf, and mounting capacitance is 2 pf, Estimate its series and parallel resonating frequencies. (Nov 2010) BTL5		
	Series resonance frequency:		
23.	$f_s = 1/(2\pi)$	$\tau\sqrt{LCs}$)	
	$= 1/2\pi\sqrt{(0.5*)}$	$0.05 * 10^{-12})$	
	fs = 1 MHz		
	Parallel resonance frequency: $1 \sqrt{C_{s+C_{n}}}$		
	$f_p = \frac{1}{2\pi} \sqrt{\frac{Cs + Cp}{LCsCp}}$		

same. Modification -one more capacitor C3 is introduced in series with inductance. • C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) $h_{fe} = \frac{C1}{C2}$ 2. $f = \frac{A}{2\pi\sqrt{LC_{eq}}}$ (3M) $\int \frac{1}{\sqrt{1-2\pi\sqrt{LC_{eq}}}} \int \frac{1}{2\pi\sqrt{LC_{eq}}} \int \frac{1}{2\pi$		Series resonance frequency:	(4M)
$= 1/2\pi\sqrt{(0.4 \pm 0.085 \pm 10^{-12})}$ $f_{S} = 863.13 \text{ KHz}$ Parallel resonance frequency: $(3M)$ $\int_{P} = \frac{1}{2\pi}\sqrt{\frac{Cs+Cp}{LCsCp}}$ $= \frac{1}{2\pi}\sqrt{\frac{0.085 \pm 10^{-12} + 1 \pm 10^{-12}}{1 \pm 10^{-12} \pm 0.4}}$ $= 899.07 \text{ KHz}$ parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 KHz = 36 KHz. (3M) Q Factor: Q = $\alpha L/R = 0.45$ (3M) Hlustrate the working principle of Clapp oscillator with neat diagram (7M) (May2018) BTL2 Answer: Page 590-S. Salivahanan Introduction: (2M) \cdot Modified colpits oscillator circuit - called clap oscillator. (2M) \cdot The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. \cdot C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) $h_{fe} = \frac{C1}{C2}$ $f = \frac{A}{\pi\sqrt{LCc_{H}}}$ Circuit Diagram: (3M) $\int_{Fe} \frac{A - \frac{1}{2\pi\sqrt{LCc_{H}}}}{A - \frac{1}{2\pi\sqrt{LCc_{H}}}}$ Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Draw the twein bridge oscillator using BJT, Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Rage 605 S. Suivahanan		$f_s = 1/(2\pi\sqrt{LCs})$	
$f_{S} = 863.13 \text{ KHz}$ Parallel resonance frequency: (3M) $f_{p} = \frac{1}{2\pi} \sqrt{\frac{Cs+Cp}{LCsCp}}$ $= \frac{1}{2\pi} \sqrt{\frac{0.085 \times 10^{-12} + 1 \times 10^{-12}}{0.085 \times 10^{-12} + 1 \times 10^{-12}}}$ $= 899.07 \text{ KHz}$ parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 KHz = 36 (3M) Q Factor: Q = $\omega L/R = 0.45$ (3M) Q Factor: Q = $\omega L/R = 0.45$ (3M) Hustrate the working principle of Clapp oscillator with neat diagram (7M) (May2018) BTL2 Answer: Page 590- S. Salivahanan Introduction: (2M) Hustrate the working principle of Clapp oscillator. (2M) The basic tank circuit with two capacitive reactances -one inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. C C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) $h_{fe} = \frac{C1}{C2}$ f = $\frac{A}{2\pi\sqrt{Lc_{eq}}}$ Circuit Diagram: (3M) $\int f_{fe} = \frac{1}{2\pi\sqrt{Lc_{eq}}}$ Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Draw the at least three for the oscillator to occur (10M) (Nov 12) BTL5 Answer: Page 605-S. Salivahanan		$= 1/2\pi\sqrt{(0.4*0.085*10^{-12})}$	
Parallel resonance frequency:(3M) $f_p = \frac{1}{2\pi} \sqrt{\frac{Cs+Cp}{LcsCp}}$ $= \frac{1}{2\pi} \sqrt{\frac{0.085 + 10^{-12} + 1 * 10^{-12}}{0.085 + 10^{-12} * 1 * 10^{-12}}}$ $= \frac{1}{2\pi} \sqrt{\frac{0.085 + 10^{-12} + 1 * 10^{-12}}{0.085 + 10^{-12} * 1 * 10^{-12} * 0.4}}$ $= 899.07 \text{ KHz}$ parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 KHz = 36KHz.KHz.(3M)Q Factor: $Q = \omega L/R = 0.45$ (3M)BTL2Answer: Page 590- S. SalivahananIntroduction:• Modified colpitts oscillator circuit - called clap oscillator.• Modified colpitts oscillator circuit - called clap oscillator.(2M)• The basic tank circuit with two capacitor C3 is introduced in series with inductance.• C3 much smaller than C1 and C2.Frequency of Oscillation & Condition for Sustained Oscillation: $h_{fc} = \frac{C1}{C2}$ $f = \frac{A}{2\pi\sqrt{LC_{eq}}}$ Circuit Diagram:(3M) $(10M)$ (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or)Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation.(10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or)Draw the at least three for the oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillator to occur (10M) (Nov 12) BTL5Answer: Page 605-S. Salivahanan			
$f_{p} = \frac{1}{2\pi} \sqrt{\frac{c_{s+c_{p}}}{Lc_{sc_{p}}}}$ $= \frac{1}{2\pi} \sqrt{\frac{0.085 \times 10^{-12} + 1 \times 10^{-12}}{(0.085 \times 10^{-12} + 1 \times 10^{-12} \times 0.4)}}$ $= 899.07 \text{ KHz}$ parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 KHz = 36 KHz. (3M) Q Factor: Q = $\omega L/R = 0.45$ (3M) Hustrate the working principle of Clapp oscillator with neat diagram (7M) (May2018) BTL2 Answer: Page 590- S. Salivahanan Introduction: (2M) • Modified colpitts oscillator circuit - called clap oscillator. (2M) • The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. • C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) $h_{fe} = \frac{C1}{C2}$ $f = \frac{A}{2\pi\sqrt{Lc_{eq}}}$ (3M) $f = \frac{A}{2\pi\sqrt{Lc_{eq}}}$ (3M)			(3M)
= 899.07 KHz parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 KHz = 36 KHz. (3M) Q Factor: Q = $\omega L/R = 0.45$ (3M) Illustrate the working principle of Clapp oscillator with neat diagram (7M) (May2018) BTL2 Answer: Page 590- S. Salivahanan Introduction: • Modified colpitts oscillator circuit - called clap oscillator. (2M) • The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. • C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) $h_{fe} = \frac{C1}{C2}$ f = $\frac{A}{2\pi\sqrt{LC_{eq}}}$ Circuit Diagram: (3M) $\int f = \frac{A}{2\pi\sqrt{LC_{eq}}}$ Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan			`
parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 KHz = 36 KHz. (3M) Q Factor: Q = $\omega L/R = 0.45$ (3M) Illustrate the working principle of Clapp oscillator with neat diagram (7M) (May2018) BTL2 Answer: Page 590- S. Salivahanan Introduction: (2M) • Modified colpitts oscillator circuit - called clap oscillator. (2M) • The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. • C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) $h_{fe} = \frac{C1}{C2}$ Circuit Diagram: (3M) • Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier mush eat least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan			
Q Factor: $Q = \omega L/R = 0.45$ (3M)Illustrate the working principle of Clapp oscillator with neat diagram (7M) (May2018) BTL2 Answer: Page 590- S. Salivahanan Introduction: Modified colpits oscillator circuit - called clap oscillator.(2M)The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. C3 much smaller than C1 and C2.Frequency of Oscillation & Condition for Sustained Oscillation: $h_{fe} = \frac{C1}{C2}$$f = \frac{A}{2\pi\sqrt{LC_{eq}}}$Circuit Diagram:(3M)$f = \frac{A}{2\pi\sqrt{LC_{eq}}}$Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or)Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan			KHz = 36
BTL2 Answer: Page 590- S. Salivahanan Introduction: (2M) • Modified colpitts oscillator circuit - called clap oscillator. (2M) • The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. (2M) • C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) $h_{fe} = \frac{C1}{C2}$ (2M) $f = \frac{A}{2\pi\sqrt{LC_{eq}}}$ (3M) Circuit Diagram: (3M) Oraw the Wein bridge oscillator using BJT , explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan			```
Answer: Page 590- S. Salivahanan Introduction:(2M)• Modified colpitts oscillator circuit - called clap oscillator.(2M)• The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance.(2M)• C3 much smaller than C1 and C2.Frequency of Oscillation & Condition for Sustained Oscillation:(2M) $f = \frac{A}{2\pi\sqrt{LC_{eq}}}$ (2M)Circuit Diagram:(3M) $f = \frac{A}{2\pi\sqrt{LC_{eq}}}$ (3M)Oraw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or)3.Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan		Illustrate the working principle of Clapp oscillator with neat diagram (7M) (May2	018)
 The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance. C3 much smaller than C1 and C2. Frequency of Oscillation & Condition for Sustained Oscillation: (2M) h_{fe} = C1/C2 2. f = A/2π√LCeq Circuit Diagram: (3M) Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) 3. Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan		Answer: Page 590- S. Salivahanan Introduction:	(2M)
Image: Second state of the se		• The basic tank circuit with two capacitive reactancesone inductive reactance remains same. Modification -one more capacitor C3 is introduced in series with inductance.	
2. $f = \frac{A}{2\pi\sqrt{LC_{eq}}}$ Circuit Diagram: (3M) $\int_{R_{2}}^{+\infty} \int_{R_{2}}^{+\infty} \int_{R_{2}}^{+\infty$			(2M)
Circuit Diagram: (3M) Image: Circuit Diagram: (3M)	2	$h_{fe} = \frac{C1}{C2}$	
 3. Draw the Wein bridge oscillator using BJT, explain and derive the condition for oscillation. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan 	2.	$J = \frac{1}{2\pi\sqrt{LC_{eq}}}$ Circuit Diagram:	(3M)
 3. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Braw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan 			
 3. (10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (or) Braw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan 			
3. Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be at least three for the oscillation to occur (10M) (Nov 12) BTL5 Answer: Page 605- S. Salivahanan			scillation.
0	3.	Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the an must be at least three for the oscillation to occur (10M) (Nov 12) BTL5	plifier
		Introduction:	(3M)

	1	
	Wein bridge oscillator -audio frequency oscillator.	
	• Involves both positive and negative feedback.	
	• Negative feedback – stability.	
	• Positive feedback - oscillations.	
	• Feedback network - not produce - phase shift.	
	• The circuit consists -two transistors- operated - CE configuration.	
	• The transistors- individually -provide - phase shift of 180° - overall phase shift is 3	860° -
	fed back - first stage - bridge network.	.00
	Circuit Diagram:	(3M)
		()
	$R \xrightarrow{Feedback} \\ C \xrightarrow{1}{3}V \xrightarrow{1}{3}V A V_{out}$ $R C R_1 V_{out}$	
	The frequency of oscillator is $F=1/(2\pi RC)$	(2M)
		(2M)
	1. Good sine wave output.	(2111)
	2. Good frequency stability.	
	3. Good Amplitude stability.	
	In Colpitts oscillator, C1=1µF, C2=0.2µF. If the frequency of oscillation is 10 KHz, find	l the
	value of inductor; also find the required gain for sustained oscillation. (3M) (Nov 2017	
	BTL2	/
4.	Answer: Page 588- S. Salivahanan	
	Frequency of Oscillation: $f = \frac{1}{2\pi\sqrt{LC_{eq}}}$	1M)
		(1M)
		(1M)
	Draw Hartley oscillator using FET, explain and derive the condition for oscillation. (13 (New 2017) BTL4) (IVI)
	(Nov 2017) BTL4 Answer: Page 582- S. Salivahanan	
	-	(2M)
	LC Oscillator	(2111)
	 Two inductive reactance's - one capacitive reactance - feedback network - Hartley 	
	• Two inductive reactance's - one capacitive reactance - reedback network - framey Oscillator.	
5.		(3M)
		(3141)
	$f = \frac{1}{2\pi\sqrt{L_{eq}C}}$ $L_{eq} = L1 + L2$	
	$2\pi\sqrt{L_{eq}C}$	
	Circuit Diagram & Explanation (4M-	
	180° phase shift – feedback network- another 180° phase shift – CE amplifier. Total	360°
	phase shift.	

	Circuit Diagram: (3N	A)
	$ \begin{array}{c} +Vcc \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \\ R_3 \\ \hline \\ R_2 \\ \hline \\ $	
	Barkhausen criterion, $A\beta = 1$ Condition for Oscillation: $f = 1/2\pi RC \sqrt{6}$ $A\beta = 1$. (4M))
	Sustained oscillations $\beta = -1/29$ In a colpitts oscillator, inductor and capacitor of the tank circuit are H=40mH, C1=100pH	Ŧ,
9.	C2=500pF, Find the frequency of oscillation. (3M) (May 2017). BTL2Answer: Page 589- S. SalivahananFrequency of oscillation: $f = \frac{1}{2\pi\sqrt{LC_{eq}}}$ Ceq =C1*C2/C1+C2 = 83.33 pFF= 87.17KHz	M) 1)
10.	 Discus thoroughly, the factors affecting frequency stability of oscillators. (6M) BTL6 Answer: Page 613- S. Salivahanan Change in temperature Values of tank circuit components get affected. Parameters of active device get affected. Variation in power supply Change in atmospheric condition, aging. Changes in load connected. Stray capacitances 	,
	PART * C	
	Design a Hartley oscillator of frequency 100 KHz, and explain its working with neat circu diagram, Assume L1=L2=4mH. (15M) (May2018) BTL6 Answer: Page 584- S. Salivahanan	uit
1.	$f = \frac{1}{2\pi\sqrt{CL_{eq}}} \tag{3}$	M)
	$\begin{bmatrix} 2\pi\sqrt{64}eq \\ \text{Leq} = \text{L1} + \text{L2} = 8\text{mH} \\ 100*10^3 = \frac{1}{2\pi\sqrt{C*8*10^{-3}}} \end{bmatrix} $ (3N)	A)

	C=316.6pF (3M)
	Diagram: (6M)
2.	Using a circuit diagram of a transistorized pierce crystal oscillator, explain its operation. (10M) BTL2 Answer: Page 609- S. Salivahanan Circuit Diagram: (4M)
	C _{cc} R ₁ C _{cc} C _{rystal} R ₂ C _c C _{rystal} C _c C _c C _{rystal} C _c C _c
	Resonant frequency of the crystal -change in temp- voltage supply- transistor parameter - no effect on frequency stability. (6M) $f = \frac{1}{2\pi\sqrt{LC_s}}$
3.	 Explain the working of miller crystal oscillator. (10M) BTL1 Answer: Page 612- S. Salivahanan Introduction: (2M) Miller crystal oscillator - modifications -colpitts oscillator- Hartley oscillator. Circuit Diagram & Explanation: (4M+4M) Hartley oscillator circuits- two inductors -one capacitor - required - tank circuit. One inductor - replaced - crystal, which acts as an inductor - frequencies slightly -greater than - series resonant frequency. The tuned circuit - 'L1' - 'C' - off tuned - behave - inductor i.e. L1. The crystal - behaves - other inductance L2 between base - ground. The internal capacitance - transistor acts - capacitor - to fulfil the elements - tank circuit. The common emitter - provides a phase shift of 180°. Tank circuit - additional phase shift of 180° - satisfy oscillation conditions.
	Crystal decides - operating frequency - oscillator.

capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method. PART * A Q.No. Questions What is a tuned amplifier? BTL1			
Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers –Analysis of capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method. PART * A Q.No. Questions 1 What is a tuned amplifier? BTL1 The amplifier with a circuit that is capable of amplifying a signal over a narrow band of frequencies are called tuned amplifiers. List the advantages and disadvantages of tuned amplifiers. BTL1 Advantages: • They amplify defined frequencies. • Signal to Noise ratio at output is good. • They are well suited for radio transmitters and receivers. • The band of frequencies over which amplification is required can be varied. Disadvantages: • Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. • If the band of frequency is increased, design becomes complex. • They are the different coil losses? BTL1 • Hysteresis loss • Copper loss • Copper loss • Current loss • What is the classification of tuned amplifiers? BTL1 4 • Single tuned • Single tuned • Single tuned • Single tuned • Double tuned • Single tuned		RFC R_1 $CRYSTAL CC$ $OUTPUT$ R_1 R_2	
Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers –Analysis of capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method. PART * A Q.No. Questions 1 What is a tuned amplifier? BTL1 The amplifier with a circuit that is capable of amplifying a signal over a narrow band of frequencies are called tuned amplifiers. List the advantages and disadvantages of tuned amplifiers. BTL1 Advantages: • They amplify defined frequencies. • Signal to Noise ratio at output is good. • They are well suited for radio transmitters and receivers. • The band of frequencies over which amplification is required can be varied. Disadvantages: • Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. • If the band of frequency is increased, design becomes complex. • They are the different coil losses? BTL1 • Hysteresis loss • Copper loss • Copper loss • Current loss • What is the classification of tuned amplifiers? BTL1 4 • Single tuned • Single tuned • Single tuned • Single tuned • Double tuned • Single tuned		UNIT III – TUNED AMPLIFIERS	
What is a tuned amplifier? BTL1 1. The amplifier with a circuit that is capable of amplifying a signal over a narrow band of frequencies are called tuned amplifiers. List the advantages and disadvantages of tuned amplifiers. BTL1 Advantages: • They amplify defined frequencies. • Signal to Noise ratio at output is good. • They are well suited for radio transmitters and receivers. • The band of frequencies over which amplification is required can be varied. Disadvantages: • Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. • If the band of frequency is increased, design becomes complex. • They are not suitable to amplify audio frequencies. 3 • Copper loss • Current loss What is the classification of tuned amplifiers? BTL1 4 • Single tuned • Double tuned • Stagger tuned	capac tuned ampli	PART * A	
1. The amplifier with a circuit that is capable of amplifying a signal over a narrow band of frequencies are called tuned amplifiers. List the advantages and disadvantages of tuned amplifiers. BTL1 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. They are not suitable to amplify audio frequencies. What are the different coil losses? BTL1 Hysteresis loss Copper loss Current loss What is the classification of tuned amplifiers? BTL1 Single tuned Double tuned Stagger tuned 	2.1100	Questions	
2List the advantages and disadvantages of tuned amplifiers. BTL1 Advantages: 	1.	The amplifier with a circuit that is capable of amplifying a signal over a narrow band of	
 3 Hysteresis loss Copper loss Current loss What is the classification of tuned amplifiers? BTL1 4 Single tuned Double tuned Stagger tuned 5 What are the advantages of tuned amplifiers? BTL1 	2	 List the advantages and disadvantages of tuned amplifiers. BTL1 Advantages: They amplify defined frequencies. Signal to Noise ratio at output is good. They are well suited for radio transmitters and receivers. The band of frequencies over which amplification is required can be varied. Disadvantages: Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly. If the band of frequency is increased, design becomes complex. 	
 4 Single tuned Double tuned Stagger tuned 5 What are the advantages of tuned amplifiers? BTL1	3	Hysteresis lossCopper loss	
5 What are the advantages of tuned amplifiers? BTL1	4	 What is the classification of tuned amplifiers? BTL1 Single tuned Double tuned 	
	5		

	• Signal to noise ratio at output is good
	They are suited for radio transmitters and receivers
6	What is neutralization? BTL1 The effect of collector to base capacitance of the transistor is neutralized by introducing a signal that cancels the signal coupled through collector base capacitance. This process is called neutralization.
7	 What are the advantages of double tuned over single tuned? BTL1 Possess flatter response having steeper sides Provides larger 3 dB bandwidth Provides large gain-bandwidth product.
8	 What are the different types of neutralization? BTL1 Hazeltine neutralization Rice neutralization Neutrodyne neutralization.
9	What is rice neutralization? BTL1 It uses centre tapped coil in the base circuit. The signal voltages at the end of tuned base coil are equal and out of phase.
10	 Define Q factor of resonant circuit. BTL1 It is the ratio of reactance to resistance. It also can be defined as the measure of efficiency with which inductor can store the energy. Q=2π *(Maximum Energy Stored per cycle / Energy dissipated per cycle)
11	Define unloaded and loaded Q of tuned circuit. BTL1 The unloaded Q or QU is the ratio of stored energy to dissipated energy in a reactor or resonator. The loaded Q or QL of a resonator is determined by how tightly the resonator is coupled to its terminations.
12	What is the response of tuned amplifiers? BTL1 The response of tuned amplifier is maximum at resonant frequency and it falls sharply for frequencies below and above the resonant frequency.
13	What are stagger tuned amplifiers? BTL1 Stagger tuned amplifiers use a number of single tuned stages in cascade, the successive tuned circuits being tuned to slightly different frequencies. (OR) It is a circuit in which two single tuned cascaded amplifiers having certain bandwidth are taken and their resonant frequencies are adjusted that they are separated by an amount equal to the bandwidth of each stage. Since resonant frequencies are displaced it is called stagger tuned amplifier.
14	What is the effect of cascading single tuned amplifiers on bandwidth? BTL1 Bandwidth reduces due to cascading single tuned amplifiers.
15	 What are the advantages of double tuned amplifier over single tuned amplifier? BTL1 It provides larger 3 dB bandwidth than the single tuned amplifier and hence provides the larger gain-bandwidth product. It provides gain versus frequency curve having steeper sides and flatter top.

16	 What is the use of Neutralization? BTL1 BJT and FET are potentially unstable over some frequency range due to the feedback parameter presents in them. If the feedback can be cancelled by an additional feedback signal that is equal in amplitude and opposite in sign, the transistor becomes unilateral from input to output the availations completely stop.
	oscillations completely stop.This is achieved by Neutralization.
	Mention the applications of class C tuned amplifier. BTL1
	• Class C amplifiers are used primarily in high-power, high-frequency applications such as
17	Radio-frequency transmitters.
	• In these applications, the high frequency pulses handled by the amplifier are not themselves the signal, but constitute what is called the Carrier for the signal
18	What the advantages are of stagger tuned amplifier? BTL1
18	The advantage of stagger tuned amplifier is to have better flat, wideband characteristics.
10	How single tuned amplifiers are classified? BTL1
19	 Capacitance coupled single tuned amplifier. 2. Transformer coupled or inductively coupled single tuned amplifier.
	• 2. Transformer coupled or inductively coupled single tuned amplifier. What is dissipation factor? BTL1
20	It is defined as $1/Q$. It can be referred to as the total loss within a component.
	PART*B
1.	Demonstrate on single tuned amplifier and derive for gain and resonant frequency. (13M) (May2018) (Nov 2017) BTL2 Answer: Page 497- S. Salivahanan Introduction: (2M) Single tuned amplifier - consists - CE amplifier - which a tuning circuit - included input (base terminal) - output (collector terminal). Circuit Diagram: (3M) $V_{\text{termin}} = \frac{V_{\text{termin}}}{V_{\text{termin}}}$ Equivalent circuit: (3M) $A_{i} = \frac{-g_{m}R}{1+jQ_{i}(\omega/\omega_{o}-\omega_{o}/\omega)}$ (2M)
2	$BW = \frac{1}{2\pi RC}$ (3M)
4	Explain the stability of tuned amplifiers using Neutralization techniques. (13M) (May2018)

	A _V ^{3 dB} Q ₂ Freq (Hz)
	Calculate the resonant frequency of a class c tuned amplifier whose Capacitor=10pf and
	inductor L=1mH. (8M) BTL2
	Answer: Page 518- S. Salivahanan
7	Solution:
	The resonant frequency of class-c tuned amplifier is
	$fr = 1 / 2 \pi LC \tag{4M}$
	fr = 1.59 MHz (4M)
	Write a short on coil losses. (8M) BTL1
	Answer: Page 503- S. Salivahanan
	• Tuned circuit consists - coil.
	Practically-coil -not purely inductive.
	• It consists - few losses - represented - leakage resistance - series with the resistor.
	Losses in Inductor: (1M)
	1. Copper loss
	2. Hysteresis loss
	3. Eddy-currents loss
	Copper loss (2M)
	Copper loss -heat produced by electrical currents - conductors - transformer windings, - other
8	electrical devices.
Ŭ	Copper Loss= I^2R =Copper Loss = 1/ f
	Eddy-currents loss (2M)
	• Eddy current loss in iron and copper coil -due to currents flowing within the copper or core- cased by induction.
	 Loss- due - heating within - inductors copper - core.
	• Eddy current losses - directly proportional - frequency.
	Hysteresis loss (2M)
	If - magnetic field applied - magnetic material - increased -then decreased back - original value, t- magnetic field inside the material does not return - original value.
	The internal field 'lags' behind - external field- behaviour results - loss - energy, called the hysteresis loss , when a sample - repeatedly magnetized and demagnetized.
	(1M)

UNIT IV- WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

Pulse circuits – attenuators – RC integrator and differentiator circuits – diode clampers and clippers – Multivibrators - Schmitt Trigger- UJT Oscillator. PART * A Q.No. **Ouestions** What is High pass RC circuit? Why it is called high-pass filter? BTL1 • A simple circuit consisting of a series capacitor and a shunt resistor is called high pass RC circuit. 1 • At very high frequencies the capacitor acts as a short circuit and all the higher frequency components appear at the output with less attenuation than the lower frequency components. Hence this circuit is called high-pass circuit. Why high-pass RC circuit is called Differentiator? BTL1 2 High-pass RC circuit gives an output waveform similar to the first derivative of the input waveform. Hence it is called Differentiator. What is Low pass RC circuit? Why it is called low-pass filter? BTL1 • A simple circuit consisting of a series resistor and a shunt capacitor is called Low pass 3 RC circuit. • At very high frequencies the capacitor acts as a virtual short circuit and output falls to zero. Hence this circuit is called low-pass filter Why low-pass RC circuit is called Integrator? BTL1 4 Low pass RC circuit gives an output waveform similar to the time integral of the input waveform. Hence it is called Integrator. What is High pass RL circuit? Why it is called high-pass filter? BTL1 • A simple circuit consisting of a series resistor and a shunt inductor is called high-pass RL 5 circuit. • At very high frequencies, the inductor acts as an open circuit and all the higher frequency components appear at the output. Hence this circuit is called high-pass filter. What is Low pass RL circuit? Why it is called low-pass filter? BTL1 • A simple circuit consisting of a series inductor and a shunt resistor is called low pass RL 6 circuit. • At very high frequencies, the inductor acts as a virtual open circuit and the output falls to zero. Hence this circuit is called low pass filter. What is Delay time (td), Rise time (tr), storage time (ts), fall time (tf) in transistor? BTL1 The time needed for the collector current to rise to 10% of its maximum (saturation) value i.e. iC(Sat) = VCC/RC is called the delay time. The time required for the collector current to rise from 10% to 90% of the maximum value is 7 called rise time (tr). The time when collector current (iC) dropped to 90% of its maximum value is called the storage time. The time required for the collector current to fall from 90% to 10% of its maximum value is called fall time (tf). What is Turn-ON time (ton), Turn-off time (toff) in transistor? BTL1 The sum of the delay time (td) and the rise time (tr) is called the turn-ON time (t_{ON}). 8 $t_{ON} = td + tr$ The sum of the storage time (ts) and the fall time (tf) is called the turn-OFF time (t_{OFF}).

	$(t_{OFF}) = (t_{S}) + (t_{f})$
	List the applications of bistable multivibrator? BTL1
9	• It is used as memory elements in shift registers, counters, and so on.
	• It is used to generate square waves of symmetrical shape by sending regular triggering
	pulse to the input. By adjusting the frequency of the trigger pulse, the width of the square
	wave can be altered.
	• It can also be used as a frequency divider.
10	What are the two methods of triggering for bistable multivibrators? BTL1
10	Unsymmetrical triggering
	Symmetrical triggering
11	What are the other names of monostable Multivibrator? BTL1
	One-shot, Single-shot, a single-cycle, a single swing, a single step Multivibrator, Univibrator.
12	What are the different names of bistable Multivibrator? BTL1
	Eccles Jordan circuit, trigger circuit, scale-of-2 toggle circuit, flip-flop and binary.
13	What is clipper? BTL1 The circuit with which the waveform is shaped by removing (or clipping) a portion of the input
13	The circuit with which the waveform is shaped by removing (or clipping) a portion of the input signal without distorting the remaining part of the alternating waveform is called a clipper
	signal without distorting the remaining part of the alternating waveform is called a clipper. What are the four categories of clippers? BTL1
	Positive clipper
14	 Negative clipper
17	
	Biased clipper Combination clipper
	Combination clipper What is comparator? BTL1
	 The nonlinear circuit which was used to perform the operation of clipping may also be
15	used to perform the operation of comparison is called the comparator.
	 The comparator circuit compares an input signal with a reference voltage.
	What is clamper? BTL1
16	A circuit which shifts (clamps) a signal to a different dc level, i.e. which introduces a dc level to
	an ac signal is called clamper. It is also called dc restorer.
	Which circuits are called multivibrators? BTL1
	• The electronic circuits which are used to generate no sinusoidal waveforms are called
17	multivibrators.
	• They are two stage switching circuits in which the output of the first stage is fed to the
	input of the second stage and vice-versa.
	Which are the various types of multivibrators? BTL1
10	• Astable multivibrator
18	Bistable multivibrator
	Monostable multivibrator
	What is astable multivibrator? BTL1
	• A multivibrator which generates square wave without any external triggering pulse is
	called astable multivibrator.
19	• It has both the states as quasi-stable states. None of the states is stable.
	• Due to this, the multivibrator automatically makes the successive transitions from one
	quasi-stable state to other, without any external triggering pulse. So, it called Free-
	running multivibrator.

	• The rate of transition from one quasi-stable state to other is determined by the				
	discharging of a capacitive circuit. List the applications of Astable multivibrator? BTL1				
	• Used as square wave generator, voltage to frequency convertor and in pulse				
20	synchronization, as clock for binary logic signals, and so on.				
20	• Since it produces square waves, it is a source of production of harmonic frequencies of				
	higher order.				
	• It is used in the construction of digital voltmeter and SMPS.				
	• It can be operated as an oscillator over a wide range of audio and radio frequencies.				
	State the basic action of monostable multivibrator. BTL1				
	• It has only one stable state. The other state is unstable referred as quasi- stable state.				
	• It is also known as one-short multivibrator or univibrator.				
21	• After some time, interval, the circuit automatically returns to its stable state.				
	• The circuit does not require any external pulse to change from quasi- stable state.				
	• The time interval for which the circuit remains in the quasi-stable state is determined by				
	the circuit components and can be designed as per the requirement.				
	Mention the applications of one short multivibrator? BTL1				
	• It is used to function as an adjustable pulse width generator.				
22	• It is used to generate uniform width pulses from a variable width pulse train.				
22	• It is used to generate clean and sharp pulses from the distorted pulses.				
	• It is used as a time delay unit since it produces a transition at a fixed time after the trigger				
	signal.				
	Which multivibrator would function as a time delay unit? Why? BTL1				
23	Monostable multivibrator would function as a time delay unit since it produces a transition at a				
	fixed time after the trigger signal.				
	What is Bistable multivibrator? BTL1				
	• The Bistable multivibrator has two stable states.				
24	• The multivibrator can exist indefinitely in either of the two stable states.				
	• It requires an external trigger pulse to change from one stable state to another.				
	• The circuit remains in one stable state unless an external trigger pulse is applied.				
	Why is monostable Multivibrator called gating circuit? BTL1				
25	The circuit is used to generate the rectangular waveform and hence can be used to gate other				
	Circuits hence called gating circuit.				
	What are the main characteristics of Astable Multivibrator? BTL1				
26	The Astable Multivibrator automatically makes the successive transitions from one quasi- stable				
	State to other without any external triggering pulse.				
	What is the self-biased Multivibrator? BTL1				
27	The need for the negative power supply in fixed bias bistable Multivibrator can be eliminated by				
	raising a common emitter resistance RE. The resistance provides the necessary bias to keep one				
	transistor ON and the other OFF in the stable state. Such type of biasing is called self-biasing and				
	the circuit is called self-biased bistable Multivibrator.				
	What is UTP of the Schmitt Trigger? What is the other name for UTP? BTL1				
28	The level of Vi at which Q1 becomes ON and Q2 OFF is called Upper Threshold Point. It is also				
	called input turn on threshold level.				
29	What is LTP of the Schmitt trigger? BTL1				
-	The level of Vi at which Q1 becomes OFF and Q2 on is called Lower Threshold Point.				

appears.

- Two transistors Q1 Q2 connected back back feedback resistors R1 R2 similar to asable multivibrator no capacitors.
- Two transistor base biased with –VBB.
- RC1 and RC2 acts load resistor.
- Two trigger pulses(+ve) applied change the states from 1 state another in base of transistor
- R_E used emitter circuit provide bias keep one transistor ON and another OFF.

Circuit Diagram:			(7)
	VCC +12V Ro C1 C1 C1 Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro	C2 R0 C2 R1 C2 V02 C2 R2 R2 R2 R2 Rest	
If a positive pulse -	applied at S or R, drives Q_1 - satu	ration - Ω_{2} goes - α	sut-off
Explain Clipper ci	rcuits. (10M) BTL2		
Explain Clipper ci Answer: Page 648- S Clipper:	rcuits. (10M) BTL2 . Salivahanan		(2)
Explain Clipper ci Answer: Page 648- S Clipper: A circuit - re Clipper- dev distorting - re The basic co To fix - clip Types: Depending - feature and accordingly the Positive clip Negative clip	rcuits. (10M) BTL2 . Salivahanan emoves the peak of a waveform - ice -to prevent the output - circui emaining part - applied waveforr mponents - ideal diode - resistor. ping level - the desired amount, a s - diode, the positive or negative diode clippers may be , pers. ppers.	<i>clipper</i> . t - exceeding - pren. n. dc battery - inclu	(2) edetermined voltage leve ided.
Explain Clipper ci Answer: Page 648- S Clipper: A circuit - re Clipper- dev distorting - re The basic co To fix - clip Types: Depending - feature and accordingly the Positive clip Negative clip	rcuits. (10M) BTL2 . Salivahanan emoves the peak of a waveform - ice -to prevent the output - circui emaining part - applied waveforr mponents - ideal diode - resistor. bing level - the desired amount, a s - diode, the positive or negative diode clippers may be , pers. ppers. al categories of clippers:	<i>clipper</i> . t - exceeding - pren. n. dc battery - inclu	(2) edetermined voltage leve ided.
Explain Clipper ci Answer: Page 648- S Clipper: A circuit - re Clipper- dev distorting - re The basic co To fix - clip Types: Depending - feature and accordingly the Positive clip Negative cli There are two gener Series clipper Parallel (or set	rcuits. (10M) BTL2 . Salivahanan emoves the peak of a waveform - ice -to prevent the output - circui emaining part - applied waveforr mponents - ideal diode - resistor. bing level - the desired amount, a s - diode, the positive or negative diode clippers may be , pers. al categories of clippers: ers hunt) clippers.	<i>clipper.</i> t - exceeding - prent n. dc battery - inclue region of the input	(2) edetermined voltage leve ided.
Explain Clipper ci Answer: Page 648- S Clipper: A circuit - re Clipper- dev distorting - re The basic co To fix - clip Types: Depending - feature and accordingly the Positive clip Negative cli There are two gener Series clippe Parallel (or a The series configuration	rcuits. (10M) BTL2 . Salivahanan emoves the peak of a waveform - ice -to prevent the output - circui emaining part - applied waveforr mponents - ideal diode - resistor. ping level - the desired amount, a s - diode, the positive or negative diode clippers may be , pers. opers. al categories of clippers: ers	<i>clipper.</i> t - exceeding - prent n. dc battery - inclue region of the input	(2) edetermined voltage leve ided.

UNIT V-POWER AMPLIFIERS AND DC CONVERTERS			
Power amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB			
Power amplifier using MOSFET –DC/DC convertors – Buck, Boost, Buck-Boost analysis and design			
PART * A			
Q.No.	Questions		
	State the difference between voltage and power amplifier. BTL1		
	Voltage Amplifier: The input given to the transistor is in millivolts. The transistor used is a small		
1.	signal transistor.		
	Power Amplifier: The input given to the transistor is in volts. The transistor used is a power		
	transistor.		
	Why power amplifier is also known as large signal amplifier? BTL1		
2	Since the output obtained from the power amplifier is very large, it is known as large signal		
	amplifier.		
	Define class A power amplifier. How do you bias class A amplifier? BTL1		
3	It is an amplifier in which the input signal and the biasing is such that the output current flows for		
5	full cycle of the input signal. The Q point should be kept at the center of the DC load line to bias the		
	Class A amplifier.		
	Define class B power amplifier. BTL1		
4	It is an amplifier in which the input signal and the biasing is such that the output current flows for		
	half cycle of the input signal.		
5	Define class C power amplifier. BTL1 It is an amplifier in which the input signal and the biasing is such that the output current flows for		
5	less than half cycle of the input signal		
	Define class AB power amplifier. BTL1		
6	It is an amplifier in which the input signal and the biasing is such that the output current flows for		
	more than half cycle but less than full cycle of the input signal		
	What is a push pull amplifier? BTL1		
7	Class B amplifier is used as a push pull amplifier which uses two transistors. Both the transistors		
	work as a push pull arrangement. i.e one transistor will be on at a time.		
0	What is cross over distortion? How it can be eliminated? BTL1		
8	There is a 0.7V delay in between every half cycle. Due to this the sine wave will not be a continues		
	wave. This is called cross over distortion. It can be eliminated by class AB amplifier. An amplifier has an efficiency of 32% and a collector dissipation of 0.8W. Calculate the d.c.		
	power input and a.c.power output of the circuit. BTL1		
	Pin(d.c) = $2Pc(d.c) + Po(a.c)$		
9	= 2.35W		
	Po(a.c) = Pin(d.c)(.32)		
	0.752W		
	Define DC DC Converters. BTL1		
10	DC-to-DC converters convert electrical power provided from a source at a certain voltage to		
10	electrical power at a different dc voltage.		
	List the features of DC DC Converters. BTL1		
	 DC-to-DC power converters form a subset of electrical power converters. 		
11	 Both the output and input power specifications of dc-to-dc converters are in dc. Most dc 		
	loads require a well-stabilized dc voltage capable of supplying a range of required current, or		

	a variable dc current or pulsating dc current rich in harmonics.		
	 The dc-to-dc converter has to provide a stable dc voltage with low output impedance over a 		
	wide frequency range.		
	Draw the simple DC DC Convertor DTL 1		
	Draw the simple DC DC Converter. BTL1		
12	$I_s R_c V V I_I I_o V_o$		
14	$v_g \qquad I_c \downarrow _p \ge$		
	List the different types of simple DC DC Converters. BTL1		
13	Series controlled		
15	Shunt Controlled		
	Switch Mode Converters		
	What are the different modes of DC Converters in Switch mode? BTL1		
14	Buck Converter		
	Boost Converter		
	Buck-Boost Converter Give the important features of Buck Converters. BTL1		
	Gain less than unity		
	 Gain is independent of switching frequency as long as Ts<to< li=""> </to<>		
15	 Output voltage ripple percentage of independent of the load on the converter 		
	 Output ripple have second order roll off with the switching frequency. 		
	 Ideal efficiency is unity. 		
	• The input current is discontinuous and pulsating.		
	Write the important features of Boost Converters. BTL1		
	Gain more than unity		
	• Gain is independent of switching frequency as long as Ts <rc< td=""></rc<>		
16	• Output voltage ripple percentage of dependent of the load on the converter		
	Parasitic resistance degrades the gain		
	• Ideal efficiency is unity.		
	• The input current is continuous.		
	List the important features of Buck-Boost Converters. BTL1		
	 Gain can be set below or above unity. Gain is independent of switching frequency as long as Ts<rc< li=""> </rc<>		
	 Output voltage ripple percentage of independent of the load on the converter & 		
17	Output voltage hpple percentage of independent of the load on the converter & Output ripple have second order roll off with the switching frequency.		
	 Parasitic resistance degrades the gain 		
	 Ideal efficiency is unity. 		
	 The input current is discontinuous and pulsating. 		
	What is theoretical maximum conversion efficiency of class A power amplifier? (Nov 2009)		
18	BTL1		
	25% and it can be increased to 50% by using inductors or transformers.		
10	What is 'distortion' in power amplifiers? (Nov 2009) BTL1		
19	It is non-linear or harmonic distortion and is caused by the non-linear characteristic curve		
	of an active devices.		

	A BJT has a maximum po	wer dissipation of 2W at ambi	ent temperature of 25°C and			
20	maximum junction temperature of 150°C, find its thermal resistance. (Nov 2010) BTL1 Thermal resistance (TL TA)/DD					
20	Thermal resistance = $(TJ - TA)/PD$ = $(150-25)/2$					
		= (130-23)/2 = 62.5 °C/W				
	List the disadvantages of push	pull amplifier. (Nov 2011) BTL1				
21	The circuit needs two se					
		ie o the crss over distortion				
		nd intermodulation distortion. (N	ov 2011) BTL1			
	Harmonic distortion is	caused by the nonlinear dynamic	characteristics curve of an active			
22	<u> </u>	are produced in the output which				
		so a nonlinear distortion which occ	urs when the input signal consists			
	of more than one frequency					
23		ne context of power amplifier? B				
43		d by the bipolar junction transist resistance measured in $^{\circ}C/W = (TJ)^{\circ}$				
		er harmonic distortion? (Nov 2012)				
24	•	distortion is defined as B2 / B1 X1				
		requency ω B2- amplitude of the sec	1			
	List the applications of MOSE	ET power amplifier. (Nov 2012)	BTL1			
25	• Large switches					
20	• Line drivers for digital s	e e e e e e e e e e e e e e e e e e e				
	Switched mode voltage					
	Distinguish between class A and	nd class B operation. (April 2011)	BTL2			
26	Parameter	Class A	Class B			
20	Conduction angle	100 % of the input signal	50 % of the input signal			
	Theoretical efficiency	25%	78.5%			
		PART *B				
	In fig. a basic Class C-amplif		ge of + 20V and load resistance			
		In fig. a basic Class C-amplifier is shown. It uses supply voltage of $+$ 20V and load resistance of 100 Ω . The operating frequency is 3MHZ and VCE(sat) = 0.3 V. Calculate and efficiency. If				
		peak current is 500 mA, find the conduction angle also. (13M) BTL2				
	Answer: Page 484- S. Salivahana	n				
	This were ruge to to st Sunt unund					
	+20V(V _{cc})					
	+20V(V _{cc})					
1						
1	+20V(V _{cc})					
1	+20V(V _{cc})					
1	+20V(V _{cc}) 100pf 3μH					
1	+20V(V _{cc})					
1	+20V(V _{cc}) 100pf 3μH					
1	+20V(V _{cc}) 100pf 3μH					
1	+20V(V _{cc}) 100pf 3μH ν _i 100pf					

2

$V_p = V_{CC} - V_{CE(sat)} = 20 - 0.3$ Or, $V_p = 19.7V$	(2M)
$P_{0} = \frac{V_{p}^{2}}{2R_{L}} = \frac{1.97^{2}}{2 \times 100}$ or, $P_{0} = 1.69W$	
$P_{dc} = 20 \times 0.0857$	
or, P _{dc} = 1.714 W	(2M)
$P_{dc} = V_{CC} imes I_{dc}$	
Where,	
$I_{dc} = \frac{P_0}{V_p} = \frac{1.69 W}{19.7 V} = 0.0857 A$	(2M)
$\eta = \frac{P_0}{P_{dc}} = \frac{1.69W}{1.714W} \times 100 = 98.5\%$	
For the frequency of 3MHz, the period of the wave, T, is	
$T = \frac{1}{3 \times 10^6} = 0.33 \mu s$	(214)
$P_0 \times T$	(2M)
$t = \frac{P_0 \times T}{I_p \times V_p}$	
$=\frac{1.69W\times0.33\times10^{-6}}{500\times10^{-3}\times19.7V}$	
or, $t = 56.6 \times 10^{-9} s$	
$or, t = 56.6 \ ns$	
And, the conduction angle, θ , is	
$\theta = \frac{t}{T} \times 360 = \frac{56.6 \times 10^{-9}}{0.33 \times 10^{-6}} \times 360$	
$or, \theta = 61.7^{\bullet}$	(5M)
	• • • • • • •
Calculate maximum ac output power and the minimum power rat push-pull amplifier shown in fig.(10M) BTL2	ing of the transistors in the
Answer: Page 682- S. Salivahanan	

	Buck	Boost	Buck-Boost
Ideal Gain	d	$\frac{1}{1-d}$	$-\frac{d}{1-d}$
Current Ripple	$\frac{(1-d)RT_S}{L}$	$\frac{d(1-d)^2 R T_S}{L}$	$\frac{(1-d)^2 R T_S}{L}$
Voltage Ripple	$\frac{(1-d)T_S^2}{8LC}$	$\frac{dT_S}{RC}$	$\frac{dT_S}{RC}$
Duty Ratio	$\frac{2}{3} \leq d \leq 1$	$0 \le d \le \frac{2}{3}$	$0 \le d \le \frac{2}{3}$
Effici		a on account of different account $\alpha = \frac{R_l}{R}; \ \beta = \frac{R_g}{R};$	t non-idealities
R_l and R_g	$\frac{1}{1+\alpha+\beta d}$	$\frac{1}{1 + \frac{\alpha + \beta}{(1 - d)^2}}$	$\frac{1}{1 + \frac{\alpha + \beta d}{(1 - d)^2}}$
V_{sn} and V_{sf}	$1 - \frac{V_{sf}}{V_g} - \frac{V_{sf}}{dV_g}$	$1 - \frac{V_{sn}}{V_g} - \frac{(1-d)V_{sf}}{V_g}$	$1 - \frac{V_{sn}}{V_g} - \frac{(1-d)V_{sf}}{dV_g}$

Wave form Comparison:

JIT-JEPPIAAR/ECE/Mrs.S.Mary Cynthia/IInd Yr/SEM 04/EC8452/ELECTRONIC CIRCUITS II/UNIT 1-5/QB+Keys/Ver3.0 2-55

(3M)

$\delta V_{e} = \frac{\delta Q}{C} = \frac{1}{C2} \frac{1}{2} \frac{\delta I_{e}}{2} \frac{T_{g}}{2}$ $\delta V_{e} = \frac{V_{e}(1-d)T_{g}^{2}}{\delta I_{e}}$ $\delta V_{e} = \delta_{e} = \frac{(1-d)T_{g}^{2}}{\delta I_{e}C}$ Input Current: $I_{g} = d_{e}$ Validity of Results: $\frac{\delta V_{e}}{V_{e}} = \delta_{e} = \frac{5(1-d)T_{g}^{2}}{T_{e}^{2}} << 1$ Efficiency: $\eta = \left[1 - \frac{V_{e}}{V_{g}} - \frac{V_{e}(1-d)}{T_{e}}\right] \left[\frac{R}{R+R_{l}+dR_{g}}\right]$ Features: (2M) 6 Gain less than unity 6 Gain is independent of switching frequency as long as Ts <to (2m)="" 0="" 10="" 6="" 7="" 9="" and="" converter="" current="" discontinuous="" frequency.="" have="" independent="" input="" is="" load="" of="" off="" on="" order="" output="" parcentage="" percentage="" pulsating="" pulsating.="" ripple="" roll="" roltage="" second="" switching="" th="" th<="" the="" unput="" voltage="" with=""><th></th><th></th><th></th></to>			
$f_{g} = dI_{o}$ Input Current: $I_{g} = dI_{o}$ Validity of Results: $\frac{\delta V_{g}}{V_{o}} = \delta_{v} = \frac{5(1-d)T_{o}^{2}}{T_{v}^{2}} << 1$ Efficiency: $\eta = \left[1 - \frac{V_{en}}{V_{g}} - \frac{V_{ef}(1-d)}{dV_{g}}\right] \left[\frac{R}{R+R_{l}+dR_{g}}\right]$ Features: (2M) 6 Gain less than unity 6 Gain is independent of switching frequency as long as Ts <to 0 Output voltage ripple percentage of independent of the load on the converter 0 Output voltage ripple percentage of independent of the load on the converter 0 Output voltage ripple have second order roll off with the switching frequency. 1 deal efficiency is unity. The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) 8 oost Converter 4 deal efficiency is unity. (2M) 6 deal efficiency is unity. 6 deal efficiency is unity. (2M)</to 		$\delta V_o = \frac{V_o(1-d)T_S^2}{8LC}$	
$I_{g} = dI_{o}$ Validity of Results: $\frac{\delta V_{o}}{V_{o}} = \delta_{v} = \frac{5(1-d)T_{o}^{2}}{T_{o}^{2}} << 1$ Efficiency: $\eta = \left[1 - \frac{V_{m}}{V_{g}} - \frac{V_{sf}(1-d)}{dV_{g}}\right] \left[\frac{R}{R+R_{l}+dR_{g}}\right]$ Features: (2M) • Gain less than unity • Gain is independent of switching frequency as long as Ts <to • Output voltage ripple percentage of independent of the load on the converter • Output ripple have second order roll off with the switching frequency. • Ideal efficiency is unity. • The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) • Waveform: (2M)</to 		$V_o = 8LC$	
Validity of Results: $\frac{\delta V_{o}}{V_{o}} = \delta_{v} = \frac{5(1-d)T_{o}^{2}}{T_{o}^{2}} << 1$ Efficiency: $\eta = \left[1 - \frac{V_{st}}{V_{g}} - \frac{V_{sf}(1-d)}{dV_{g}}\right] \left[\frac{R}{R+R_{l}+dR_{g}}\right]$ Features: (2M) 6 Gain less than unity 6 Gain is independent of switching frequency as long as Ts <to Output voltage ripple percentage of independent of the load on the converter 0 Output voltage ripple percentage of independent of the load on the converter 0 Output voltage ripple percentage of independent of the load on the converter 0 Output voltage ripple percentage of independent of the load on the converter 0 Output voltage ripple parent is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) 6 4 4 4 4 4 4 4 4 4 4 4 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7</to 		Input Current:	
$ \frac{\delta V_e}{V_e} = \delta_e = \frac{5(1-d)T_e^2}{T_e^2} \ll 1 $ Efficiency: $ \eta = \left[1 - \frac{V_m}{V_g} - \frac{V_{sf}(1-d)}{dV_g}\right] \left[\frac{R}{R+R_l+dR_g}\right] $ Features: (2M) • Gain less than unity • Gain is independent of switching frequency as long as Ts <to • Output voltage ripple percentage of independent of the load on the converter • Output ripple have second order roll off with the switching frequency. • Ideal efficiency is unity. • The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) • Waveform: (2M)</to 		$I_g = dI_o$	
$ \frac{\delta V_e}{V_s} = \delta_v = \frac{5(1-d)T_s^2}{T_v^2} \ll 1 $ Efficiency: $ \eta = \left[1 - \frac{V_{sn}}{V_g} - \frac{V_{sf}(1-d)}{dV_g}\right] \left[\frac{R}{R+R_l+dR_g}\right] $ Features: (2M) • Gain less than unity • Gain is independent of switching frequency as long as Ts <to • Output voltage ripple percentage of independent of the load on the converter • Output ripple have second order roll off with the switching frequency. • Ideal efficiency is unity. • The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 19- Notes Diagram: (2M) • Waveform: (2M)</to 		Validity of Results:	
$\eta = \left[1 - \frac{V_{sn}}{V_g} - \frac{V_{sf}(1-d)}{dV_g}\right] \left[\frac{R}{R+R_l+dR_g}\right]$ Features: (2M) • Gain less than unity • Gain is independent of switching frequency as long as Ts <to • Output voltage ripple percentage of independent of the load on the converter • Output ripple have second order roll off with the switching frequency. • Ideal efficiency is unity. • The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) • Waveform: (2M) • Waveform: (2M)</to 			
6 (2M) 6 (2M) 9 (Gain less than unity 9 (Gain is independent of switching frequency as long as Ts <to <="" td=""> 9 Output voltage ripple percentage of independent of the load on the converter 9 Output voltage ripple percentage of independent of the load on the converter 9 Output voltage ripple percentage of independent of the load on the converter 9 Output voltage ripple percentage of independent of the load on the converter 9 Output voltage ripple percentage of independent of the load on the converter 9 Output voltage ripple percentage of independent of the load on the converter 9 Output ripple have second order roll off with the switching frequency. 9 The input current is discontinuous and pulsating. 9 Output ripple have second order roll off with heat sketch. 9 Output ripple have second order roll off with neat sketch. 9 Output ripple have second order roll off with neat sketch. 9 Output ripple have second order roll off with neat sketch. 9 Outpu</to>		Efficiency:	
 Gain less than unity Gain is independent of switching frequency as long as Ts<to< li=""> Output voltage ripple percentage of independent of the load on the converter Output ripple have second order roll off with the switching frequency. Ideal efficiency is unity. The input current is discontinuous and pulsating. </to<> Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) 6 		$\eta = \left[1 - \frac{V_{sn}}{V_g} - \frac{V_{sf}(1-d)}{dV_g}\right] \left[\frac{R}{R+R_l + dR_g}\right]$	
 Gain is independent of switching frequency as long as Ts<to <ul=""> Output voltage ripple percentage of independent of the load on the converter Output ripple have second order roll off with the switching frequency. Ideal efficiency is unity. The input current is discontinuous and pulsating. </to> Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) 6 ^{1-d} ^{1-d}		Features:	(2M)
 Output voltage ripple percentage of independent of the load on the converter Output ripple have second order roll off with the switching frequency. Ideal efficiency is unity. The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) 6 Waveform: (2M)		• Gain less than unity	× ,
 Output ripple have second order roll off with the switching frequency. Ideal efficiency is unity. The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) 6 <i>waveform:</i> <i>i</i> 			
 Ideal efficiency is unity. The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) 6 Waveform: (2M) 6 (2M) 			erter
 The input current is discontinuous and pulsating. Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) Boost Converter Waveform: (2M) 6 			
6 Explain the operation of Boost Converter with neat sketch. (10M) BTL2 Answer: Page 119- Notes Diagram: (2M) Boost Converter Waveform: (2M) 6 (2M)		· · ·	
6 Answer: Page 119- Notes Diagram: Boost Converter U U U U U U U U			
$6 \qquad \qquad$		Answer: Page 119- Notes	
$6 \qquad (2M)$		Diagram:	(2M)
6			
6		Waveform:	(2M)
i_L dT_S t t	6		
$I_{0} \xrightarrow{I_{0} + (1-d)I_{0}} t$	0		
		$\leftarrow a_1 s \rightarrow f \leftarrow (1-a)_1 s \rightarrow t$	
		[™] t	
		ic t	
Steady State Waveforms of the Boost Converter		Steady State Waveforms of the Boost Converter $$	

2-57

	Answer: Page 671- S. Salivahanan Introduction: Circuit Diagram:	(2M) (2M)	
	$R_{1} \neq R_{2}$ $R_{2} \neq R_{E}$ $R_{2} \neq R_{E}$		
	Operation ; N1, N2 = the number of turns in the primary and secondary V1, V2 = the primary and secondary voltages I1, I2 = the primary and secondary currents	(2M)	
	T1, 12 – the primary and secondary currents Z1, Z2 = the primary and secondary impedance (Z2 = RL) Ptot = P1 + P2 + PC + PT + PE $\eta_{(max)} = \frac{P_{ac}}{P_{dc}} = \frac{2V_{CC}2I_C}{8V_{CC}I_C} \times 100\%$	(2M)	
	Draw the circuit diagram of class B push pull amplifier and discuss its merits. (NOV/DEC 2011) (APR/MAY 2010)(NOV/DEC'12) BTL2 Answer: Page 478- S. Salivahanan	(13M)	
10	 Introduction: (2M) Push-pull - one transistor conducts - half a cycle - other -off, and vice versa. On - positive half cycle - input voltage, the secondary winding of T1 has voltage v1 and v2, as shown. The upper transistor conducts - lower one cuts off. The collector current through Q1flows - upper half of the output primary winding. 		
	 This produces - amplified - inverted voltage, - transformer-coupled - loud speaker. On - next half cycle - input voltage, - polarities reverselower transistor turns on transistor turns off - lower transistor amplifies - signal, - alternate half cycle appears the loudspeaker. Since each transistor amplifies one-half of the input cycle, the loud speaker recomplete cycle - amplified signal. 	across eives -	
	Circuit Diagram: (4M)	

2-65

emitter junction over comes cross – over distortion in push – pull amplifier. For analysis purposes, - sufficient - consider only half of the circuit for reasons of symmetry, and VCC of half (= VCC/2 = 30/2 = 15V) is to be taken for one transistor. (2M) The current through resistors R1 and R2 is, $I = \frac{15V}{R_1 + R_2} = \frac{15V}{300\,\Omega + R_2}$(A) (2M) IXR₂ = 0.7V (desired voltage) $or, I = 0.7V/R_2$ (B) (1M) $\frac{0.7V}{R_2} = \frac{15V}{300\Omega + R_2}$ or, $R_2 = 14.7 \Omega$ (1M)