JEPPIAAR INSTITUTE OF TECHNOLOGY

§

iSeBlefl i ef | Self DisciplinePY®sSe

DEPARTMENT
OF
ELECTRONICS AND COMMUNICATION ENGINEERING

LECTURE NOTES
EC8552i1 COMPUTER ARCHITECTURE AND ORGANIZATION
(Regulation 2017)

Year/Semester: Il / V ECE
202171 2022

Prepared by
Mr. N. Prabhakaran

Asociate Professor / ECE

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

UNIT -1l
PROCESSOR AND CONTROL UNIT

Basic MIPS implementation- Building datapath— Control Implementation’ scheme-
Pipelining— Pipelined datapath and contrelHandling Data hazards & Control hazares
Exceptions.

A BASIC MIPS IMPLEMENTATION:

The implementation that includes a subset of the core MIPS instruction set:
1 The memoryreference insuctionsload word (lw) andstore word (sw)
1 The arithmetidogical instructionsadd, sub, AND, OR, and slt
1 The instructiondranch equal (beqg)andjump (j)

An Overview of the Implementation:

For every instruction, the first two steps are identical:
1. Send thegrogram counte(PC) to the memory that contains the code and fetch the
instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers to read. For
the load word instruction, we need to realy one register,”but most other instructions
require reading two registers.

1 After these two steps, the actions required to complete the instruction depend on
the instruction class.

1 For example, all'instruction classes, except jump, use the aritHiogical
unit (ALU) after reading the registers.

1 The following diagram shows the hidgéwvel view of a MIPS implementation,
focusing on the various functional units and their interconnection.

4 —

B
Add Add

L Data
Register #
= PC #=| Address Instruction |4 Registers >ALU Address
Reqgister #
Instruction . Data |
memory Register # ‘ memory
Data
1

2021- 2022 Jeppiaar Institute ofechnology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
FIGURE 3.1 An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them.

2
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
Operation:

T

All instructions start by using the program counter to supply the instruction atluress
the instruction memory.

After the instruction is fetched, the register operands used by an instruction
are specified by fields of that instruction.

Once the register operands have been fetched, all the instruction classes, except
jump, use the ALU adlr reading the registers.
1 Memory reference instructions (load or store) use the ALU for an
address calculation.
1 Arithmetic Logical instructions use the ALU for the operation execution.
1 Branches use the ALU for comparison.

The second input to the ALtAn come from a register or the immediate field of
the instruction.

After using the ALU, the actions required to complete various instruction classes are
not same.

1 If the operation is a memory reference instruction a load or store, the ALU
result is use@s an address to either store a value from the registers or load a
value from memory into the registers. The result from the ALU or memory
is written back into the register file.

1 If the instruction is an arithmetiogical instruction, the result fromehALU
must be written to a register.

1 Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch off set
are summed) or from an adder thatincrements the current PC by 4.

Basic implementation of MIPS with multiplexer:

T

We must.add a logic element that chooses from among the multiple sources and steers

one of those sources to its destination. This selection is commonly done with a device
called amultiplexor, although this device might better be callediaa selector
which selects from among several inputs based on the setting of its control lines.

The control lines are set based primarily on information taken from the instruction
being executed.

The following figure.shows the datapath with the three multiplexors added, as well as
control lines for the major functional units.

A control unit.is used to determine how to set the control lines for the functional units
and two of the multiplexors.

The topmuit pl exor (“Mux”) controls what value

destination address); the multiplexor 1is

Zero output of the ALU and a control signal that indicates that the instruction is a
branch.

The middle multiplexor, whose output returns to the register file, is used to steer the
output of the ALU (in the case of an arithmdbgical instruction) or the output of the
data memory (in the case of a load) for writing into the register file.

Finally, the bottommost multiplexor is used to determine whether the second ALU input
is from the registers (for an arithmetagical instruction or a branch) or from the offset

3
2021- 2022 Jeppiaar Institute of Technology

c

r
C

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
field of the instruction (for a load or store).

The added control lines are straightforward and determine the operation performed at the ALU, whether
the data memory should read or write, and whether the registersd gieofdrm a write operation.

NN
F i
Add M|
iy o
X
L .\—/'
Data F\\
Register # \ '
= PC Address Instruction |4 Registers () >ALU‘ Address
: M| Fe
Register # Ze Data
Instruction N memory |
memory Register # moqwrite T': .)
: _
Data = -

Logic Design Conventions:

The datapath elements in the MIPS implementation consist of two different types of
logic elements:

1. Combinational Elements
I The elements that operate on data values acem@binational, which means
that their outputs depend only on the current inputs.
1 Given the same input, a combinational element always produces the same output.
1 The ALU is an example of a combinatiomé¢ment. Given a set of inputs, it
always produces the same output because it has no internal storage.
2. State Elements:
9 It holds information about the state of the processor during the current clock cycle.
An element contains state if it has some intestarage.
All registers are state elements.
A state element has at least two inputs and one output.

The required inputs are the data value to be written into the element and the
clock, which determines when the data value is written.

The output from &tate element provides the value that was written in an earlier clock
cycle.

= =4 =A =

=

Clocking Methodology

2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATIO Department of ECE

1 A clocking methodologydefines when signals can be read and when they can
be written.

The approach used to determine when data is valid and stable relative to the clock.

1 All state elements including memory, are assumed to be positiveregigered,;
that is, they change dhe rising clock edge.

State -~ B T e State
element ——{ Combinational logic }——| €lement
1 o A 2

Clock cycle

1 Figure shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle.

1 All signals must propagate from state element 1, through the combinational logic,
and to state elemeftin the time of one clock cycle.

1 The time necessary for the signals to reach state element 2 defines the length of the
clock cycle.
Edgetriggered clocking methodology:
1 An edgetriggered clocking methodology means that any values stored in a

sequential logic element are updated only on a clock edge, which is a quick transition
from low to high or vice versa.

1 An edgetriggered methodology allows us to read.the contents of a register, send the value
through sane combinational logic, and write that register in the same clock cycle.

.

- Ve) ' .
State —(_ Combinational logic)—

element

Y

Control signal
1 A signal used for multiplexor selection or for directing the operation of a functional
unit; contrasts with a data signal, which contains information thaesated on by a
functional unit.
Asserted: The signal is logically high or true.
Deasserted:The signal is logically low or false.

BUILDING A DATAPATH

Datapath

9 Itis a collection of function units organized in a manner to execute each class
of instrwction.

Datapath elements
1 A unit used to operate on or hold data within a processor is cidtagath element.
1 Inthe MIPS implementation, the datapath elements include the instruction and
data memories, the register file, the ALU, and adders.
How to build a datapath:
1 Datapath design begins in examining the major components required to execute each

5
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
class of MIPS instructions.

1 First wehave to know what the data path elements each instruction needs are, and
also their control signals.

Stage: 1 [Datapath to fetch instruction and increment PC]

1 The following diagram shows the datapath elements needed to fetch an
instruction.

1 The state elements are finstruction memory, the program counter and
adder.

1 Instruction memory - a memory unit to store the instructions of a
program and supply instructions given an address.

1 The instruction memory need only provide read accessibethe
datapath does not write instructions.

Instruction
address

Instruction |—

Instruction
memory

a. Instruction memory

1 The output at any time reflects the contents of the location specified by
the address input, and no read control signal is'needed.

Program counter

1 The register containing the address of the instruction in the program
being executed is callggtogram counter.
1 The program counter is- a2t register that is written at the end of

every clock cycle and thus does not need a write control signal.

b. Program counter

Adder
i Adder is used to increment the PC to the address of the next instruction.

1 The adder is an ALU wired to always add its twek®2inputs and place the sum
on its output:

\>Add Sum}—-
,

c. Adder

Combined all three elements into single stage

6
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

~

~

|
> Add

L

Instruction F——

Read
address

Instruction
memory

Stage: 2 [Datapath segment for multiport reqister file and the ALU]

Reaqister File:
1 A reqister file is a collection of registers in which any register can be read or written
by specifying the number of the register in the file.
1 R-format instructions have three register operands, so we will need to read two data
words from the register file and write @mlata word into the register file for each
instruction.

1 For each data word to be read from the registers, we need an input to the register file
that specifies the register number to be read and an output from the register file that
will carry the valuehat has been read from the registers.

1 To write a data word, we will need two inputs: one to specify the register number to
be written and one to supply the data to be written into the register.

1 The register number inputs are 5 bits wide to specify 082 oégisters (32 :52,
whereas the data input and two data output buses are each 32 bits wide.

5 |Read
register 1 Read 3

Register ¥, < Read
numbers) register 2

\ N
= Registers > Data JALU U
. Write result
—— § e
register Read -

\ o
- L - - - P

Write
Data

b. ALU
a. Registers

ALU:
1 ALU, which takes two 3dit inputs and produces a-B& result, as well as a-Hit
signal if the result is 0. The inputs carrying tlegister number to the register file are
all 5 bits wide, whereas the lines carrying data values are 32 bits wide.

1 The operation to be performed by the ALU is controlled with the ALU operation
signal, which will be 4 bits control signal.

1 ALU provides aroutput signal that indicates whether the result was 0, we can send
the two register operands to the ALU with the control set to do a subtract.

1 If the Zero signal out of the ALU unit is asserted, we know that the two values are
equal. We will be using itrdy to implement the equal test of branches.

7
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Departmenbf ECE
Combined two elements into single stage

ALLT op
Register File 3 1\
Instruction » Read Reg 1 Read _ \ Zero
»| Read Reg 2 Data 1 -
] Write > ALU
R egister Read - /
| Write Data Data 2
Result
Register
Write

Stage: 3 [Datapath segment foBranch Instruction]

Sign-extend
1 To increase the size of a data item by replicating the tvidér sign bit of the
original data item in the high order bits of the larger, destination data item.

|I Slgn- ’} J2
| extend | -

16
.

Branch b. Sign extension unit
1 A type of branch where the instructionmediately following the branch is
always executed independent of whether the branch condition is true or false.
Branch taken
1 A branch where the branch condition is satisfied and the program counter
(PC) becomes the branch target. All unconditigmaps are taken branches.
Branch not taken or (untaken branch)
1 A branch where the branch condition is false and the program counter (PC)
becomes the address of the instruction that sequentially follows the branch.
Branch target address

1 The addresspecified in a branch, which becomes the new program counter (PC)
if the branch-is taken.

1 Inthe MIPS architecture the branch target is given by the sum of the offset field of

the instruction and the address of the instruction following the branch.
Example:

1 The beq instruction has three operands, two registers that are compared for equality,
and a 1ébit off set used to compute the branch target address relative to the branch
instruction addres€x: beq $t1,$t2,offset.

1 To implement this instruction, waust compute the branch target address by adding
the signextended offset field of the instruction to the PC.

There are two details in the definition of branch instructions.
1 The instruction set architecture specifies that the base for the branch addtrekgion

8
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
is the address of the instruction following the branch i.e., PC+4 the address of the next
instruction.

1 The architecture alsstates that the offset field is shifted left 2 bits so that it is a word
off set; this shift increases the effective range of the offset field by a factor of 4.

Branch Target Address = PC+4+offset (Shifted left 2 bits)

1 The branch datapath must perfanwo operations: Compute the branch
target address and compare the register contents.

1 To compute the branch target address, the branch datapath includes a sign
extension unit, shifter and an adder.

1 Control logic is used to decide whether the incremen@drbranch target
should replace the PC, based on the Zero output of the ALU.

9
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION

Combined Diagram:

PC +4 from instruction datapath —

\> Add Sum —-

Department of ECE

Branch
target

> 7
[Shift
\left2 |~ =
¥, =
Read Nl
register 1 Read
Read data 1 .
register 2 9 e
>ALU Zero —s)
Write Registers i gontrol logic
register Read (
Write data 2 | e
data
e | =
| /’ \\
16 | sign- | 32
| extend / S
.._\\ /

Stage: 4 [Datapath Segment for Load Word and Store Word

Instructions] Data Memory

——»| Address

Write
data

Read

Data

memory

data

1

The data memory unit is a state element with inputs for the address and the write data,
and a single output for theead result. It has separate read and write controls to
control the read and write operations.

Although only one of these may be asserted on any given clock. The memory unit
needs a read and write control signal.

Consider the MIPS load word and store word instructions, which have the general
form Ex: lw $t1, offset_value ($t2)or sw $t1, offset_value ($t2).

These instructions compute a memory address by adding the base register, which is
$t2, to the 1ébit signedoff set field contained in the instruction.

If the instruction is a store, the value to be stored must also be read from the register
file where it resides in $t1.

If the instruction is a load, the value read from memory must be written into the
registerfile in the specified register, which is $t1.

Building a Datapath with all the stages:

T

Now we can combine all the pieces to make a simple datapath for the core MIPS
architecture by adding the datapath for instruction fetch, the datapath ftgpe Rnd
memory instructions, and the datapath for branches.

10

2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION

Department of ECE

1 The following figure shows the datapath we obtain by composing the separate pieces.
The branch instruction uses the main ALU for comparison of the register operands, so
we must keep the adder for computing the branch target address.

1 An additional multiplexor is required to select either the sequentially following
instruction address (P€4) or the branch target address to be written into the PC.

1 The control unit must be able to take inputs and generate a write signal for each state
element, the selector control for each multiplexor, and the ALU control.

N pCsre |
\ o i
e M
Add J .
ALU)
. - Add oq, it L
.
”|‘ Shift \ .
\ 'oﬂ 2 J ‘(/"
ot
Read :
Read " A _ 4 AL =
PC e+ e register 1 Read ‘)| ' ‘ o X
Read data 1 Z‘ ~ e
: register 2 ero et
Instruction ’
Write R091S187S Roag) >ALU AW| | Address Re3D /J\
Instruction *| register data 2 M fGSLL[t data M
memory urs : -
. Write & X 4
_/ /
= Write Data
RegWiite N data memory
o:’ \ MemRaa
= | Sign- '1 32 R [
| extend |

A CONTROL IMPLEMENTATION SCHEME

1 This simple implementation covers load word (Ilw), store word (sw), branch equal
(beq), and the arithmetiogical instructions add, sub, AND, OR, and set on less than.

The ALU Control
1 The MIPS ALU in defines the 6 followingombinations of four control inputs:

0000 AND
0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

1 Depending on the instruction class, the ALU will need to perform one of these first
five functions.

1 For load word and store word instructions, we use the ALU to compute the
memory address by addition.

1 For the Rtype instructions, the ALU needs to perform one of the five actions
(AND, OR, subtract, add, or set on less than), depending on the value of the 6

11

2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
bit funct (or function) field in the lovorder bits of the instruction

1 For branch equal, the ALU must perform a subtraction.

1 We can generate thebdt ALU control input using a small control unit that has as inputs
the function field othe instruction and a-Bit control field, which we call ALUOp.

1 The 2 bits ALUOp is interpreted as shown in Table.
ALUOp Action

00 loads and stores

01 subtract for beq

10 determined téy the operation encoded in
the funct fiel

11 --

1 The followingtable shows how to set the ALU control inputs based on-the 2
ALUOp control and the it function code.

Instruction Instruction Desired ALU control
opcode operation ALU action input
LW 0 add

load word X000 0010
SW Q0 store word XK add 0010
Branch equal 01 branch equal X0 subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

1 Here multiple levels of decoding technique is used.
Adv of using multiple levels of decoding:
1.1t reduces the size of the maiantrol unit.
2. Use of several smaller units may also increase the speed of the control unit.
Truth table
1 From logic, a representation of a logical operation by listing all the values of
the inputs and then in each case showing what the resulting ositpuls be.
D o0 n-@aie term
1 An element of a logical function in which the output does not depend on the values of
al'l .t he tcargpterrhsamay bB specifigd in different ways.
Opcode
9 The field that denotes the operation and format of an instructio
1

The op field, is called the opcode, is always contained in bits 31:26. We will refer
to this field as op[5:0].

9 Designing other controls than ALU controls begins with identifying the fields of an
instruction and the control lines that are neededhi®datapath.

1 There are three instruction classes: thgype, branch, and loastore instructions.
The following diagram shows these formats.

1 The two registers to be read are always specified by the rs and rt fields, at positions
25:21 and 20:16. This itrue for the Rype instructions, branch equal, and store.
1 The 16bit off set for branch equal, load, and store is always in positions 15:0.

12
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

T

a.

b.

The destination register is in one of two places. For a load it is in bit positions
20:16 (rt), while for an Rype instruction it is in bit positions 15:11 (rd).
Thus, we will need to add a multiplexor to select which field of the instructuuserd
to indicate the register number to be written.
Field [0 [rs [rt | rd shamt | funct
Bit positions 31:26 25:21 20:16 15:11 10:6 5:0
R-type instruction
Field 35 or43 | rs rt | address
Bit positions 31:26 25:21 20:16 15:0
Load or store instruction
Field 4 [s rt] address
Bit positions 31:26 25:21 20:16 15:0

Branch instruction

| mwop | Futfld
| Awopt | Awopo | FS [F4 | F3 | F2 | FL|F0 | Oporation
X X X X X

0 0 X 0010
X 1 X X X X X X 0110
1 X X X 0 0 0 0 0010
1 X X X 0 0 1 0 0110
1 X X X 0 1 0 0 0000
1 X X X 0 1 0 1 0001
1 X X X 1 0 1 0 0111

=

=]

Instruction format for Kormat instructions, which all have an opcode of 0. These
instructions have three register operands: rs, rt, and rd. Fields rs andsougses,
and rd is the destination. Ex: add, sub, AND, OR, and sit.

The ALU function is in the funct field and is decoded by the ALU control design.
Instruction format for load (opcode = 35ten) and store (opcode = 43ten) instructions.

The register rs ishe base register(25:21) that is added to théitLl&ddress field to
form the memory address. For loads, rt is the destination register for the loaded value.
For stores, rt is the source register whose value should be stored into memory.

Instruction fomat for branch equal (opcode =4). The registers rs and rt are the source
registers that are compared for equality.

The 16hit address field is sigaxtended, shifted, and added to the PC + 4 to compute
the branch target address. The following table dessrseven other control lines.

These nine control signals (seven from above table and two for ALUOp) can now be
set on the basis of six input signals to the control unit, which are the opcode bits 31 to
26.

When the 1bit control to a two way multiplexas asserted, the multiplexor selects
the input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor
selects the 0 input.

13
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION

Department of ECE

m Effect when deasserted Effect when asserted

ReqDst The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite None. The register on the Write register input is
writtan with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALL operand is the sign-
sacond register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. [that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output
MemWrite | None. Data memory contents designated by the
address input are replacad by the value on
the Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

1 The following diagram shows the datapath with the control unit and the control signals.

Add

J RegDst

\ Branch

| | MemRaad
Instruction [31-26] | MemtoRa:
P29 ontror V@ 20

[ALUOD
\ | Mem v!.rﬁe-

.'I ALUSIC

Regwrite

Read
address

Instruction ||
[31-0]

Instruction
memory

Instruction [25-21]

Read
register 1 Read

Instruction [20—16] Reaq data1

register 2

Write Read
register data2 [1

Instruction [15-11]
L

Write -
data Registers

16 | sign-

N (ﬂonu

Instruction [5-0]

32

Instruction [15-0]

L] |

[ALU J

\control/

Figure: The simple datapath with the control unit
1 The input to the control unit is tt&ebit opcode field from the instruction.

9 The outputs of the control unit consist of threlitlsignals that are used to control
multiplexors (RegDst, ALUSrc, and MemtoReg).

1 Three signals for controlling reads and writes in the register file andnuatzory
(RegWrite, MemRead, and MemWrite), @it signal used in determining whether to
possibly branch (Branch), and @R control signal for the ALU (ALUOp).

1 An AND gate is used to combine the branch control signal and the Zero output from

the ALU; the AND gate output controls the selection of the next PC.
14

2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

1 Notice that PCSrc is now a derived signal, rather than one coming directlytifeom
control unit.The control lines is completely determined by the opcode fields of the
instruction as shown below

R-format
Tw

0
0

SW

||| o

-
olrlo|lo
[E=l k=] =]
Ll E=d K=J k=]

1
0
0
0

(=3 =l

| l=|o| =
(=1 Nl o =]

beq

1 The first row of the table corresponds to thdoRnat instructions (add, sub, AND,
OR, and slt). For all these instructions, sweirce register-fields are rs and rt, and the
destination register field is rd; this defines how the ALUSrc and RegDst are set.

1 An R-type instruction writes a register (R¥¢grite = 1), but neither reads nor writes
data memory.

1 When the Branch control sigl is 0, the PC:is unconditionally replaced with PC + 4;
otherwise, the PC is replaced by the branch target if the Zero output of the ALU is
also high.

1 The ALUOp field for Rtype instructions is set to 10 to indicate that the ALU control
should be geneted from the funct field.

1 The second and third rows of this table give the control signal settings for lw and sw.
These ALUSrc and ALUOp fields are set to perform the address calculation.

1 The MemRead and MemWrite are set to perform the memory a€deally, RegDst
and RegWrite are set for a load to cause the result to be stored into the rt register.

1 The branch instruction is similar to arf@&mat operation, since it sends the rs and rt
registers to the ALU. The ALUORp fi eld for branch is set fauatract (ALU control
= 01), which is used to test for equality.

1 Thus, the entry MemtoReg in the last two rows of the table is replaced with X for
don’'t car e. Don’"t cares can also be added

Finalizing Control

mmr—l-_m-m

Inputs Op5
Op4
Op3
Op2
Opi 1
Op0O 1 1
Outputs RegDst 1 0 X
1 1

X

3 0 0
0 1 0
0 0 1

(= wm i o o] o) -

[=1 5" fw]

ALUSrc
MemtoReg 1
RegWrite 1 1 0

(=) =]

MemRead
MemWrite 1) i)
Branch 0 0

ALUOp1 1 0 0 0

ALUOpO 0) 1

di=1 1= =l k.1

1 The top half of the table gives the combinations of input signals that correspond to the
four opcodes, one per column, that determine the control output settings.

1 The bottom portion of the table gives the outputs for each of the four opcodes. Thus,
the ouput RegWrite is asserted for two different combinations of the inputs.
Singlecycle implementation: An implementation in which an instruction is executed in one

15
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGAMNATION Department of ECE
clock cycle called single clock cycle implementation.

Operation of the Datapath Example: add $t1,$t2,$t3

Step:1The instruction is fetched, and the PC is incremented.

Step:2Two registers, $t2 and $t3, are read from thyster fi le; also, the main
control unit computes the setting of the control lines during this step.

Step:3The ALU operates on the data read from the register fi le, using the
function code (bits 5:0, which is the funct field, of the instruction) to
generate the ALU function.

Step:4The result from the ALU is written into the register fi le using bits 15:11 of
the instruction to select the destination register ($t1).

N W . J
>Add L =
4 —>/ . a\y,

RegDst ——

xeS O)I

‘.7 Branch

TMemRead
Instruction [31-26] . MaemtoRaq
D ————————L ntre -

AL UOD |
Jaemvivrite
J ALUSK
F‘»"A] write
]
Instruction [25-21]
e | RBad F'Z.%?Sm 1 =
address I 1 Reaa
Instruction [20-16] Reag datal !
Instruction | | G | reaister 2
B0 M| |wmte Read
Instruction | | |instruction [15-11 | % [| register data2
memory |[¢—— 2|

N | wirtte
) data Registers

Instruction [15-0]

Instruction [5-0]

. Example: lw $t1, offset ($t2)
Step:1An instruction is fetched from the instruction memory, and the PC is

incremented.

Step:2A register ($t2) value is read from the register file.

Step:3The ALU computes the sum of the value read from the register file and the
sign-extended, lower 16 bitsf the instruction (offset).

Step:4The sum from the ALU is used as the address for the data meBtepy5

The data from the memory unit is written into the register file; the register
destination is given by bits 20:16 of the instruction ($t1).

16
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION

Department of ECE

Add

Instruction [31-25]

™\ | rRegDst

\ Branch

| MemRead

| MemioReg

*

Contre
|

Instruction [25-21]

°l"ALuop

| MemWrite

J ALUSIC

! RegWrite

Read
address

Instruction [20—16]

Instruction || 1
[31-0)

Instruction
memory »

nstuct

|
M

nps—11f ¥

Instruction [15-0]

™ register

A

Read
register 1 gaaq

fane data

register 2

wrtte d

Rear
data 2

write
data Registers

\ O\KIO-?

Instruction [5-0]

I ALU |
\control

T

Example: beq $t1, $t2, offset

Step:1An instruction is fetched from the instruction memory, and the PC is
incremented.
Step:2Two registers, $t1 and $t2, are read fram the register fi le.

Step:3 The ALU performs a subtract on the data values read from the register file.

Step:4The Zero result fromthe ALU is used to decide which adder result to store into

The value of PC + 4s addedto the sigaextended, lower 16 bits of the
instruction (offset) shift ed left by two; the result is the branch target address.

the PC.

—..:\\

>M¢l

4——/

Instucton (3129 3
[

Instruction [25-21]

) J RegDst

\ Branch

Y MemRead

MemtoReg

AL UK
_‘ MemwWiite
J ALUSIc

RegWwrite

Read

Read

- Read
address
Instruction [20-16]
Instruction 6
E1-0] [T
Instruction nstruction [15-11]
>y

Instruction [15-0]

M| | write Read | R

i [T|register Qata2 Ll::_
write x

I'™| aata Reglsters L

register 2

register 1 goaq
data 1

16 {sign-}| 32

[AaLU

Instructior

[5-0]

-
‘ \control|

Data

VWite N
data Mmemory

17

2021- 2022

Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

IMPLEMENTING JUMPS

Field

000010 address

Bit positions 31:26 25:0

T

The jump instruction, looks somewhat like a branch instruction but computes the
target PC differently and is hoonditional.

The upper 4 bits of the address that should replace the PC come from the PC of the
jump instruction plus 4.

Thus, we can implement a jump by storing into the PC the concatenation of the upper
4 bits of the current PC + 4 (these are 38528 of the sequentially following
instruction address)

An additional multiplexor (at the upper right) is used to choose between the jump
target and either the branch target or the sequential instruction following this one.

This multiplexor is controllé by the jump control signal. The jump target address is
obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively
adding 00 as the lowrder bits, and then concatenating the upper 4 bits of PC + 4 as
the highorder bits, thugielding a 32bit address.

Instruction [25-0] /’-.\ Jump address [31-0]

- /shift) 1
h r
— N \eft 2/ ~
26\ 28 |pc,apE1-28 Lg
>Add I A | M
X
4 — \0
/’/ I . 7 i
Instruction [31-26] _ TMemioReg
Control - -
o
=0 Nrite
]
Read
PC o> address
Instruction ([-
[31-0] P
Instruction
memory | e
L

AN OVERVIEW OF PIPELINING

Pipelining:

An implementation technique in which multiple instructions are overlapped in execution
is called pipeline. The different pipelining stages are,

1. Fetch - Fetch instruction from memory.

18
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
2. Decode Read registers while decoding the instruction. The regular format

of MIPS instructionsllow reading and decoding to occur simultaneously.

3. Execute Execute the operation or calculate an address.
4. Access Access an operand in data memory.
5. Write - Write the result into a register.

Four stage Instruction Pipelining

—1 Time

Clock cycle 1 2 3 L 5 6 7
Instruction
I F, | Dy [E, W,
; ~
1, F, D> E, W
Iy ‘ F3 Dy l Es W I
I, Fgu D, Eg l W,

(a) Instruction execution divided into four steps

Interstage buffers

| D : Decode |
F : Fetch | instruction | E: Execute BB W : Write
- - —— -
instruction | and fetch operation results
| operands J ’
| - :

(b) Hardware organization

Hardware units are organized into stages:

1 Execution in each stage takes exactly 1 clock period. Stages are separated by
pipeline registers that preserve and pass partial results to the next stage.
Performance = complexity + cost.

1" The pipelineapproach brings additional expense plus its own set of problems
and complications, called hazards.

i The potential-increase in performance resulting from pipelining is proportional to
the number of pipeline stages.

1 If all the stages take about the samsoant of time and there is enough work to do,
then the speedp due to pipelining is equal to the number of stages in the pipeline.

1 If the stages are perfectly balanced, then the time between instructions on
the pipelined processerassuming ideal contibns—is equal to

Time between instruction ., ;o dined
Number of pipe stages

I'ime between Instructions ;. jinca =

1 A pipelined processor allows multiple instructions to execute at once, and each instruction
uses a different functional unit in the datapath. This increases throughput, so

19
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION

Department of ECE
programs can run faster. One instruction can finish executing on every clock cycle,
and simpler stages also lead to shorter cycle times.

Examplei Single-Cycle versus Pipelined Perfamance

l

l

Consider a simple program segment consists of eight instructions: Iw, sw, add, sub,
AND, OR, slt and beq. Compare the average time between instructions of a single
cycle implementation, in which all instructions take 1 clock cycle, to a pipelined
implementation. The operation times for the major functional units in this example are
200 ps for memory access, 200 ps for ALU operation, and 100 ps for register file read
or write.

The following table shows the time required for each of the eigituctions. The
single-cycle design must allow for the slowest instruction is-18o the time required

for every instruction is 800 ps. Thus, the time between the first and fourth instructions
in the nonpipelined design is 3 x 800 ns or 2400 ps.

Assume that following table shows the time taken by each and every stages of
pipeline for different instruction

Load word (1 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps 600 ps
OR, s1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps
Program
execution Tim 200 400 600 800 1000 1200 1400 1600 1800
Order T T T T T T T T T
(in instructions)

Instruction Data
Iw $1, 100($0) totch | Reg| ALU accese: | P90
lw $2, 200($0) 800 ps et |Rea| AU | O%R |Reg
Instruction
Iw $3, 300($0) 800 ps fetch
800 ps
Program
execution . 200 400 600 800 1000 1200 1400
Time T T T T T T T

order
(in instructions)

w $1,100(80) | "ign ™| [Reo| AU | o0 |Res

w $2, 200($0) 200 ps lns:;l;t‘ion Reg ALU 35:;25 Reg

lw $3, 300($0) 200 ps |"hucton| |Reg| ALU | DA |geg

200 ps 200 ps 200 ps 200 ps 200 ps

Figure: Single-Cycle, NonPipelined Execution in top versus Pipelined Execution in bottom.
1 By comparing above two diagram, it is clear that pipeline process is best and it take
reduce time to execute the instruction.

1 Pipelining improves performance by increasing instruction throughput, as opposed to

decreasing the execution time of an individaatruction.

20

2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Six stages in the pipeline:

1. Fetch instruction: Instructions are fetched from the memory into a temporary
buffer before it gets executed.

2. Decode instruction: The instruction is decoded by the CPU so that the necessary op
codes and operands can be determined.

3. Calculate operand:Based on the addressiagheme used, either operands are
directly provided in the instruction or the effective address has to be calculated.

4. Fetch Operand: Once the address is calculated, the operands need to be fetched from
the address that was calculated. This is done in this phase.

5. Execute Instruction: The instruction can now be executed:

6. Write operand: Once the instruction is executed, the result ftbenexecution needs to
be stored or written back in the memory.

Time -

AEFEARAE R AL A% AR A0 CFE AR A6
Instruction | | g1 | DI | CO | FO | EI [WO
Instruction 2 F1 | DI|CO|FO| EI |WO
Instruction 3 F1 | DI | CO| FO | EI | WO
Instruction 4 FI1 | DI | CO | FO | EI |WO
Instruction 5 F1 | DI |CO|FO| EI |WO
Instruction 6 FI | DI | CO| FO | EI |WO
Instruction 7 FI | DI | CO|FO | EI | WO
Instruction § F1 | DI [CO|FO| EI |[WO
Instruction 9 F1 | DI |CO| FO | EI |WO

PIPELINED DATAPATH AND CONTROL

The division of an instruction into five stages means adtage pipeline, which in turn
means that up to five instructions wikk in execution during any single clock cycle.
1.IF: Instruction fetch
2.1D: Instruction decode and register file read
3. EX: Execution or address calculation
4. MEM: Data memory access
5. WB: Write back
1 Each step of the instruction can be mapped onto the datapat left to right. The
only exceptions are the update of the PC and the -vait& step, shown in color,
which sends either the ALU result or the data from memory to the left to be written
into the register file.
1 There are, however, two exceptiongtis left-to-right flow of instructions:

21
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

1. The writeback stage, which places the result back into the register file in the
middle of thedatapath.

2. The selection of the next value of the PC, choosing between the incremented PC
and the branch address from the MEM stage Data fl owing from right to left does
not affect the current instruction;

1 The first rightto-left flow of data can lead tdata hazards and the second leads to
control hazards.

1 The following diagram shows the pipelined datapath with the pipeline registers
highlighted.

1 Allinstructions advance during each clock cycle from one pipeline register to the
next. The registers aremmed for the two stages separated by that register.

1 For example, the pipeline register between the IF and ID stages is called IF/ID.

1 Notice that there is no pipeline register. at the end of the -aitk stage. All
instructions must update some statehe processor, the register file, memory, or the
PC.

1 For example, a load instruction will place its result in 1 of the 32 registers, and any
later instruction that needs that data will simply read the appropriate register.

1 The pipeline registerseparate each pipeline stage. They are labeled by the stages that
they separate; For example, the first is labeled IF/ID because it separates the
instruction fetch and instructions decode stages.

1 The registers must be wide enough to store all the dataspanding to the lines that
go through them.

1 For example, the IF/ID register must be 64 bits wide, because it must hold both the
32-bit instruction fetched from memory and the incremente8i8PC address.

EXNEM MEMWE

memory

Example: Load Instruction (Iw) Iw $s1, 100($s0)
1. Instruction fetch:

1 The top portion of Figure shows the instruction being read from memory using the
address in the PC and then being placed in the IF/ID pipeline register.
1 The PC address is incremented by 4 and then writtenibiacthe PC to be ready for

22
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Departmenbf ECE
the next clock cycle.

1 This incremented address is also saved in the IF/ID pipeline register in case it is
neeakd later for an instruction, such as begq.

1 The computer cannot know which type of instruction is being fetched, so it must
prepare for any instruction, passing potentially needed information down the pipeline.

Instrucson

2. Instruction decode andegister file read:

1 The bottom portion of Figure shows the instruction portion of the IF/ID pipeline
register supplying the 1Bit immediate field, which is sigaxtended to 32 bits, and
the register numbers to read the two registers.

1 All three values a stored in the ID/EX pipeline register, along with the incremented
PC address.

1 We again transfer everything that might be needed by any instruction during a later
clock cycle.

o
|

mindin

1 There is no confusion when reading and writing regisbersause the contents change
only on the clock edge.

1 Although the | oad needs only the top regi
what instruction is being decoded, so it sextends the 18it constant and reads
both registers into the ID/EX pipee register.

T We don’t need all three operands, but it

3. Execute or address calculation:
1 The following figure shows that the load instruction reads the contents of register 1 and

23
2021- 2022 Jeppiaar Institute ofdchnology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
the signextended immediate from the ID/EX pipeline register and adds them using
the ALU. That sum is placed in the EX/MEM pipeline register.

4. Memory access:

1 The top portionof figure shows the load instruction reading the data memory using

the address from the EX/MEM pipeline register and loading the .data into the
MEM/WB pipeline register.

I - |
I .

S = \ L
-—

e
-— zora

i

5. Write-back:

1 The bottom portion of figure shows the final step: Dawamory is read using the
address in the EX/MEM pipeline registers, and the data-is placed in the MEM/WB
pipeline register.

1 Next, data is read from the MEM/WB pipeline register and written into the register
file in the middle of the datapath.

rw
FAD DEX EXWEN WEMWE
oy
_f ™\)Aal__:ff_.
[enzf—{ —
\ / L
N
Rsad .
rageter 1] T~
Rzad . Zore —a
ragstor ALY
— Rogears 1_, I /:—\' r:‘u}»_,
wres 1
asts)
7\
- | | =
> :g:, | —
\ /
S

Figure: Combined Pipeline Datapath Diagram

24
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION
PIPELINED CONTROL

Department of ECE

1 To specify control for the pipeline, we need onlytietcontrol values during each
pipeline stage. Because each control line is associated with a component active in only
a single pipeline stage, we can divide the control lines into five groups according to the
pipeline stage.

1 Instruction fetch: The contrdsignals to read instruction memory and to write the PC
are always asserted, so there is nothing special to control in this pipeline stage.

1 Instruction decode/register file readAs in the previous stage, the same thing happens
at every clock cycle, stére are no optional control lines to set.

1 Execution/address calculationThe signals to be set are RegDst, ALUOp, and ALUSrc

. The signals select the Result register, the ALU operation, and.either Read data 2 ora
signextended immediate for the ALU.

1D 1D/EX EXIMEM MEMWE
———
Add
- Adgh3d
‘ I'gbu k e
loft 2 1 |
o \/
)
E PC Rocre -3 Read .
x - *| rogister 1 Raad
{ £ data 1
- 2 »| Road 2 A A
Instruction - gter £) dd p
maemory Wria w'““‘p_—nd /g\ resst
ragestcr data 2

—{| Wrio

Instruction
(15-0) 16
3\

\ a2
| Sign-) =%

{ axtend [Py

Instruction
(20-16) &

Instruction -
(15-11)

1 This datapath borrows the control logic for PC source, register destination number, and
ALU control. Note that we now need theb@ funct field (function code) of the
instruction in the EX stage as input to ALU control, so thesemust also be included in
the ID/EX pipeline register.

1 Recall that these 6 bits are also the 6 least significant bits of the immediate field in the
instruction, so the ID/EX pipeline register can supply them from the immediate field since
sign extengn leaves these bits unchanged.

Lw 00

load word OO0XX add 0010
SW 00 store word 00K add 0010
Branch equal 01 branch equal 20O subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
Rtype 10 AND 100100 AND 0000
Rtype 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

1 The function of each of seven control signals is defined. The ALU control lines (ALUOp)

are defined in the second column.

25

2021- 2022

Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION

Department of ECE

When a 1bit control to a 2vay multiplexor is asserted, the multiplexor selects the input correspondin

T
T

Otherwise, if the control is deasserted, the multiplexor selects the O input.
Note that PCSrc is controlled layn AND gate in if the Branch signal and the ALU Zero
signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only
during a beq instruction; otherwise, PCSrc is set to 0.
RegDst The register destination number for the Write The register destination number for the Write register comes
register comes from the rt field (bits 20:16). from the rd field (bits 15:11).
RegWrite None. The register on the Write register input is written with the value
on the Write data input.
ALUSrc The second ALU operand comes from the second | The second ALU operand is the sign-extended, lower 16 bits of
register file output (Read data 2). the instruction.
PCSrc The PC is replaced by the output of the adder that | The PC is replaced by the output of the adder that computes
computes the value of PC + 4. the branch target.
MemRead None. Data memory contents designated by the address input are
put on the Read data output.
MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes from the
comes from the ALU. data memory.

1 Memory access: The control lines set in this stage are Branch, MemRead, and
MemWrite. The branch equal, load, and store instructions set these signals, respectively.
Recall that PCSrc selects the next sequential address unless control asserts Branch and the
ALU result was 0.

1 Write-back: The two control lines are MemtoReg, which decides between sending the
ALU result or the memory value to the register file, and -Rége, which writes the
chosen value.
lnstruction‘:: sz '.—‘ M L wWB L
IF/1D IDMEX EXIMEM MEM/WEB

1 The control lines for the final three staglste that four of the nine control lines are
used in the EX phase, with the remaining five control lines passed on to the EX/MEM
pipeline register extended to hold the control lines; three are used during the MEM stage,
and the last two are passed to MBMB for use in the WB stage.

26
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ®GANIZATION Department of ECE

Pipeline Hazards
The condition that makes the pipeline to stall is called Hazards. The idle period in the
pipeline execution is called Stall or Bubble.
Types of hazards:
1. Structural Hazard
2. Data Hazard
3. Control Hazard
1. Structural Hazard
1 When a planned instruction cannot execute in the proper clock cycle because
the hardware does not support the combinatibimstructions that are set to
execute.
2. Data Hazards
1 Data hazardsoccur when the pipeline must be stalled because one step
must wait for another to complete.
1 When a planned instruction cannot execute in the proper clock cycle
because data that is nedde execute the instruction is not yetavailable.
1 This is because of data dependence between the instructions that has been
overlapped.
Consider the following example
add $s0, $tO, $t1
sub $t2, $s0, $t3
1 Inthe above instruction one of the operand ($s0) of the sub instruction will be
fetched only after the add instruction store it result in the same register ($s0).
1 So that'sub instruction is stalled for some clock cytieeh makes
the pipeline process to waste the some clock cycle.
3. Control Hazards

i Itis also called branch hazard. When the proper instruction cannot execute in
the proper pipeline clock cycle because the instruction that was fetched is not
the one that imeeded; that is, the flow of instruction addresses is not what the
pipeline expected.

HANDLING DATA HAZARD:
Data hazard can be handled by using three methods.

Solution to data hazard:
1. Operand forwarding(Hardware)
2. Reordering Code (software)
3.. By usingstall
1. Operand forwarding (Hardware):
T The primary solution is based on the o
the instruction to complete before trying to resolve the data hazard.
1 Forwarding Also callethypassing.A method of resolving a data zexd by
retrieving the missing data element from internal buffers rather than waiting
for it to arrive from programmer visible registers or memory.

27
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION

Department of ECE

No forwarding:
ID/EX EX/MEM MEM/WB
Registers P‘\}
™ / Data .
memory u
[~
a. No forwarding
With Forwarding:
ID/EX EX/MEM MEM/WB
— — — —
_— M
—— oy ——————
i | —
— B x
i \-‘)F dA
orwanr
Registers t ALU
—= ")
:.ﬂ Data M
JE: memory u
— x
ForwardB |
Rs
=i - ;
- a EX/MEM _RegisterRd
Ra u
L | x [L L |
N { F::w'v.;:":jr‘u-; .,._ MEM/WE RegistarRd

b. With forwarding

1 On the top figure are the ALU and pipeline registers before adding forwarding.
On the bottom figure, the multiplexors have been expanded to add the
forwardingpaths, and we show the forwarding unit.

1 The new hardware is shown in color. This figure is a stylized drawing, however,
leaving out details from the full datapath such as the sign extension hardware.

1 Note that the ID/EX.Register Rt field is shotwice, once to connect to the
Mux-and once to the forwarding unit, but it is a single signal.
The control values for the forwarding multiplexors in the above diagram

Mux contro

ForwardA = 00 ID/EX The first ALU operand comes from the register file.
ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.
ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier

ALU result.
ForwardB = 00 ID/EX The second ALU operand comes from the register file.
ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.
ForwardB = 01 MEM/WE The second ALU operand is forwarded from data memory or an

earlier ALU result.

28
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Pipeline datapath and control for data hazard:

1 Inthe data is still being read from memory in clock cycle 4 while the ALU is
performing the operation for the following instruction.

1 Something must stathe pipeline for the combination of load followed by an
instruction that reads its result.

1 Hence, in addition to a forwarding unit, we need a hazard detection unit. It
operates during the ID stage so that it can insert the stall between the load and
its use.

1 Pipelined dependences in a fivestruction sequence using simplified data
paths to show the dependences

T All the dependent actions are shown
figure means clock cycle 1.

1 The first instruction writes int2, and all the following instructions read $2.
This register is written in clock cycle 5, so the proper value is unavailable
before clock cycle 5.

1 The colored lines from the top datapath to the lower ones show the
dependences. Those that must go bactwatime are pipeline data hazards.

Data Dependences without data forwarding Technigque:

Time (in clock cycles) >

Value of CC1 CC2 CC3 CC4 CCs CCé CC7 CcCs CC9
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Program

execution
order

(in instructions) - - -
@{]J@ st £
and $12, 52, $5 II@—_EEQ;_

AT .
st 3.5 RO
add $14, $2.5: @———H@é& :D‘TDM e_gj}
sw $15, 100(52 [E—— —‘%Q:ed’_ ® Ir egjl

Data forwarding Technigue:
1 The dependences between the pipeline registers move forward in time, so it is
possible to supply thimputs to the ALU needed by the AND instruction and
OR instruction by forwarding the results found in the pipeline registers.
1 The values in the pipeline registers show that the desired value is available
before it is written into the register file.

1 We assume that the register file forwards values that are read and written during
the same clock cycle, so the add does not stall, but the values come from the

29
2021- 2022 Jeppiaar Institute of Technology

L4
E
&

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
register file instead of a pipeline register.

1T Register file “forwarding” that i s
clock cycle.

Program
execution
order

(in instructions)

sub 52, $1, $3

and $12, $2, 85

or $13, 36, $2

add $14,52, 52

sw §15, 100(52)

1 The following diagram highlights the pipeline connections for blo¢hhazard
detection unit and the forwarding unit.

1 As before, the forwarding unit controls the ALU multiplexors to replace the
value from a generglurpose register with the value from the proper pipeline
register.

1 Thehazard detection unit contrdfee writing of the PC and IF/ID registers
plus the multiplexor that chooses between the real control values and all Os.

9 The hazard detection unit stalls and deasserts the control fields if thesead
hazard test above is true.

30
2021- 2022 Jeppiaar Institute of Technology

t

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

— etel
— unt
s ID/EX
= / \ ’; = EXIMEM
Controly =lu uk b | MEM/WB
\ / x ‘ — -
IFIID —_/ - M —{WB[—
N
M
u
5 X
5 Registers _/ .| __._’J\
£ L JALU- ub
Instruction = -
PC - f— M X
memory u Data =)
x memory
p—
-
IF/ID.RegisterRs
IF/ID.RegisterRt -
IF/1D.RegisterRt At M
IF/ID.RegisterRd R :l '
— ID/EX RegisterRt — _/ b — —
js » FOrwarding T
R nit

2. Reordering Code to Avoid Pipeline Stalls:
Consider the following code segment in C:
a=b+e;

c=b+f;

Here is the generated MIPS code for this segment; assuming all variables are in memory
and are addressable as off sets from $tO:
Before Reorder:

Iw $t1, O($t0) Iw

$t2, 4($t0) add

$t3, $t1,$t2 sw

$t3, 12($t0).Iw

$t4, 8($t0) add

$t5, $t1,$t4 sw

$t5, 16($0)

Find the hazards in the preceding code segment and reorder the instructions to avoid any
pipeline stalls.
9 Both add instructions have a hazard because of their respective dependence on
the immediately preceding Iw instruction.
1 Notice that bypassingliminates several other potential hazards, including the
dependence of the first adds on the first lw and any hazards for store instructions.
1 Moving up the third Iw instruction to become the third instruction eliminates
both hazards:
After Reorder:
Iw $t1, O($t0)
Iw $t2, 4($t0)

31
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
Iw $t4, 8($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
add $t5, $t1,$t4
sw $t5, 16($t0)
3. Data hazard solvediy using Stall
Pipeline stall
Pipeline stall also called bubble. A stall initiated in order to resolve a hazard.
Load-use data hazard
A specific form of data hazard in which the data being loaded by a load instruction has
not yet become available whens needed by another instruction.

nop
An instruction that does no operation to change state.

Data hazard without stall:

Time (in clock cycles)
CC 1 Ccc2 CCcC3 cCc4 CCS5 CCé6 CC7 ccs cCco9

Program
execution
order

(in instructions)

B B
|
— ;“ -
- e e Y
Fe S
‘ |
or 8,52, 55 -l % Eow
f: 1 e |
[s
r =3
[@H<a D | .. e

1 The following diagram shows the AND instruction is turned into a nop and all
instructionsbeginning with the AND instructions are delayed one cycle.

1 In this example, the hazard forces the AND and OR instructions to repeat in
clock cycle 4 what they did in clock cycle 3: AND reads registers and
decodes, and OR is refetched from instructi@mory.

1 A bubble is inserted beginning in clock cycle 4, by changing the and instruction
to a nop. Note that the and instruction is really fetched and decoded in clock
cycles 2 and 3, but its EX stage is delayed until clock cycle 5.

1 Likewise the ORinstruction is fetched in clock cycle 3, but its ID stage is
delayed until clock cycle 5. After insertion of the bubble, all the dependences

add $9, $4, $2

g
=

32
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
go forward in time and no further hazards occur.

Data hazard with stall:

Time (in clock cycles)
CC1 cCc2 CC3 CcC4 CCS5 CcC6 CC7 cCs CC?9 CcC 10

Program
execution
order

(in instructions) - -

" ey

and 54, 52, $5 (-5 e
5

[
o

- - bubble

or $8, 52, $6

&
o
_rg_H

| add $9, $4, $2 @_ -‘?jt[’ | [om] I -‘-

3. HANDLING CONTROL HAZARDS

1 Itis also called branch hazard. When the proper instruction cannot execute in
the proper pipeline clock cycle because itistruction that was fetched is not
the one that is needed; that is, the flow of instruction addresses is not what the
pipeline expected.
Performance of AStall on Brancho

1 - Estimate the impact on the clock cycles per instruction (CPI) of stalling on
branties. Assume all other instructions have a CPI of 1.

Program
execution
order

(in instructions)

Time

200 400 600 800 1000 1200 1400
| | | | T I I .

Instruction " Data
add $4, 95,86 " oun Reg| AU | oroess |Re0
' . " Instruction Data
beq $1, 32, 40 200 ps fetch . e access .
bubbleA_ bubble/ bubble/ bubble/(bubbley
or $7, $8. 89 %lnstrucﬁon 7 Data
' 400 ps fetch Regl AU | gocess |RO0

1 This example assumes the conditional branch is taken, and the instruction
at the destination of the branch is the OR instruction.

1 There is a onstage pipeline stall, or bubble, aftbe branch.

Two schemes for resolving control hazards

33
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
1. Branch prediction
2. Delayed branching

1. Branch Prediction

T

Prediction techniques cdre used to check whether a branch will be valid
or not valid. These techniques reduce the branch penalty.

A method of resolving a branch hazard that assumes a given outcome for
the branch called branch prediction.
The common prediction techniques are:
1 Predict Never Taken
1 Predict Always Taken
i Predict By Opcode
1 Taken or Not Taken Branch
i Branch History Table
In the first two approaches if prediction is wrong a page fault or prediction

violation error occurs. The processor then halts prefetching dcldete the
instruction from the desired address.

In the third approach, the prediction is based on the opcode of the branch
instruction.

The fourth and Fifth approaches are dynamic. They depend on history of the
previously executed conditional branalstruction.

Branch prediction Strateqgies:

(). Static Branch Prediction Strategy

(ii). Dynamic Branch Prediction Strategy
(i). Static Branch Prediction

T

In‘this strategy branch can be predicted based on branch code types statically.
This means thathe probability of branch with respect to a particular branch
type is used to predict the branch. This branch strategy may not produce
accurate results every time.

One improvement-over branch stalling is to predict that the branch will not be
taken and ths continue execution down the sequential instruction stream.

If the branch’is taken, the instructions that are being fetched and decoded must
be discarded. Execution continues at the branch target.

If branches are untaken half the time, and if it ctils to discard the
instructions, this optimization halves the cost of control hazards.

Discarding instructions, then, means we must be able to flush instructions in
the IF, ID, and EX stages of the pipeline.

We already have the PC value and the imattediield in the IF/ID pipeline
register, so we just move the branch adder from the EX stage to the ID stage;

During 1D, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison sd that i
instruction is a branch, we can set the PC to the branch target address.

Note that the bypassed source operands of a branch can come from either the
ALU/MEM or MEM/WB pipeline latches.

34
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

l

Example:

For example, if an ALU instruction immediately preceding a branch produces
one of the operands for the comparison in the branch, a stall will be required,
since the EX stage for the ALinstruction will occur after the ID cycle of the
branch.

36 sub $10, $4, $8

40 beq $1, $3, 7# PGCrelative branchto 40 +4 +7*4 =72
44 and $12, $2, $5

48 or $13, $2, $6

52 add $14, $4, $2

56 slt $15, $6, $7

72 w $4, 50($7)

1

Flush

Time (in clock cycles)

Program
execution
order

(in instructions)

40 beq $1, $3, 28

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

) 72 Iw $4, 50(87)

-+ o}

——

The three sequential instructions that follow the branch will be fetched and
begin execution. Without intervention, those three following instructions will
begin execution before beq branches to Iw at location 72.

The number of stages in a pipeline or thenbar of stages between two
instructions during execution.

Pipelining does not reduce the time it takes to complete an individual
instruction, also called the latency.

To discard instructions in a pipeline, usually due to an unexpected event

CC1 CcCc2 CcCc3 cc4 CC5 CcCé6 CC7 cCcs cCc9

35
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Dynamic Branch Prediction

T

This strategy uses recent branch history during program execution to predict
whether or not the branch will be taken next time when it occurs. It uses recent
branch information to predict the next branch. This technique is called
dynamic branch prediction.

Prediction of branches at runtime using runtime information.

A branch prediction buffer or branch history tableis a small memory
indexed by the lower portion of the address of the branch instruction. The
memory contains a bit that says whether the liraves recently taken or not.

This simple 1bit prediction scheme has a perfoarmance shortcoming: even if a
branch is almost always taken, we can predict incorrectly twice, rather than
once, when it is not taken.

1 To remedy this weaknessb# prediction shemes are often used. I12-&it
scheme a prediction must be wrong twice before it is changed.

1 The following diagram shows the finitgate machine for a-Rit prediction
scheme. A branch prediction buffer can be implemented as a small, special
buffer accessed with the instruction address during the IF pipe stage.

1 If the instruction is predicted as taken, fetching begins from the target as soon
as the PC is known; it can be as early as the ID stage. Otherwise, sequential
fetching and executing continut the prediction turns out to be wrong, the
prediction bits are changed.

Predict taken A s Predict taken

Predict not taken Predict not taken

~

Taken

[
Not taken

,,/ A

36
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION
2. Delayed branching

Department of ECE

1 The slotdirectly after a delayed branch instruction, which in the MIPS
architecture is filled by an instruction that does not affect the branch.

1 Aninstruction that always executes after the branch ibrtwech delay slot
1 The following figure shows the threeaws in which the branch delay slot
can be scheduled. The limitations on delayed branch scheduling arise from
1. The restrictions on the instructions that are scheduled into the delay slots.
2. Our ability to predict at compile time whether a branch is likellge
taken or not.

1 Delayed branching was a simple and effective solution for sstage
pipeline issuing one instruction each clock cycle.

a. From before

b. From target

add $s1, $s2. $s3

if $s2 = 0 then

sub $t4, $t5, $t6

c. From fall-through

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot add $s1, $s2, $s3 Delay slot
if $s1 = 0 then
I Delay slot sub $t4, St5, $16
Becomes Becomes Becomes

add $s1, $s2, $s3

if $s2 = 0 then if $s1 = O then

add $s1, $s2, $s3

add $s1, $s2, $s3 sub $t4, St5, St6

if $s1 = 0O then

| sub sta, st5, $t6 |

1 The top box in each pair shows the code before scheduling; the bottom box
shows thescheduled code.

1 In (a), the delay slotis scheduled with an independent instruction from before
the branch. This is the best choice.

9 Strategies (b) and (c) are used when (a) is not possible. In the code sequences for
(b) and (c), the use of $s1 in theanch condition prevents the add instruction
(whose destination is $s1) from being moved into the branch delay slot.

9 In (b) the branch delay slot is scheduled from the target of the branch; usually
the target instruction will need to be copied becausmit be reached by
another path.

1 Strategy (b) is preferred when the branch is taken with high probability, such
as a loop branch. Finally, the branch may be scheduled from thakeot falt
through as in (c).

1 To make this optimization legal for (b) ar)(it must be OK to execute the sub
instruction when the branch goes in
mean that the work is wasted, but the program will still execute correctly.

1 This is the case, for example, if $t4 were an unused tempagister when
the branch goes in the unexpected direction.

37

2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTUREAND ORGANIZATION Department 6ECE

Branch target buffer:

1 A structure that caches the destination PC or csstim instruction for a
branch. It is usually organized as a cache with tags, making it more costly than
a simple prediction buffer.

Correlating predictor:

1 A branch predictor that combines local behavioef a particular branch and
global information abouhe behavior of some recent number of executed
branches.

Tournament branch predictor

1 A branch predictor with multiple predictions for each branch and a selection
mechanism that chooses whiatedictor to enable for a given branch.

EXCEPTIONS

1 Exceptionsandinterrupts events other than branches or jumps that change
the normal flow of instruction execution.
Exception
1 Exception also called interrupt. An unscheduled event that digstggdsam execution
and they are used to detect overflow.
1 The two types of exceptions that our current implementation can generate
are execution of an undefined instruction and an arithmetic overflow.
Interrupt
1 Itis an exception that comes from outstdehe processor.
1 We use the ternmterrupt only when the event is externally caused. Here are five
examples showing whether the situation is internally generated by the processor or
externally generated:

| Typeofevent | Fromwhere? | MIPS terminolog
I/0O device request External Interrupt
Invoke the operating system from user program Internal Exception
Arithmetic overflow Internal Exception
Using an undefined instruction Internal Exception
Hardware malfunctions Either Exception or interrupt

Handling Exception:

1 The two types oéxceptions can occur in the basic MIPS architecture implementation.
1. Execution of an undefined instruction
2. An arithmetic overflow.
Response to an Exception:

1 When an exception occurs the processor saves the address of the ending instruction in
the exception program counter (EPC) and then transfer control to the operating system
at some specified address.

1 The operating system then takes the appropriate action, which may involve providing
some service to the user program, taking some predefinaxh agtiresponse to an
overflow, or stopping the execution of the program and reporting an error.

1 After performing whatever action is required because of the exception, the operating
system can terminate the program or may continue its execution, usiigP@é¢o
determine where to restart the execution of the program.

38
2021- 2022 Jeppiaar Institute of Technology

EC8552- COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
Two main methods used to communicate the reason for an exception:
1 Thefirst method used in the MIPS architecture is to includ@atus register(called
the Cause register), which holds a field that indicates the reason for the exception.

1 A second method is to usectored interrupts. In a vectored interrupt, the address
to which control is transferred is determined by the cause of the exception.
For example, to accommodate the two exception types listed above, we might define
the following two exception vector addresses:

Undefined instruction 8000 OOOO_Q
Arithmetic overflow 8000 0180m

Add two additional registers to our current MIPS implementation:
1 EPC: A 32-bit register used to hold the address of the affected instruction.
1 Cause:A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although some bits are currently unused.
1 Assume there is a fivhkit field that encodes the two possible exception sources
mentioned above, with 10 representing an undefined instruction and 12
representing arithmetic overflow.
Exceptions in a Pipelined Implementation

! -
"
IVEX e | s
I — -
—_— r : -, EXMEM
[| I— v e —
Contrn) “
) = 2 [0 |2 Bt ol e = 0 o v MEMWE
; | = x — —
‘ ~ el —foe] et e b 0
L
/5hiR M
\of 2/ "
t X
- -
Registers /\ ./ M)
\/ t | il 1w
i ~ ALY o] S
80000160 |-t - x
: Data | _ =
== = memory -
£ 9
{ Sign- | L -
7 —~
7\
1T ™
u
- x >
L] L] - _] L]
—o Forw ng \
- . t

Imprecise interrupt
1 Imprecise interrupt also called imprecise exception. Interrupts or exceptions in
pipelined computers that is not associated with the exact instruction that was the cause
of the interrupt or exception.
Precise interrupt
91 Precise intrrupt also called precise exception. An interrupt or exception that is
always associated with the correct instruction in pipelined computers.

39
2021- 2022 Jeppiaar Institute of Technology

