

JEPPIAAR INSTITUTE OF TECHNOLOGY

Self Belief | Self Discipline | Self Respect

QUESTION BANK

ACADEMIC YEAR : 2019-20

REGULATION: 2017

II YEAR – 03rd SEMESTER

DEPARTMENT OF MECHANICAL

ENGINEERING

BLOOM'S TAXONOMY

Definition:

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition like thinking, learning and understanding.

Objectives:

- To classify educational learning objectives into levels of complexity and specification. The classification covers the learning objectives in cognitive, affective and sensory domains.
- > To structure curriculum learning objectives, assessments and activities.

Levels in Bloom's Taxonomy:

- BTL 1 Remember The learner recalls, restate and remember the learned information.
- BTL 2 Understand The learner embraces the meaning of the information by interpreting and translating what has been learned.
- BTL 3 Apply The learner makes use of the information in a context similar to the one in which it was learned.
- BTL 4 Analyze The learner breaks the learned information into its parts to understand the information better.
- BTL 5 Evaluate The learner makes decisions based on in-depth reflection, criticism and assessment.
- BTL 6 Create The learner creates new ideas and information using what has been previously learned.

TABLE OF CONTENT

MA8353 – Transforms and Partial Differential Equations		
Unit No.	Торіс	Page No.
	Syllabus	1-1
Ι	Partial Differential Equations	1-3
II	Fourier Series	1-14
III	Applications Of Partial Differential Equations	1-27
IV	Fourier Transforms	1-40
V	Z - Transforms and Difference Equations	1-52
	ME8391 – Engineering Thermodynamics	
	Syllabus	2-1
Ι	Basic Concepts and First Law	2-3
II	Second Law and Availability Analysis	2-20
III	Properties Of Pure Substance and Steam Power Cycle	2-30
IV	Ideal and Real Gases, Thermodynamic Relations	2-42
V	Gas Mixtures and Psychrometry	2-48
	CE8394 – Fluid Mechanics and Machinery	
	Syllabus	3-1
Ι	Fluid Properties and Flow Characteristics	3-2
II	Flow Through Circular Conduits	3-8
III	Dimensional Analysis	3-15
IV	Pumps	3-21
V	Turbines	3-30
	ME8351- Manufacturing Technology – I	
	Syllabus	4-1
Ι	Metal Casting Processes	4-3
II	Joining Processes	4-12
III	Metal Forming Processes	4-23
IV	Sheet Metal Processes	4-32
V	Manufacture Of Plastic Components	4-41
EE8353 –Electrical Drives and Controls		
	Syllabus	5-1
Ι	Introduction	5-2

II	Drive Motor Characteristics	5-8
III	Starting Methods	5-14
IV	Conventional and Solid State Speed Control of DC Drives	5-27
V	Conventional and Solid State Speed Control of AC Drives	5-40

ACADEMIC YEAR : 2019-2020

4 0 0 4

MA8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C

OBJECTIVES :

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNITI PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 12 Classification of PDE – Method of separation of variables - Fourier Series Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction.

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z-transforms - Elementary properties – Inverse Z-transform (using partial fraction and residues) – Initial and final value theorems - Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.

TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

JIT-JEPPIAAR/MATHS/Dr.A.SHENBHAGA EZHIL/IIrd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver2.0

12

12

12

12

• Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXTBOOKS: 1.Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, New Delhi, 2014.

2. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.

REFERENCES :

1. Andrews, L.C and Shivamoggi, B, "Integral Transforms for Engineers" SPIE Press, 1999.

2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014.

3. Erwin Kreyszig, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, India, 2016.

4 . James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.

5 Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.

6. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

OUTCOMES :

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

Subject Code: MA8353 Subject Name: TRANSFORMS AND PDE

Year/Semester: II /03 Subject Handler:Dr.A.Shenbaga Ezhil

	UNIT-I PARTIAL DIFFERENTIAL EQUATIONS
	Formation of Partial Differential Equations-Singular Integrals-Solution of Standard Types of First Order Partial Differential Equations- Lagranges Linear Equations-Linear Partial Differential Equations of the Second and Higher Order with constant Co-efficients of both Homogeneous and Non Homogeneous Types
	PART*A
1.	Form a partial differential equation by eliminating the arbitrary constants from $z = ax^2 + by^2$. [N/D13] BTL6 Given $z = ax^2 + by^2$ (1) Differentiating (1) partially with respect to x, we have $\frac{\partial z}{\partial x} = 2ax \Longrightarrow p = 2ax \Longrightarrow a = \frac{p}{2x}$ (2) Differentiating (1) partially with respect to y, we have $\frac{\partial z}{\partial y} = 2by \Longrightarrow q = 2by \Longrightarrow b = \frac{q}{2y}$ (3) using (2) and (3) in (1), we have $z = \left(\frac{p}{2x}\right)x^2 + \left(\frac{q}{2y}\right)y^2 \Longrightarrow z = \frac{1}{2}[px+qy]$ 2z = px+qy, which is the required partial differential equation.
2	Form a partial differential equation by eliminating the arbitrary constants from $z = ax^3 + by^3$. [M/J14] BTL6 Given $z = ax^3 + by^3$ (1) Differentiating (1) partially with respect to x, we have $\frac{\partial z}{\partial x} = 3ax^2 = p = 3ax^2 = a = \frac{p}{3x^2}$ (2) Differentiating (1) partially with respect to y, we have $\frac{\partial z}{\partial y} = 3by^2 = a = y = 3by^2 = b = \frac{q}{3y^2}$ (3) using (2) and (3) in (1), we have $z = \left(\frac{p}{3x^2}\right)x^3 + \left(\frac{q}{3y^2}\right)y^3 = z = \frac{1}{3}[px+qy]$

JIT-JEPPIAAR/MATHS/Dr.A.SHENBHAGA EZHIL/IIrd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver2.0

	3z = px + qy, which is the required partial differential equation.
	Eliminate the arbitrary function f from $z = f\left(\frac{y}{x}\right)$ and form a p.d.e. [N/D12, N/D14]BTL5
	Given $z = f\left(\frac{y}{x}\right)$ (1)
	Differentiate (1) partially w.r.to x and y , we get
3	$p = \frac{\partial z}{\partial x} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{-y}{x^2}\right) $ (2)
	$q = \frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{1}{x}\right) $ (3)
	(2)/(3), we get the required p.d.e $\frac{p}{q} = \frac{-y}{x}$.
	Find the complete solution of the partial differential equation $p^3 - q^3 = 0 \cdot [M/J16]$ BTL5
	Given $p^3 - q^3 = 0$
4	This is of the form $F(p,q) = 0$
-	Hence, the complete integral is
	$z = a x + b y + c$ where $a^3 - b^3 = 0$ (ie) $b = a$
	Therefore, the complete solution is $z=ax+ay+c$.
	Solve $(D^3 - 2D^2D')z = 0$. [N/D09].BTL5
	The auxiliary equation is $m^3 - 2m^2 = 0$
5	$m^2(m-2) = 0$
	m = 0, 0, 2
	Hence the solution is $z = \phi_1(y) + x \phi_2(y) + \phi_3(y+2x)$.
	Solve $(D^4 - D'^4)z = 0$. [M/J14]BTL5
6	The A.E. is $m^4 - 1 = 0$
0	Therefore, the roots are $m = 1, -1, i, -i$
	Hence $z = f_1(y+x) + f_2(y-x) + f_3(y+ix) + f_4(y-ix)$.
m 7	Solve $(D^3 - 4D^2 D' + 4DD'^2)z = 0$. [A/M15] BTL5
	Auxiliary equation is $m^2 - 4m^2 + 4m = 0$
	$(m^2 - 4m + 4) = 0$
	m(m-2)(m-2) = 0
	m = 0, $m = 2$, $m = 2$
	Hence the solution is $z = \phi_1(y+0x) + \phi_2(y+2x) + x\phi_3(y+2x)$
	$z = \varphi_1(y) + \varphi_2(y + 2x) + x\varphi_3(y + 2x).$

8	Solve $(D+D'-1)(D-2D'+3)z = 0$.[N/D15]BTL5
	Given $(D+D'-1)(D-2D'+3)z = 0$
	Here $m_1 = -1$, $c_1 = 1$, $m_2 = 2$, $c_2 = -3$
	Hence the solution is $z = e^x \phi_1(y-x) + e^{-3x} \phi_2(y+2x)$.
9	Form the partial differential equation by eliminating <i>a</i> and <i>b</i> from $z = a^2 x + a y^2 + b$. BTL6 Given $z = a^2 x + a y^2 + b$ Differentiating (1) partially with respect to <i>x</i> , we have $\frac{\partial z}{\partial x} = a^2 \Rightarrow p = a^2$ (2) Differentiating (1) partially with respect to <i>y</i> , we have $\frac{\partial z}{\partial y} = 2a y \Rightarrow q = 2a y \Rightarrow a = \frac{q}{2y}$ (3)
	Using (3) in (2), we have $p = \left(\frac{q}{2y}\right)^2 \Rightarrow p = \frac{q^2}{4y^2} \Rightarrow 4py^2 = q^2$ which is the required partial differential equation.
10	Eliminate the arbitrary function f from $z = f\left(\frac{y}{x}\right)$ and form the partial differential equation.BTL5 Given $z = f\left(\frac{y}{x}\right)$ (1) Differentiating (1) partially with respect to x , we have $\frac{\partial z}{\partial x} = f'\left(\frac{y}{x}\right)\left[-\frac{y}{x^2}\right] = > p = -\frac{y}{x^2}f'\left(\frac{y}{x}\right)$ (2) Differentiating (1) partially with respect to y , we have $\frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right)\left[\frac{1}{x}\right] = \Rightarrow q = \frac{1}{x}f'\left(\frac{y}{x}\right)$ (3) Equations $\frac{(2)}{(3)}$ implies $\frac{p}{q} = \frac{-\frac{y}{x^2}f'\left(\frac{y}{x}\right)}{\frac{1}{x}f'\left(\frac{y}{x}\right)}$ $= > \frac{p}{q} = -\frac{y}{x} = > xp = -yq$ xp + yq = 0, which is the required partial differential equation.
11	Form the partial differential equation by eliminating the arbitrary function from $\phi(x^2 - y^2, z) = 0$. [N/D14] BTL5 The given relation is of the form $\phi(u, v) = 0$ where $u = x^2 - v^2$ and $v = z$.
	The given relation is of the form $\psi(u, v) = 0$ where $u = x$ y and $v = z$.

JIT-JEPPIAAR/MATHS/Dr.A.SHENBHAGA EZHIL/IIrd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver2.0

	Hence the required pde is of the form $P p + Q q - R$
	$\frac{\partial u}{\partial v} = \frac{\partial u}{\partial v}$
	Where $P = \frac{\partial u}{\partial y} \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial y}$
	P = (-2y)(1) - (0)(0) = -2y
	$\frac{\partial u}{\partial v} \frac{\partial v}{\partial u} \frac{\partial v}{\partial v}$
	$Q = \frac{\partial x}{\partial z} \frac{\partial y}{\partial x} - \frac{\partial x}{\partial x} \frac{\partial y}{\partial z}$
	Q = (0)(0) - (2x)(1) = => Q = -2x
	$R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$
	R = (2x)(0) - (-2y)(0) = R = 0
	Therefore, the required equation is
	-2yp - 2xq = 0
	y p + xq = 0, which is the required partial differential equation.
	Find the complete integral of $p + q = 1$. [<i>N</i> / <i>D</i> 14]BTL5
	Given $p + q = 1$
10	This is of the form $F(p,q) = 0$
12	Hence, the complete integral is
	z = ax + by + c where $a + b = 1$ (ie) $b = 1 - a$
	Therefore, the complete solution is $z=ax+(1-a)y+c$.
	Find the complete integral of $\sqrt{p} + \sqrt{q} = 1.[M/J16]BTL5$
	Given $p + q = 1$
	This is of the form $F(p,q) = 0$
13	Hence, the complete integral is
	$z = ax + by + c$ where $\sqrt{a} + \sqrt{b} = 1$ (ie) $\sqrt{b} = 1 - \sqrt{a} \Rightarrow b = (1 - \sqrt{a})^2$
	Therefore the complete solution is $z = a x + (1 - \sqrt{a})^2 y + c$
	Find the complete solution of the partial differential equation $p^3 - q^3 = 0$ [<i>M</i> /116] BTI 5
	Given $r^3 = 0$
14	$\begin{array}{c} \text{Given } p - q = 0 \\ \text{This is of the form } p(-) = 0 \end{array}$
17	Hence, the complete integral is
	Hence, the complete integral is $l_{1}^{3} = l_{2}^{3} = l_{1}^{3} = 0$ (ia) l_{2}
	z = ax + by + c where $a - b = 0$ (ie) $b = aFind the complete integral of p + a - pa [M/II3]BTI 5$
	Given $p + a - pa$
15	This is of the form $E(n, q) = 0$
	Hence the complete integral is
	$z = a x + b y + c \qquad where a + b + = ab$

	b-ab=-a
	(1-a)b=-a
	$b = \frac{-a}{1-a}$
	$b = \frac{a}{a-1}$
	Therefore, the complete solution is $z = ax + \frac{a}{a-1}y + c$.
	Find the complete integral of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$. [<i>N/D16</i>] BTL2
16	Given $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$ (1)
	$(1) \times p q \Longrightarrow z = p x + q y + p q \sqrt{p q}$
	This is of the form $z = p x + q y + f(p,q)$
	Hence, the complete solution is $z = ax + by + ab\sqrt{ab}$
	Solve $p x^2 + q y^2 = z^2$. [N/D14]BTL5
	Given $p x^2 + q y^2 = z^2$
	This is of Lagrange's type. Here $P = x^2 Q = y^2 R = z^2$
	The subsidiary equations are $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$
17	$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{z^2}$
17	$\frac{dx}{x^{2}} = \frac{dy}{y^{2}} \frac{dy}{y^{2}} = \frac{dz}{z^{2}}$
	Integrating, we have
	$\frac{1}{x} - \frac{1}{y} = a \frac{1}{y} - \frac{1}{z} = b$
	Hence the solution is $\varphi\left(\frac{1}{x} - \frac{1}{y}, \frac{1}{y} - \frac{1}{z}\right) = 0.$
	Find the general solution of $(4D^2 - 12DD' + 9D'^2)z = 0$.BTL5
	Auxiliary equation is $4m^2 - 12m + 9 = 0$
18	(2m-3)(2m-3) = 0
	$m = \frac{3}{2}$, $m = \frac{3}{2}$
	Hence the solution is $z = \phi_1 \left(y + \frac{3}{2} x \right) + x \phi_2 \left(y + \frac{3}{2} x \right)$.

ACADEMIC YEAR: 2019-2020

	$a + c \frac{\partial z}{\partial x} = 0 = a + c p = 0 = a = -c p$ (3)
	Differentiating (2) partially with respect to y , we have
	$b + c \frac{\partial z}{\partial y} = 0 = b + c q = 0 = b = -c q$ (4)
	using (3) and (4) in (2), we have
	(-cp)x + (-cq)y + cz = 0 = > -cpx - cqy + cz = 0
	-c [px + q y - z] = 0 = x p + y q - z = 0
	x p + y q = z, which is the required partial differential equation.
	Find the PDE of all spheres whose centers lie on the x-axis. [<i>N/D16</i>] BTL5
	Let the centre of the sphere be $(a, 0, 0)$ a point on the x-axis and r be its radius. Hence its equation is
	Hence, its equation is $(x-a)^2 + (y-0)^2 + (z-0)^2 = r^2$
	$(x-a)^2 + y^2 + z^2 = r^2$ (1)
	Differentiating (1) partially with respect to x , we have
	$2(x-a) + 2z \frac{\partial z}{\partial x} = 0 = > 2(x-a) + 2z p = 0 = > 2[(x-a) + z p] = 0$
25	(x-a)+z p = 0 = =>(x-a) = -z p (2)
	Differentiating (1) partially with respect to y , we have
	$2y + 2z \frac{\partial z}{\partial y} = 0 = > 2y + 2zq = 0 = > 2[y + zq] = 0$
	y + zq = 0 ==> y = -zq(3)
	Using (2) and (3) in (1), we have
	$(-zp)^{2} + (-zq)^{2} + z^{2} = r^{2} = z^{2}p^{2} + z^{2}q^{2} + z^{2} = r^{2}$
	$z^2(p^2+q^2+1)=r^2$, which is the required partial differential equation.
	PART * B
1	
	Find the partial differential equation of all planes which are at a constant distance 'a' from the origin (8 M) BTL 5
	Answer : Page : 1.8- DR.A.SINGARAVELU
	$l = -(\sqrt{1 - l^2 - m^2})p$
	• $m = -(\sqrt{1 - l^2 - m^2}) q$ (4 M)
	• $z = px + qy + q\sqrt{1 + p^2 + q^2}$ (4 M)
2	
	Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$. (8 M) PTI 5
	Solve $-$ (0 M) D1LS Answer, Dage 156 DD A SINC ADAVELU

ACADEMIC YEAR : 2019-2020

	• $z = ax + by + \sqrt{1 + a^2 + b^2}$. (2 M)
	• $x^2 + y^2 + z^2 = 1$ (4 M)
	• $z = ax + \phi(a)y + \sqrt{1 + a^2 + \phi(a)^2}$ (2 M)
3	
	Find the singular integral of $z = px + qy + p^2 + pq + q^2$. (8 M) BTL5
	Answer : Page :1.59- DR.A.SINGARAVELU
	• $z = ax + by + a^2 + ab + b^2$. (2 M)
	• $xy - x^2 - y^2 = 3z$ (6 M)
4	
	Solve $z = px + qy + p^2 - q^2$. (8 M) BTL5
	Answer : Page :1.58- DR.A.SINGARAVELU
	• $z = ax + by + a^2 - b^2$. (2 M)
	• $y^2 - x^2 = 4z$ (6 M)
5	
	Form the partial differential equation by eliminating the arbitrary function ϕ from
	$\varphi(x^2 + y^2 + z^2, xyz) = 0.$ (8 M) BTL5
	Answer : Page :1.28- DR.A.SINGARAVELU
	$\begin{vmatrix} yz + pxy & 2x + 2pz \end{vmatrix} = 0$ (4 M)
	$\begin{vmatrix} xz + qxy & 2y + 2qz \end{vmatrix}^{-0} (4101)$
	• $x(y^2-z^2)p + y(z^2-x^2)q = z(x^2-y^2)$ (4 M)
6	
	Solve $z = px + qy + p^2 q^2$. (8 M) BTL5
	Answer : Page :1.60- DR.A.SINGARAVELU
	• $z = ax + by + a^2b^2$. (4 M)
	$2(xy)^{\frac{2}{3}}$
	$ = z = -3 \left(\frac{1}{4} \right) (4 \text{ M}) $
7	
	Solve $p^2 + q^2 = x^2 + y^2$. (8 M) BTL5
	Answer : Page:1.77- DR.A.SINGARAVELU
	• $p^2 - x^2 = y^2 - q^2 = a (2 \text{ M})$
	• $z = \frac{x}{2}\sqrt{x^2 + a} + \frac{a}{2}\log(x + \sqrt{x^2 + a}) + \frac{y}{2}\sqrt{y^2 - a} - \frac{a}{2}\log(y - \sqrt{y^2 - a}) + c$ (6M)
0	
0	Solve $(m_7, m_1) = (n_7, l_7) = h_1 m_2 (9 M)$ DTI 5
	Solve $(\Pi L - ny)p + (\Pi X - iz)q = iy - mx$. (6 NI) BILS Answer: Page :1 106 DD A SINCADAVELU
	Answer . 1 age . 1.100- DR.A.SINGARA VELU dx dy dz
	• $\frac{du}{mz - nv} = \frac{du}{nx - lz} = \frac{du}{lv - mx} (2 \text{ M})$
JIT-J	EPPIAAR/MATHS/Dr.A.SHENBHAGA EZHIL/II rd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL

DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver2.0

RE	EGULATION :2017 ACADEMIC Y	ZEAR : 2019-2020
	• $\varphi(x^2 + y^2 + z^2, lx + my + nz) = 0$ (6 M)	
9		
	Solve $x(z^2+y^2)p + y(x^2+z^2)q = z(y^2-x^2)$ (8 M)BTL5	
	Answer : Page :1.108- DR.A.SINGARAVELU	
	• $\frac{dx}{dx} = \frac{dy}{dz} = \frac{dz}{dz}$ (2 M)	
	$x(z^{2}+y^{2}) - y(x^{2}+z^{2}) - z(y^{2}-x^{2}) (2 W)$	
	$\sigma(x^2 - y^2 + z^2) = 0 (6 \text{ M})$	•
	• $\psi(x - y + z, \frac{1}{x}) = 0$ (0 M)	
10		
	Solve $x(y-z)p + y(z-x)q = z(x-y)$ (8 M)BTL5	
	Answer : Page:1.126- DR.A.SINGARAVELU	
	• $\frac{dx}{dt} = \frac{dy}{dt} = \frac{dz}{dt}$ (2 M)	
	x(y-z) y(z-x) z(x-y) z	
	• $\varphi(xyz, x+y+z) = 0$ (6 M)	
11		
	Find the general solution $(3z-4y)p+(4x-2z)q=2y-3x$. (8 M) BTL5	
	Answer : Page:1.105- DR.A.SINGARAVELU	
	• $\frac{dx}{dx} = \frac{dy}{dx} = \frac{dz}{dz}$ (2 M)	
	(3z-4y) $(4x-2z)$ $2y-3x$	
	• $\varphi(x^2 + y^2 + z^2, 2x + 3y + 4z) = 0$ (6 M)	
12		
	Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$. (8 M)BTL 5	
	Answer : Page:1.103- DR.A.SINGARAVELU	
	dx dy dz	
	$\frac{1}{x^2(y-z)} = \frac{1}{y^2(z-x)} = \frac{1}{z^2(x-y)} (2 \text{ M})$	
	$\varphi(-+-+-, xyz) = 0$	
13	• • • • • • • • • • • • • • • • • • • •	
15	Find the general solution of $z(x, y) = px^2 + qy^2$ BTI 5 (8 M)	
	Answer: Page 1 125, DB A SINCARAVELU	
	dx dy dz	
	• $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dx}{z(x-y)}$ (2 M)	
	• $\varphi(-+-,,) = 0$ (6 M)	
14		
	Find the general solution of $(y+z)p+(z+x)q = x+y$. (8 M) BTL5	
	Answer : Page:1.112- DR.A.SINGARAVELU	

REC	GULATION :2017 ACADEMIC YEAR : 2019-2020
	• $\frac{dx}{(y+z)} = \frac{dy}{(z+x)} = \frac{dz}{x+y}$ (2 M)
	• $\varphi(\frac{x-y}{y-z}, (y-z)\sqrt{x+y+z}) = 0$ (6 M)
15	
	Solve $(D^2 - DD' - 20D'^2)z = e^{5x+y} + \sin(4x-y)$. (8 M)BTL5
	Answer : Page:1.165- DR.A.SINGARAVELU
	• $C.F = f_1(y+5x) + f_2(y-4x)(2 M)$
	• $P.I = \frac{x}{9} \left(e^{5x+y} - \cos(4x-y) \right)$ (5 M)
1.5	• $z = f_1(y+5x) + f_2(y-4x) + \frac{x}{9} \left(e^{5x+y} - \cos(4x-y) \right) $ (1 M)
16	
	Solve $(D^2 - D'^2)z = e^{x-y}\sin(2x+3y)$. (8 M) BTL5
	Answer : Page :1.152- DR.A.SINGARAVELU
	• C.F = $f_1(y+x) + f_2(y-x)$ (3 M)
	• $P.I = \frac{1}{25}e^{x-y}(\sin(2x+3y) - 2\cos(2x+3y))$ (4 M)
	• $z = f_1(y+x) + f_2(y-x) + \frac{1}{25}e^{x-y}(\sin(2x+3y) - 2\cos(2x+3y))$ (1 M)
17	
	Solve $(D^2 - 2DD' + D'^2)z = x^2 y e^{x+y}$. (8 M)BTL5
	Answer : Page :1.151- DR.A.SINGARAVELU
	• $C.F = f_1(y+x) + xf_2(y+x)$ (3 M)
	• $P.I = e^{x + y} \left(\frac{x^4 y^2}{12} + \frac{x^5 y}{15} + \frac{x^6}{60} \right) (4 \text{ M})$
	• $z = f_1(y+x) + xf_2(y+x) + e^{x+y} \left(\frac{x^4y^2}{12} + \frac{x^5y}{15} + \frac{x^6}{60}\right)$ (1 M)
18	
	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \sinh(x+y) + e^{x+2y}$. (8 M)BTL5
	Answer : Page:1.176- DR.A.SINGARAVELU
	• $\overline{\mathbf{C}}.F = f_1(y-x) + xf_2(y-x)$ (3 M)
	• $P.I = \frac{e^{x+2y}}{9} + \frac{1}{4}\sinh(x+y)$ (4 M)
	• $z = f_1(y-x) + xf_2(y-x) + \frac{e^{x+2y}}{9} + \frac{1}{4}\sinh(x+y)$ (1 M)
•	

Solve $(D^2 + DD' - 6D'^2) z = y \cos x$. (8 M) BTL5 Answer : Page:1.157 - DR.A.SINGARA VELU • $C.F = f_1(y-3x) + f_2(y+2x)$ (3 M) • $P.I = \sin x - y \cos x$ (4 M) • $z = f_1(y-3x) + f_2(y+2x) + \sin x - y \cos x$ (1 M) 19 Solve $(D^2 + D'^2 + 2DD' + 2D + 2D' + 1)z = e^{2xy}$. (8 M) BTL5 Answer : Page: 1.184 - DR.A.SINGARA VELU • $C.F = e^{-x} f_1(y-x) + xe^{-x} f_2(y-x)$ (3 M) • $P.I = \frac{e^{2xy}}{16}$ (4 M) • $z = e^{-x} f_1(y-x) + xe^{-x} f_2(y-x) + \frac{e^{2xy}}{16}$ (1 M) 20 Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer : Page: 1.185 - DR.A.SINGARA VELU • $C.F = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^2}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (1 M) 20 21 21 21 21 21 21 21 21 21 21	RE	GULATION :2017 ACADEMIC YEAR : 2019-2020
Answer : Page: 1.157 - DR.A.SINGARAVELU • $C.F = f_1(y-3x) + f_2(y+2x)$ (3 M) • $P.J = \sin x - y \cos x$ (4 M) • $z = f_1(y-3x) + f_2(y+2x) + \sin x - y \cos x$ (1 M) 19 Solve $(D^2 + D'^2 + 2DD' + 2D + 2D + 1)z = e^{2\pi i y}$ (8 M) BTL5 Answer : Page: 1.184 - DR.A.SINGARAVELU • $C.F = e^{-x}f_1(y-x) + xe^{-x}f_2(y-x)$ (3 M) • $P.J = \frac{e^{2\pi i y}}{16}$ (4 M) 20 Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer : Page: 1.185 - DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{x}f_2(y-x)$ (3 M) • $P.J = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{5x}{9} \right]$ (4 M) • $P.J = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{9} + \frac{65x}{9} \right]$ (1 M) 21 21 21 21 21 21 21 21 21 21		Solve $(D^2 + DD' - 6D'^2)z = y \cos x$. (8 M) BTL5
$\begin{array}{r llllllllllllllllllllllllllllllllllll$		Answer : Page:1.157 -DR.A.SINGARAVELU
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		• $C.F = f_1(y-3x) + f_2(y+2x)$ (3 M)
• $z = f_1(y-3x) + f_2(y+2x) + \sin x - y\cos x(1 M)$ 19 Solve $(D^2 + D^2 + 2DD' + 2D + 2D' + 1)z = e^{2exy}$. (8 M) BTL5 Answer : Page: 1.184 - DR.A.SINGARAVELU • $C.F = e^{-x}f_1(y-x) + xe^{-x}f_2(y-x)$ (3 M) • $P.I = \frac{e^{2ixy}}{16}$ (4 M) 20 Solve $(D^2 - D^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer : Page: 1.185 - DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{3x}f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (4 M) • $z = f_1(y+x) + e^{3x}f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^5}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (1 M) 21 Solve $(2D^2 - DD^2 - D^2 + 6D + 3D')z = xe^{y}$ (8 M)BTL5 Answer : Page: 1.189- DR.A.SINGARAVELU • $C(F = f_1(y-\frac{1}{2}x) + e^{-3x}f_2(y+x)$ (3 M) • $P.I = \frac{-2e^{y}}{25} [5x-12] (4 M)$ • $2z = f_1(y-\frac{1}{2}x) + e^{-3x}f_2(y+x) + \frac{2e^{y}}{25} [5x-12] (1 M)$ UNIT ILFOURIER SERTIES Dirichlets condition General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• $P.I = \sin x - y \cos x (4 \mathbf{M})$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		• $z = f_1(y-3x) + f_2(y+2x) + \sin x - y \cos x$ (1 M)
Solve $(D^2 + D'^2 + 2DD' + 2D' + 1)z = e^{2x \cdot y}$. (8 M) BTL5 Answer :Page:1.184 -DR.A.SINGARAVELU • $C.F = e^{-x}f_1(y - x) + xe^{-x}f_2(y - x)$ (3 M) • $P.I = \frac{e^{2x \cdot y}}{16}$ (4 M) • $z = e^{-x}f_1(y - x) + xe^{-x}f_2(y - x) + \frac{e^{2x + y}}{16}$ (1 M) 20 Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer :Page:1.185 - DR.A.SINGARAVELU • $C.F = f_1(y + x) + e^{3x}f_2(y - x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (4 M) • $z = f_1(y + x) + e^{3x}f_2(y - x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (1 M) 21 Solve $(2D^2 - DD' + D^3 + 6D + 3D')z = xe^y$ (8 M)BTL5 Answer : Page:1.189 - DR.A.SINGARAVELU • $C.F = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x - 12]$ (4 M) • $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x) + \frac{2e^y}{25} [5x - 12]$ (1 M) UNIT IL-FOURIER SERTIES Dirichlet's condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex for a given function to expand in Fourier series.	19	
Answer :Page: 1.184 - DR.A.SINGARAVELU • C.F = $e^{-x} f_1(y-x) + xe^{-x} f_2(y-x)$ (3 M) • $PI = \frac{e^{2x+y}}{16}$ (4 M) • $z = e^{-x} f_1(y-x) + xe^{-x} f_2(y-x) + \frac{e^{2x+y}}{16}$ (1 M) 20 Solve $(D^2 - D^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer :Page: 1.185 - DR.A.SINGARAVELU • C.F = $f_1(y+x) + e^{3x} f_2(y-x)$ (3 M) • $PI = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (4 M) • $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^3y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (1 M) 21 Solve $(2D^2 - DD) = D^3 + 6D + 3D^3) z = xe^3$ (8 M)BTL5 Answer : Page: 1.189 - DR.A.SINGARAVELU • $CA^2 = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12]$ (4 M) • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x) + \frac{2e^y}{25} [5x-12]$ (1 M) UNIT IL-FOURIER SERTIES Dirichlet's condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex for of Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex for a given function to expand in Fourier series.		Solve $(D^2 + D'^2 + 2DD' + 2D + 2D' + 1)z = e^{2x+y}$. (8 M) BTL5
$\begin{array}{r ll} & \cdot & C.F = e^{-x}f_{1}(y-x) + xe^{-x}f_{2}(y-x) & (3 \text{ M}) \\ & \cdot & P.I = \frac{e^{2^{2xy}}}{16}(4 \text{ M}) \\ & \cdot & z = e^{-x}f_{1}(y-x) + xe^{-x}f_{2}(y-x) + \frac{e^{2^{2xy}}}{16}(1 \text{ M}) \\ \hline & 20 \\ \hline & \\ & \text{Solve } (D^{2}-D^{2}-3D+3D')z = xy+7. \ (8 \text{ M}) \text{ BTL5} \\ & \text{Answer : Page: 1.185} \cdot \text{DR.A.SINGARAVELU} \\ & \cdot & C.F = f_{1}(y+x) + e^{3x}f_{2}(y-x) & (3 \text{ M}) \\ & \cdot & P.I = \frac{-1}{3} \left[\frac{x^{2}y}{2} + \frac{xy}{3} + \frac{x^{2}}{6} + \frac{x^{2}}{3} + \frac{65x}{9} \right] (4 \text{ M}) \\ & \cdot & z = f_{1}(y+x) + e^{3x}f_{2}(y-x) - \frac{1}{3} \left[\frac{x^{2}y}{2} + \frac{xy}{3} + \frac{x^{4}}{6} + \frac{x^{2}}{3} + \frac{65x}{9} \right] (1 \text{ M}) \\ \hline & \\ 21 \\ \hline & \\ & \text{Solve } \left(2D^{2} - DD^{3}/D^{2} + 6D + 3D^{3} \right) z = xe^{y} (8 \text{ M}) \text{BTL5} \\ & \text{Answer : Page: 1.189} \cdot \text{DR.A.SINGARAVELU} \\ & \cdot & C/F = f_{1}(y-\frac{1}{2}x) + e^{-3x}f_{2}(y+x) & (3 \text{ M}) \\ & \cdot & P.I = \frac{2e^{y}}{25} \left[5x-12 \right] (4 \text{ M}) \\ & \cdot & z = f_{1}(y-\frac{1}{2}x) + e^{-3x}f_{2}(y+x) + \frac{2e^{y}}{25} \left[5x-12 \right] (1 \text{ M}) \\ \hline & \\ & \text{UNTT IL FOURIER SERTIES} \\ & \text{Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis \\ & \hline & PAT^{*}A \\ \hline \end{array}$		Answer :Page:1.184 -DR.A.SINGARAVELU
$\begin{array}{r llllllllllllllllllllllllllllllllllll$		• $C.F = e^{-x} f_1(y-x) + xe^{-x} f_2(y-x)$ (3 M)
• $PI = \frac{1}{16} (4 \text{ M})$ • $z = e^{-x} f_1(y-x) + xe^{-x} f_2(y-x) + \frac{e^{2x+y}}{16} (1 \text{ M})$ 20 Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer :Page:1.185- DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{3x} f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (4 \text{ M})$ • $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (1 \text{ M})$ 21 21 21 21 21 21 21 21 22 24 24 25 25 27 27 27 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20		e^{2x+y}
• $z = e^{-x} f_1(y-x) + xe^{-x} f_2(y-x) + \frac{e^{2x+y}}{16} (1 \text{ M})$ 20 Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer : Page: 1.185- DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{3x} f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (4 \text{ M})$ • $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^2}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (1 \text{ M})$ 21 21 21 21 20 21 20 21 20 21 22 24 24 25 25 27 27 27 28 29 29 20 29 20 29 20 29 20 29 20 29 20 29 20 20 20 20 20 20 20 20 20 20		• $P.I = \frac{16}{16} (4 \text{ M})$
• $z = e^{-x} f_1(y-x) + xe^{-x} f_2(y-x) + \frac{16}{16}$ (1 M) 20 Solve $(D^2 - D^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer : Page: 1.185- DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{3x} f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^2}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (4 M) • $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^2}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (1 M) 21 Solve $\left(2D^2 - DD' + D^2 + 6D + 3D' \right) z = xe^y$ (8 M)BTL5 Answer : Page: 1.189- DR.A.SINGARAVELU • $C.F = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12]$ (4 M) • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x) + \frac{2e^y}{25} [5x-12]$ (1 M) UNTI IL-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		e^{2x+y}
20 Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer :Page:1.185- DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{3x}f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (4 M) • $z = f_1(y+x) + e^{3x}f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (1 M) 21 21 Solve $(2D^2 - DD' - D^2 + 6D + 3D')z = xe^y$ (8 M)BTL5 Answer : Page:1.189- DR.A.SINGARAVELU • $C/F = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12]$ (4 M) • $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y+x) + \frac{2e^y}{25} [5x-12]$ (1 M) UNIT ILFOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• $z = e^{-x} f_1(y-x) + x e^{-x} f_2(y-x) + \frac{16}{16} (1 \text{ M})$
Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5 Answer :Page:1.185- DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{3x}f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (4 M) • $z = f_1(y+x) + e^{3x}f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$ (1 M) 21 Solve $(2D^2 - DD' - D^2 + 6D + 3D')z = xe^y$ (8 M)BTL5 Answer : Page:1.189- DR.A.SINGARAVELU • $CAF = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12]$ (4 M) • $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y+x) + \frac{2e^y}{25} [5x-12]$ (1 M) UNIT IL-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.	20	
Answer :Page:1.185- DR.A.SINGARAVELU • $C.F = f_1(y+x) + e^{3x} f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2 y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (4 \text{ M})$ • $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2 y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (1 \text{ M})$ 21 21 21 21 21 2 Solve $\left(2D^2 - DD' - D^2 + 6D + 3D' \right) z = xe^y$ (8 M)BTL5 Answer : Page:1.189- DR.A.SINGARAVELU • $CAF = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12] (4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x) + \frac{2e^y}{25} [5x-12] (1 \text{ M})$ UNIT IL-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL5
• $C.F = f_1(y+x) + e^{3x}f_2(y-x)$ (3 M) • $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (4 \text{ M})$ • $z = f_1(y+x) + e^{3x}f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (1 \text{ M})$ 21 21 Solve $\left(2D^2 - DD' - D^2 + 6D + 3D' \right) z = xe^y$ (8 M)BTL5 Answer : Page: 1.189- DR.A.SINGARAVELU • $C.F = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12] (4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y+x) + \frac{2e^y}{25} [5x-12] (1 \text{ M})$ UNIT IL-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		Answer :Page:1.185- DR.A.SINGARAVELU
• $P.I = \frac{-1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (4 \text{ M})$ • $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (1 \text{ M})$ 21 Solve $\left(2D^2 - DD' + D^2 + 6D + 3D' \right) z = xe^y$ (8 M)BTL5 Answer : Page: 1.189- DR.A.SINGARAVELU • $C/F = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12] (4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x) + \frac{2e^y}{25} [5x-12] (1 \text{ M})$ UNIT IL-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• C.F = $f_1(y+x) + e^{3x} f_2(y-x)$ (3 M)
• $P_{\cdot}I = \frac{1}{3} \left[\frac{x}{2} + \frac{3}{3} + \frac{1}{6} + \frac{1}{3} + \frac{9}{9} \right] (4 \text{ M})$ • $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2 y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (1 \text{ M})$ 21 21 Solve $\left(2D^2 - DD' - D^2 + 6D + 3D' \right) z = xe^y$ (8 M)BTL5 Answer : Page: 1.189- DR.A.SINGARAVELU • $C \cdot F = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x)$ (3 M) • $P_{\cdot}I = \frac{2e^y}{25} [5x-12] (4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x) + \frac{2e^y}{25} [5x-12] (1 \text{ M})$ UNIT II-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		$-1 \begin{bmatrix} x^2 y & xy & x^3 & x^2 & 65x \end{bmatrix}$
• $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2 y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] (1 \text{ M})$ 21 Solve $\left(2D^2 - DD' - D^2 + 6D + 3D' \right) z = xe^y$ (8 M)BTL5 Answer : Page: 1.189- DR.A.SINGARAVELU • $C/F = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x)$ (3 M) • $P.I = \frac{2e^y}{25} [5x-12] (4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y+x) + \frac{2e^y}{25} [5x-12] (1 \text{ M})$ UNIT II-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• $P.I = \frac{1}{3} \left[\frac{3}{2} + \frac{3}{3} + \frac{3}{6} + \frac{3}{3} + \frac{9}{9} \right] (4 \text{ M})$
21 Solve $(2D^2 - DD' - D^2 + 6D + 3D')z = xe^y$ (8 M)BTL5 Answer : Page:1.189- DR.A.SINGARAVELU • $C \cdot F = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x)$ (3 M) • $P \cdot I = \frac{2e^y}{25}[5x - 12]$ (4 M) • $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x) + \frac{2e^y}{25}[5x - 12]$ (1 M) UNIT IL-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• $z = f_1(y+x) + e^{3x} f_2(y-x) - \frac{1}{3} \left[\frac{x^2 y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right] $ (1 M)
Solve $(2D^2 - DD' - D^2 + 6D + 3D')z = xe^y$ (8 M)BTL5Answer : Page:1.189- DR.A.SINGARAVELU• $C.F = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x)$ (3 M)• $P.I = \frac{2e^y}{25}[5x - 12](4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x) + \frac{2e^y}{25}[5x - 12](1 \text{ M})$ UNIT II-FOURIER SERTIESDirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic AnalysisPART*AState Dirichlet's conditions for a given function to expand in Fourier series.	21	
Answer : Page:1.189- DR.A.SINGARAVELU• $C.F = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y + x)$ (3 M)• $P.I = \frac{2e^y}{25} [5x - 12]$ (4 M)• $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y + x) + \frac{2e^y}{25} [5x - 12]$ (1 M)UNIT H-FOURIER SERTIESDirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic AnalysisPART*AState Dirichlet's conditions for a given function to expand in Fourier series.		Solve $(2D^2 - DD' - D^2 + 6D + 3D')z = xe^y$ (8 M)BTL5
• $CF = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x)$ (3 M) • $P.I = \frac{2e^y}{25}[5x - 12]$ (4 M) • $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x) + \frac{2e^y}{25}[5x - 12]$ (1 M) UNIT II-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		Answer : Page:1.189- DR.A.SINGARAVELU
• $P.I = \frac{2e^y}{25} [5x-12] (4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y + x) + \frac{2e^y}{25} [5x-12] (1 \text{ M})$ UNIT II-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• $C.F = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x)$ (3 M)
• $P.T = \sum_{25} [5x-12] (4 \text{ M})$ • $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y + x) + \frac{2e^y}{25} [5x-12] (1 \text{ M})$ UNIT II-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		$2e^{y}$
• $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x) + \frac{2e^y}{25}[5x - 12](1 \text{ M})$ UNIT H-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• $P.I = \frac{1}{25} [5x - 12] (4 \text{ M})$
• $z = f_1(y - \frac{z}{2}x) + e^{-3x} f_2(y + x) + \frac{z}{25} [5x - 12]$ (1 M) UNIT II-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		$2e^{y}$
UNIT H-FOURIER SERTIES Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		• $z = f_1(y - \frac{1}{2}x) + e^{-3x} f_2(y + x) + \frac{1}{25} [5x - 12] (1 \text{ M})$
Dirichlets condition,General Fourier series,and Even functions,Half range Sine series,Half range Cosine series,Complex form of Fourier series,Parsevals Identity,Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		UNIT II-FOURIER SERTIES
Cosine series,Complex form of Fourier series,Parsevals Identity,Harmonic Analysis PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		Dirichlets condition, General Fourier series, and Even functions, Half range Sine series, Half range
PART*A State Dirichlet's conditions for a given function to expand in Fourier series.		Cosine series, Complex form of Fourier series, Parsevals Identity, Harmonic Analysis
State Dirichlet's conditions for a given function to expand in Fourier series.		PART*A
1 BTL1	1	State Dirichlet's conditions for a given function to expand in Fourier series.
A function $f(x)$ defined in $c \le x \le c + 2l$ can be expanded as an infinite trigonometric series		A function $f(x)$ defined in $c \le x \le c + 2l$ can be expanded as an infinite trigonometric series

REGULATION :2017 ACADEMIC YEAR: 2019-2020 of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$ provided f(x) is single-valued and finite in (c, c+2l)(i) f(x) is continuous or piecewise continuous with finite number of finite (ii) discontinuities in (c, c+2l). f(x) has no or finite number of maxima or minima in (c, c+2l). (iii) State Euler's formula for Fourier coefficients of a function defined in (c, c+2l). BTL1 If a function f(x) defined in (c, c+2l) can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$, then $a_0 = \frac{1}{l} \int_{-\infty}^{-\infty} f(x) dx$ 2 $a_{n} = \frac{1}{l} \int_{-\infty}^{-\infty} f(x) \cos\left(\frac{n\pi}{l}\right) x \, dx$ $b_n = \frac{1}{l} \int_{-\infty}^{-c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x \, dx$ **Does** $f(x) = \tan x$ possess a Fourier series expansion? BTL1 3 No, $f(x) = \tan x$ does not possess a Fourier expansion. Because $f(x) = \tan x$ has an infinite discontinuity. (ie) Dirichlet's condition is not satisfied. If $x^2 = \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos nx}{n^2}$ in $-\pi < x < \pi$, then find $\sum_{n=1}^{\infty} \frac{1}{n^2}$. BTL5 Given $x^2 = \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$ $x^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{1}{1^{2}} \cos x - \frac{1}{2^{2}} \cos 2x + \frac{1}{3^{2}} \cos 3x + \dots \right]$ 4 The point $x = \pi$ is the point of discontinuity (right extreme point) $\pi^{\frac{1}{2}} = \frac{\pi^{2}}{3} - 4 \left[\frac{1}{1^{2}} \cos \pi - \frac{1}{2^{2}} \cos 2\pi + \frac{1}{3^{2}} \cos 3\pi + \dots \right]$ $\frac{2\pi^2}{3} = 4\left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^2} + \dots\right]$ $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$

JIT-JEPPIAAR/MATHS/Dr.A.SHENBHAGA EZHIL/IIrd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver2.0

ACADEMIC YEAR: 2019-2020

$$\frac{(\pi - 0)^2 + (\pi - 2\pi)^2}{2} = \frac{\pi^2}{3} + 4 \left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \right]$$

$$\pi \left\{ -\frac{\pi^2}{3} = 4 \left[-\frac{1}{1^2} (-1) + \frac{1}{2^2} (1) - \frac{1}{3^2} (-1) + \dots \right]$$

$$\frac{2\pi^2}{3} = 4 \left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \right]$$
Therefore, $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.
If the Fourier series of the function $f(x) = x, -\pi < x < \pi$ with period 2π is given by $f(x) = 2 \left[\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots \right]$, then find the sum of the series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{[A/MI5]}{2} \text{ BTL5}$.
Given $f(x) = 2 \left[\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{3} + \frac{\sin 4x}{4} + \dots \right]$.
The point $x = \frac{\pi}{2}$ is the point of continuity.
Substitute $x = \frac{\pi}{2}$ in (1), we have
$$\frac{\pi}{2} = 2 \left(1 - 0 - \frac{1}{3} - 0 + \frac{1}{5} - 0 - \frac{1}{7} - 0 + \dots \right)$$
Hence, $1 + \frac{\pi}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$.

five the expression for the Fourier series co-efficient b_h for the function $f(x)$ defined in $(-2, 2)$ is given by $b_x = \frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n\pi}{2}\right) x dx$.

13
State TRUE or FALSE: Fourier series of period 20 for the function $f(x) = x \cos x$ in the interval $(-10, 10)$ contains only sine terms. Justify your answer. [MJ16] BTL2

ACADEMIC YEAR : 2019-2020

	Fourier series of period 20 for the function $f(x) = x \cos x$ in the interval (-10,10) contains
	only sine terms is TRUE. Since $f(r) = r\cos r$
	$f(-r) = f(-r) \cos(-r) = -r\cos r = -f(r)$
	$f(x) = (-x)\cos(-x) - x\cos xf(x)$
	f(x) is an odd function.
	The constant term in the Fourier series is $\frac{a_0}{2}$ where
	$a_{0} = \frac{2}{\pi} \int_{0}^{\pi} \cos^{2} x dx$ $2 \int_{0}^{\pi} 1 + \cos 2x$
	$= \frac{1}{\pi} \int \frac{1}{2} dx$
	$= \frac{1}{\pi} \left[\int_{0}^{\pi} dx + \int_{0}^{\pi} \cos 2x dx \right]$
	$= \frac{1}{\pi} \left[\left(x \right)_{0}^{\pi} + \left(\frac{\sin 2x}{2} \right)_{0}^{\pi} \right] = \frac{1}{\pi} \left[\left(\pi - 0 \right) + \frac{1}{2} \left(0 - 0 \right) \right] = \frac{1}{\pi} (\pi) = 1$
	Therefore, the constant term $\frac{a_0}{2}$ is $\frac{1}{2}$.
	If $f(x)$ is an odd function defined in $(-l, l)$, what are the values of a_0 and a_n ? BTL5
	Given $f(x)$ is an odd function, the values of $a_0 = a_n = 0$.
	Obtain the first term of the Fourier series for the function $f(x) = x^2$, $-\pi < x < \pi$ [N/D09].
	<u>lution</u> : Here $2l = 2\pi$ implies $l = \pi$
	<u>lution</u> : Here $2l = 2\pi$ implies $l = \pi$ Given
f 14	<u>lution</u> : Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is a provided in the formula of (x) and (x) is a provided in the formula of (x) in the formula of (x) is a provided in the formula of (x) in the formula of (x) is a provided in the formula
f 14	Lution: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function.
f 14 a,	Lution: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $f(x) = \frac{2}{l} \int_{0}^{l} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_{0}^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$
f 14 a	Lution: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $d_1 = \frac{2}{l} \int_{0}^{l} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_{0}^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$ $a_0 = \frac{2}{3} \pi^2 - \pi^2$
f 14 a	Lution: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $y = \frac{2}{l} \int_{0}^{l} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_{0}^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$ erefore the first term of Fourier series is $\frac{a_0}{2} = \frac{\frac{2}{3}}{\frac{2}{3}} \frac{\pi^2}{2} = \frac{\pi^2}{3}$.
f 14 a	Lution: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $d = \frac{2}{l} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_{0}^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$ erefore the first term of Fourier series is $\frac{a_0}{2} = \frac{\frac{2}{3}}{\frac{\pi^2}{2}} = \frac{\pi^2}{3}$.
f 14 a	Lution: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $l = \frac{2}{l} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_{0}^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$ erefore the first term of Fourier series is $\frac{a_0}{2} = \frac{\frac{2}{3} \pi^2}{2} = \frac{\pi^2}{3}$.
f 14 a	Lution: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $_0 = \frac{2}{l} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_0^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$ erefore the first term of Fourier series is $\frac{a_0}{2} = \frac{\frac{2}{3}\pi^2}{2} = \frac{\pi^2}{3}$. Find the value of b_n in the Fourier series expansion of $f(x) = \begin{cases} x + \pi in (-\pi, 0) \\ x + \pi in (0, \pi) \end{cases}$. [M/J16]
f 14 a	Lettin: Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $a_0 = \frac{2}{l} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_0^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$ erefore the first term of Fourier series is $\frac{a_0}{2} = \frac{\frac{2}{3} \pi^2}{2} = \frac{\pi^2}{3}$. Find the value of b_n in the Fourier series expansion of $f(x) = \begin{cases} x + \pi in (-\pi, 0) \\ -x + \pi in (0, \pi) \end{cases}$. [M/J16] BTI 2
14 14 15	build Here $2l = 2\pi$ implies $l = \pi$ Given $(-x) = (-x)^2 = x^2 = f(x)$ Therefore $f(x)$ is an even function. $a_0 = \frac{2}{l} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3}\right)_0^{\pi} = \frac{2}{3\pi} (\pi^3 - 0) = \frac{2}{3} \pi^2$ erefore the first term of Fourier series is $\frac{a_0}{2} = \frac{\frac{2}{3} \pi^2}{2} = \frac{\pi^2}{3}$. Find the value of b_n in the Fourier series expansion of $f(x) = \begin{cases} x + \pi in (-\pi, 0) \\ -x + \pi in (0, \pi) \end{cases} \cdot [M/J16]$ BTL2 $(x) = \begin{cases} x + \pi in (-\pi, 0) \\ -x + \pi in (0, \pi) \end{cases}$

REG	GULATION :2017 ACADEMIC YEAR : 2019-2020
	Let $\varphi_1(x) = x + \pi$ $\varphi_2(x) = -x + \pi$ $\varphi_1(-x) = -x + \pi = \varphi_2(x)$ Therefore, $f(x)$ is an even function. Hence, $b_n = 0$.
16	Find the value of the Fourier series of $f(x) = \begin{cases} 0 & in (-c, 0) \\ 1 & in (0, c) \end{cases}$ at the point of discontinuity x = 0.BTL2 Given $f(x) = \begin{cases} 0 & in (-c, 0) \\ 1 & in (0, c) \end{cases}$ $[Value of f(x)]_{x=0} = \lim_{h \to 0} \frac{1}{2} [f(0-h)+f(0+h)]$ $= \lim_{h \to 0} \frac{1}{2} [0+1] = \frac{1}{2}.$
17	Find the Fourier constants b_n for $x \sin x$ in $(-\pi, \pi)$. BTL2 Given $f(x) = x \sin x$ $f(-x) = -x \sin (-x) = -x(-\sin x) = x \sin x = f(x)$ Therefore, $f(x)$ is an even function. Hence, $b_n = 0$.
18	Find the co-efficient b_n of the Fourier series for the function $f(x) = x \sin x$ in $(-2, 2)$. [N/D12]. BTL5 Given $f(x) = x \sin x$ $f(-x) = -x \sin (-x) = -x(-\sin x) = x \sin x = f(x)$ Therefore, $f(x)$ is an even function. Hence, $b_n = 0$.
$\frac{19}{\frac{a_0}{2}}$	Write down Parseval's formula on Fourier coefficients. [N/D14] BTL5 If $y = f(x)$ can be expanded as Fourier series of the form $- + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$ in (0, 2 <i>l</i>), then the root-mean square

REGULATION	:2017
------------	-------

ACADEMIC YEAR : 2019-2020

Expand f(x) = 1 as a half range sine series in the interval $(0, \pi)$. BTL5 [M/J14,A/M15, N/D15. N/D16] Here $l = \pi$ Fourier sine series is given by $f\left(x\right) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$ $f(x) = \sum_{n=1}^{\infty} b_n \sin n x$ where $b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} 1 \sin nx \, dx = \frac{2}{\pi} \left[-\frac{\cos nx}{n} \right]_{0}^{\pi}$ 24 $= \left| -\frac{2}{n\pi} \left[\cos n\pi - 1 \right] = -\frac{2}{n\pi} \left[(-1)^n - 1 \right] = \begin{cases} \frac{4}{n\pi} , & \text{if } n \text{ is odd} \\ 0 & \text{, if } n \text{ is even} \end{cases} \right|_{n=1}^{\infty}$ Therefore $f(x) = \sum_{n=1,3,5}^{\infty} \frac{4}{n\pi} \sin nx = \frac{4}{\pi} \sum_{n=1,3,5}^{\infty} \frac{1}{n} \sin nx$. Give the expression for the Fourier series co-efficient b_n for the function f(x) defined in (-2,2). [A/M11]. BTL5 The Fourier series co-efficient b_n for the function f(x) defined in (-2, 2) is 25 given by $b_n = \frac{1}{2} \int_{-\infty}^{2} f(x) \sin\left(\frac{n\pi}{2}\right) x \, dx$. **PART*B** 1 Express $f(x) = \left(\frac{\pi - x}{2}\right)^2$ as a Fourier Series of period 2π in the interval $0 < x < 2\pi$. Hence deduce the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ BTL5 (8 M) Answer : Page 2.12-DR.A.SINGARAVELU • $a_0 = \frac{\pi^2}{6}; a_n = \frac{1}{n^2}; b_n = 0 (6 \text{ M})$ • $f(x) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2} (1 \text{ M})$ • $1/1^2 + 1/2^2 + 1/3^2 + \dots = \frac{\pi^2}{6}$ (1 M) 2

NEV	GULATION :2017 ACADEMIC YEAR : 2019-2020
	Obtain the Fourier Series of period 2π for the function $f(x) = x^2$ in $(-\pi, \pi)$. Deduce that
	(i) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$ (ii) $\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \dots$ (iii) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$ BTL5 (8 M)
	$(12 \ 22 \ 32 \ 32 \ (12 \ 32 \ 32 \ 32 \ (12 \ 32 \ 32 \ 32 \ (12 \ 32 \ 32 \ 32 \ 32 \ (12 \ 32 \ 32 \ 32 \ 32 \ 32 \ (12 \ 32 \ 32 \ 32 \ 32 \ 32 \ 32 \ (12 \ 32 \ 32 \ 32 \ 32 \ 32 \ 32 \ 32 \ $
	Answert Dage 2.40 DD A SINCADAVELU
	Allswer: rage 2.40-DR.A.SINGARA VELU
	• $a = \frac{2\pi^2}{a} \cdot a = \frac{4}{a} (-1)^n \cdot b = 0$ (6 M)
	$u_0 = \frac{1}{3} u_n = \frac{1}{n^2} (1) u_n = 0 (0.01)$
	$\pi^2 \xrightarrow{\infty} 4$
	• $f(x) = \frac{\pi}{2} + \sum_{n=2}^{\infty} (-1)^n \cos nx (1 \text{ M})$
	$3 \overline{n=1} n$
	$1/1^2 + 1/2^2 + 1/2^2 + \dots - \pi^2$
	$1/1 + 1/2 + 1/3 + \dots - \frac{-6}{6}$
	π^2
	• $1/1^2 - 1/2^2 + 1/3^2 - \dots = \frac{\pi}{12}$; (1 M)
	12
	$1/1^2 + 1/2^2 + 1/5^2 + \pi^2$
	$1/1 + 1/3 + 1/3 + \dots - \frac{8}{8}$
3	
5	Obtain the Fourier Series to represent the function $f(x)$ by $f(x) = f(x)$ and deduce
	Obtain the Fourier Series to represent the function $I(x) = [x], -\pi < x < \pi$ and deduce
	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{r^2} + \dots = \frac{n}{9}$.BTL5 (8 M)
	Answer: Page 2.52DR.A.SINGARAVELU
	• $a_0 = \pi; a_n = \frac{2}{2} (-1)^n - 1 ; b_n = 0 (6 \text{ M})$
	$n \pi^{-}$
	• $f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{n} [(-1)^n - 1] \cos nx$ (1 M)
	$2 \frac{1}{n-1} n^2 \pi^{-1} (1)^{-1} \frac{1}{n-1} e^{-1} n^2 \pi^{-1} \frac{1}{n-1} e^{-1} \frac{1}{n-1} e^$
	π^2
	• $1/1^2 + 1/3^2 + 1/5^2 + \dots = \frac{\pi}{2}$ (1 M)
	8
4	
	Obtain the Fourier Series of $f(x) = x \sin x in (-\pi, \pi)$. BTL5 (8 M)
	Answer : Page 2.58-DR.A.SINGARAVELU
	$a_0 = 2; a_n = (n+1)(n-1) \lfloor (-1)^{n+1} \rfloor; b_n = 0$
	• $(n+1)(n-1)$ (6 M)
	$a = \frac{-1}{2}$
	$\cos x = \sum_{n=1}^{\infty} 2 \left[\cos x \right]^{n+1}$
	• $f(x) = 1 - \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{(n+1)(n-1)} \left[(-1)^{n+1} \right] \cos nx (2 \mathbf{M})$
_	$\sum_{n=2}^{2} (n+1)(n-1)$
5	
	$\left(1+\frac{2x}{2}, -\pi < x < 0\right)$
	Obtain the Fourier Series of $f(x) = \begin{cases} -\pi & \pi \\ 2x & \pi \end{cases}$ and hence deduce
	$\left(1-\frac{2x}{\pi}, 0 \le x \le \pi\right)$

 $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8} \cdot BTL5(8 \text{ M})$ Answer : Page 2.72-DR.A.SINGARAVELU • $a_0 = 0; a_n = \frac{4}{n^2 \pi^2} \left[1 - (-1)^n \right]; b_n = 0 (6 \text{ M})$ • $f(x) = \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos nx}{n^2} (1 \text{ M})$ • $1/1^2 + 1/3^2 + 1/5^2 + \dots = \frac{\pi^2}{8}$ (1 M) 6 If $f(x) = \begin{cases} 0, -\pi \le x \le 0 \\ sinx. \quad 0 < x < \pi \end{cases}$, Prove that $f(x) = \frac{1}{\pi} + \frac{1}{2}sinx - \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{cosnx}{4n^2 - 1}$ Hence show that (i) $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{2}$ (ii) $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$.BTL5 (8 M) Answer : Page 2.64-DR.A.SINGARAVELU • $a_0 = \frac{2}{\pi}; a_n = \frac{-1}{(n^2 - 1)\pi} \Big[1 + (-1)^n \Big]; b_n = \begin{cases} 0 & \text{if } n \neq 1 \\ \frac{1}{2} & \text{if } n = 1 \end{cases}$ (6 M) $a_1 = 0$ • $f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\cos nx}{(n^2 - 1)} \left[1 + (-1)^n \right] (1 \text{ M})$ • $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{2}$ and $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4} (1 \text{ M})$ 7 Find half range sine series for $f(x) = x(\pi - x)$ in $(0,\pi)$. Deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \dots$ BTL5 (8 M) Answer : Page2.144-DR.A.SINGARAVELU $b_n = \frac{4}{n^3 \pi} \left[1 - (-1)^n \right] (6 \text{ M})$ • $f(x) = \frac{8}{\pi} \left| \frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right| (1 \text{ M})$ $1/1^3 - 1/3^3 + 1/5^3 - \dots = \frac{\pi^3}{32}$ (1 M) 8 Obtain the Fourier Series of $f(x) = \begin{cases} l-x, & 0 < x \le l \\ 0, & l \le x \le 2l \end{cases}$ and hence deduce $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ (8 M) BTL5 Answer : Page2.85-DR.A.SINGARAVELU • $a_0 = \frac{l}{2}; a_n = \left\{ \frac{2l}{n^2 \pi^2} \text{ if } \mathbf{n} \text{ is } Odd \right\}; \mathbf{b}_n = \frac{l}{n \pi} (\mathbf{6} \mathbf{M})$ if n is even

REGULATION :2017 ACADEMIC YEAR: 2019-2020 • $f(x) = \frac{l}{4} + \sum_{n=1}^{\infty} \frac{2l}{n^2 \pi^2} \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} \frac{1}{n\pi} \sin \frac{n\pi x}{l} (\mathbf{1} \mathbf{M})$ • $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} (1 \text{ M})$ 9 **Obtain the half range sine series of the function** $f(\mathbf{x}) = \begin{cases} x, & 0 < x \le \frac{l}{2} \\ l - x, & \frac{l}{2} \le x \le l \end{cases}$ (8 M) BTL5 Answer : Page2.153-DR.A.SINGARAVELU • $b_n = \frac{4l}{n^2 \pi^2} \sin \frac{n\pi}{2} (7 \text{ M})$ • $f(x) = \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} \sin \frac{n\pi x}{l} (1 \text{ M})$ 10 Obtain the half range sine series of the function $f(x) = lx - x^2$ in $0 \le x \le l$. (8 M) BTL5 Answer : Page2.157-DR.A.SINGARAVELU • $b_n = \begin{cases} \frac{8l^2}{n^3 \pi^3} & \text{If } n \text{ is Odd} \\ 0 & \text{Otherwise} \end{cases}$ (7 M) • $f(x) = \frac{8l^2}{\pi^3} \left[\frac{\sin(\pi x/l)}{1^3} + \frac{\sin(3\pi x/l)}{3^3} + \frac{\sin(5\pi x/l)}{5^3} + \dots \right] (1 \text{ M})$ 11 series for $f(x) = 1 + x + x^2$ in $(-\pi, \pi)$. Obtain Fourier the Deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$. BTL5 (8 M) Answer : Page 2.44-DR.A.SINGARAVELU For f(x)For $f_1(x)$ $a_0 = 0; b_n = \frac{2}{n} [(-1)^{n+1}]; a_n = 0$ (6 M) For $f_2(x)$ $a_0 = 2 + \frac{2\pi^2}{3}; a_n = \frac{4}{n^2} [(-1)^n]; b_n = 0$ • $f(x) = 1 + \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2} + 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n^2}$ (1 M)

	• $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + $	$\dots = \frac{\pi^2}{6}$	(1 M)					
12								
	Find the Fourier seri	es of perio	odicity 2π	for $f(x)$ =	$=x^2$, in -	$\pi < x < \pi$.	Hence show	that
	$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$	$=\frac{\pi^{+}}{90}$. [I	M/J13,A/M	15,N/D15,N	// D16] BT1	L5 (8 M)		
	Answer :Page2.166-D	R.A.SINGA	ARAVELU					
	• $a_0 = \frac{2\pi^2}{3}; a_n = \left\{\frac{4(-1)^n}{n^2}\right\}; b_n = 0$ (6 M)							
	• $f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty}$	$\left\{\frac{4(-1)^n}{n^2}\right\} cc$	$\cos nx \left(2 \mathbf{M} \right)$					
	• $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$	= $\frac{\pi^4}{90}$	- (1 M)					
13								
	By using cosine series	for $f(x) =$	x in $0 < x$	$\pi < \pi$, show	that $\frac{\pi^4}{96}$	$=1+\frac{1}{3^4}+\frac{1}{4}$	$\frac{1}{5^4}$ + [N/I)14]
	(8 M) BTL5				20	5.		
	Answer :Page2.169-D	R.A.SINGA	ARAVELU					
	• $a_0 = l; a_n = \begin{cases} \frac{-4l}{n^2 \pi^2} & \text{if } n \text{ is } Odd \\ 0 & Otherwise \end{cases}$ (6 M)							
	• $f(x) = \frac{l}{2} + \sum_{n=1,3,2}^{\infty}$	$\left\{\frac{-4l}{n^2\pi^2}\right\} cc$	$\cos \frac{n\pi x}{l}$ (1 M)				
	• $\frac{\pi}{96} = 1 + \frac{1}{3^4} + \frac{1}{5}$	$\frac{1}{4}$ + (1 M	(f)					
14		•						
	Compute the first three	e harmoni	cs of the fo	urier series	of f(x) giv	en by the	following tab	le:
	x 0	$\frac{\pi}{2}$	$\frac{2\pi}{2}$	π	$\frac{4\pi}{2}$	$\frac{5\pi}{2}$	2π	
	f(x) 1	3	3	17	3 15	3	1.0	-
		<u>г.</u> ГL5(8 М)	1.7	1./	1.3	1.4	1.0]
	(MAY/JUNE 2014)	(
	Answer : Page 2.182-J	DR.A.SING	ARAVEL					
	• $a_0 = 2.9; a_1 = -0$	$a_2 = -$	$-0.10; a_3 = 0$.033 (6 M)				
	$b_1 = 0.173; b_2 =$	$-0.058; b_3 =$	=0	·		0.00		
	• $f(x) = 1.45 - 0.$	$37\cos \theta$	$17 \sin x - 0.1$	$0\cos 2x - 0.$	$06\sin 2x +$	$0.03\cos 3x$	κ+	
	(2 M)							

15									
	Compute t	he first two	harmonics	s of the fou	rier series o	of f(x) given	by the foll	lowing table	:
	X	0	T	$\frac{T}{}$	\underline{T}	$\underline{2T}$	5T	T	
		1.00	6	3	2	3	6	1.00	-
	f(x)	1.98	1.3	1.06	1.3	-0.88	-0.5	1.98	
	BTL5(8 M) (MAY/IUNE 2014)								
	Answer : P	age 2.182-l	DR.A.SING	ARAVEL	U				
	$a_0 =$	$=1.42; a_1=0$	$.33; a_2 = 0.9$	³ ; (6 M)					
	$b_1 =$	$1.08; b_2 = -$	0.04;	$(0 \mathbf{W} \mathbf{I})$					
	f(x	x = 0.71 + 0.00	$33\cos\theta + 1$	$.08\sin\theta + 0$	$.93\cos 2\theta - \theta$	$0.04\sin 2\theta +$			
	•	$a_{\pi} = 2\pi$	x				(2 M)		
	Whe	$ere \theta =$	_						
							TATIONS		
	UNII-III Classificati	APPLICA	Method of	PARTIAL Separation	Of Variable	TIAL EQU	$\frac{\text{JAHONS}}{\text{Of One Div}}$	montional W	Vava
	Equations-0	One Diment	ional Heat l	Equations-S	teaty State S	Solution Of	Two Dime	ntional Equa	ation
	Of Heat Co	onduction		1				1	
		PART	[*A						
	Write down	n all possibl	e solutions	of one dim	ensional wa	ave equatio	n.		
	[N/D09,M/J	[14,N/D14]	BTL2	patpat					
1	(i) $y(x,t) = (c_1 e^{px} + c_2 e^{-px})(c_3 e^{pat} + c_4 e^{-pat})$								
	(ii) $y(x, t) = (c_5 \cos px + c_6 \sin px)(c_7 \cos pat + c8 \sin pat)$								
	(iii) $y(x)$	$(t) = (c_9 x + c_9 x)$	$(c_{10})(c_{11}t+c_{12})$	2)					
	Classify the	PDE $4u_{xx}$	$= u_t \cdot BTL2$						
	Given $4u_{xx} - u_t = 0$.								
Z	Here $A = 4, B = 0, C = 0$ then $B^2 - 4AC = 0$								
	Therefore the given PDE is <i>parabolic</i> .								
	Classify the	PDE $x^2 u_x$	$+2xyu_{xy}$ +	$(1+y^2)u_{yy}$	$-2u_x = 0$. E	BTL2			
	Given $r^2 \mu + 2r \nu \mu + (1 + \nu^2) \mu - 2\mu = 0$								
3	$\begin{array}{c} \text{Given } u u_{xx} + 2\lambda u_{xy} + (1 + y) u_{yy} - 2u_x = 0 \\ \text{II} = -\frac{1}{2} - \frac{1}{2} $								
	Here $A = x$	β , $B = 2xy$, the given D	C = 1 + y u DE is <i>Ellin</i> i	then $B = 4A$	AC = -4x <	0			
	Clossify the	DDE $r^2 \mu$	12 is Empl	$\frac{1}{(1+v^2)u}$	2u = 0				
	Classify the		$+2xyu_{xy}$ +	$(1+y)u_{yy}$	$-2u_x - 0 \cdot \mathbf{r}$	DIL2			
4	Given $x^2 u_{xx} + 2xy u_{xy} + (1 + y^2) u_{yy} - 2u_x = 0$								
	Here $A = x^2$, $B = 2xy$, $C = 1 + y^2$ then $B^2 - 4AC = -4x^2 < 0$								
	Therefore the given PDE is <i>Elliptic</i> .								
5	What is the	basic diffe	rence betw	een the sol	utions of on	e dimensio	nal wave e	quation and	1
	one dimens	ional heat e	equation? []	M/J12] BT	L2				

REG	GULATION :2017 ACADEMIC YEAR : 2019-2020
	Solution of the one dimensional wave equation is of periodic in nature. But Solution of the one dimensional heat equation is not of periodic in nature.
	Classify the PDE $u_{xx} + 2u_{xy} + u_{yy} = e^{(2x+3y)}$. BTL2
6	Here $A = 1, B = 2, C = 1$
	$B^2 - 4AC = 0$
	Then the given PDE is <i>parabolic</i> . In the wave equation $\mu_{i} = c^{2}\mu_{i}$ what does c^{2} stand for 2 [M/I13] PTI 5 /
7	In the wave equation $u_{tt} = c u_{xx}$, what does c stand for: [W/J13] B1L3 2 T/ Tension/
	c = 1/m = relation/mass per unit length.
8	What are the basic assumption in 2-d heat equation (or) Laplace equation? BTL5 When the heat flow is along curves instead of straight lines the curves lying in parallel planes the
0	flow is called two dimensional.
	State any two laws which are assumed to derive one dimensional heat equation. [M/J14] BTL1
9	(i) The sides of the bar are insulated so that the loss or gain of heat from the sides by
	(ii) The same amount of heat is applied at all points of the face
	Classify the PDE $u_{xx} + xu_{yy} = 0$. BTL2
	Here $A = 1$, $B = 0$, $C = x$ therefore $B^2 - 4AC = -4x$
10	(i) If $x = 0$ then the given PDE is <i>Parabolic</i>
	(ii) If $x < 0$ then the given PDE is <i>Elliptic</i>
	(iii) If $x > 0$ then the given PDE is <i>Hyperbolic</i>
11	If the temperature will not change when time varies is called steady state temperature
	distribution.
12	In one dimensional heat equation $u_t = \alpha^2 u_{xx}$. What does α^2 stands for? [M/J13] BTL5
	α^2 = thermal diffusivity.
	polar form. [M/J12]. BTL5
	$\partial^2 u \partial^2 u$
	The Cartesian equation of two dimensional heat flow is $\frac{1}{\partial x^2} + \frac{1}{\partial y^2} = 0$.
13	$2 \partial^2 u \partial^2 u$
	The polar form of two dimensional heat flow is $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial^2 u}{\partial r} + \frac{\partial^2 u}{\partial r^2} = 0$.
	Write down the governing equation of two dimensional steady state heat conduction. BTL5
14	$\partial^2 u \partial^2 u$
	$\frac{\partial^2 x^2}{\partial x^2} + \frac{\partial^2 y^2}{\partial y^2} = 0$ is the governing equation of two dimensional steady state heat conduction.

REGULATION :2017 ACADEMIC YEAR: 2019-2020 $(ii) u(x,t) = (A_2 \cos \lambda x + B_2 \sin \lambda x) e^{-\alpha^2 \lambda^2 t}$ $(iii) u(x,t) = A_3 x + B_3.$ State Fourier law of heat conduction. BTL5 he rate at which heat flows through any area is proportional to the area 18 and to the temperature gradient normal to the area. This constant of proportionality is known as the thermal conductivity (k) of the material. It is known as Fourier law of heat conduction. State any two laws which are assumed to derive one dimensional heat equation. [M/J14] BTL5 e laws which are assumed to derive one dimensional heat equation are Heat flows from a higher to lower temperature. (i) The amount of heat required to produce a given temperature change in a body is (ii) proportional to the mass of the body and to the temperature change. This constant of 19 proportionality is known as the specific heat (c) of the conducting material. The rate at which heat flows through any area is proportional to the area and to the (iii) temperature gradient normal to the area. This constant of proportionality is known as the thermal conductivity (k) of the material. How many conditions are required to solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$. BTL5 Three conditions are required to solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ 20 Write the partial differential equation governing one dimensional heat conduction. BTL5 he partial differential equation governing one dimensional heat conduction is given by $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$. 21 A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $y(x,0) = y_0 \sin^3 \left(\frac{\pi x}{r}\right)$. If it is released from rest in this position, write the undary conditions. [A/M10]. BTL 5 22 The boundary conditions are (*i*) y(0,t) = 0(*ii*) y(l,t) = 0(iii) $\frac{\partial y}{\partial t}(x, 0) = 0$

ACADEMIC YEAR: 2019-2020

	(a) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$
	(b) $\frac{\partial^2 u}{\partial x \partial y} = \left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial u}{\partial y}\right) + x y.$
	Given $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$
	Here $A = 1$, $B = 0$, $C = -1$
	$B^2 - 4AC = 0 - 4(1)(-1) = 4 > 0$
	Therefore, the given pde is hyperbolic.
	(b) $\frac{\partial^2 u}{\partial x \partial y} = \left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial u}{\partial y}\right) + x y$
	Here $A = 0$, $B = 1$, $C = 0$
	$B^2 - 4AC = (1)^2 - 4(0)(0) = 1 > 0$
-	Therefore, the given pde is hyperbolic.
	Part*B
1	
	A string is stretched and fastened to two points <i>l</i> apart. Motion is started by displacing
	the string into the form $y = k (lx - x^2)$ from which it is released at time $t = 0$. Find
	the displacement of any point of the string at a distance x from one end at any time t. (16 M) BTL 5
	Answer : Page 3.20-DR.A.SINGARAVELU
	$(i) y(0,t) = 0 \forall t > 0$
	$(ii) y(l,t) = 0 \forall t > 0$
	• $(iii) \frac{\partial y}{\partial x}(x,0) = 0 \forall t > 0$ (2 M)
	∂t
	$(iv)y(x,0) = k(lx - x^2)$
	The Most general Solution is
	• $\mathbf{y}(\mathbf{x},t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l} (8 \mathbf{M})$
	• $y(x,t) = \frac{8kl^2}{\pi^3} \sum_{n=1,3,5}^{\infty} \frac{1}{n^3} \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$ (6 M)
2	
	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position

KEU	JULATION :2017	ACADEMIC YEAR : 2019-2020				
	$(i) y(0,t) = 0 \forall t > 0$					
	$(ii) y(l,t) = 0 \forall t > 0$					
	$(iii)\frac{\partial y}{\partial t}(x,0) = 0 \forall t > 0$					
	• $\left(\frac{3hx}{l} for \left(0, \frac{l}{3}\right)\right)$	(2 M)				
	$(lv)y(x,0) = \left\{ \frac{3h(l-x)}{2l} for \left(\frac{l}{3}, l\right) \right\}$					
	The Most general Solution is					
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l} (8 \mathbf{M})$					
	• $y(x,t) = \frac{9h}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{3} \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$ (6 M)					
4						
	A tightly stretched string with fixed end points $x = 0$	and $x = l$ is initially at rest in its				
	equilibrium position It is set vibrating by giving each point a velocity $\lambda x(l-x)$, find the					
	displacement $y(x,t)$ at any distance x and at any time t. (16 M) BTL5					
	Answer : Page 3.42-DR.A.SINGARAVELU					
	$(i)y(0,t) = 0 \forall t > 0$ $(i)y(0,t) = 0 \forall t > 0$					
	$(ll)y(l,t) = 0 \forall t > 0 $					
	$(iii)\frac{\partial y}{\partial t}(x,0) = \lambda x (l-x) $ (2 NI)					
	(iv) y(x, 0) = 0					
	The Most general Solution is					
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l} (8 \text{ M})$					
	• $y(x,t) = \frac{8\lambda l^3}{a\pi^4} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^4} \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l} (6 \mathbf{M})$					
5						
	If a string of length <i>l</i> is initially at rest in its equilibrium p	position and each of its points is				
	given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = v_0 \sin^3 \frac{\pi x}{l}, 0 < x < l$. Determine	e the displacement function				
	y(x,t). (16 M) BTL5					
	Answer : Page3.46-DR.A.SINGARAVELU					

string are given initial velocities $v = \begin{cases} \frac{cx}{l} in 0 < x < l \\ \frac{c}{l} (2l-x) in l < x < 2l \end{cases}$, where x being the distance

from an end point. Find the displacement of the string at any time. (16 M) BTL5 Answer : Page 3.44-DR.A.SINGARAVELU

$$(i) y(0,t) = 0 \quad \forall t > 0$$

$$(ii) y(l,t) = 0 \quad \forall t > 0$$

$$(iii) \frac{\partial y}{\partial t}(x,0) = \begin{cases} \frac{cx}{l} & in & 0 < x < l \\ \frac{c}{l}(2l-x) & in & l < x < 2l \end{cases}$$

$$(iv) y(x,0) = 0$$

The Most general Solution is

$$y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l} (\mathbf{8} \mathbf{M})$$

$$y(x,t) = \frac{8c}{\pi^2 a} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} \sin \frac{(2n-1)\pi x}{2l} \sin \frac{(2n-1)\pi at}{2l}$$
(6 M)

7

A rod of length *l* has its ends A and B kept at 0°C and 120°C until steady state condition prevail. If the temperature at B is suddenly reduced to 0°C and kept so while that of A is maintained, find the temperature u(x,t) at a distance x from A at time t. (16 M) BTL5 Answer : Page : 3.71-DR.A.SINGARAVELU

	$(i) \mathbf{u}(0,t) = 0 \forall t \ge 0$
	• $(ii) u(l,t) = 0 \forall t \ge 0$ (2 M)
	$(33)_{120x}$ 120x
	$(u)u(x,0) = \frac{l}{l}$
	The Most general Solution is
	• $\alpha = \frac{c^2 n^2 \pi^2 t}{r^2 m^2 t}$ (8 M)
	$\mathbf{u}(x,t) = \sum b_n \sin \frac{n\pi x}{t} e^{-t^2}$
	$n=1$ <i>l</i> $a^{2}n^{2}-2t$
	• $u(x,t) = \frac{240}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{2} e^{\frac{-c(n+1)^{n+1}}{2}} $ (6 M)
	$\pi \prod_{n=1}^{n} n \prod_{l=1}^{n} n^{l}$
8	
	A rod, 30 cm long has its ends A and B kept at 20°C and 80°C respectively, until steady
	state conditions prevail. The temperature at each end is then suddenly reduced to 0C and
	kept so. Find the resulting temperature function $u(x, t)$ taking $x = 0$ at A. (16 M)
	BILS
	Answer : Page 3.08-DR.A.SINGARAVELU
	$(i) u(0, t) = 0 \forall t \ge 0$
	$(i) u(0,i) = 0 \forall i \ge 0 $ $(2 M)$
	• $(ll) u(30, l) = 0 \forall l \ge 0$ (2.14)
	(uu)u(x,0) = 2x + 20
	The Most general Solution is
	• $n(x,t) = \sum_{n=1}^{\infty} h_n \sin n\pi x_n - \frac{c^2 n^2 \pi^2 t}{900}$ (8 M)
	$u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{1}{30} e^{-x/3}$
	$40^{-\infty} \left[1 - 4(-1)^n \right] n\pi r = \frac{-c^2 n^2 \pi^2 t}{r^2}$
	• $u(x,t) = \frac{40}{\pi} \sum_{n=1}^{\infty} \sin \frac{n\pi x}{30} e^{-900}$ (6 M)
0	$\mathcal{H}_{n=1}$ $\mathcal{H}_{n=1}$ \mathcal{S}_{0}
9	A model has 20 and has write in sub-tail of day, has its and a A and D hard at 200 C and 200 C
	A metal bar 20 cm long with insulated sides, has its ends A and B kept at 30°C and 80°C respectively until steady state conditions provail. The temperature at A is then suddenly
	raised to 40° C and at the same instant B is lowered to 60° C. Find the subsequent
	temperature at any point at the bar at any time. (16 M) BTL5
	Answer : Page 3.76-DR.A.SINGARAVELU
	$(i) \mathbf{u}(0, t) = 0 \forall t \ge 0$
	$(ii) u(20, t) = 0 \forall t \ge 0$
	• $(iii)u_{x}(x,0) = x + 40$ (2 M)
	3r
	and $u_T(x,0) = \frac{3x}{2} - 10$
	The Most general Solution is
	$c^2 n^2 \pi^2 t$ (9 M)
	$u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2\pi} e^{-\frac{\pi n\pi x}{400}}$ (6 141)
	$\sum_{n=1}^{n} \sum_{n=1}^{n} 20$

	• $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,\dots}^{\infty} \frac{\left[\sin\frac{n\pi}{2}\right]}{n^2} \sin\frac{n\pi x}{10} e^{\frac{-n\pi y}{10}} (6 \text{ M})$				
12					
	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially displaced to the				
	form $k \sin\left(\frac{3\pi x}{l}\right) \cos\left(\frac{2\pi x}{l}\right)$ and then released. Find the displacement of the string at				
	any distance x from one end at any time t. [M/J16] (16 M) BTL5 Answer : Page 3.40-DR.A.SINGARAVELU $(i) y(0, t) = 0 \forall t > 0$				
	$(ii) y(l,t) = 0 \forall t > 0$				
	• $(iii)\frac{\partial y}{\partial t}(x,0) = 0 \forall t > 0$ (2 M)				
	$(iv)y(x,0) = k \sin\left(\frac{l}{l}\right) \cos\left(\frac{l}{l}\right)$ The Most general Solution is				
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l} (8 \mathbf{M})$				
	• $y(x,t) = \frac{k}{2} \left[\sin \frac{\pi x}{l} \cos \frac{\pi a t}{l} + \sin \frac{5\pi x}{l} \cos \frac{5\pi a t}{l} \right]$ (6 M)				
13					
	A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially at rest in its acquilibrium position. If it is not withouting giving each point a initial velocity $a_{1}(t_{1}, t_{2})$ find				
	equilibrium position. If it is set vibrating giving each point a initial velocity $3x(l-x)$, find the displacement (16 M) BTI 5				
	Answer : Page 3.54-DR.A.SINGARAVELU				
	$(i) y(0,t) = 0 \forall t > 0$				
	$(ii) y(l,t) = 0 \forall t > 0 $				
	• $(iii)\frac{\partial y}{\partial t}(x,0) = 3x(l-x)$ (2 M)				
	(iv) y(x, 0) = 0 The Most expended Solution is				
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l} (8 \mathbf{M})$				
	• $y(x,t) = \frac{24l^3}{\pi^4 a} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} \sin \frac{(2n-1)\pi x}{l} \sin \frac{(2n-1)\pi at}{l}$ (6 M)				
14					
	Solve the problem of heat conduction in a rod given that the temperature function $u(x,t)$ is				

REG	EGULATION :2017	ACADEMIC YEAR : 2019-2020				
	$u(x, y) = \frac{8a^2b}{\pi^3} \sum_{n=1,3,5,}^{\infty} \frac{1}{n^3 \sinh n\pi} \sin \frac{n\pi x}{a} \sinh \frac{n\pi y}{a} (6 \text{ M})$					
	UNIT-IV FOURIER TRANSFORM					
	State of Fourier Integral Theorem-Fourier Transform Pair-Sine and Cosine Transforms- Properties-Transform of Simple Functions-Convolution Theorem-Parsevals Identity					
	PART*A					
	State the Fourier integral theorem. [M/J14,A/M15,M If $f(x)$ is piecewise continuous , has piecewise contin	J/J16]BTL1 uous derivatives in every finite interval				
1	in $(-\infty,\infty)$ and absolutely integrable in $(-\infty,\infty)$, then equivalently $f(x) = \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} f(t) \cos s(x-t) dt ds$.	$f(x) = \frac{1}{2\pi} \int_{-\infty} \int_{-\infty} f(t) e^{is(x-t)} dt ds \text{ or}$				
	$\pi \int_{0-\infty}^{1} \int_{0-\infty}^{1} f(x) = 0$					
	Find the Fourier transform pair. [N/D10 , N/D11], B	TL1				
	The Fourier transform pair is					
2	$F(s) = F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$	and				
	$f(x) = F^{-1}[F(s)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s)e^{-isx} ds$					
	Define self reciprocal with respect to Fourier transfo	rm. [N/D13] BTL1				
3	If $f(s)$ is the Fourier transform of $f(x)$, then $f(x)$ is stransform.	aid to be self reciprocal under Fourier				
	Prove that Fourier transform is linear. [N/D15] BTL We have to prove that $F[a f(x)+b g(x)] = a F(f(x))+b$	p F(g(x))				
	By definition, we have $F[a f(x)+b g(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (dx) dx$	$af(x)+bg(x)e^{isx}dx$				
4	$F[a f(x) + b g(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} a f(x) e^{isx} dx + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} b^{isx} dx + $	$g(x)e^{isx}dx$				
	$F[a f(x) + b g(x)] = a \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx + b $	$g(x)e^{isx}dx$				
	F[a f(x) + b g(x)] = a F(f(x)) + b F(g(x)).					
5	Find the Fourier transform of $f(x) = \begin{cases} e^{ikx}, & a < x < b \\ 0, & x < a \end{cases}$	• [N/D09] BTL1				
5	$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$					

	$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b} e^{ikx} e^{isx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b} e^{i(s+k)x} dx$					
	$\begin{bmatrix} \sqrt{2\pi} & \sqrt{2\pi} & a \\ 1 & \begin{bmatrix} e^{i(s+k)x} \end{bmatrix} & 1 & \begin{bmatrix} e^{i(s+k)b} & -e^{i(s+k)a} \end{bmatrix}$					
	$= \frac{1}{\sqrt{2\pi}} \left[\frac{i(s+k)}{i(s+k)} \right]^{-} \frac{1}{\sqrt{2\pi}} \left[\frac{1}{i(s+k)} \right]^{-}$					
	If $F(s)$ is the Fourier transform of $f(x)$, write the formula for the Fourier transform of					
	$f(x)\cos ax$ in terms of F.[OR] State and prove modulation theorem on Fourier transforms [N/D14] BTL 1					
	By definition, $F[f(x)] = \frac{1}{\int_{-\infty}^{\infty} f(x)e^{isx} dx$					
	$\int \sqrt{2\pi} \int \int (x) dx = -\infty$					
	$F[f(x)\cos ax] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\cos ax e^{-isx} dx$					
6	$F[f(x)\cos ax] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \left(\frac{e^{iax} + e^{-iax}}{2}\right) e^{isx} dx$					
	$=\frac{1}{2}\left[\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{iax}e^{isx}dx+\int_{-\infty}^{\infty}f(x)e^{-iax}e^{isx}dx\right]$					
	$=\frac{1}{2}\left[\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{i(s+a)x} dx+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{i(s-a)} dx\right]$					
	$=\frac{1}{2}[F(s+a)+F(s-a)]$					
	(ie) $F[f(x)\cos ax] = \frac{1}{2}[F(s+a)+F(s-a)].$					
	State the shifting property on Fourier transform. BTL1 =() in					
7	If $F(s)$ is the Fourier transform of $f(x)$, then $F(s)e^{ias}$ will be the Fourier transform of					
	$f(x-a).$ (ie) $F[f(x-a)] = e^{ias} F(s).$					
	If $F(s)$ is the Fourier transform of $f(x)$, obtain the Fourier transform of					
8	f(x-2) + f(x+2).[M/J16]BTL1					
	F[f(x-2)+f(x+2)] = F[f(x-2)] + F[f(x+2)] $= -i2s F(x) - F(x) -$					
	$= e^{-2s} F(s) + e^{2s} F(s) = F(s)[e^{2s} + e^{-2s}] = F(s)(2\cos h2s) = 2F(s)\cos h2s.$ What is the Fourier transform of $c(-s)$ if the Fourier transform of $c(-s)$ is $r(-s)$.					
	[A/M 10, M/J 12, N/D13].BTL1					
Q	By definition, $F[f(x)] = \frac{1}{\sqrt{1-x}} \int_{0}^{\infty} f(x)e^{isx} dx$					
)	$\sqrt{2\pi} \int_{-\infty}^{3\pi} \sqrt{2\pi} \int_{2$					
	$F[f(x-a)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-a)e^{-isx} dx$					

REGULATION 12017
If
$$F\{f(x)\} = F(s)$$
, then find $F\{e^{ixx} f(x)\}$. [*NDD14*]BTL1
By definition, $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)e^{-ixx} dx$
 $F\{e^{ixx} f(x)\} = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)e^{-ixx} dx$
 $F[e^{ixx} f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x)e^{-ixx} dx$
Write down the Fourier cosine transform pair. BTL1
13 Fourier cosine transform pair is
 $F_{c}[f(x)] = F_{c}(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} f(x)\cos sx dx$ and $f(x) = F_{c}^{-1}(f(s)) = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} F_{c}(s)\cos sx ds$
If $F_{c}(s)$ is the Fourier cosine transform of $f(x)$, prove that Fourier cosine transform of
 $f(ax)$ is $\frac{1}{a}F_{c}(\frac{s}{a})$. [A/M11].BTL1
 $F_{c}[f(x)] = F_{c}(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} f(ax)\cos sx dx$
put $ax = t$ when $x = 0, t = 0$
 $x = \frac{t}{a}$ when $x = \infty, t = \infty$
14 $dx = \frac{dt}{a}$
 $= \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} f(t)\cos(\frac{s}{a})\frac{dt}{a} = \frac{1}{a}\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} f(t)\cos(\frac{s}{a})t dt$
 $= \frac{1}{a}\sqrt{\frac{2}{\pi}} f(x)\cos(\frac{s}{a})\frac{dt}{a}$
(iv) $F_{c}[f(ax)] = \frac{1}{a}F_{c}(\frac{s}{a})$
Given that $F_{s}\{f(x)\} = \frac{s}{s^{2} + a^{2}}$ for $a > 0$, hence find $F_{c}\{xf(x)\}$. [M/J16] BTL1
15 $F_{c}\{xf(x)\} = \frac{d}{ds}F_{s}(f(x)) = \frac{d}{ds}(\frac{s}{s^{2} + a^{2}})^{2}$
 $= \frac{(s^{2} + a^{2})(1) - s(2s)}{(s^{2} + a^{2})^{2}} = \frac{s^{2} + a^{2} - 2s^{2}}{(s^{2} + a^{2})^{2}}$.

$F_{c}\left(e^{-ax}\right) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \cos sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^{2} + s^{2}} (-a \cos sx + s \sin sx)\right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{a^{2} + s^{2}} (-a + 0)\right] = \sqrt{\frac{2}{\pi}} \frac{a}{s^{2} + a^{2}}.$ Find the Fourier sine transform of $\frac{1}{x}$. [N/D09,M/J14,A/MJ5,N/D16]. BTL1 $F_{s}\left[\frac{1}{x}\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin .sx dx$ put $sx = \theta$ when $x = 0, \theta = 0$ $x = \frac{\theta}{s}$ when $x = \infty, \theta = \infty$ $17 \qquad dx = \frac{d\theta}{s}$ $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{(\frac{\theta}{s})} \sin \theta d\theta = \sqrt{\frac{2}{\pi}} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}}$ Find the Fourier sine transform of e^{-ax} , $a > 0$. [N/D10, M/J12]. BTL1 $18 \qquad F_{c}\left(e^{-ax}\right) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^{2} + s^{2}} (-a \sin sx - s \cos sx)\right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{s^{2} + s^{2}} (0 - s)\right] = \sqrt{\frac{2}{\pi}} \frac{x}{s^{2} + a^{2}}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 $19 \qquad F_{s}\left(e^{-3s}\right) = \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}} (0 - s)\right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$ $20 \qquad Find the Fourier sine transform of f(x) = e^{-\frac{x}{2}}. [A/M15] BTL1 F_{s}\left[f(x)\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$		Find the Fourier cosine transform of $f(x) = e^{-ax}$, $a > 0.[N/D15]$ BTL1		
$= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{a^2 + s^2} (-a + 0) \right] = \sqrt{\frac{2}{\pi}} \frac{a}{s^2 + a^2}.$ Find the Fourier sine transform of $\frac{1}{x}$. [N/D09,M/J14,A/M15,N/D16]. BTL1 $F_s \left[\frac{1}{x} \right] = \sqrt{\frac{2}{\pi}} \int_0^{\infty} \frac{1}{s} \sin sx dx$ put $sx = \theta$ when $x = 0, \theta = 0$ $x = \frac{\theta}{s}$ when $x = \infty, \theta = \infty$ 17 $dx = \frac{d\theta}{s}$ $= \sqrt{\frac{2}{\pi}} \int_0^{\infty} \frac{1}{(\frac{\theta}{s})} \sin \theta \frac{d\theta}{s} = \sqrt{\frac{2}{\pi}} \int_0^{\infty} \frac{s \sin \theta}{s} d\theta$ $= \sqrt{\frac{2}{\pi}} \int_0^{\infty} \frac{\sin \theta}{\theta} d\theta = \sqrt{\frac{2}{\pi}} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}} \int_0^{\infty}$ Find the Fourier sine transform of e^{-ax} , $a > 0$. [N/D10, M/J12]. BTL1 18 $F_s(e^{-ax}) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} e^{-ax} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^2 + s^2} (-a \sin sx - s \cos sx) \right]_0^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{e^{\pi} + s^2} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 19 $f_s(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^2 + s^2} (-3 \sin sx - s \cos sx) \right]_0^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^2} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^2 + 9}.$ Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_s[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(x) \sin sx dx$	16	$F_C(e^{-ax}) = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-ax} \cos sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^2 + s^2} (-a\cos sx + s\sin sx) \right]_0^\infty$		
Find the Fourier sine transform of $\frac{1}{x}$. [N/D09,M/J14,A/M15,N/D16]. B7L1 $F_{s}\left[\frac{1}{x}\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin xx dx$ put $xx = \theta$ when $x = 0, \theta = 0$ $x = \frac{\theta}{s}$ when $x = \infty, \theta = \infty$ $dx = \frac{d\theta}{s}$ $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{(\frac{\theta}{s})} \sin \theta \frac{d\theta}{s} = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{s \sin \theta}{s} d\theta$ $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \theta}{\theta} d\theta = \sqrt{\frac{2}{\pi}} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}}$ Find the Fourier sine transform of $e^{-\alpha x}$, $\alpha > 0$. [N/D10, M/J12]. BTL1 $F_{s}\left(e^{-\alpha x}\right) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\alpha x} \sin xx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-\alpha x}}{(-\alpha)^{2} + s^{2}}(-\alpha \sin sx - s \cos sx)\right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{x^{2} + s^{2}}(0 - s)\right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + a^{2}}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 $f_{s}\left(e^{-3x}\right) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}}(-3 \sin sx - s \cos sx)\right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}}(0 - s)\right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + a^{2}}.$ Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_{s}\left[f(x)\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$		$=\sqrt{\frac{2}{\pi}}\left[0-\frac{1}{a^2+s^2}(-a+0)\right]=\sqrt{\frac{2}{\pi}}\frac{a}{s^2+a^2}.$		
$F_{s}\left[\frac{1}{x}\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin xx dx$ $put \ sx = 0 \qquad \text{when } x = 0, \ \theta = 0$ $x = \frac{\theta}{s} \qquad \text{when } x = \infty, \ \theta = \infty$ $dx = \frac{d\theta}{s}$ $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{\left(\frac{\theta}{s}\right)} \sin \theta \ \frac{d\theta}{s} = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{s \sin \theta}{\theta} \ d\theta$ $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \theta}{\theta} \ d\theta = \sqrt{\frac{2}{\pi}} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}}$ Find the Fourier sine transform of e^{-ax} , $a > 0$. [N/D10, M/J12]. BTL1 $F_{s}\left(e^{-as}\right) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^{2} + s^{2}}(-a \sin sx - s \cos sx)\right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{a^{2} + s^{2}}(0 - s)\right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + a^{2}}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 $F_{s}\left(e^{-2s}\right) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}}(-3 \sin sx - s \cos sx)\right]_{0}^{\alpha}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}}(0 - s)\right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$ Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_{s}\left[f(x)\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$		Find the Fourier sine transform of $\frac{1}{r}$. [N/D09,M/J14,A/M15,N/D16]. BTL1		
$\int_{0}^{2} = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \frac{1}{\left(\frac{\theta}{s}\right)} \sin \theta \frac{d\theta}{s} = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \frac{s \sin \theta}{s - s} d\theta$ $= \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \frac{\sin \theta}{\theta} d\theta = \sqrt{\frac{2}{\pi}} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}}$ Find the Fourier sine transform of e^{-ax} , $a > 0$. [N/D10, M/J12]. BTL1 $F_{s}(e^{-ax}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} e^{-ax} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^{2} + s^{2}} (-a \sin sx - s \cos sx) \right]_{0}^{\pi}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{a^{4} + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + a^{2}}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 $F_{s}(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}} (-3 \sin sx - s \cos sx) \right]_{0}^{\pi}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$ Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$	17	$F_{s}\left[\frac{1}{x}\right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin sx dx$ put $sx = \theta$ when $x = 0, \theta = 0$ $x = \frac{\theta}{s}$ when $x = \infty, \theta = \infty$ $dx = \frac{d\theta}{s}$		
Find the Fourier sine transform of e^{-ax} , $a > 0$. [N/D10, M/J12]. BTL1 $F_{s}(e^{-ax}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^{2} + s^{2}} (-a \sin sx - s \cos sx) \right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{\pi^{2} + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + a^{2}}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 $F_{s}(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}} (-3 \sin sx - s \cos sx) \right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$ 20 Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$		$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{\left(\frac{\theta}{s}\right)} \sin \theta \frac{d\theta}{s} = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{s \sin \theta}{\theta - s} d\theta$ $= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \theta}{\theta} d\theta = \sqrt{\frac{2}{\pi}} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}}.$		
18 $F_{s}(e^{-ax}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^{2} + s^{2}} (-a \sin sx - s \cos sx) \right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{a^{2} + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + a^{2}}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 19 $F_{s}(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}} (-3 \sin sx - s \cos sx) \right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$ 20 Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$		Find the Fourier sine transform of e^{-ax} , $a>0$. [N/D10, M/J12]. BTL1		
$= \sqrt{\frac{2}{\pi}} \begin{bmatrix} 0 - \frac{1}{a^{x} + s^{2}} (0 - s) \end{bmatrix} = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + a^{2}}.$ Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 $F_{s}(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}} (-3\sin sx - s\cos sx) \right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$ Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x)\sin sx dx$	18	$F_{s}(e^{-ax}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{(-a)^{2} + s^{2}} \left(-a \sin sx - s \cos sx \right) \right]_{0}^{\infty}$		
19 Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1 $F_s(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^2 + s^2} (-3\sin sx - s\cos sx) \right]_0^\infty$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^2} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^2 + 9}.$ 20 Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_s[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x)\sin sx dx$		$= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{a^2 + s^2} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}.$		
19 $F_{s}(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}} (-3\sin sx - s\cos sx) \right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$ 20 Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x)\sin sx dx$		Find the Fourier sine transform of e^{-3x} . [M/J13]. BTL1		
20 Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$. [A/M15] BTL1 $F_s[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin s x d x$	19	$F_{s}(e^{-3x}) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-3x} \sin sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-3x}}{(-3)^{2} + s^{2}} (-3\sin sx - s\cos sx) \right]_{0}^{\infty}$ $= \sqrt{\frac{2}{\pi}} \left[0 - \frac{1}{9 + s^{2}} (0 - s) \right] = \sqrt{\frac{2}{\pi}} \frac{s}{s^{2} + 9}.$		
20 $F_{s}[f(x)] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x dx$		Find the Fourier sine transform of $f(x) = e^{-\frac{x}{2}}$ [A/M15] PTI 1		
	20	Find the Fourier sine transform of $f(x) = e^{-x}$. [A/W15] B1L1 $F_s[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin s x dx$		

DECULATION .2017

DECULATION .2017

$$\frac{4}{\left(i\right)\int_{0}^{\pi} \left(\frac{\sin x - x \cos x}{x^{2}}\right) dx \quad \text{and} \quad (i)\int_{0}^{\pi} \left(\frac{x \cos x - \sin x}{x^{2}}\right)^{2} dx. \text{ BTL1 (16 M)} \\ \text{Answer : Page : 4.40-DR.A.SINGARAVELU} \\ F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\pi} F(s)e^{-ist} ds \qquad (2 M) \\ \int_{-\infty}^{\pi} |F(s)|^{2} ds = \int_{-\infty}^{\pi} |f(x)|^{2} dx \\ F(s) = 2\sqrt{\frac{2}{\pi}} \left(\frac{\sin as - as \cos as}{s^{3}}\right) \\ (8 M) \\ f(x) = \frac{4}{\pi} \int_{0}^{\pi} \left(\frac{\sin as - as \cos as}{s^{3}}\right) \cos sx \, ds \\ \int_{0}^{\pi} \left(\frac{\sin x - x \cos x}{x^{3}}\right) dx = \frac{\pi}{4} \\ \int_{0}^{\pi} \left(\frac{\sin x - x \cos x}{x^{3}}\right) dx = \frac{\pi}{15} \\ \text{Find the Fourier transform of the function defined by } f(x) = \left\{\frac{1 - x^{2}; |x| < 1}{0; |x| \ge 1}. \text{ Hence} \right\} \\ \text{prove that } \int_{0}^{\pi} \left(\frac{\sin x - s \cos s}{x^{3}}\right) \cos \left(\frac{s}{2}\right) ds = \frac{3\pi}{16} \text{ and } \int_{0}^{\pi} \left\{\frac{\sin s - s \cos s}{s^{3}}\right\}^{2} ds = \frac{\pi}{15}. \\ \text{[AM11,N(D13,MJ16] BTL1 (16 M)]} \\ \text{Answer : Page : 4.42-DB:A.SINGARAVELU} \\ F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\pi} F(s)e^{-ist} ds \\ (2 M) \\ \int_{-\infty}^{\pi} |F(s)|^{2} ds = \int_{-\infty}^{\pi} |f(x)|^{2} dx \\ \text{Arcome is the function of the function is (2 M) } \\ \int_{-\infty}^{\pi} |F(s)|^{2} ds = \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is the function is (2 M)} \\ \text{Arcome is the function is (2 M)} \\ \text{Arcome is (2 M)} \\ \int_{-\infty}^{\pi} |F(s)|^{2} ds = \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \text{Arcome is (2 M)} \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} dx \\ \frac{\pi}{2\pi} \int_{-\infty}^{\pi} |f(s)|^{2} d$$

REC	GULATION :2017	ACADEMIC YEAR : 2019-2020
	If $F(f(x)) = \overline{F(s)}$ and $F(g(x)) = G(s)$ then	(2 M)
	F(f(x)*g(x)) = F(f(x))*F(g(x))	×/
	• $F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$ (2 M)	
	• For Proving $F(f(x) * g(x)) = F(f(x)) * F(g(x))$ (4	M)
13		
	Derive the Parseval's identity for Fourier transforms. [N	/D10 , M/J12]. BTL1(8 M)
	Answer : Page :4.26-DR.A.SINGARAVELU If $f(x)$ is a given function defined in $(-\infty, \infty)$ then	
	• $\int_{-\infty}^{\infty} F(s) ^2 ds = \int_{-\infty}^{\infty} f(x) ^2 dx$	(2 M)
	• $F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$ (2 M)	
	• For Proving $\int F(s) ^2 ds = \int f(x) ^2 dx$ (4 M)	
	$-\infty$ UNIT-V - Z-TRANSFORM AND DIFFERENCE EQUA	TIONS
	Z-Transform, Elementry Properties, Inverse Z-Transform usi	ng Partial Fraction and Residues
	Convolution Theorem, Formation of Difference equations, So	Sution of Difference Equations
Q.No	PART*A	
	Define Z-transform of the sequence $\{f(n)\}$. BTL1	
	Let $\{f(n)\}$ be a sequence defined for $n=0,\pm 1,\pm 2,\ldots$, then the two-sided Z-
	transform of the sequence $f(n)$ is defined as	
1	$Z{f(n)} = F[z] = \sum_{n=-\infty}^{\infty} f(n)z^{-n}$, where z is a complete	ex variable.
	If $\{f(n)\}\$ is a casual sequence, then the z-transform redu	ces to one-sided Z-transform and its
	definition is $Z{f(n)} = F[z] = \sum_{n=0}^{\infty} f(n)z^{-n}$.	
2	State the final value theorem in Z-transform.[$N/D15$]BTI	_1
2	If $Z[f(t)] = F[z]$, then $\lim_{t \to \infty} f(t) = \lim_{z \to 1} (z-1)F[z]$.	
	Find <i>Z</i> { <i>n</i> }.[M / J13 , <i>N</i> / <i>D14</i>]BTL1	
	$Z\{n\} = \sum_{n=1}^{\infty} n z^{-n} = \sum_{n=1}^{\infty} \frac{n}{n}$	
	$() \qquad $	
3	$= 0 + \frac{1}{z} + \frac{2}{z^2} + \frac{3}{z^3} + \dots$	

ACADEMIC YEAR: 2019-2020

REGULATION :2017
 ACADEMIC YEAR : 2019-2020

 Find the Z-transform of
$$\frac{1}{n+1}$$
 :[A/M15,N/D/5] BTL1

 $Z\left[\frac{1}{n+1}\right] = \sum_{n=0}^{\infty} \frac{1}{n+1} z^{-n} = \sum_{n=0}^{\infty} \frac{2}{n+1} = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}^{2} + \frac{1}{2}^{3} + \dots$

 8
 $= \frac{z}{z} \left[1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3}^{2} + \dots \right] = z \left[\frac{1}{z} + \frac{1}{z} + \frac{1}{z}^{2} + \frac{1}{3}^{2} + \dots \right]$

 9
 $z = \frac{1}{z} - \log\left(1 - \frac{1}{z}\right) = z \left[-\log\left(\frac{z-1}{z}\right)\right] = z \left[\log\left(\frac{z-1}{z}\right)^{-1}\right] = \log\left(\frac{z}{z-1}\right)^{-1}$

 9
 $\left\{\frac{a^{n}}{n!}\right\} = \sum_{n=0}^{\infty} \frac{a^{n}}{n!} z^{-n} = \sum_{n=0}^{\infty} \frac{a^{n}}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{a^{n}}{n!}$

 9
 $\left\{\frac{a^{n}}{n!}\right\} = \sum_{n=0}^{\infty} \frac{a^{n}}{n!} z^{-n} = \sum_{n=0}^{\infty} \frac{a^{n}}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{a^{n}}{n!}$

 10
 $\left\{\frac{1}{n!}\right\} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{1}{n!}$

 11
 $Z \left\{\frac{3^{n}}{n!}\right\} = \sum_{n=0}^{\infty} 3^{n} z^{-n} = \sum_{n=0}^{\infty} \frac{3^{n}}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{1}{n!}$

 11
 $Z \left\{\frac{3^{n}}{n!}\right\} = \sum_{n=0}^{\infty} 3^{n} z^{-n} = \sum_{n=0}^{\infty} \frac{3^{n}}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{1}{n!}$

 12
 $Z \left\{a^{n}\right\} = \sum_{n=0}^{\infty} 3^{n} z^{-n} = \sum_{n=0}^{\infty} \frac{3^{n}}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{1}{n!}$

ACADEMIC YEAR: 2019-2020

$$\begin{aligned} \text{et } X(z) &= \frac{z}{(z+1)^2} \\ \text{et } X(z) &= \frac{z}{(z+1)^2} = \frac{z^n}{(z+1)^2} \\ (z) z^{n-1} &= \frac{z}{(z+1)^2} = \frac{z^n}{(z+1)^2} \\ &= -1 \text{ is a pole of order } 2 \\ n) &= \sum R \text{ where } \sum R \text{ is the sum of residue of } X(z) z^{n-1} \\ &= s \left[X(z) z^{n-1} \right] \\ &= -n(-1)^n. \\ &= -n(-1)^n. \\ \text{If } w(n) \text{ is the convolution form of } Z-\text{transform. [MJ114,A/M15,A/M15,N/D10] BTL1} \\ &= 1 \\ \text{If } w(n) \text{ is the convolution of two sequences } x(n) \text{ and } y(n) \text{ then } \\ &= Z[w(n)] - W(z) = Z[x(n)]. Z[y(n)]. \\ \text{Form a difference equation by eliminating arbitrary constant from } u_x = A2^{n+1}. \\ &= (ND11,ND15], BTL1 \\ &= Given \quad u_x = A2^{n+1} \\ &= u_{n+1} = A2^{n+2}. \\ &= u_{n+1} = A2^{n+2}. \\ &= u_{n+1} = A2^{n+2}. \\ &= (1 + A2^n(1)) \\ \text{19} \quad u_{n+1} = A2^{n+2}. \\ &= (1 + A2^n(1)) \\ &= (1 + A2^n(2)) \\ &= \text{Eliminating } A \text{ from (1) and (2), we have } \\ &= \left| \frac{u_n - 2}{u_{n+1}} \right|_{n=1}^{n} 0 \Rightarrow 4u_n - 2u_n = 0 \Rightarrow u_{n+1} - 2u_n = 0. \\ &= \text{Form the difference equation generated by } y_n = a + b2^n, [A/M10]. BTL1 \\ &= (1 + A2^n(2)) \\ &= (1 + A2^{n+2}(2)) \\ &= (1 + A2^n(2) \\ &= (1 + A2^n(2)) \\ &= (1 + A2^n(2) \\ &= (1 + A2^n(2)) \\ &= (1 + A2^n(2) \\ &= (1 + A2^n(2)) \\ &= (1 + A2^n(2) \\ &= (1 + A2^n(2)) \\ &= (1 + A2^n(2) \\ &= (1 + A2^n(3) \\ &= (1 + A2^n(3)) \\ &= (1 + A2^n(3) \\ &= (1 + A2^n(3)) \\ &= (1 + A2^n(3) \\ &= (1 + A2^n(3)) \\ &= (1 + A2^n(3) \\ &=$$

REGULATION :2017 ACADEMIC YEAR: 2019-2020 y(n+1)-2y(n) = 0 given y(0) = 2. [N/D12] BTL1 Solve Given y(n+1) - 2y(n) = 0Taking Z-transform on both sides of the above equation, we have z[y(n+1)] - 2 Z[y(n)] = 0zY(z)-zy(0)-2Y(z)=0zY(z) - z(2) - 2Y(z) = 021 (z-2)Y(z) = 2z $Y(z) = \frac{2z}{z-2}$ implies $Z[y(n)] = \frac{2z}{z-2}$ $y(n) = 2Z^{-1} \left| \frac{z}{z-2} \right| = 2 \cdot 2^n = 2^{n+1}$. Define unit step sequence. Write its Z-transform. BTL1 The unit step sequence u(n) is defined as $u(n) = \begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{for } n < 0 \end{cases}$. Its Z-transform is given by 22 $Z[u(n)] = \frac{z}{z-1}.$ Find the Z-transform of n^2 . [M/J14] BTL1 $Z[n^{2}] = Z[n.n] = -z \frac{d}{dz} Z[n] = -z \frac{d}{dz} \left| \frac{z}{(z-1)^{2}} \right|$ $= -z \left[\frac{(z-1)^2 (1) - z \cdot 2(z-1)}{(z-1)^4} \right] = -z \left[\frac{(z-1)(z-1-2z)}{(z-1)^4} \right]$ 23 $= -z \left| \frac{-z-1}{(z-1)^3} \right| = \frac{z(z+1)}{(z-1)^3}.$ Prove that $Z[a^n f(n)] = \overline{f}\left(\frac{z}{a}\right)$. [N/D14] (OR) If Z(x(n)) = X(z), then show that $Z(a^n x(n)) = X\left(\frac{z}{a}\right)$. [A/M15] BTL1 24 By definition, $Z[a^n f(n)] = \sum_{n=0}^{\infty} a^n f(n) z^{-n} = \sum_{n=0}^{\infty} f(n) \frac{z^{-n}}{a^{-n}}$ $=\sum_{n=1}^{\infty}f(n)\left(\frac{z}{a}\right)^{-n}=\bar{f}\left(\frac{z}{a}\right).$ If $Z[f(n)] = \overline{f}(z)$, then prove that $Z[f(-n)] = \overline{f}\left(\frac{1}{z}\right)$. [N/D14] BTL1 25 $Z[f(-n)] = \sum_{n=0}^{\infty} f(-n)z^{-n} \quad put - n = u \Longrightarrow n = -u$ n=0, u=0 and $n=\infty$, $u=\infty$

ACADEMIC YEAR: 2019-2020

REGULATION :2017 ACADEMIC YEAR: 2019-2020 • $Z\left[e^{-t}t\right] = \frac{Tze^{T}}{\left(ze^{T}-1\right)^{2}}$ (6 M) 5 Find $Z^{-1}\left[\frac{z^3}{(z-1)^2(z-2)}\right]$ using partial fraction. (8 M)BTL1 Answer : Page : 5.68-DR.A.SINGARAVELU • $\frac{z^2}{(z-1)^2(z-2)} = \frac{A}{z-1} + \frac{B}{(z-1)^2} + \frac{C}{(z-2)}$ (2 M) • A = -3; B = -1; C = 4 (2 M) • $Z^{-1}\left[\frac{z^3}{(z-1)^2(z-2)}\right] = -3 - n + 2^{n+2}$ (4 M) 6 Find $Z^{-1}\left[\frac{z^2}{(z+2)(z^2+4)}\right]$ by the method of partial fractions. (8 M)BTL Answer : Page : 5.62-DR.A.SINGARAVELU • $\frac{z}{(z^2+4)(z+2)} = \frac{A}{z+2} + \frac{Bz+c}{(z^2+4)}$ (2 M) • $A = -\frac{1}{4}; B = \frac{1}{4}; C = \frac{1}{2}$ (2 M) • $Z^{-1}\left[\frac{z^2}{(z^2+4)(z+2)}\right] = -\frac{1}{4}(-2)^n + \frac{1}{4}2^n \cos\frac{n\pi}{2} + \frac{1}{4}2^n \sin\frac{n\pi}{2}$ (4 M) 7 Find the inverse Z-transform of $\frac{10z}{z^2-3z+2}$. [N/D09]. (8 M)BTL1 Answer : Page :5.70-DR.A.SINGARAVELU $\frac{1}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{(z-2)} \quad (2 \text{ M})$ A = -1; B = 1 (2 M) $\frac{10z}{(z-1)(z-2)} = 10(2^n - 1)$ (4 M) 8 Find the inverse Z-transform of $\frac{z^3 - 20z}{(z-2)^3(z-4)}$. [N/D09]. (8 M)BTL1 Answer : Page : 5.71-DR.A.SINGARAVELU $\frac{z^2 - 20}{(z-2)^3(z-4)} = \frac{A}{z-2} + \frac{B}{(z-2)^2} + \frac{C}{(z-2)^3} + \frac{D}{(z-4)}$ (2 M)

REGULATION :2017 ACADEMIC YEAR: 2019-2020 • $A = \frac{1}{2}; B = 2; C = 8; D = -\frac{1}{2}$ (2 M) • $Z^{-1}\left[\frac{z^3-20z}{(z-2)^3(z-4)}\right] = 2^n(\frac{1}{2}+n^2)-\frac{4^n}{2}$ (4 M) 9 Find the inverse Z-transform of $\frac{z^2+z}{(z-1)(z^2+1)}$, using partial fraction.[N/D14] (8 M) BTL1 Answer : Page : 5.65-DR.A.SINGARAVELU $\frac{z+1}{(z^2+1)(z-1)} = \frac{A}{z-1} + \frac{Bz+c}{(z^2+1)} \quad (2 \text{ M})$ • A = 1: B = -1: C = 0 (2 M) • $Z^{-1}\left[\frac{z^2+z}{(z^2+1)(z-1)}\right] = 1 - \cos\frac{n\pi}{2}$ (4 M) 10 Find the inverse Z-transform of $\frac{z(z+1)}{(z-1)^3}$ by residue method. [N/D10]. (8 M)BTL1 Answer : Page : 5.86-DR.A.SINGARAVELU • $\frac{\operatorname{Res} f(z)}{(2m-1)^{n}} = \frac{1}{2!} \lim_{z \to 1} \left[\frac{d^2}{dz^2} (z-1)^3 X(z) z^{n-1} \right]$ (2 M)• $Z^{-1}\left[\frac{z^2+z}{(z-1)^3}\right] = n^2$ (6 M) 11 Using residue method, find $Z^{-1} \left| \frac{z}{(z-1)(z-2)} \right|$. [A/M15,M/J16] (8 M)BTL1 Answer : Page :5.83-DR.A. SINGARAVELU $\begin{array}{c} \operatorname{Res} f(z) \\ @ z = 1 \ of \ order 1 \end{array} = \lim_{z \to 1} \left[(z - 1)X(z)z^{n-1} \right]$ $\operatorname{Res} f(z) \\ @ z = 2 \ of \ order 1 \end{bmatrix} = \operatorname{Lim}_{z \to 2} \left[(z - 2) X(z) z^{n-1} \right]$ (2 M) $\left| \frac{z}{(z-1)(z-2)} \right| = 2^n - 1$ (6 M) 12 Using convolution theorem Find $Z^{-1} \left| \frac{z^2}{(z+a)(z+b)} \right|$ [M/J13,M/J14,A/M15,N/D15,N/D16](8 M)BTL1 Answer : Page : 5.79-DR.A.SINGARAVELU

$$\begin{bmatrix} & \cdot & z^{-1} \left[\frac{z^{2}}{(z+a)(z+b)} \right] = Z^{-1} \left(\frac{z}{z+a} \right) Z^{-4} \left(\frac{z}{z+b} \right) \quad (2 \text{ M}) \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z+a)(z+b)} \right] = (-a)^{n} * (-b)^{n} \quad (2 \text{ M}) \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z-a)(z-b)} \right] = \frac{(-1)^{n}}{b-a} (b^{n+1}-a^{n+1}) \quad (4 \text{ M}) \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} \text{13} & \\ \text{Using convolution theorem evaluate inverse Z-transform of } \left[\frac{z^{2}}{(z-1)(z-3)} \right] \\ & \text{Answer : Page : 5.75-DR.A.SINGARAVELU} \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z-1)(z-3)} \right] = Z^{-1} \left(\frac{z}{z-1} \right) Z^{-1} \left(\frac{z}{z-3} \right) \quad (2 \text{ M}) \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z-1)(z-3)} \right] = 1^{n} + 3^{n} \quad (2 \text{ M}) \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z-1)(z-3)} \right] = \frac{1}{2} (3^{n+1}-1) \quad (4 \text{ M}) \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} 14 \\ \text{Using convolution theorem find } & Z^{-1} \left[\frac{z}{(z+a)^{2}} \right] \cdot \text{IN/D12], \text{ BTL1}(8 \text{ M}) \text{BTL1} \\ \text{Answer : Page : 5.76-DR.A.SINGARAVELU} \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z+a)^{2}} \right] = Z^{-1} \left(\frac{z}{(z+a)^{2}} \right) Z^{-1} \left(\frac{z}{z+a} \right) \quad (2 \text{ M}) \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z+a)^{2}} \right] = Z^{-1} \left(\frac{z}{(z+a)^{2}} \right) Z^{-1} \left(\frac{z}{(z+a)^{2}} \right) \\ & \text{IV/D12], \text{ BTL1}(8 \text{ M}) \text{BTL1} \\ \text{Answer : Page : 5.76-DR.A.SINGARAVELU} \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z+a)^{2}} \right] = (-a)^{n} (-a)^{n} \quad (2 \text{ M}) \\ & \cdot & Z^{-1} \left[\frac{z^{2}}{(z+a)^{2}} \right] = (-a)^{n} (n-a)^{n} \quad (2 \text{ M}) \\ & Z^{-1} \left[\frac{z^{2}}{(z+a)^{2}} \right] = (-a)^{n} (n+1) \quad (4 \text{ M}) \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{array}{c} \text{IS} \\ \text{Find the inverse Z-transform of } \frac{8z^{2}}{(2z-1)(4z-1)} \quad \text{by convolution theorem. [M/J12,N/D14]} \\ & (8 \text{ M}) \text{BTL1} \\ \text{Answer : Page : 5.77-DR.A.SINGARAVELU} \\ & \cdot & Z^{-1} \left[\frac{8z^{2}}{(2z-1)(4z+1)} \right] = Z^{-1} \left[8 \frac{z}{(2z-1)} \right] Z^{-1} \left(\frac{z}{(4z+1)} \right) \quad (2 \text{ M}) \\ & \cdot & Z^{-1} \left[\frac{8z^{2}}{(2z-1)(4z+1)} \right] = \frac{2}{3} \left(\frac{1}{2} \right)^{n} + \frac{1}{3} \left(-\frac{1}{4} \right)^{n} \quad (6 \text{ M}) \\ \end{array}$$

16				
	Using convolution theorem, find $Z^{-1}\left[\frac{z^2}{(z-4)(z-3)}\right]$. [N/D 09,N/D15]. (8 M)BTL1			
	Answer : Page :5.79-DR.A.SINGARAVELU			
	• $Z^{-1}\left[\frac{z^2}{(z-4)(z-3)}\right] = Z^{-1}\left(\frac{z}{z-4}\right)Z^{-1}\left(\frac{z}{z-3}\right)$ (2 M)			
	• $Z^{-1}\left[\frac{z^2}{(z-4)(z-3)}\right] = 4^n * 3^n$ (2 M)			
	• $Z^{-1}\left[\frac{z^2}{(z-4)(z-3)}\right] = [(-3)^{n+1} - (-4)^{n+1}]$ (4 M)			
17				
	Solve the difference equation $y(n+3) - 3y(n+1) + 2y(n) = 0$ given that $y(0) = 4$,			
	y(1) = 0 and $y(2) = 8$, by the method of Z-transform. [A/M11,N/D12,N/D14]. (8			
	M)BTL1 Answer (Page 15 121 DB A SINCAPAVELU			
	Answer if age .5.121-DK.A.SHUGARA VELU $Z(y(n+3)) = Z^{3}Y(z) - Z^{3}y(0) - Z^{2}y(1) - Zy(2)$			
	• $Z(y(n+2)) = Z^2Y(z) = Z^2y(0) = Zy(1)$ (2 M)			
	Z(y(n+1)) - ZY(z) - Zy(0) (2.141) $Z(y(n+1)) - ZY(z) - Zy(0)$			
	2(y(n+1)) - 21(2) - 2y(0)			
	• $y(n) = \frac{1}{3} + \frac{1}{3}(-2)^n (6 \text{ M})$			
18				
	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given $y_0 = y_1 = 0$, using Z-transform. (8 M)			
	[N/D09,N/D12,M/J16,N/D16]. BTL1			
	Answer :Page :5.119-DR.A.SINGARAVELU			
	$Z(y(n+3)) = Z^{3}Y(z) - Z^{3}y(0) - Z^{2}y(1) - Zy(2)$			
	• $Z(y(n+2)) = Z^2 Y(z) - Z^2 y(0) - Zy(1)$ (2 M)			
	Z(y(n+1)) = ZY(z) - Zy(0)			
	• $y(n) = \frac{1}{25} \left[2^n - (-3)^n + \frac{5}{3} n(-3)^n \right] $ (6 M)			
19				
	Solve $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$ and $y_1 = 1$, using Z-transform. [N/D10,N/D15].			
	(8 M)BTL1			
	Answer : Page :5.114-DR.A.SINGARAVELU			
	$Z(y(n+3)) = Z^{3}Y(z) - Z^{3}y(0) - Z^{2}y(1) - Zy(2)$			
	• $Z(y(n+2)) = Z^2 Y(z) - Z^2 y(0) - Zy(1)$ (2 M)			
	Z(y(n+1)) = ZY(z) - Zy(0)			

ME8391 ENGINEERING THERMODYNAMICS L T P C

3 2 0 4

9+6

9+6

OBJECTIVES:

• To familiarize the students to understand the fundamentals of thermodynamics and to perform thermal analysis on their behavior and performance.

• (Use of Standard and approved Steam Table, Mollier Chart, Compressibility Chart and Psychrometric Chart permitted)

UNIT I BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach. Path and point functions. Intensive and extensive, total and specific quantities. System and their types. Thermodynamic Equilibrium State, path and process. Quasi-static, reversible and irreversible processes. Heat and work transfer, definition and comparison, sign convention. Displacement work and other modes of work .P-V diagram. Zeroth law of thermodynamics – concept of temperature and thermal equilibrium– relationship between temperature scales –new temperature scales. First law of thermodynamics –application to closed and open systems – steady and unsteady flow processes.

UNIT II SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink. Heat Engine, Refrigerator, Heat pump. Statements of second law and its corollaries. Carnot cycle Reversed Carnot cycle, Performance. Clausius inequality. Concept of entropy, T-s diagram, Tds Equations, entropy change for - pure substance, ideal gases - different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body. Energy and irreversibility. Expressions for the energy of a closed system and open systems. Energy balance and entropy generation. Irreversibility, I and II law Efficiency.

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE 9+6

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-Tsurface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economiser, preheater, Binary and Combined cycles.

UNIT IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS 9+6

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases- Reduced properties. Compressibility factor-.Principle of Corresponding states. – Generalised Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations.

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

UNIT V GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications.

TOTAL: 75 PERIODS

OUTCOMES:

Upo	on the completion of this course the students will be able to	
CO1	Apply the first law of thermodynamics for simple open and closed	Unit 1
	systems under steady and unsteady conditions.	
CO2	Apply second law of thermodynamics to open and closed systems and	Unit 2
	calculate entropy and availability.	
CO3	Apply Rankine cycle to steam power plant and compare few cycle	Unit 3
	improvement methods	
CO4	Derive simple thermodynamic relations of ideal and real gases	Unit 4
CO5	Calculate the properties of gas mixtures and moist air and its use in	Unit 5
	psychometric processes	

TEXT BOOK:

- 1. R.K.Rajput, "A Text Book Of Engineering Thermodynamics ",Fifth Edition,2017.
- 2. Yunus a. Cengel&michael a. Boles, "Thermodynamics", 8th edition 2015.

REFERENCE BOOKS:

- 1. Nag.P.K., "Engineering Thermodynamics", 5thEdition, Tata McGraw-Hill, New Delhi, 2013.
- 2. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 3. Borgnakke&Sonnatag, "Fundamental of Thermodynamics", 8th Edition, 2016.
- 4. Michael J. Moran, Howard N. Shapiro, "Fundamentals of Engineering Thermodynamics", 8th Edition.
- 5. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2016.

9+6

ACADEMICYEAR: 2019-2020

Subject Code: ME 8391

Year/ Semester: II / 03

9+6

Subject Name: Engineering Thermodynamics Subject Handler: Mr.S.Manimaran

UNIT I BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach. Path and point functions. Intensive and extensive, total and specific quantities. System and their types. Thermodynamic Equilibrium State, path and process. Quasi-static, reversible and irreversible processes. Heat and work transfer, definition and comparison, sign convention. Displacement work and other modes of work .P-V diagram. Zeroth law of thermodynamics – concept of temperature and thermal equilibrium– relationship between temperature scales –new temperature scales. First law of thermodynamics –application to closed and open systems – steady and unsteady flow processes.

Q.No	Part-A				
1.	 Define thermodynamics system. How do you classify it.BTL1 A thermodynamic system is defined as a definite space or area on which the study of energy transfer and energy conversions is made. It is classified into three types. a) Open system b) Closed system 				
	c) Isolated system Distinguish between Open and Closed systems. BTL1				
2	S.No.Closed SystemOpen System1.There is no mass transfer. Only heat and work will transfer.Mass transfer will take place in addition to the heat and work 				
3	Define thermodynamic property. BTL2 Thermodynamic property is any characteristic of the substance which is used to identify the state of the system and can be measured, when the system remains in an equilibrium state.				
4	Define Intensive and Extensive properties. (Nov/Dec 16) BTL1 The properties which are "independent on the mass of the system" is called Intensive properties. Eg: Pressure, Temperature, Specific Volume etc.				

	The properties which are "dependent on the mass of the system" is called Extensive properties.					
	Eg: Total energy, Total volume, weight etc.					
	Differentia	te Int	ensive and Extensive properties	.BTL2		
5		Sl. No.	Intensive Properties	Extensive P	roperties	
		1.	Independent on the mass of the system.	Dependent on system.	the mass of	
		2.	The considered part of these properties remains same. e.g. Pressure, temperature, specific volume, etc.	The considered system will have e.g. Total energy, weight, etc.	part of the a lesser value Total Volume,	
6	 When a system is said to be in "Thermodynamic Equilibrium"? (May/June 14) BTL4 When a system is in thermodynamic equilibrium, it should satisfy the following three conditions a. Mechanical Equilibrium : 'Pressure' remains constant b. Thermal Equilibrium : 'Temperature' remains constant c. Chemical equilibrium : There is no chemical reaction 					
	State Zero	th law	and First law of thermodynam	ics.(Apr/May 15),	(Nov/Dec 15). BTL1	
7	Zeroth law of thermodynamics states that "When two systems are separately in t equilibrium with a third system, then they themselves is in thermal equilibrium with each of First Law of thermodynamics states that "When system undergoes a cyclic process n			are separately in thermal ailibrium with each other". es a cyclic process net heat		
transfer is equal to work transfer". $\int Q = \int W$						
	State First Law of thermodynamics and any two of its corollaries. BTL1					
8	First Law of thermodynamics states that "When system undergoes a cyclic process net heat transfer is equal to work transfer".					
	$\int \mathbf{Q} = \int \mathbf{W}$					

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0
	Corollaries of first law of thermodynamics
	Corollary I :
	There exists a property of a closed system such that a change in its value is equal to the difference between the heat supplied and the work done at any change of state.
	Corollary II :
	The Internal energy of a closed system remains unchanged if the system is isolated from its surroundings.
	Corollary III :
	A Perpetual Motion Machine of first kind (PMM-1) is impossible.
	Explain in short "Perpetual Motion Machine of First Kind" (PMM -I)? BTL1
9	PMM of first kind delivers work continuously without any input thus violating the first law of thermodynamics. It is impossible to construct an engine working with this principle.
	Prove that for an isolated system, there is no change in internal energy. BTL5
10	For any isolated system there is no heat, work and mass transfer. Q = W = 0
	According to the first law of thermodynamics, $Q=W+\Delta U$
	$\therefore \Delta U=0$
	Determine the molecular volume of any perfect gas at 600 N/m ² and 30°C. Universal gas constant may be taken as 8314 J/kg mole – K. BTL5
	Given data:
	$\mathbf{P} = 0000\text{V/III}$
	$\Gamma = 30^{\circ}C = 30 + 2/3 = 303K$
11	R=8314 J/kg mole - K
	To find:
	Molecular volume, V=?
	Solution:
	Ideal gas equation,
	PV=mRT

	$600 \times V = 1 \times 8314 \times 303$
	V=4198.57 m ³ /kg mole
	Result:Molecular volume, V=4198.57 m ³ /kg mole
	An insulated rigid vessel is divided into two parts by a membrane. One part of the vessel contains air at 10 MPa and other part is fully evacuated. The membrane ruptures and the air fills the entire vessel. Is there any heat and / or work transfer during this process? Justify your answer.BTL5
	For rigid vessel and unrestrained expansion
12	Change in volume $dV = 0$
12	Work transfer. $W = \int p dV = 0$
	For insulated vessel, heat transfer, $Q = 0$
	According to the first law of thermodynamics the sum of work transfer is equal to the sum of heat transfer.
	$\therefore W = Q = 0$
	DescribeReversible and Irreversible process?BTL2
13	A process is said to be Reversible if it retraces the same path in the reverse direction when the process is reversed and it is possible only when the system passes through a continuous series of equilibrium state. If a system does not pass through continuous equilibrium state, then the process is said to be Irreversible.
	Define Point and Path function. (May/June 14)BTL2
14	The quantity which is 'independent on the process or path' followed by the system is known as Path functions.
	Example: Heat transfer, Work transfer
	Explain Quasi- static Process.BTL2
15	The process is said to be Quasi –Static, if it proceeds infinitesimally slow and follows continuous series of equilibrium states. Therefore the quasi-static process may be a reversible process.
	Define the term Enthalpy. BTL1
16	The combination of internal energy and flow energy is known as Enthalpy of the system. Mathematically, Enthalpy $(h) = U + pVkJ$
	Where U –Internal energy

	P – Pressure (N/m ² or kPa)		
	$V - Volume (m^3)$		
	In terms of $C_p \& T \rightarrow H = mC_p (T_2 - T_1)kJ$		
	Define the term Internal Energy.BTL1		
17	Internal energy of a gas is the energy stored in a gas due to its molecular interactions.		
	It is also defined as the energy possessed by a gas at a given temperature.		
	Prove that the difference in specific heat capacities equal to $C_p - C_v = R.BTL5$		
	Consider a gas heated at constant pressure		
	So, heat supplied, $Q = mC_p (T_2 - T_1)$		
	Work done, $W = p(V_2 - V_1) = m R (T_2 - T_1)$		
19	Change in internal energy, $\Delta U = mC_v (T_2 - T_1)$		
10	According to the first law of thermodynamics,		
	$Q = W + \Delta U$		
	So, $mC_p (T_2 - T_1) = mR (T_2 - T_1) + mC_v (T_2 - T_1)$		
	$\therefore C_p = r + C_v$		
	$C_p - C_v = R$		
	DefineThermodynamic work. (Nov/Dec 15)BTL2		
19	It is the work done by the system when the energy transferred across the boundary of the system. It is mainly due to intensive property difference between the system and surrounding.		
	Differentiate between Open and Closed cycle. BTL2		
20	In a closed cycle, the same working substance will be recirculated again and again. In an open cycle, the same working substance will be exhausted to the surrounding after expansion.		
	Part * B		
	A piston and cylinder machine contains a fluid system which passes through a complete		
1	cycle of four processes. During the cycle, the sum of all heat transfers is -170 kJ. The system completes 100 cycles per minute. Complete the following table showing the method for each		
	item, and complete the net rate of work output in kW. (13 M)AU Nov'02. BTL3		

Process	Q(kJ//min)	W (kJ/min)	$\Delta \mathbf{E}(\mathbf{kJ}/\mathbf{min})$	
a-b	0	2170		
b-c	21000	0		
c-d	-2100		-36600	
d-a				
Answer:Pag Using the fin $\Sigma Q cycle = -$ $\Sigma Q cycle = -$ $Q_{d-a} = -35$ Cyclic proce $\Sigma W = W_{a-b}$ $W_{d-a} = -55$ $\Delta E = Q-W = -55$	ge 1.120-Dr.G.K.Vija rst law of thermodynam 170*100 = -17000kJ/n $Q_{a-b} + Q_{b-c} + Q_{c-d} + Q_{d}$ 5,900kJ/min ess $\Sigma Q = \Sigma W(2M)$ $+ W_{b-c} + W_{c-d} + W_{d-a}(1)$ 3670 kJ/min 17770kJ/min;	yaraghavan&Dr.S.S nics, Q=W+ Δ E, (2M) nin (1M) d-a (3M)	Sundaravalli	
$\sum W = -283.$	3 kW	(2M)		
Ans: Q _{d-a} = -	35900KJ/min; W _{d-a} =-5	53670KJ/min;ΔE=177	770kJ/min;	
ΣW =-283.3	kW			
A mass of a	ir is initially at 260° C	and 700 kPa and o	ccupies 0.028m^3 . The air is exp with $n-1.5$ is then corridout	panded at
by a constant pr the P-V and the efficient	nt temperature proce d T-s diagrams (ii) fin cy of the cycle. (13 M)	All the processes of the heat received AU Apr'03,(R-13 N varageavan & Dr S S	s are irreversible. (i) Sketch th and rejected in the cycle and May/June 2016)BTL5	e cycle in (iii) Find
To draw P-V	and T-s diagram	yaragnavan&DF.S.S	(2M)	

 ΣQ =Cyclic process $\Sigma Q = \Sigma W$ =74550kJ/min (2M)

	$\Sigma W = W_{a-b} + W_{b-c} + W_{c-d} + W_{d-a}(2M)$			
	$\Delta E = Q-W = 73440 \text{kJ/min}$	(2N	/ I)	
	$\sum W = -1133.33kW$		(2M)	
	Air flows steadily at the rate of 0. velocity, 100 kPa pressure and 0.95 m ³ /kg. The internal energy of the air Cooling water in the compressor jac Compute the rate of shaft work inp diameter to outlet pipe diameter.(No	5 kg/s through m ³ /kg volume a r leaving is 90 l kets absorbs he ut to the air in v/Dec 15) (13M)	an air compressor, enterin and leaving at 5 m/s, 700 kB kJ/kg greater than that of a eat from the air at the rate of kW and (ii) find the ratio o)BTL3	g at 7 m/s Pa and 0.19 ir entering. f 58 kW. (i) f inlet pipe
4	Answer :Page 1.106 -Dr.G.K.Vijaya	raghavan&Dr.S	S.Sundaravalli	
	Steady flow energy equation	(²		
	$m\left(u_{1} + p_{1}v_{1} + \frac{c_{1}^{2}}{2} + Z_{1}g\right) + Q = m\left(u_{1} + \frac{c_{1}^{2}}{2} + \frac{c_{1}^{2}}{2}\right)$	$u_2 + p_2 v_2 + \frac{c_2^2}{2}$	$(\overline{z}+Z_2g)+w,$	
	W=-121.994 KW Continuity equation $\frac{A_1C_1}{A_2C_2} = \frac{A_2C_2}{A_2C_2}$.	= 1.89	(7M) (5M)	
	Ans: W=-121.994 kW; $\frac{D_1}{D_2}$ = 1.89		(1M)	
5	A piston and cylinder machine con cycle of four processes. During the cycle of four processes. During the cycle of four processes. During the cycle of four processes per minute. Contrast of the second cont	tains a fluid system (cle, the sum of magnetic the follow (cork output in kV) $\Delta E(kJ/min)$ -54900 -54900 -stage (2M) M) min (4M) (3M)	stem which passes through all heat transfers is -255 kJ. wing table showing the meth V. (Nov/Dec 16), (13 M). BTL Sundaravalli (2M)) (1M)	a complete The system od for each 3
6	A mass of air is initially at 270°C and constant, pressure to 0.086 m ³ A	d 750 kPa and o	occupies 0.029m^3 . The air is easy with $n=1.55$ is then a	expanded at

⁵ constant pressure to 0.086 m³. A polytropic process with n=1.55 is then carried out, followed by a constant temperature process. All the processes are irreversible. (i) Sketch

		12 2001 J (4) ()
	Process 2-3 : $W_{2-3} = p_2 V_2 \ln(V_2 / V_3) = , W =$	-13.388kJ (4M)
	P2V2= P3V3; P3= 250kN/m2	(3M)
	Process 3-1 V2=V3, W=0, Q=ΔU=40kJ	(4M)
	Ans: $W = -13.388 kJ$; $Q = 40 kJ$	
8	Determine the heat transfer and its dim molecular weight of 17.76 is compressed following the law pV ^{1.3} =constant. Take kJ/kgK.(Nov/Dec 17)(13 M)BTL5 Answer: Page 1.132 -Dr.G.K.Vijayaragh Gas Constant R= $\frac{R_U}{M}$, = 0.468kJ/kgK Find γ = Cp/Cv =1.38 find T ₂ =T ₁ (P ₂ /P ₁)(n-1)/n =441.72k Work transfer W= $\frac{mR(T_1-T_2)}{n-1}$ =-232 kJ/kg Q = $\frac{(\gamma-n)}{(\gamma-1)}$ W=-48.842 kJ/kg	rection for a system in which a perfect gas having d from 101.3 kPa, 20°C to a pressure of 600 kPa e specific heat at constant pressure of gas as 1.7 avan&Dr.S.Sundaravalli (2M) (1M) (2M) (4M) (4M)
	Ans: Q = -48.842 kJ/Kg	
	A gas of mass 1.5 kg undergoes a quas a+bV, where a and b are constants. The kPa respectively and the corresponding internal energy of the gases is given by and V is in m ³ . Calculate the net heat the attained during expansion. (13M)BTL5 Answer : Page No 1.123 -Dr.G.K.Vijaya	si-static expansion which follows a relationship p= e initial and final pressures are 1000 kPa and 200 ng volumes are 0.2 m ³ and 1.2 m ³ . The specific the relation u=1.5pv-85 kJ/kg. Where p is in kPa ansfer and the maximum internal energy of the gas raghavan&Dr.S.Sundaravalli
	To find a=1160, b=-800	(2M)
9	$W=\int_1^2 p dv = 600 \ kJ$	(2M)
	Change in internal energy $\Delta U = U_2 - U_1$,	=60kJ (3M)
	first law of thermodynamics, Q=W+ ΔE =60	50 kJ (2M)
	Find U, differentiate U w.r.t. V	
	du/dV=0	(2M)
	V=0.725 m ³ , U _{max} = 503.25 kJ	(2M)

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

To find specific volume of air at inlet by using ideal gas equation and mass of air, $v_1 = \operatorname{RT}_1/\operatorname{P}_1 = 0.832 \operatorname{m}^3/\operatorname{kg}_2$, m=3kg/s (5M) Steady flow energy equation $\operatorname{m}\left(u_1 + p_1 v_1 + \frac{C_1^2}{2} + Z_1 g\right) + Q = \operatorname{m}\left(u_2 + p_2 v_2 + \frac{C_2^2}{2} + Z_2 g\right) + w$ (7M)

	$W_{m}-Q_{out} = m(h_2-h_1) \rightarrow T_2 = 21.9^{\circ}C$ (3M)
	A gas occupies 0.3m3 at 2 bar. It executes a cycle consistingof processes (i) 1-2 constant pressure with work interaction of 15kJ (ii)2-3 compression process which follows the law pV=C andU3=U2 and (iii) 3-1, constant Volume process and reduction in internal energy is 40 kJ. Neglecting the changes in K.E and P.E .Draw p-V diagrams for the process and determine the net work transfer for the cycle.Also show that first law is obeyed by the cycle. (15M (Apr/May 2017)BTL5 Answer: Page 1.125 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli
	Process 1-2 :Const pressure process
	$W_{1-2} = P(V_2 - V_1) = V_2 = 0.375 \text{ m}^3$ (3M)
6	Process 2-3 : Isothermal process
	$W_{2-3} = P_2 V_2 \ln(V_3/V_2) = -16.736 kJ $ (3M)
	Process 3-1 : Constant volume process
	$W_{3-1} = 0; Q_{3-1} = U_1 - U_3 = -40 \text{ kJ}$ (3M)
	$\sum \text{cycle}\Delta U = 0; U_2 - U_1 = 40; \sum \text{cycle } W = -1.766 \text{kJ}$ (3M)
	Acc, to first law, $\sum_{cycle} W = \sum_{cycle} \Delta U^{(3M)}$
	Hence verified.

UNIT II SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink. Heat Engine, Refrigerator, and Heat pump. Statements of second law and its corollaries. Carnot cycle Reversed Carnot cycle, Performance. Clausius inequality. Concept of entropy, T-s diagram, Tds Equations, entropy change for - pure substance, ideal gases - different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body. Energy and irreversibility. Expressions for the energy of a closed system and open systems. Energy balance and entropy generation. Irreversibility. I and II law Efficiency.

Q.No	Part *A
1.	State the Kelvin – Planck statement of second law of thermodynamics. (May/June
	2014)BTL1
	elvin – Planck states that it is impossible to construct a heat engine working on a cyclic process,
	which converts the entire heat energy supplied to it into equivalent amount of useful work.
2	State Clausius statement of Second law of Thermodynamics.(April/May 2015) BTL1
	It states that heat can flow from hot body to cold body without any external aid but heat cannot
	flow from cold body to hot body without any external aid.

	State Carnot's theorem (May/June 2014) BTI 1
3	No heat engine operating in a cyclic process between two $-$ fixed temperatures can be more
5	efficient that a reversible engine operating between the same temperature limits
	Cive the Corollarios of Cornet theorem (May/June 2014) BTI 2
	All the reversible engines operating between the two given thermal reservoirs with fixed
4	tomporature have the same efficiency
4	The efficiency of any reversible best engine energing between two reconvoirs is independent of
	the nature of the working fluid and depends only on the temperature of the reservoirs
	Define DMM of second kind (DMM II) PTL 1
5	Define – FIVINI of second kind. (FIVINI-11). DILI
3	into aquivalant amount of work. Thus it gives 100% officiancy
	Differentiate between a best number and refrigerenter. DTL 2
	Differentiate between a neat pump and refrigerator. B1L2
6	Heat pump is a device which is operated in a cyclic process, maintains the temperature of a not
0	body at temperature nigher that the temperature of surrounding.
	A reingerator is a device which operating in a cycle process maintains the temperature of a cold
	body temperature lower than the temperature of the surrounding.
	Define the term COP. BILI
7	Coefficient of performance is defined as the ratio of heat extracted or rejected to work input.
	$COP = \frac{Heat extracted rejected}{Heat extracted rejected}$
	Write the expression for COP of a Heat pump and a Refrigerator. BILI
	Coefficient of Performance - COP of heat pump:
0	$COMP_{HP} = \frac{Heat rejected}{Martheir instate} = \frac{I_2}{T_1 + T_2}$
8	$I_2 - I_1$
	COP for refrigerator
	$COP_{rof} = \frac{Heat \ extracted}{Heat} = \frac{I_1}{I_1}$
	Heat input $T_2 - T_1$
	Why Carnot cycle cannot be realized in practice? BTL4
	i) In a Carnot cycle all the four processes are reversible but in actual practice there is no
	process which is reversible.
9	ii) There are two processes to be carried out during compression and expansion. For
-	isothermal process the piston moves very slowly and for adiabatic process the piston
	moves as fast as possible. This speed variation during the same stroke of the piston is
	not possible.
	iii) It is not possible to avoid friction between moving parts completely.
	Name two alternative methods by which the efficiency of a Carnot cycle can be increased.
10	BTL6
	Efficiency can be increased as the higher temperature T_2 increases.
	Efficiency can be increased as the lower temperature T_1 decreases.
Why a Heat engine cannot have 100% efficiency? BTL4	
11	For all the heat engines there will be a heat loss between system and surroundings.
	Therefore the entire heat input supplied to the engine cannot be converted into useful work.

12	Write the processes involved in Carnot cycle. BTL2 Carnot cycle consist of i) Reversible adiabatic compression. ii) Reversible isothermal heat addition. iii) Reversible adiabatic expansion.
	iv) Reversible isothermal heat rejection.
10	Write the expression for efficiency of the Carnot cycle. BTL1
13	Carnot efficiency: $\eta_{\text{Carnot}} = \frac{I_2 - I_1}{T_2}$
14	Is the second law independent of first law? Explain. BTL4 Yes. The second law speaks about the quality of energy and the first law is based on energy interactions.
15	Define entropy. (Apr/May 18)BTL1 Entropy is an index of unavailability or degradation of energy. dS = dQ/T (kJ/kgK)
16	 Define the terms source, sink and heat reservoir.(April/May2015)BTL1 Source: The part where the heat to be rejected to absorbing or work developing device is called Source. Sink: The part which receives heat from work absorbing or working developing device is called Sink. Reservoir: The part which supplies or receives heat continuously without change in its temperature is called as Reservoir.
17	Explain in short the principle of Increase of Entropy. (Nov/Dec17) BTL2 For any infinitesimal process undergone by a system, change in entropy, dS>dQ/T For reversible dQ = 0, hence, dS=0 For irreversible dS>0 So the entropy of an isolated system would never decrease. It will always increase and remains constant if the pressure is reversible is called as Principle of increase of Entropy.
18	State "Clausius Inequality". BTL2 It is impossible for a self-acting machine working in a cyclic process unaided by any external agency to convey heat from a body at a low temperature to a body at a higher temperature.
19	Explain briefly Clausius Inequality. BTL1 $\oint \frac{dQ}{T} \le 0$ is known as Inequality of Clausius. If $1. \oint \frac{dQ}{T} = 0$ the cycle is reversible. $2. \oint \frac{dQ}{T} < 0$, the cycle is irreversible and possible . $3. \oint \frac{dQ}{T} > 0$, the cycle is impossible (Violation of second law).
20	A heat pump pumps 10MJ/KW-hr to the high temperature reservoir. Find its C.O.P ? BTL5 C.O.P. = $\frac{\text{Heat Supplied}}{\text{Work input}}$

	$=\frac{10\times10^3}{3600}=2.78$
21	Find the entropy of universe when 1000 KJ of heat is transferred from 800K to 500K?B1L5 Entropy of universe, $\Delta S_{univ} = \frac{-Q}{T_1} + \frac{Q}{T_2}$ $= \frac{-1000}{800} + \frac{1000}{500}$ = 0.75KJ/K
	Part * B
1	A reversible heat engine operating between reservoirs at 900K and 300K drives a reversible refrigerator operating between reservoirs at 300K and 250K. The heat engine receives 1800kJ heat from 900K reservoir. The net output from the combined engine refrigerator is 360kJ.Find the heat transferred to the refrigerator and the net heat rejected to the reservoir at 300K.(13M)(Apr/May 2015) BTL3 Answer:Page: 2.20 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli $\eta_{max} = \frac{T_H - T_L}{T_H} = 66.6\%$ (3M) $\eta_{max} = \frac{W_1}{Q_{S_1}} = 0.66$, $W_1 = Q_{S_1} * \eta_{max}(3M)$ $W_1 = Q_{S_1} - Q_{R_1} =>Q_{R_1} = 600$ kJ $W_2 = Q_{S_2} - Q_{R_2}(3M)$ $COP_{ref} = \frac{T_L}{T_H - T_L} = \frac{Q_{R_2}}{Q_{S_2} - Q_{R_2}} = 5(2M)$ $W_2 = Q_{S_2} - Q_{R_2} = 5040$ kJ $W_2 = Q_{S_2} - Q_{R_2} = 5640$ kJ (2M)
2	Two Carnot engines A and B are operated in series. The first one (A) receives heat at 870K and rejects heat to a reservoir at temperature T. The second engine (B) receives the heat rejected by the first engine and in turn rejects to a heat reservoir at 300K. Calculate the intermediate temperatures T in °C between two heat engines for the following cases.(13M)(Nov/Dec 2013) BTL3 (i) The work output of the two engines are equal. (ii) The efficiencies of the two engines are equal Answer:Page: 2.25 - Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli Diagram (3M)

5/QB+Keys/Ver2.0

440°C.(13M)BTL5

	Answer : Page: 2.90 - Dr.G.K. Vijayaraghavan&Dr.S. Sundaravalli.
	For Carnot Heat engine $\frac{Q_{S_1}}{T_1} = \frac{Q_{R_1}}{T_2} = 1.502 Q_{rl}(3M)$
	$W_{\text{HE}} = Q_{S_1} - Q_{R_1}, = 0.502 Q_{\text{rl}}(3M)$
	Generator input = $W/2$ =Work input to the heat pump = 0.251 Q _{r1} (3M)
	Heat rejected by the heat pump, $\frac{Q_{R_2}}{Q_{S_1}} = Q_{S_1} + 0.251 \text{ Q}_{r1}(3\text{ M})$
	Ans: $Q_{S_1} = 2992.03 \ kW$, $Q_{R_2} = 7830.74 \ MJ/hr \ (1M)$
	A metal block with m=5kg,C=0.4 kJ/kgK at 40°C is kept in a room at 20°C.It is cooled
	naturally. In each case, calculate the change in entropy of the block, of the air of the room
	Answer · Page · 2 114 - Dr G K Vijavaraghavan&Dr S Sundaravalli
	Heat absorbed by air = Heat released by the metal block
	$\delta Q = m C(T_1 - T_2)(3M)$
9	entropy change of the block= $\int_{313}^{293} mc \frac{dT}{T} = -0.132 \text{kJ/K}(3\text{M})$
	Entropy change of atmosphere = $\frac{\delta Q}{T} = 0.1365 \frac{kJ}{K} (2M)$
	Entropy of the universe = 0.0045 kJ/K (3M)
	Cooling using Carnot engine: $\eta_{Carnot} = \frac{T_H - T_L}{T_H} = W/\delta Q$
	W = 2.556 kJ (2M)
	Ans: $\Delta S = -0.132 \text{ kJ/K}$, $\Delta Q_{\text{air}} = 0.1365 \text{ kJ/K}$, $\Delta Q_{\text{univ}} = 0.0045 \text{ kJ/K}$
	One kg of air is contained in a piston cylinder assembly at 10 bar pressure and 500 K temperature. The piston moves outwards and the air expands to 2 bar pressure and 350K
	temperature. Determine the maximum work obtainable. Assume the environmental
	conditions to be 1 bar and 290 K. Also make calculation for the availability in the initial
	and final states. (13M)(Nov/Dec 2014)BTL5
10	Answer : Page: 2.117-Dr.G.K. Vijayaraghavan&Dr.S.Sundaravalli
	Availability in the initial state $\psi_1 = m \left\{ C_p T_1 - T_0 \left[C_p ln \left(\frac{T_1}{T_0} \right) - R ln \left(\frac{T_1}{P_0} \right) \right] \right\} (5M)$
	Availability in the final state $\psi_2 = m \left\{ C_p T_2 - T_0 \left[C_p ln \left(\frac{T_2}{T_0} \right) - R ln \left(\frac{P_2}{P_0} \right) \right] \right\}$ (5M)
	Maximum work = $\psi_1 - \psi_2 = 180.75$ (3M)
	Ans: $\psi_1 = 535.38kJ$, $\psi_2 = 354.63 kJ$, $W_{max} = 180.75 kJ/kg$
	Part * C
1	

An office room which was heated by electric resistance heater consumed 1200 kW-hr of electrical energy in a winter month. Instead of this heater if the same office room is heated by a heat pump which is having 20% of COP of the ideal Carnot pump. The room temperature is 24°C while surrounding is at 0°C. If heat supplied from the surrounding by the heat pump is 0.65 kJ, determine COP and money saved per month. Assume cost of electricity is Rs. 1.75 kW/hr.(15M)BTL5 Answer : Page: 2.27 - Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli.

Electricity using electric heater = 1200 * 1.75 = Rs. 2100 / month (1M)

$$COP_{HP} = \frac{T_H}{T_H - T_L} = 12.375(3M)$$

1

COP of heat pump = 20% of COP of Carnot Pump(3M)

	$W = Q_{s}/COP = 0.20 \text{ KW} (SM)$
	Power required by near pump in k w-nr= work done ⁴⁴ $3000=945.45$ (2M)
	Electricity charge for running neat pump = $P \approx 1.75 = Ks. 1654.50(3M)$
	Ans: Money saved per month= Rs. 445.50
2	Two reversible heat engines A and B are arranged in series. A rejecting heat directly to B. engine receives 200 kJ at a temperature of 421°C from a hot source, while engine B is in communication with a cold sink at a temperature of 4.4°C, if the work output of A is twice that of B, find (i) The intermediate temperature between A and B, (ii) The efficiency of each engine, and (iii) The heat rejected to the cold sink. (15M)(Nov/Dec 2013)BTL5 Answer : Page: 2.80 - Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli. Flow diagram (3M)
	Work output from engines , $W_A = Q_{s1} - Q_{R1}$; $W_B = Q_{s2} - Q_{R2}(2M)$ For Reversible engine B, $T/T_L = Q_{s2}/Q_{R2}$ (i) $T=143.42C$ $Q_{R_1} = 119.93 kJ, Q_{R_2} = 79.89 kJ$ (4M) (ii) $n = 1 - Q_{R_1}/Q_{R_2} = 79.89 kJ$ (4M)
	$\eta_B = 1 - Q_{s2} / Q_{R2} = 33.39\% $ (2M)
	(iii) $Q_{R_1} = 119.93 \ kJ, Q_{R_2} = 79.89 \ kJ$
3	A house hold refrigerator is maintained at a temperature of 275K. Every time the door is opened, warm material is placed inside, introducing an average of 420 kJ, but making only small changes in the temperature of the refrigerator. The door is opened 20 times a day, and the refrigerator operates at 15% of the ideal COP. The cost of work is 2.50 per kW/hr. What is the bill for the month of April for this refrigerator? The atmosphere is at 303K.(15M)(Apr/May 2015) BTL5

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

5	One kg of ice at -5°C is exposed to the atmosphere which is at 20°C. The ice melts and comes into thermal equilibrium with the atmosphere (i) Determine the entropy increase of the universe. (ii) What is the minimum amount of work necessary to convert the water back to ice at -5°C? Assume Cp for ice as 333.3 kJ/kg.(15M)(Apr/May2018) BTL5 Answer :Page: 2.111 - Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli. Heat absorbed by air from atmosphere= Heat absorbed in solid phase + Latent heat + Heat absorbed in liquid phase $\delta Q=mC_{pi}(T_0 - Ti) + mL + mC_{pw}(T_a - T_0) = 427.535 \text{ kJ}$ (4M) Entropy change of atm. = -1.46 kJ/K (3M) Entropy change of system = $\Delta S_{ice} + \Delta S_{fusion} + \Delta S_{liquid} = 1.556 \text{ kJ/K}$ (3M) (i)Entropy of universe = $\Delta S_{univ} = 0.096 \text{ kJ/K}$ (2M) If water is to be converted back to ice using a reversible refrigerator, heat to be removed from water. $\Delta S_{Univ} = \Delta S_{sys} + \Delta S_{ref} + \Delta S_{atm} \ge 0$ (ii)Q+W $\ge 445.908 kJ$, W _{min} = 28.373 KJ(3M) Ans: $\Delta s_{univ} = 0.096 \text{ kJ/K}$, W _{min} = 28.373 KJ		
	UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE		
Forma Use o for pr Regen	ation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-Tsurface. f Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law ure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and herative cycles, Economizer, preheater, Binary and Combined cycles.		
Q.No	o Part-A		
1.	Define latent heat of ice. BTL1 It is defined as the total amount of heat added during conversion of ice of 0^{0} C into water of 0^{0} C.		
2	Write about pure substance.(Nov/Dec 2013)BTL2 Pure substance is a substance which has a fixed chemical composition throughout its mass. Examples: Water, Nitrogen, Carbon dioxide, and Helium. A pure substance does not have to be of single chemical element or compound. A mixture of various chemical elements or compounds is also called as a pure substance as long as the mixture is homogeneous.		
3	Define Saturation Temperature and Saturation Pressure. BTL2 At a given pressure, the temperature at which a liquid boils is called the Saturation Temperature. At a given temperature, the pressure at which the liquid boils is called the Saturation Pressure. It is also called as Vapour Pressure.		
4	Define latent heat of vaporization. BTL1 The amount of heat added during heating of water from boiling point or dry saturated stage is called as Latent Heat of Vaporization or Enthalpy of Vaporization or latent heat of steam.		

Find the Saturation temp and latent heat of vaporization of steam at MPa.BTL55From steam table of 1 MPa or 10 bar
Saturation temperature, $T_{sat} = 179.88^{\circ}C$
Latent heat of vaporization, $h_{fg} = 2013.6$ kJ/kg

	Define the terms 'Boiling point' and 'Melting point'. BTL1	
6	Boiling point: It is the temperature at which the liquid starts to change its state from liquid to	
	vapor.	
	Melting point: It is the temperature at which the solid starts to change its state from solid to	
liquid.		
	Write a short note on Superheated steam and indicate its use.BTL2	
	Superheated Steam is the condition in which the dry steam is further heated, this process	
7	is called Superheating and the steam obtained is known as Superheated steam.	
/	Uses:	
	1. Superheated steam has more heat energy and more work can be obtained using it.	
	2. Thermal efficiency increases as the temperature of superheated steam is high.	
	3. Heat losses be to condensation of steam a cylinder wall is reduced.	
8	Define Sensible neat of water. BIL1	
-	The amount of heat required to raise the temperature of unit mass of water from 0°C to	
	Define the term "Super heat onthe heat" DTL 1	
9	The best supplied to the dry steam at saturation temperature to convert it into superheated	
	steam at the temperature T is called Superheat Heat of Enthalpy	
	Define Wet and Dry steam BTL?	
	The steam which partially evaporated and having water particles in suspension is called Wet	
10	Steam.	
	The steam which is completely in evaporated state without any water particles is called Dry	
	steam.	
	State Phase rule of pure substances. (May/June 2016)BTL1	
	The number of independent variables associated with a multi component, multiphase	
	system is given by the phase rule. It is also called as Gibbs phase rule. It is expressed by the	
11	equation as	
11	$n = C - \phi + 2$	
	Where,	
	n = the number of independent variable.	
	C = the number of components.	
φ = the number of phase present in equilibrium.		
	It is defined as the ratio of the mass of the total steam actually present to the mass of the	
12	total mixture steam	
	mass of dry stream	
	Dryness fraction = $\frac{\text{mass of dry stream}}{\text{mass of dry stream}}$	
	mass of toal mixture	
	Define the terms Degree of super heat, Degree of sub-cooling.BTL1	
	Degree of Superheat:	
13	It is the difference between superneated temperatures and saturated temperature at the same	
	pressure. Degree of Sub Cooling:	
	It is the amount of which the water is cooled beyond the saturated temperature at the same	
	Dressure.	
14	Preserve	
	Define Triple point and Critical point for pure substance. (Nov/Dec 2013)B1L1	

	Triple point: Triple point is the state at which all the three phases i.e. solid, liquid and vapour to		
	exist in equilibrium.		
	Critical point: It represents the highest pressure and temperature at which the liquid and vapour		
	phases coexist in equilibrium. At the critical point the liquid and vapour phases are		
	indistinguishable i.e. Liquid is directly converted into vapour.		
	Write the formula for calculating entropy change from saturated water to superheat steam		
	Entropy of Superheated steam $S_{-} = S_{+} + C_{-} \log \left(\frac{T_{sup}}{T_{sup}} \right)$		
	Entropy of Supericated steam, $S_{sup} = S_g + C_{ps} \log_c \left(\frac{T_c}{T_c} \right)$		
15			
	where		
	S_g – entropy of dry steam		
	T _{sup} -Super heated temperature		
	T_s -Saturated temperature		
	C _{ps} -Specific heat of super heated steam		
	Determine the condition of steam of 2 bar whose entropy is 6.27 KJ/kg. BTL5		
16	From steam Table at 2 bar s_g =7.1268 kJ/Kg K		
	Since entropy of given steam of pressure 2 bar is less than entropy of dry steam at that pressure,		
	the steam is in wet condition.		
1.5	Example a specific entrapy and specific entropy of 120° C saturated steam. B1L5		
17	From steam table at 120° C Specific onthe law h = 2706/c1/kg		
	Specific entrapy, $n_g = 2700 \text{ kJ/kgK}$		
	Find the mass of 0.1 m ³ of wet steep at a temporature of 160 ⁰ and 0.04 dwy PTI 5		
	From steam table at 160° C		
	$V_{r=0} 30676 \text{ m}^3/\text{kg}$		
	Specific volume of wet steam = $x v_r = 0.94x 0.30676 \text{ m}^3/\text{kg}$		
18	$= 0.2884 \text{ m}^3/\text{kg}$		
	Volume of given west steam 0.1		
	Mass of steam, m= $\frac{1}{Specific \text{ yolume of wet steam}} = \frac{1}{0.2884}$		
	M 0.251		
	M = 0.35 kg		
One log of steep at 10 her heg on onthe by of 2500k I/kg. Find its suchtar DTI 5			
	H-2500kJ/kg		
	$H = h \pm y \times h_c$		
10	$\Delta t = 10$ bar from steam tables		
19	$H_c = 762 \text{ 6k } I/kg \cdot h_c = 2013 \text{ 6k } I/kg$		
	2500-762.6 + x + 2013.6		
	2500 - 762.6		
	$x = \frac{2000 + 0200}{2013.6} = 0.862$		
20	2013.0 Define the term Efficiency ratio. BTL1		
20	The ratio of actual cycle efficiency to that of ideal cycle efficiency is termed efficiency ratio.		

	$Efficiency ratio = \frac{1}{ deal rankine efficiency }$	
	Define the term Isentropic efficiency. BTL2	
	For an expansion process	
	Isentronic efficiency – Actual work done	
21	Isentropic work done	
	For an compression process	
	Isentronic work done	
	Isentropic efficiency = $\frac{100 \text{ Here done}}{\text{Actual work done}}$	
	Give the effects of Condenser pressure on the Rankine Cycle. BTL2	
22	By lowering the condenser pressure, we can increase the cycle efficiency. The main	
	disadvantages are lowering the backpressure is to increases the wetness of steam. Isentropic	
	compression of wet vapour is very difficult.	
	Mention the improvements made to increase the ideal efficiency of Rankine Cycle. BTL3	
23	1. Lowering the Condenser pressure.	
23	2. Superheated steam is supplied to the turbine.	
	3. Increasing the boiler pressure to certain limit.	
	4. Implementing releat and regeneration in the cycle.	
	1 Marginal increase in thermal efficiency	
24	2 Increase in work done per kg of steam which results in reduced size of boiler and	
	auxiliaries for the same output.	
	3. It prevents the turbine from erosion.	
25	Give the function of feed water heaters in the Regenerative cycle with bleeding. BTL2	
25	The main function of feed water heater is to increase the temperature of feed water to	
	the saturation temperature corresponding to the boiler pressure before it enters into the boiler.	
	Part * B	
	One kg of steam contains 1/3 liquid and 2/3 vapour by volume. The temperature of the	
	steam is 150°C. Find the quality, specific enthalpy of mixture.(13M) BTL5	
	Angway Dago 3.28 Dr C K Vijevoroghovon & Dr S Sundarovelli	
1	Answer: Fage: 5.20 - DI.G.K. vijayaragnavan&DI.S.Sunuaravan Dryness fraction of steam y=m /(m \pm m) = 0.005529 (4M)	
	Wetness fraction of steam= $1-x=0.99447$ (3M)	
	Volume of mixture = $v=xv_r+v_f=0.00325 \text{ m}^3/\text{kg}$ (3M)	
	Enthalpy of mixture $h = xhf_{g} + yhf_{f} = 640.289 \text{ kJ/kg}$ (3M)	
	A closed vessel of 0.2 m ³ contains steam at 1 MPa and temperature 250°C. If the vessel is	
	cooled so that pressure falls to 350 kPa. Determine the final temperature, heat transfer,	
2	and change of entropy during the process. (April/May 15),(N0v/Dec 15) (13M) BTL5	
	Answer : Page: 3.31 - Dr.G.K. Vijayaraghavan&Dr.S. Sundaravalli.	
	$T_1 > T_s$ – Super heated, Mass of steam m= 0.8591 kg (2M)	
	Dryness fraction of steam $x = V_1 / V_{g2} = 0.444$ (3M)	

	$T_2=139.9^{\circ}C, h_1=2943 \text{ kJ/kg}, h_2=1537.7 \text{ kJ/kg}$ (3M)
	$Q_1 = m(n_1 - n_2) = 1207.13 \text{ kJ}$ (SM) $s_2 = s_{f2} + s_{fg2}$, Change in entropy = $\Delta s = m(s_2, s_1) = -2.48 \text{ kJ/kgK}(2M)$
	One kg of steam at a pressure of 700 kPa and 0.6 dry is heated at constant pressure until it becomes dry saturated. Determine change in internal energy and work done.(Nov/Dec 13)(13M) BTL5
	Answer:Page: 3.38 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli.
	Properties of steam at 7 bar from steam tables
3	$v_2 = 0.27288 \text{ m}3/\text{kg}, V_2 = mv_{g1} = 0.27288 \text{ m}^3(3\text{M})$
	$h_2 = mh_{g1=} 2762 \text{ kJ/kg}(3M)$
	Change in internal energy = ΔU =u ₂ -u ₁ = 749.66 kJ (4M)
	Work done= $p(V_2 - V_1) = 76.3 \text{ kJ}$ (3M)
	Ans: ΔU= 749.66 kJ,W= 76.3 KJ
4	A steam initially at a pressure of 15 bar and 0.95 dry expands isentropically to 7.5 bar and is then throttled until it is dry. Determine per kg of steam: (i) Change in entropy (ii) Change in enthalpy and (iii) Change in internal energy. (May/June 16)(Nov/Dec17)(13M) BTL5 Answer:Page 3.51 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli. From Mollier chart $h_1=2680$ kJ/kg, $v_1=0.1318$ m3/kg, $s_1=6.2$ kJ/kgK, $h_2=2560$ kJ/kg, $x_2=0.9$, $h_2=h_3(4M)$ (i)Change in entropy= $\Delta s=(s_3-s_1)=2.13$ kJ/kgK(3M) (ii)Change in enthalpy= $\Delta h=(h_1,h_3)=120$ kJ/kg (3M) (iii)Change in internal energy= u_3 . $u_1=-141.7$ kJ/kg (3M) Ans: $\Delta s=2.13$ kJ/kgK, $\Delta h=120$ kJ/kg, $\Delta U=-141.7$ kJ/kg
5	A nozzle is supplied with steam of 1 MPa at 200C with a velocity of 100 m/s. The expansion takes place to a pressure of 300 kPa. Assuming isentropic efficiency of nozzle to be 90%, find the final velocity.(13M) BTL5 Answer :Page: 3.55 - Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli. From Steam table Ts = 179.9C, h1= 2826.8 kJ/kg (4M) x_{2s} =0.94, h _{2s} = 2594.91 kJ/kg From Isentropic efficiency \rightarrow h2=2625.79 kJ/kg, (5M) From SFEE

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

	$\left(u_1 + p_1 v_1 + \frac{C_1^2}{2} + Z_1 g\right) + Q = \left(u_2 + p_2 v_2 + \frac{C_2^2}{2} + Z_2 g\right) + w$
	$C_2 = 641.89 \text{ m/s}$ (4M)
	Ans: C ₂ = 641.89 m/s
	Dry saturated steam is supplied to a steam turbine at 12 bar and after the expansion its condenser pressure is 1 bar. Find the Rankine cycle efficiency, specific steam consumption. Neglect feed pump work.(May/June14)(13M) BTL5
	Answer:Page: 3.61- Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli.
6	Using steam tables at 12 bar
0	$S_1=S_2$, $x_2=0.86$, $h_2=2359.28$ kJ/kg (5M)
	Rankine cycle efficiency = $(h_1 - h_2)/(h_1 - h_{f_2})=17.97\%(5M)$
	Specific steam consumption= 3600/W=8.46 kg/kW-hr (3M)
	Ans:n _{ran} = 17.97%,SSC=8.46 kg/kW-hr.
7	Determine the Rankine cycle efficiency working between 6 bar and 0.4 bar when supplied with dry saturated steam. By what percentage is the efficiency increased by supplying superheated steam of 300°C?(April/May15)(13M)BTL5 Answer:Page: 3.68 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli.(1) At 0.4 bar steam table values(2M)(2)Rankineefficiencywithdrysaturatedsteam:S1=S2,x2=0.86 (3M)(3M)(3)h2= h f2+ x2h fg2= 2312.212 kJ/kg (2M)(3M)(4)Wp= v f2(p2-p1) =0.575 kJ/kg (2M)(2M)(5)Rankine efficiency=(h1- h2)/(h1- h f2) $\eta_{ran}=18.16\%$ (3M)
8	Consider a steam power plant operating on an ideal reheat Rankine cycle. The steam enters the H.P turbine at 30 bar and 350C. After expansion to 5 bar, the steam is reheated to 350C and then expanded the L.P turbine to the condenser pressure of 0.075 bar. Determine the thermal efficiency of the cycle and the quality of the steam at the outlet of the L.P turbine. (Apil/May 15)(May/June14) (13M) BTL3 Answer:Page: 3.75 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli. Using steam tables At 30 bar and 350° C, find values $h_1=3115.3 \text{ kJ/kgK}$, $S_1=S_2$, $x_2=0.98$, $h_2=2706.56 \text{ kJ/kgK}$, $h_3=3167.7 \text{ kJ/kgK}$, $s_3=s_4$, $x_4=0.919$, $h_4=2380.89 \text{ kJ/kgK}$, $h_5=168.79 \text{ kJ/kgK}$, (6M) Wp= $v_{f4}(p_1-p_4) = 3.0164 \text{ kJ/kg}$, (3M)
	(J14)

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

	Efficiency= $(h_1-h_2)/(h_1-h_{f2}) = 35\%$ (4M)
	Ans: $x_4 = 0.919$, $\eta_{rh} = 35\%$
	Steam is supplied to a turbine at 4 MPa and 450°C and the condenser is 6 kPa. The machine runs at 300 rpm and the power-developed 3 MW. The expansion is in two stages, the steam being reheated to 410°C between H.P and L.P stages. If all the stages develop the same power with a same isentropic efficiency, determine reheat pressure, thermal efficiency of the cycle and steam flow rate.(Nov/Dec 15)(13M) BTL3 Answer :Page:3.82 Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli.
	T_1 - T_2 = T_3 - T_4 , T_2 =76.18C, T_{sat} =76.18 ^o C
	at 0.4 bar , h_1 =3330.15 kJ/kgK, S_1 = S_2 , x_2 =0.89 (2M)
9	$h_2 = h_2 = h_{f_2} + x_2 h_{f_g_2} = 2637.79 \text{ kJ/kgK}$
	h ₂ '=2776.26 kJ/kgK, h ₃ =3300 kJ/kgK(4M)
	$s3=s4=8.9971 \text{ kJ/kgK}, h_4=2800 \text{ kJ/kgK}, h_5=155.5 \text{ kJ/kgK}$ (3M)
	$Wp = v_{f4}(p_{1-}p_4) = 4.018 \text{ kJ/kg}(2M)$
	Efficiency= $(h_1-h_2)/(h_1-h_{f2})=25.68\%$,SSC=3600/W=3.79kg/kW-hr (2M)
	Ans: $\eta = 25.68\%$
	The net power output of the turbine in ideal reheat regenerative cycle is 100 MW. Steam enters the H.P turbine at 90 bar and 550° C. After expansion to 7 bar some of the steam goes to an open heater and balance is reheated to 400° C, after which it expands to 0.07 bar. Calculate the steam flow rate in HP turbine and thermal efficiency of cycle.(Nov/Dec16)(13M) BTL5
	Answer :Page 3.104- Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli
	Use superheated steam tables at 90 bar and 550°C
10	$h_i=3508.95 \text{ kJ/kg}, S_1=6.0885 \text{ kJ/kgK}$ (1M)
	At 7 bar and 400° C
	$h_3 = 3269 \text{ kJ/kg}, s_3 = 7.636 \text{ kJ/kgK}(1\text{M})$
	At 7 bar
	$h_f = 697.1 \text{ kJ/kg}, h_g = 2762 \text{ kJ/kg}, s_f = 1.992 \text{ kJ/kgK}, s_g = 6.705 \text{ kJ/kgK},$
	$T_{sat} = 438K \tag{1M}$
	At 0.07 bar

REGULATION: 2017

	$n = \frac{Net Work output}{W_T - W_p}$	(2M)	
	Q_S Heat supplied Q_S		
	$W_T = h_1 - h_2 \mathrm{kJ}, \ W_p = h_4 - h_3 \mathrm{kJ},$	(2M)	
	$Q_s = h_1 - h_4 \mathrm{kJ},$	(2M)	
	$\eta = \frac{Net Work output}{Heat supplied} = \frac{W_T - W_p}{Q_S} = \frac{(h_1 - h_2) - (h_4 - h_3)}{(h_1 - h_2)} (3M)$		
	Part * C		
	2.5 kg of steam is heated at constant pressure of 250 kPa and 100°C until temperature is 250°C. Find the amount of heat added and change in entropy.(15M) BTL5		
	Answer : Page: 3.37 - Dr.G.K. Vijayaraghavan&Dr.	S.Sundaravalli	
	From Mollier chart		
	At $n = 250kP_{2} - 2.5$ har and $100^{\circ}C$		
1	h = 2700 k I/kg = 5 = 7.04 k I/kg V	(2M)	
	$I_1 = 2700 \text{ kJ/kg}, S_1 = S_2 = 7.04 \text{ kJ/kgK}$		
	h ₂ =2950 kJ/kg	(3M)	
	$S_2=7.65 \text{ kJ/kgK} (3M)$	λ	
	Heat added, $Q=m(h_2-h_1)=625 \text{ kJ}$	(3M)	
	Change in entropy= $\Delta s = m(s_2-s_1)=1.525 \text{ kJ/K}$	(3M)	
A mass of 0.9 kg of steam initially at a pressure of 1.5 MPa and tempe expands to 150 kPa. Assume the process as isentropic. Find the condition work transfer.BTL3		e of 1.5 MPa and temperature of 250°C tropic. Find the condition of steam and	
	Answer:Page: 3.40 -Dr.G.K.Vijayaraghavan&Dr.S	S.Sundaravalli.	
	At $p_1 = 1.5$ MPa and $T_1 = 250^{\circ}$ C		
	$v_1=0.152 \text{ m}^3/\text{kg}, h_1=2923.5 \text{ kJ/kg}(2M)$		
2	s ₁ =6.71 kJ/kgK, s ₁ = s ₂ =6.71 kJ/kgK	(1M)	
	From Steam Tables at 150kPa		
	$h_{f2} = 467.1 \text{ kJ/kg}; h_{fg2} = 2226.2 \text{ kJ/kg}, s_{f2} = 1.434 \text{ kJ/kg}$	kgK	
	$s_{fg2} = 5.79 \text{ kJ/kgK}, sg_2 = 7.223 \text{ kJ/kgK}, V_{g2} = 0.159 \text{ m}$	³ /kg (2M)	
	$s_2 = s_{f2} + x_2 s_{fg2} , h_2 = h_{f2} + x_2 h_{fg2}$		
	x ₂ =0.912, h ₂ = 2497.39 kJ/kg	(3M)	

	$v_2 = x2 * V_{g2} = 1.057 m3/kg$	(2M)	
	$Q{=}\Delta u$ +W , $Q{=}0$; W = - Δu = $u_2{-}u_1$		
	Work Transfer= W = $u_1 - u_2 = (h_1 - h_2) (p_1v_1 - p_2v_2) = 35$	6.66 kJ/kg(3M)	
	W $_{\text{Total}} = mW = 321 \text{ kJ}(2M)$		
	Steam at 1 MPa and 0.9 dry is throttled to a pressur the quality of steam and change in entropy. Check y whether this process is reversible or irreversible.BTL	e of 200 kPa. Using Steam Table, find our answer using Mollier chart. State	
	Answer:Page: 3.48 -Dr.G.K.Vijayaraghavan&Dr.S.S	undaravalli.	
	At 1Mpa or 10 bar take the values of h_{f1} , hfg_1 , s_{f1} , s_{fg1}		
	$h_1 = h_{f1} + x_1 hfg_1 = 2574.84 kJ/kg, s_1 = s_{f1} + x_1 s_{fg1}$		
	$h_1=h_2, x_2=0.94(3M)$		
3	$s_1 = 6.13 \text{ kJ/kgK}(2\text{M})$		
5	At 200kPa or 2 bar h_{f2} = 504.7 kJ/kg; h_{fg2} = 2201.6 kJ/kg	$s_{f2} = 1.534 \text{ kJ/kgK}$	
	$s_{fg2} = 5.59 \text{ kJ/kgK} (3M)$		
	$h_2 = h_{f2} + x_2 h_{fg2}$, $x_2 = 0.94$	(2M)	
	Steam is wet so $s_2 = 6.76 \text{ kJ/kgK}$		
	Change in entropy = $\Delta s = s_2 - s_1 = 0.652 \text{ kJ/kgK}(3M)$		
	$s_1 = 6.1 \text{ kJ/kgK}$, $s_2 = 6.76$ Change in entropy = 0.66 kJ/kgK		
	Since ds is +ve, the process is irreversible.(2M)		
	Find the efficiency of the prime mover operating on t bar for the following initial conditions. (i) The steam steam is dry and saturated and (iii) The steam is diagram for each case. Neglect the pump work.BTL5	he Rankine cycle between 7 bar and 1 has a dryness fraction of 0.8, (ii) The superheated to 350°C. Draw the T-s	
	Answer:Page: 3.63Dr.G.K.Vijayaraghavan&Dr.S.Su	ndaravalli.	
4	Using Steam tables at 7 bar $T_{s1} = 164.9^{\circ}C$ and		
	take all values of h _{f1} , hfg1, s _{f1} , s _{fg1} , s _{g1} (3M)		
	At 1 bar $T_{s2} = 99.63$ °C and h_{f2} , hfg_{2} , s_{f2} , s_{fg2} , s_{g2}	(3M)	
	(i) if $x = 0.8 x_2 = 0.736$, $h_2 = 2079.85 k$ Rankineefficiency= $(h_1-h_2)/(h_1-h_{f2})$	J/kg,)=13.93% (3M)	

	(ii) When steam is dry $x_2=0.89$, $h_2=2427$ kJ/kg,
	Rankine efficiency = 14.28% (3M)
	(iii) $x_2>1$ superheated steam, $h_2=2272.246$ kJ/kg
	Rankine efficiency= 16.075 % (3M)
	A regenerative cycle utilizes steam as the working fluid. Steam is supplied to the turbine at 40 bar and 450°C and the condenser pressure is 0.03 bar. After expansion in the turbine to 3 bar, some of the steam is extracted from the turbine for heating the feed water from the condenser in an open heater. The pressure in the boiler is 40 bar and the state of the fluid leaving the heater is saturated liquid water at 3 bar. Assuming isentropic heat drop in the turbine and pumps, compute the efficiency of the cycle.BTL5 Answer:Page: 3.89 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli
	Use superheated steam tables at 40 bar and 450°C
	$h_1 = 3330.3 \text{ kJ/kg}, S_1 = 6.9363 \text{ kJ/kgK}$ (1M)
~	At p $_2$ = 3 bar taking all the values x ₂ =0.9895, h ₂ = 2702.65 kJ/kg
5	x ₃ =0.8, h ₃ = 2057.63 kJ/kg (2M)
	$h_{4} = h_{f3} = 101.05 \text{ kJ/kg}$ (2M)
	pump Work : (1-m) (h ₅ -h ₄) = (1-m)*v _{f3} (p $_2$ - p $_3$)
	$h_5 = 101.35 \text{ kJ/kg}(2\text{M})$
	Amount of steam bleed m= $(h_{f2}-h_5)/(h_2-h_5) = 0.117$ kg (3M)
	$W_{p6-7} = (h_7 - h_6) = v_{f2} (p_1 - p_2) = 565.44 \text{ kJ/kg} $ (2M)
	Regenerative Rankine efficiency= $[(h_1 - h_7) - (1-m) (h_3 - h_{f3})]/(h_1 - h_7)$
	=41.75%(3M)
	Steam enters the turbine at 3 MPa and 400°C and is condensed at 10 kPa. Some quantity of steam leaves the turbine at 0.6 MPa and enters open feed water heater. Compute the fraction of the steam extracted per kg of steam and cycle thermal efficiency.(Nov/Dec15)BTL5 Answer: Page: 3.163 -Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli.
6	At 3 MPa and 400°C
	$h_1 = 3232.5 kJ/kg, S_1 = 6.925 kJ/kgK$ (1M)
	$s_1 = s_2 = 6.9256.925 kJ/kgK$
	At $p_2 = 6$ bar $s_g = 6.758 \text{kJ/kgK}$ (1M)

	$P = P_1 + P_2 + P_3 + \dots + P_k$
	Distinguish between ideal and real gas BTL 2
	An ideal gas is one which strictly follows the gas laws under all conditions of
3	temperature and pressure
5	In actual practice, there is no real gas which strictly follows the gas laws over the entire
	range of temperature and pressure However hydrogen oxygen nitrogen and air behave as an
	ideal gas under certain temperature and pressure limits
	Write the Maxwell relations, BTL1
	$(\partial \mathbf{T})$ $(\partial \mathbf{P})$
	$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{v}}\right)_{s} = \left(\frac{\partial \mathbf{S}}{\partial \mathbf{S}}\right)_{u}$
	$(\gamma \delta)$ $(T\delta)$
	$\left(\frac{\partial \mathbf{I}}{\partial \mathbf{P}}\right) = \left(\frac{\partial \mathbf{V}}{\partial \mathbf{S}}\right)$
4	$(0, \gamma_s, (0, \mathcal{O})_p)$
	$(\partial \mathbf{P})$ $(\partial \mathbf{S})$
	$\left(\frac{\partial \mathbf{T}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \left(\frac{\partial \mathbf{V}}{\partial \mathbf{V}}\right)_{\mathbf{T}}$
	$(\partial \mathbf{v}) = (\partial \mathbf{S})$ These are known as Maxwell relations
	$\left(\frac{\partial T}{\partial T}\right)_{a} = \left(\frac{\partial T}{\partial P}\right)_{T}$
	Define Joule – Thomson Co – efficient. BTL1
	The Joule – Thomson co – efficient is defined as the change in temperature with change
5	in pressure keeping the enthalpy remains constant. It is denoted by the
	$\mu = \left(\frac{\partial T}{\partial T}\right)$
	ſ (∂P) _h
	Define co-efficient of volume expansion and isothermal compressibility. BTL1
	Co officient of Volume expansion. The co-officient of volume expansions is defined as the
	change in volume with change in temperature per unit volume keeping the pressure constant. It
	is denoted by β
6	$1(\partial y)$
0	$\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)$
	Tasthermal community is defined as the change in unhance with change in macrosome and
	unit volume keeping the temperature constant. It is denoted by K
	$1(\partial t)$
	$\mathbf{K} = -\frac{1}{V} \left[\frac{\partial \mathbf{V}}{\partial \mathbf{P}} \right]$
	Write a short note on compressibility factor, $BTI 2$
	white a short note on compressionity factor. D1D2
_	We know that, the perfect gas equation is $pv = RT$. But for real gas, a correction factor
7	has to be introduced in the perfect gas equation to take into account the deviation of real gas
	from the perfect gas equation. The factor is known as compressibility factor (z) and is defined by
	$7 = \frac{Pv}{P}$
	RT RT
	Give the Clausius-Clapeyron equation. BTL2
8	Clapeyron equation which involves relationship between the saturation pressure,
	saturation temperature, the enthalpy of evaporation and the specific volume of the two phases
	invoivea.

1

	$\frac{dP}{dT} = \frac{h_{fg}}{T_V}$
	$\mathbf{C} \mathbf{t} = \mathbf{T} \mathbf{t}_{\text{fg}}$
	State 1 ds equations. B1L1
	1 ds Equation are
9	$Tds = C_{P}dT - T\left(\frac{\partial v}{\partial T}\right)_{p}dp$
	$Tds = C_{v}dT + T\left(\frac{\partial P}{\partial T}\right)_{T} dv$
10	State Helmholtz function. BTL1
10	Helmholtz function is property of a system and given by subtracting the product of
	absolute temperature (T) and entropy (S) from the internal energy U.
	State Gibbs function. BTL1
11	Gibbs function is property of a system and is given by
	G = U - TS + pv = H - TS [h = u + pv]
	Where H – Enthalpy, T – Temperature, S – Entropy
12	State third law of Thermodynamics. BTL1
12	It is states that the entropy of any pure substance in thermodynamics equilibrium
	approaches zero as the absolute temperature approaches zero.
13	State the assumptions made in kinetic theory gases. BTL1
15	1. There is no intermolecular force between particles.
	2. The volume of the molecules is negligible comparison with the gas
14	State Regnault's law. BTL1
	Regnault's law states that C_P and C_v of a gas always remains constant.
15	State Joule's Law. BTL1
10	Joule's law states, "The internal energy a given quantity of gas depends only on the
	temperature".
16	State Charle's law. BILI
_	Charle's law states, "The volume of a given mass of a gas varies directly as its absolute
	State Boyle's law DTL 1
	State Doyle's law. DILI Boyle's law states "The volume of a given mass of see veries inversely as its absolute
17	Boyle's law states. The volume of a given mass of gas varies inversely as its absolute
	1
	$V\alpha - \frac{1}{p}$
Part * B	
A vossal of volume 0.3 m ³ contains 15 kg of air at 202K. Determine the pressure evented by	
	A vesser of volume 0.5 m contains 15 kg of an at 305K. Determine the pressure exerted by

A vessel of volume 0.3 m³ contains 15 kg of air at 303K. Determine the pressure exerted by the air using (i) Perfect gas equation (ii) Vanderwalls equation and (iii) Generalized compressibility chart. Take critical temperature of air is 132.8 K and critical pressure of air is 37.7 bar. BTL5

Answer: Page:4.23-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli

(i) Perfect gas equation $pv = mRT \Rightarrow P = 4348.05 \text{ kPa}(3M)$

	(ii) Vanderwaal's equation $(p+a/v^2)(v-b) \Rightarrow P = 4235.4 \text{ kPa}$ (3M)
	Reduced temperature $T_r = T/_{Tc} = 2.28$ (1M)
	$V_r = v/v_c = 1.98 \text{ m}3/\text{kg}$ (1M)
	Z=0.99(2M)
	(iii) Generalized compressibility chart P=4304.6 kPa (3M)
	A perfect gas of 0.5 kg has a pressure of 300 kPa, a temperature of 100°C, and a volume of 0.06 m ³ . The gas undergoes an irreversible adiabatic process to a final pressure of 400 kPa and final volume of 0.15 m ³ , work done on the gas is 50 kJ. Find C_p , C_v BTL5
	Answer:Page: 4.28-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli
	pv = mRT = R = pv/RT = 0.288 kJ/kgK (4M)
2	$T_2 = pv/mR = 1041.67 \text{ K}$ (3M)
	$Q=\Delta U+W; Q=W+mC_v (T_2-T_1); Q=0$
	Cv=0.343 kJ/kgK, (3M)
	$\mathbf{R} = \mathbf{C}_{\mathbf{p}} - \mathbf{C}_{\mathbf{v}}$
	$C_p=0.631 \text{ kJ/kgK}.$ (3M)
	Derive the Maxwell relations . BTL1
	Answer:Page4.32-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli
3	du = Tds - pdv (4M)
5	dh = Tds + vdp (3M)
	da = -pdv-SdT (3M)
	dg=vdp-SdT. (3M)
	From the basic principles, prove the following Cp-Cv = $-T\left(\frac{\partial v}{\partial T}\right)_{n}^{2} \left(\frac{\partial p}{\partial v}\right)_{T}^{2}$ BTL3
4	Answer:Page4.40 Q8-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli
	Derive the above relation using first and second Tds equations with the help of Maxwell relations.
	Derive Vander Waals equation in terms of reduced parameters. BTL2
5	Answer : Page4.17-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli
	$(p+a/v^2)(v-b)=RT$

6	Derive Clausius – Clapeyron equation. What assumptions are made in this equation? BTL1 Answer :Page 4.72 Q19-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli Clausius Clapeyron equation involves the relationship between the saturation pressure, saturation temperature, the enthalpy of evaporation and the specific volume of two phases involved. This equation provides a basis for calculation of properties in a two phase diagram. It gives the slope of a curve separating the two phases in p-T diagram. (10M)
	$dp/dT = (s_g - s_f) / (v_g - v_f)$ (3M)
7	$\begin{array}{l} \textbf{Derive Tds equation when (i) T and V independent (ii) T and P independent (iii) p and v independent.BTL1} \\ \textbf{Answer :Page No. 4.38 Q26-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli} \\ (iii)Tds = C_vdT + T((\partial p/\partial T)_vdv \ (5M) \\ (iv)Tds = CpdT - T((\partial v/\partial T)_pdp \\ (v) Tds = CpdT + C_vdT(4M) \end{array} \tag{4M}$
8	(i) Derive any two Maxwell's relation (ii) Draw a neat schematic of a compressibility chart and indicate its salient features. Page No. Q-24-25 Q14 (b) (i) &(ii) BTL 1 Answer:Page 4.32, 4.22-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli The generalized compressibility chart is plotted with compressibility factor (Z) versus reduced pressure for various values of reduced temperatures. $(\partial T/\partial v)_s = -(\partial p/\partial s)_v$ (7M) $(\partial T/\partial p)_s = -(\partial s/\partial v)_v$ (6 M)
9	The gas neon has a molecular weight of 20.183 and its critical temperature, pressure and volume are 46K, 2.5 MPa and 0.05 m3/kg mol. Reading from a compressibility chart for a reduced pressure if 2 and a reduced temperature of 1.2, the compressibility factor Z is 0.75. What are the corresponding specific volume, pressure, temperature and reduced volume? BTL5Answer :Page4.26-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli Pressure $p=p_r * p_c = 5MPa$, $T/T_c = 1.2 \Rightarrow T = 55.2K$ Pv=ZRTFrom Ideal gas equation $v=3.213x10^{-3}$ m ³ /kg (4M)Volume ratio $v_r= v/v_c = 0.219$ (5M)
10	Compute the specific volume of steam at 0.9 bar and 550 K using Vander Walls equation. Take critical temperature of steam is 647.3 and critical pressure is 220.9 bar. BTL 5 Answer:Page 4.27-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

	Vanderwaal's equation $\left(P + \frac{a}{v^2}\right)(v - b) = RT$	(4M)
	a=1.7, b=1.69x10 ⁻³ ,	(4M)
	By trial and error method, specific volume v= $0.25 \text{ m}^3/\text{kg}$.	(5M)
	Part * C	
	Obtain the expression for ds in terms of dT and dp. BTL	3
	Answer: Page: 4.52 -Dr.G.K.Vijayaraghavan&Dr.S.Sun	laravalli
1	s=f(T,P) $ds = \left(\frac{\partial s}{\partial r}\right) dT - \left(\frac{\partial v}{\partial r}\right) dp$	(5M)
	$ds = Cp \frac{dT}{T} - \left(\frac{\partial v}{\partial T}\right)_p dp \text{ But } \beta = \frac{1}{v} \left(\frac{\partial v}{\partial T}\right)_p (5M)$	
	$ds = Cp \frac{dT}{T} - \beta v dp$	(5M)
	Prove that the difference in specific heat capacities equal	to C _p -C _v =R and
	$\mathbf{C}_{\mathbf{p}} \cdot \mathbf{C}_{\mathbf{v}} = \frac{TV}{k_T} \boldsymbol{\beta}^2 \text{ BTL1}$	
	Answer: Page 4.43-Dr.G.K.Vijayaraghavan&Dr.S.Sunda	nravalli
2	$C_p - C_v = T \left[\left(\frac{\partial P}{\partial T} \right)_v - \left(\frac{v}{\partial T} \right)_p \right] (5M)$	
	$\left(\frac{\partial P}{\partial T}\right)_{v} = \frac{\beta}{K} , \left(\frac{\partial v}{\partial T}\right)_{p} = \beta v$	(5M)
	$C_p - C_v = \frac{TV}{k_T} \beta^2 (5M)$	
	One kg of ideal gas is heated from 50°C to 150°C. If R= determine: (i) C_p and $C_v(ii)$ Change in internal energ (ii in flow energy BTL5	280 J/kgK and γ=1.32 for the gas, i) Change in enthalpy (iv) Change
	Answer: Page 4.59-Dr.G.K.Vijayaraghavan&Dr.S.Sunda	nravalli
3	$R = C_p - C_v = 280, \gamma = 1.32$	
	$C_{v}=0.875rac{kJ}{kgK}$, $C_{p}=1.155$	$\frac{J}{kgK'}$
	$\Delta U = mC_v (T_2 - T_1) = 87.5 \ kJ,$	(5M)

	$\Delta H = mC_p(T_2 - T_1) = 115 kJ,$	(5M)
	Flow energy = $\Delta H - \Delta U = 27.5 \ kJ$	(5M)
	Derive expressions $\left(\frac{\partial u}{\partial p}\right)_T$ and $\left(\frac{\partial h}{\partial v}\right)_T$ in terms of p, v and T only.BT	Ľ1
	Answer:Page 4.58-Dr.G.K.Vijayaraghavan&Dr.S.Sundaravalli	
4	$du = C_{v}dT + T\left(\frac{\partial p}{\partial T}\right)_{v}dv - pdv$	(5M)
•	Differentiating each term in this equation with respect to p at	T=constant yields $\left(\frac{\partial u}{\partial p}\right)_T$ =
	$T\left(\frac{\partial p}{\partial T}\right)_{v}\left(\frac{\partial v}{\partial p}\right)_{T} - p\left(\frac{\partial v}{\partial p}\right)_{T}$, Using the properties p,T,v the cyclic, relati	ion can be expressed as
	$\left(\frac{\partial h}{\partial v}\right)_T = v \left(\frac{\partial p}{\partial v}\right)_T + T \left(\frac{\partial T}{\partial p}\right)_v (10\text{M})$	

Unit 5 GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

Q.No.	Part-A
	Define Psychrometry.BTL1
1.	The science which deals with the study of behaviour of moist air (mixture of dry
	air and water vapour) is known as Psychrometry.
2	Define dry bulb temperature (DBT). BTL1
2	The temperature which is measured by an ordinary thermometer is known as dry
	bulb temperature. It is generally denoted by t _d .
2	Define wet bulb temperature.BTL1
3	It is the temperature of air measured by a thermometer when its bulb is covered
	with wet cloth and is exposed to a current rapidly moving air. It is denoted by tw.
	Define Dew point temperature.BTL1
4	The temperature at which the water vapour present in air begins to condense
	when the air is cooled is known as dew point temperature. It is denoted by t_{d_p} .
	Define specific humidity. BTL1
	It is defined as the mass of water vapour present in one kg of dry air. Specific
5	humidity (W) or Humidity ratio (or) Moisture content
	_Mass of water vapour
	Mass of dry air
IIT_IFPI	DIA A D/MECH/MES MANIMA DAN/II rd Yr/SEM 03/ME 8301/ENGINEEDING THEDMODYNAMICS/UNIT 1 -

Write in short aboutSaturation ratio. BTL1 It is defined as the ratio of specific humidity of the moist air to the specific humidity of saturation air at the same temperature. 6 Degree saturation (or) Percentage humidity (or) Saturation ratio Specific humidity of moist air Specific humidity of saturated air Define Relative humidity.BTL1 It is defined as the ratio between mass of water vapour in a given volume and saturated mass of water in same volume and temperature. 7 Relative humidity (ϕ) Mass of water vapour in a given volume Saturated mass of water vapour in sazme volume and temperature State Dalton's law of Partial pressure.BTL1 The total pressure exerted by air and water vapour mixture is equal to the barometric pressure. 8 i.e. $p_b = p_a + p_v$ Where, $p_b = Barometric pressure$ $p_a = Partial pressure of dry air,$ $p_v = Partial pressure of water vapour$ What is meant by Humidification? BTL2 9 The addition of water vapour to the air is known as humidification. **Define Sensible heat factor.** BTL1 The ratio of sensible heat to the total heat is known as sensible heat ratio (or) Sensible 10 heat factor. Sensible heat factor = $\frac{\text{Sensible heat}}{\frac{1}{2}}$ Total heat **Define the following: a) Approach b) Range.** BTL1 Approach: The difference in temperature of cooled-water temperature and the wet bulb 11 temperature of the entering the air is known as the approach. **Range:** The range is the temperature difference between the inlet and exit states of water. Part * B Find the increase in entropy when 5 kg of oxygen at 60°C are mixed with 7.5 kg of nitrogen at the same temperature. The initial pressure of each constituent is 103 kPa and is the same as that of mixture.(13M)BTL5 Answer: Page: 5.20-Dr.G.K.Vijayaraghavan and Dr. K Sundaravalli 1 Mass fraction of $O_2 = 0.368$ (2M) Mass fraction of $N_2 = 0.632$ (2M)Entropy increase $\Delta S_m = \Delta S_{O_2} + \Delta S_{N_2}(2M)$ $\Delta S_m = 1.3 + 1.022 = 2.322 \text{ kJ/K}$ (7M)

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

	Mass Fraction of $N_2 = 65.63\%$	(1M)
	Gas Constant $R = 8.314/25.6 = 0.325 kJ/kgK$ (1M)	
	Volume $V = \frac{RT}{P} = 0.0103 \ m^3 / kg \ (1M)$	
	The moist air is at 45°C dry bulb temperature and 30 Calculate (i) Vapour pressure (ii) Dew Point temperature Relative humidity (v) Degree of saturation (vi) Vapour mixture (13M)BTL5 Answer: Page: 5.46 - Dr.G.K.Vijayaraghavan and Dr. K S Vapour pressure $=P_{\nu} = P_{sw} - \frac{(P_b - P_{sw})(t_d - t_w)}{150} = 0.03277$ bar	^o C wet bulb temperature. e (iii) Specific Humidity (iv) r density (vii) Enthalpy of Sundaravalli (2M)
	Dew Point temperature - from steam table $t_{dp} = 25.26^{\circ}C$	(1M)
4	Specific Humidity, $\omega = 0.622 \frac{P_v}{P_b - P_v} = 0.02107 \frac{kg}{kg} of dry a$	uir (2M)
	Relative humidity, $\Phi = \frac{P_v}{P_v} = 34.2 \%$	(2M)
	Degree of saturation, $\mu = \frac{P_v}{P_s} \left(\frac{P_b - P_s}{P_b - P_v} \right) = 0.3197$	(2M)
	Vapour density, from steam table, $\rho_v = -0.06546 \frac{kg}{kg}$, hence vapour density at 34.2% = 0.0224 k	$q/m^{3}(2M)$
	Enthalpy of mixture $h = C_P t_d + \omega h_g = 99.65 \frac{kJ}{kg} (2M)$	
5	An air conditioning system is designed under the followin Outdoor condition – 32°C DBT and 75% RH Required indoor condition -22°C DBT and 70% RH Amount of free air circulated – 200 m ³ /min Coil dew point temperature – 14°C The required condition is achieved by first cooling and de heating. Calculate the following (i) Capacity of cooling coil in tone (ii) Capacity of heat (j) (iii) Capacity of water vapour removed in kg/s. (12) Answer:Page :5.98-Dr.G.KVijayaraghavan and Dr. K Su From Psychrometric chart, $h_1 = 82 \frac{kJ}{kg}, h_2 = 53 \frac{kJ}{kg}, h_3 = 48 \frac{kJ}{kg}, h_4 = 41 \frac{kJ}{kg},$ Cooling coil capacity = $m_a(h_1 - h_3) = 36.72$ tonne	g condition ehumidifying and then by ating coil in kW and 3M)BTL3 ndaravalli, (4M) (3M)

JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 - 5/QB+Keys/Ver2.0

	$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} = 336.57 K$	(2M)
	Work done = W= $\frac{P_1V_1 - P_2PV_2}{n-1}$ = -94.56 kJ	(5M)
	A sling Psychrometer reads 40°C DBT and 30°C Wi relative humidity, dew point temperature, enthal mixture. Assume atmospheric air pressure as 1.0132	BT. Calculate specific humidity, by, and specific volume of air 5 bar. (15M) BTL5
	Answer: Page:5.48- Dr.G.KVijayaraghavan and Dr.	K Sundaravalli
3	(i) Specific Humidity, $\omega = 0.622 \frac{P_v}{P_b - P_v} = 0.0228$ (ii) Dew point temperature= 27°C (iii) Relative humidity, $\Phi = \frac{P_v}{P_v} = 48.7 \%$ (iv) Specific volume of air = 0.919 0.919 $\frac{m_3}{kg}$ (2M) (v) density $\rho_a = 0.05116 \frac{kg}{m_3}$ (2M) (vi) vapour density = $0.025 \frac{kg}{m_3}$ (2M)	B ^{kg} _{kg} of dry air (2M) (2M) (2M)
	(vii) Enthalpy of mixture $h = C_P t_d + \omega h_g = 99.65$	$\frac{h}{kg}(3M)$
	Atmospheric air at 760 mm of Hg has 45°C dry b bulb temperature using psychrometric chart, calc humidity (ii) Humidity ratio (iii) Dew point temp Specific volume of air.(15M)BTL5 Answer: Page :5.62 -Dr.G.K.Vijayaraghavan and Dr	oulb temperature and 30°C wet ulate the following (i) Relative perature (iv) Enthalpy and (v) . K Sundaravalli
5	From Psychrometric chart	
	(i) Relative humidity $= 34\%$	(2M)
	(ii) Humidity ratio =0.021 kg/kg of dry	(3M)
	 (i) Dew point temperature = 27°C (ii) Enthalpy and =100 kJ/kg (iii) Specific volume of air=0.935 m3/kg 	(3M) (3M) (4M)
6	A room 7m X 4m X4m is occupied by an air wate atmospheric pressure is 1 bar and the relative humidity ratio, dew point temperature mass of dry a the mixture is 10°C. Find the amount of water va '06(15M)BTL3	r vapour mixture at 38°C. The humidity is 70%. Determine air and mass of water vapour. If apour condensed. AU Nov/Dec
	Answer: Page: 5.119- μ r.G.K. Vijayaragnavan and D	r. K Sundaravalli
	Relative humidity, $\Phi = \frac{P_v}{P_v} = 0.72$	(2M)

l JIT-JEPPIAAR/MECH/Mr.S.MANIMARAN/IIrdYr/SEM 03/ME 8391/ENGINEERING THERMODYNAMICS/UNIT 1 -5/QB+Keys/Ver2.0

3003

ME8351 MANUFACTURING TECHNOLOGY LTPC

OBJECTIVES:

To introduce the concepts of basic manufacturing processes and fabrication techniques, such as metal casting, metal joining, metal forming and manufacture of plastic components.

UNIT I METAL CASTING PROCESSES

Sand Casting : Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Mouldingsand Properties and testing - Cores -Types and applications - Moulding machines-Types and applications; Melting furnaces : Blast and Cupola Furnaces; Principle of special castingprocesses : Shell - investment - Ceramic mould - Pressure die casting - Centrifugal Casting -CO2 process – Stir casting; Defects in Sand casting

UNIT IIJOINING PROCESSES

Operating principle, basic equipment, merits and applications of: Fusion welding processes: Gaswelding - Types - Flame characteristics; Manual metal arc welding - Gas Tungsten arc welding- Gas metal arc welding – Submerged arc welding – Electro slag welding; Operating principle and applications of: Resistance welding - Plasma arc welding - Thermit welding -Electron beamwelding – Friction welding and Friction Stir Welding; Brazing and soldering; Weld defects: types, causes and cure.

UNIT III METAL FORMING PROCESSES

Hot working and cold working of metals - Forging processes - Open, impression and closed dieforging – forging operations. Rolling of metals– Types of Rolling – Flat strip rolling – shape rollingoperations - Defects in rolled parts. Principle of rod and wire drawing - Tube drawing -Principles of Extrusion – Types – Hot and Cold extrusion.

UNIT IVSHEET METAL PROCESSES

Sheet metal characteristics – shearing, bending and drawing operations – Stretch formingoperations - Formability of sheet metal - Test methods -special forming processes-Workingprinciple and applications – Hydro forming – Rubber pad forming – Metal spinning– Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typicalapplications - injection moulding - Plunger and screw machines - Compression moulding, Transfer Moulding – Typical industrial applications – introduction to blow moulding – Rotationalmoulding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics.

TOTAL: 45 PERIODS

9

9

9

9

9

OUTCOMES:

CO1 Explain different metal casting processes, associated defects, merits and Demerits Unit 1 CO2 Compare different metal joining processes. Unit 2

CO3 Summarize various hot working and cold working methods of metals. Unit 3

CO4 Explain various sheet metal making processes. Unit 4

CO5 Distinguish various methods of manufacturing plastic components. Unit 5

TEXT BOOK:

 HajraChouldhary S.K and Hajra Choudhury. AK., "Elements of workshop Technology", volume I and II, Media promoters and Publishers Private Limited, Mumbai, 2008
 Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India Edition,

2013

REFERENCES:

1. Gowri P. Hariharan, A.SureshBabu, "Manufacturing Technology I", Pearson Education, 2008 2. Paul Degarma E, Black J.T and Ronald A. Kosher, "Materials and Processes, in

Manufacturing" Eight Edition, Prentice – Hall of India, 1997.

3. Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", 4 thEdition, TMH-2013

4. Roy. A. Lindberg, "Processes and Materials of Manufacture", PHI / Pearson education, 2006

5. Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., 2014.

Subject Code: ME8351Year/Semester: II /03Subject Name: MANUFACTURINGTECHNOLGY-ISubject Handler: D.Christopher Selvam

Sand Casting : Sand Mould – Type of patterns - Pattern Materials – Pattern allowances –Moulding sand Properties and testing – Cores –Types and applications – Moulding machines– Types and applications; Melting furnaces : Blast and Cupola Furnaces; Principle of special casting processes : Shell - investment – Ceramic mould – Pressure die casting - Cores – Stir casting; Defects in Sand

	PART * A
Q.No.	Questions
1.	Define the characteristics of core. BTL 1 A core is a device used in casting and moulding processes to produce internal cavities and reentrant angles (an interior angle that is greater than 180°). The core is normally a disposable item that is destroyed to get it out of the piece For example, cores define multiple passages inside cast engine blocks.
2	Write the requirements of good pattern. BTL 5 Simple in design • Cheap and readily available • Light in mass • Surface id smooth • Have high strength
3	What is core venting? BTL 6 While pouring the mould with molten metal-mould walls and cores heat up rapidly and releases large amount of gases. In order to prevent casting defects these gases must be vented out. For this purpose core venting are used. Core venting are incorporated in the core box itself.
4	Define core print. BTL 1 The part of a foundry pattern which makes an opening in a mold to receive a core and to support it while the metal is being poured.
5	Which process is called lost waxing method? Why? BTL 4 Investment casting process is also known as Lost-wax process. The term investment refers to a clock or special covering apparel. In investment casting, the clock is a refractory mould which surrounds the precoated wax pattern.
6	Write the application of core prints.BTL 6 Core prints are used to serve this purpose. The core print is an added projection on the pattern and it forms a seat in the mold on which the sand core rests during pouring of the mold.
7	What are the advantages and applications of ceramic moulds? BTL 4 Advantages: a) It is less expensive b) Intricate objects can be casted. c) Castings of thin sections and which do not require machining can be produced. Applications: a) It is mainly used for all material using better ingredient in slurry.
8	State the main functions of tuyeres in cupola furnace. BTL 1 The tuyers are used to supply air to the coke bed for complete burning.
9	Examine the causes for the formation of blow holes in the sand casting. BTL 2 Gases entrapped by solidifying metal on the surface of the casting , which results in a rounded or oval blowhole as a cavity. Frequently associated with slag's or oxides. The defects are nearly always located in the cope part of the mould in poorly vented pockets and undercuts

	Differentiate Shrinkage and Porosity BTL 2
10	The definition of porosity is any void or hole in a casting. But this definition does not describe
	or give direction on the root cause of norosity . Casting norosity can be caused by gas formation
	or solidification shrinkage while the metal is a liquid
	Name the Materials used for making Patterns BTL 1
11	Some materials used for making patterns are wood metals and allows plastic plater of Paris
11	plastic and rubbers way and resins
	What are the applications of casting? BTL 4
	a)Transportation vehicles (in automobile engine and tractors)
10	b)Machine tool structures
12	c)Turbine vanes and power generators
	d)Mill housing
	e)pump filter and valve
	Classify moulding Machines. BTL 3
13	a).Squeezer Machine b)Jolt machine c)Jolt – squeezer Machine d)Slinging Machines e)Patten
	draw Machines.
	Describe the essential requirements of a core sand briefly BTL 2
14	The BASIC properties REQUIRED in molding SAND and CORE SAND are adhesiveness,
	cohesiveness, collapsibility, flowability, dry strength, green strength, permeability, refractoriness
	Explain the term fettling. BTL 5
15	Fettling is the name given to cover all those operations which help the casting to give a good
	appearance. It includes the removal of cores, sand, gates, risers, runners and other Unwanted
	projections from the casting.
	Define AFS grain- fineness number. BTL 1
16	It is defined as the ratio between the total products and total percentage of sand retained on pan
	and each sieve. AFS grain fineness number =sum of products /total sum of the % of sand retained
	on pan and each sieve.
17	what are the different types of furnaces used for casting. BIL o
	a)Cupola Fulfiace 0)Open fleatin fulfiace c)Crucible Fulfiace ()For Fulfiace e)Electric Fulfiace.
18	a) Moisture content test b) clay content test c) Grain fitness test d) Permeability test e) strength
10	test f) Deformation test g) toughness test
	Which type of furnaces are suitable for melting of ferrous material and why? BTL1
19	Cupola furnace, Air furnace (Reverberatory Furnace) Rotary and Electrical furnace
	What are the various methods of non-destructive testing used in foundries? BTL2
20	a) Visual Inspection b) Dimensional inspection c) Mechanical Testing d) Metallurgical Inspection
	e) Flow detection by NDT
PART * R	
	Describe the properties of sand molding process (8M) BTL 2
	Answer: Page 1.42 – Dr.Ramachandran
	Refractoriness: Refractoriness is defined as the ability of molding sand to withstand high
1.	temperatures without breaking down or fusing thus facilitating to get sound casting. (2M)
	Permeability: It is also termed as porosity of the molding sand in order to allow the escape of
	any air, gasesor moisture present or generated in the mould when the molten metal is poured into
	it. Permeability of mold can be increased by venting using vent rods. (2M)

	Cohesiveness: It is property of molding sand by virtue which the sand grain particles interact and attract each other within the molding sand
	The set of
	Flowability or plasticity: It is the ability of the sand to get compacted and behave like a fluid. It
	will now uniformly to all portions of pattern when rammed and distribute the ramming pressure
	evenly all around in all directions. (2M)
	Adhesiveness: It is property of molding sand to get stick or adhere with foreign material such
	sticking of molding sand with inner wall of molding box. Collapsibility: It is the property due to
	which the sand automatically collapses after freezing of the casting, to allow contraction of the
	metal.
	Explain the various types of pattern used in Mould Making. (5M)
	One piece solid pattern
	Two piece or split pattern
	Loose piece pattern
	Match plate pattern
	Sweep pattern
	Three piece or multi piece pattern
	Follow board pattern
	Gated pattern
	Classify the materials used for pattern making and write about them. (9M) BTL 5
	Answer: Page 1.4.4 – Dr.Kamachandran Wood
	(SIVI)
	 It should be properly dried and seasoned Should be free from knots, insects, excessive can wood
	• Should be nee from knots, insects, excessive sap wood
	Types. a) Deodal b) Teak woodc) wanogany
	Metal (3M)
	• Where durability and strength is required
	• It is either made from master wooden pattern or by machined by machines
	 Metal patterns are usually made in machine moulding
	Types :
2.	
	Aluminium (light in weight, corrosion resistant, easily worked)
	Brass (smooth structure, easily worked, it is expensive used in small casting)
	White steel (low melting point, cast easily, low shrinkage, light weight)
	Cast iron (cheaper and durable .low corrosion resistance unless protected)
	Plastic(3M)
	• High resistant to corrosion
	 Lighter and stronger than wood pattern
	• Dimensionally stable
	• Smooth surface
	No moisture absorption
	Types
	Epoxy, phenol formaldehyde and polyester resins
JIT	
I/U	INIT 1 -5/QB+Keys/Ver2.0

	(ii)What are the allowances given while making Pattern? Explain (4M)BTL5
	Pattern Allowances (1M)
	Shrinkage Allowances (1M)
	Machining allowance (1M)
	Draft or Taper allowance (1M)
	Distortion or camber allowance
	The difference in the dimension of the pattern and the cast component is called as pattern
	allowances.
	TYPES:
	Shrinkage allowance: Shrinks on solidification and contracts on cooling. To compensate this, the
	pattern is made larger than the required casting. Cast Iron 10 mm/mt Brass 16 mm/mt.,
	aluminum Alloys. 15 mm/mt., Steel 21 mm/mt., Lead 24 mm/mt.
	Machining allowance: To get required surface finish the pattern is made larger than cast product.
	Draft or Taper allowance: Vertical faces are made taper for easy removal of pattern.
	Distortion or camber allowance: This is a result of uneven shrinkage or improper exposure of
	surfaces during cooling so that the patterns are made slightly bend.
	Rapping allowance It is also called as shake allowance to remove the pattern out of mould, so the
	pattern is made slightly smaller than the cast product. It is called as negative allowance.
2	
5	Classify the different types of mounting sand and explain, (owi) BTL3
	Answer: Page 1.39 – Dr.S.Kamachandran
	Dru sond
	Learn sand
	Eacing sand
	Backing sand system sand parting sand
	Core sand
	(ii) Explain the method of moulding sand testing (7M)BTL 5
	Moisture content test
	Clay content test
	Chemical composition of sand
	Grain shape and surface texture of sand
	Grain size distribution of sand
	Specific surface of sand grains
	Water absorption capacity of sand
	Refractoriness of sand
	Strength test
	Permeability test
	Flow ability test
	Shatter index test
	Mould hardness test
	Describe the various properties required for the moulding sand. (7M) BTL1

	Answer: Page 1.42 – Dr.S.Ramachandran
	Refractoriness
	Permeability
	Cohesiveness
	Green strength
	Dry strength
	Flowability or plasticity
	Adhesiyeness
	Collapsibility
	(ii) Explain types of cores and its application (6M)BTL
	Types (4M)
	i) Based on State or condition of core
	a) Green sand core, b) dry sand core
	i) Based on nature of core material amployed
	a) oil bonded core b) resin bonded core c) shell core d) sodium silicate core
	<i>a)</i> on bonded core <i>b)</i> resin bonded core <i>c)</i> shen core <i>d)</i> sodium sincate core
	a) CO2 process b) bot how core a) cold set pressure d) cil No baka core
	a) CO2 process b) not box core c) cold set pressure d) on NO bake core
	a) herizontal core h) vertical core a) herizontal core a) dron core
	A publications (2M)
	Applications (2NI) They are most commonly used in conducating but are also used in injection molding
	They are most commonly used in said casting, but are also used in injection molding.
5	Identify and Explain the various steps involved in sand core manufacturing. (13M) BTL1
-	
	Answer: Page 1.57 – Dr.Ramachandran
	Various steps (1M)
	Core sand preparation (2M)
	Core making (2M)
	Core baking (2M)
	Core finishing (2M)
	Setting the cores (2M)
	Remembering (2M)
6	
	Explain construction and operation of Blast furnace with necessary sketch (13M) BTL4
	Answer: Page 1.92- Dr.S.Ramachandran
	Diagram (4M)
	Construction & Operation (9M)
	Preneating Zone
	Melting zone
	Slag Zone
	Tap hole

UNIT II - JOINING PROCESSES

Operating principle, basic equipment, merits and applications of :Fusion welding processes Gas welding - Types – Flame characteristics; Manual metal arc welding – Gas Tungsten arc welding-Gas metal arc welding – Submerged arc welding – Electro slag welding; **Operating principle andapplicationsof** : Resistance welding - Plasma arc welding – Thermit welding – Electron beamwelding – Friction welding and Friction Stir Welding; Brazing and soldering; **Weld defects:** types, causes and cure

PART * A

Q.No.	Questions
1.	How can slag inclusions in welding be avoided? (May 2008) BTL4
	(a)Avoid multi fayer weiding (b) Reduce arc length (c) increase electrode angle (d) Avoid using large electrode
	What is the purpose of flux? (May 2008) BTL1
2	(a) It acts as shield to weld. (b) To prevent atmospheric reaction of molten metal with
	atmosphere.
	How can slag inclusions in welding be avoided? (May 2008) BTL4
3	(a)Avoid multi layer welding (b)Reduce arc length (c)Increase electrode angle (d)Avoid using
	large electrode
4	List out any four arc welding equipment. (May 2006) BTL1
4	(a) A.C or D.C. machine (b) Wire brush (c) Cables and connectors (d) Ear thing clamps (e) Chipping hammer
	Why flux is coated on filler rods? (Dec. 2008) BTI 1
5	(a) The coating improves penetration and surface finish (b) Suitable coating will improve metal
	deposition rates.
	Classify various ARC welding processes. BTL1
6	(a) Arc welding (b) Carbon arc (c) Metal arc (d) Metal inert gas (e) Tungsten inert gas (f) Plasma
	arc (g) Submerged arc (h) Electro-slag
7	Classify various GAS welding processes. BTL1
	(a) Gas Welding (b) Oxy-acetylene (c) Air-acetylene (d) Oxy-hydrogen
8	Name the various methods of Resistance Welding. BTL1
	(a) BUTI (b) Spot Seam Projection (c) Percussion.
	How does brazing differ from braze weiding? (Dec. 2008) B1L5 Proving The filler allow is fad to one or more points in the assembly and it is drawn into the rest
9	of the joint by capillary action
	Braze Welding The filler allow is deposited directly at the point where it is desired
	What are the special features of friction welding? (May 2007) BTL1
	(a) Friction welding is a solid-state welding process where coalescence is produced by the heat
10	obtained from mechanically induced sliding motion between rubbing surfaces. (b) The work parts
10	are held together under pressure. (c) Its operating is simple. (d) Power required for the operation
	is low. (e) It is used for joining steels, super alloys, non-ferrous metals and combinations of
	metals.
11	Define resistance welding process. (May 2006, May 2007) BTL1
	Resistance welding is a process where coalescence is produced by the heat obtained from

	resistance offered by the workpiece to the flow of electric current in a circuit of which the
	workpiece is a part and by the application of pressure.
	What is the application of carburizing flame? (Dec. 2009) BTI 1
12	(a) Welding of low allow steel rods (b) Non-ferrous metals (c) High carbon steel
	Mention the applications of friction welding BTL1
13	(a) Used in refrigeration (b) Used in super alloys (c) Production of taper and reamer drills (d)
	Production of axle shafts (e) valves and gears
	Name the chemicals used in flux. BTL1
14	(a) Chlorides (b) Borax and boric acid(c) Borates (d) Fluorides.
	Differentiate between transferred and non transferred plasma arc welding. BTL2
	(a) Transferred arc process
	The arc is formed between the electrode(-) and the work $piece(+)$. In other words, arc is
	transferred from the electrode to the work piece. A transferred arc possesses high energy density
15	and plasma jet velocity.
15	(b) Non-transferred arc process
	The arc is formed between the electrode(-) and the water cooled constricting nozzle(+). Arc
	plasma comes out of the nozzle as a flame. The arc is independent of the work piece and the work
	piece does not form a part of the electrical circuit
	Evaluate why is spot welding commonly used in automotive bodies and in large appliances.
10	BTL5
16	In Automotive bodies in your driveway was manufactured with hundreds of spot welds, on the
	frame, the body, the suspension, etc. When you see those big robotic machines welding cars in
	automobile factories, what they re most-likely doing is spot weiding
	Show that the seam weiging is an application of spot weiging. Billing along (and youghly feeding)
	the unrelence is that two wheel-shaped electrodes are used, forming along (and usually leeding)
	deflected towards one of them. The actual contact profile can be designed in a number of ways in
17	order to suit the shape of the part to be welded. The current may flow continuously while welding
	is being carried out, or intermittently to produce a series of spots that are so closely positioned as
	to produce a single, continuous weld. An unavoidable problem of seam welding is that some of
	the current 'leaks' through the completed weld
	Give the meaning of Nugget in Electric Resistance Welding BTL 2
	In resistance spot welding "the welding of overlapping pieces of metal at small points by
18	application of pressure and electric current" creates a pool of molten metal that quickly cools
	and solidifies into a round joint known as a "nugget"
	List any four welding defects. BTL1
19	(a) Cracks (b) Porosity (c) Solid Inclusion (d) Lack of Fusion and Inadequate or incomplete
	penetration:
	Examine the causes of Welding defects. BTL3
20	(a) Lack of Fusion. (b) Incomplete Penetration. (c) Excessive Penetration. (d) Porosity.
	(e)Inclusion.
	PART * B
1	Explain MIG & TIG Welding with neat sketch. (13M) BTL 1
1	

I/UNIT 1 -5/QB+Keys/Ver2.0

TORCH BRAZING

FURNACE BRAZING

BRAZE WELDING

PAW - Plasma Arc Welding is the welding process utilizing heat generated by a constricted arc struck between a tungsten non-consumable electrode and either the work piece (transferred arc process) or water cooled constricting nozzle (non-transferred arc process). Transferred arc process produces plasma jet of high energy density and may be used for high speed welding and cutting of Ceramics, steels, Aluminum alloys, Copper alloys, Titanium alloys, Nickel alloys.

UNIT III - METAL FORMING PROCESSES

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging - forging operations. Rolling of metals- Types of Rolling - Flat strip rolling - shape rolling operations -Defects in rolled parts. Principle of rod and wire drawing - Tube drawing - Principles of Extrusion -Types – Hot and Cold extrusion.

PART * A		
Q.No.	Questions	
1.	Define hot working of metals. BTL1 Hot working process metals are plastically deformed above their recrystallization temperature. Being above the recrystallization temperature allows the material to recrystallize during deformation. This is important because recrystallization keeps the materials from strain hardening, which ultimately keeps the yield strength and hardness low and ductility high. Many kinds of working, including rolling, forging, extrusion, and drawing, can be done with hot metal.	
2	Define cold working of metals. BTL 1 Cold working is the plastic deformation of metals below the recrystallization temperature. In most cases, such cold forming is done at room temperature. The major cold-working operations can be classified basically as squeezing, bending, shearing and drawing.	
3	Analyse why surface finish of a rolled products better in cold rolling than in hot rolling. BTL 4 All cold products provide a superior surface finish, and are superior in tolerance, concentricity, and straightness when compared to hot rolled. Cold finished bars are typically harder to work with than hot rolled due to the increased carbon content.	
4	Define angle of bite in rolling. BTL 1 Definition of angle of bite. In rolling metals where all the force is transmitted through the rolls, maximum attainableangle between roll radius at the first contact and the rollcenters. If the operating angle is less, it is called the contact angle or roll angle.	
5	Define lateral Extrusion. BTL1 Lateral Extrusion: In this process, the material flows in the perpendicular direction of the punch displacement. The material, which is enclosed by the punch and die, is forced to flow through orifices that are radially placed.	
6	Identify various defects in rolled parts. BTL1 In hot rolling, if the temperature of the workpiece is not uniform the flow of the material will occur more in the warmer parts and less in the cooler. If the temperature difference is great enough cracking and tearing can occur.	
7	Classify the various forming processes. BTL3 a. Bulk forming b. sheet forming c. Powder metal forming	
8	Summarizes the effects of cold working. BTL 5 This leads to an increase in the yield strength of the material and a subsequent decrease in ductility The effects of cold working may be reversed by annealing the material at high	

	temperatures where recovery and recrystallization reduce the dislocation density.
	Define forging. BTL 1
9	Manufacturing process in which a piece of (usually hot) metal is formed into the desired shape
-	by hammering, pressing, rolling, squeezing, and other such operations in one or
	more forging equipment.
	Differentiate between compound dies and progressive dies. BTL 4
	Compound dies :Simple dies are also known as single operation dies as a single operation is
	performed for each stroke of the die press. These are generally used for very simple operations
10	listed under cutting or forming dies.
	progressive dies :Progressive dies also known as follow on dies nave a series of operations. At
	in between the two presses, the work piece gets transferred to the peyt station and is worked
	there. In this operation thus, each press operation develops a finished piece
	List out some common applications where extrusion is used BTI 1
	Extrusion is common in the application of adding colorant to molten plastic thus creating
11	specific custom color. A multitude of polymers are used in the production of plastic tubing.
	pipes, rods, rails, seals, and sheets or films.
	Point out the advantage of cold extrusion. BTL 4
	Cold extrusion is done at room temperature or near room temperature. The advantages of this
12	over hot extrusion are the lack of oxidation, higher strength due to cold working, closer
	tolerances, better surface finish, and fast extrusion speeds if the material is subject to hot
	shortness.
10	Name the types of forging machines. BTL-1
13	a. Press forging b. Upset forging c. Automatic hot forging d. Roll forging e. Induction forging
	1. Multidirectional forging g. Isothermal forging
	Unsetting This is applied to increase the cross sectional area of the stock at the expanse of the
14	length. To achieve the length of upsetting force is applied in a direction parallel to the length
	axis. For example forming of a bolt head
	Different types of rolling mills. BTL 3
15	a) Two high rolling mills b) Three high rolling mills c) Four high rolling mills d) Tandem
	rolling mills e) Cluster rolling mills
	Differentiate between hot and cold forging. BTL 4
	Strengthening mechanism in cold forging is strain hardening, while at high temperature during
16	hot forging, strain hardening is avoided resulting in optimum yield strength, low hardness and
10	high ductility. The process delivering desired quality more economically is chosen. The decision
	is based on the required properties of the desired component, its cost of production and
	customer's requirements.
	Differentiate extrusion and forging. B1L 4
17	Extrusion is a process used to create objects of a fixed cross-sectional profile. A material is pushed through a dia of the desired cross section
	Forging is a manufacturing process involving the shaping of metal using localized compressive
	forces. The blows are delivered with a hammer (often a power hammer) or a die
10	Define fullering. BTL 1
18	A half-round hammer used for grooving and spreading iron. a tool or part of a die for reducing
L	

	6.	Fair mechanical properties are	Good mechanical properties as the	
		obtained	materials are worked below the	
			recrystallization temperature.	
	7.	Tooling and handling costs are more	Tooling and handling costs are less	
	(7M)			
	(ii)With su	itable examples, explain open-die an	d closed-die forging. (6M) BTL 4	
	Answer: P	age 3.52 – Dr.Ramachandran		
	OPEN DIE	FORGING: Open die forging is the pr	cocess of deforming a piece of metal	
	between m	ultiple dies that do not completely enc	lose the material. The metal is altered as	
	the dies –	-hammer or —stamp the material th	brough a series of movements until the	
	desired sha	pe is achieved. Products formed through	ph open forging often need secondary	
	machining	and refining to achieve the tolerances i	required for the finished specifications (2M)	
	CLASSIE	ICATION OF OPEN DIE FOR	SING.	
	CLASSIF	TEATION OF OTEN DIE FOR		—
	1.F	Hammer forging		
	2.6	Power press	(1M)	
	CLOSED I	DIF FORGING: Closed die forging (al	so referred to as impression die forging) is a	
	metal defor	mation process that uses pressure to co	impress a piece of metal to fill an enclosed	
	die impress	ion In some closed die forging proces	ses a succession of impression dies are used	
	to modify t	he shape of the material into the final d	lesired shape and form (2M)	
	CLASSIE	ICATION OF CLOSED DIE FO	DRGING:	
				—
	1. Dr	op Forging		
	2. Pre	ess Forging -		
	3. Un	eset Forging	(1M)	
	What is sh	ape rolling ? Mention the products of	f shape rolling and explain production of any	7
4	one of the	products with sketches. (13M) BTL	1	
	one of the			
	A marria m	and 2.45 Dr. De Bourgeheet drou		
	Answer: P	age 5.45 – Dr.Kamachandran		
	Also known	h as profile rolling. Metal forming proc	cess where structural shapes are passed through	
	rollers to be	end or deform the work piece to desired	d shape while maintaining a constant cross	
	section.		(4M)	
	Structural s	hapes that can be rolled include: I bear	ns, H beams, T beams, U beams, angle iron,	
	channels, b	ar stocks and railroad rails. Shape rolli	ng operations are classified into	
	twoparts:1.	Ringrolling 2. Thread rolling.	(5M)	

	6.	More complicated shapes with better	Less dimensional accuracy
	7	dimensional accuracy can be	The force of the blow can be upried
	7.	The distance of the fall cannot be	The force of the blow can be varied
		(6M)	by changing the distance of the fair
6	How d	o you compare forged components with	cast components? (13M) BTL 2
0	Answ	er: Page 3 29 – Dr Ramachandran	
	S.NO	FORGED COMPONENTS	CAST COMPONENTS
	1.	In forging process, grain flow is continuous and uninterrupted	In casting process, there is no grain flow
	2.	Due to improved grain size and true grain flow, forging give greater strength and toughness	Due to no grain flow and weak crystalline structure, casting is weak in withstanding work stresses
	3.	Minimum machine finish	More machine finish
	4.	Better mechanical properties like strength, toughness, resistance to shock and vibrations	Cast components are brittle and poor resistance to shock and vibrations
	5.	Welding of forged parts is easy	Welding of cast parts is difficult
	6.	Cracks and blow holes are welded up	Defects like crack and blow holes make the casting weak and unsuitable for use
	7.	More accuracy	Less accuracy
	8.	Complicated shapes cannot be produced	Complicated shapes can be produced
	9.	Used for large parts	Used for small parts
	10	Process is costly because of cost of dies	Casting is less as there are no dies
			13M
		PART	' * C
1	Write i	n detail about the common forging proc	esses. (15M) BTL2
	Answ	er: Page 3.7 – Dr.Ramachandran	
	DRAV	WING	
	This is this a f	the operation in which metal gets elongated	d with a reduction in the cross sedation area. For icular to the length axis $(3M)$
	uno, a 1	oree is to be applied in a direction perpend	
		Drawing Operation Motion of Movable Bit Operation Motion of Movable Bit Bit Motion of Movable Bit Motion of Movable Bit Bit Motion of Movable Bit Motion of Movable Bit Bit Motion of Movable Bit Motion of Movable Bit Bit Motion of Movable Bit Bit Motion of Movable Bit Motion of Movable Bit Bit Motion of Movable Bit Motion of Movable Bit Bit Motion of Movable Bit Motion of Movable Bit Bit Motion of MovaBit Bit Motion of Movable Bit Motion of Movable Bit Bit Motion of MovaBit Bit Motion of Motion o	rk Die

	UPSETTING(3M)
	This is applied to increase the cross sectional area of the stock at the expanse of the length. To achieve the length of upsetting force is applied in a direction parallel to the length axis, For example forming of a bolt head. FLATTING AND SETTING DOWN (3M)
	Fullering leaves a corrugated surface on the job. Even after a job is forged into shape with a hammer, the marks of the hammer remains on the upper surface of the job. To remove hammer marks and corrugation and in order to obtain a smooth surface on the job, a flatter or set hammer is used. SWAGING (3M)
	Swaging is done to reduce and finish work for desire size and shape, usually either round or hexagonal. For small jobs top and bottom swage pair is employed, whereas for large work swage block can be used. (3M)
2	Explain the mechanism of rolling process with clear sketch. Write about some defects associated with rolling (15M) BTL 4
	The material to be rolled is drawn by means of friction into the two revolving gap .The compressive forces is applied by the rolls thickness of the material or changes its cross sectional area. Hot rolls are generally rough so that they can bite the work, and cold rolls are ground and polished for good finish In rolling the crystals get elongated in the rolling direction. The peripheral velocity of rolls at entry exceeds that of the strip, which is dragged in if the interface friction is high enough. In the deformation zone the thickness of the strip gets reduced and it elongates. This increases the linear speed of the exit. (5M) Construction and working (3M)
	(a) (b) Deformed elongated New grains growing New grains forming Recrystallization complete Wrought with nonuniform grains Wrought product with large grains grains New grains
	(3M) Defects in rolling process Wavy edges on sheets are the result of roll bending. The strip is thinner along its edges than at its center thus, the edges elongate more than the center.
	Zipper Crackers Edge cracks. Alligatoring : Non uniform bulk deformation of the billet during rolling or by the presence of defects in the original cast material. (4M)
3	Write a critical note on principle, types, and characteristics and limitations of the extrusion
JIT	Γ-JEPPIAAR/MECH/Mr.D.CHRISTOPHER SELVAM/II ^{ra} Yr/SEM 03/ME 8351/MANUFACTURING TECHNOLOGY-

I/UNIT 1 -5/QB+Keys/Ver2.0

	process.(15M) BTL 2
	Answer: Page 3.56 – Dr.Ramachandran PRINCIPLE OF EXTRUSION:Heated metal is compressed and forced through a suitable shaped die. Force requirement of cold extrusion is high. Process is high. So, most of the metals are extruded in hot conditions only. During the process, a heated cylindrical billet is placed in the container and it is forced out through a steel die with the help of a ram or a plunger. (4M) TYPES OF EXTRUSION:
	I. Hot extrusion 1. Forward or direct extrusion 2.Backward or indirect extrusion II. Cold extrusion or Impact extrusion CHARACTERISTICS OF EXTRUSION: (4M)
	As the geometry remains same during the operation, Extruded parts have the same cross section. (4M) LIMITATIONS OF EXTRUSION:
	Limited complexity of parts Uniform complexity of parts (3M)
	UNIT IV-SHEET METAL PROCESS
Sheet metal characteristics – shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods – special forming processes -Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning– Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming	
	PART * A
Q.No.	Questions
1.	Define shear angle. Why is it given in punches and dies. BTL2 The shearing angle is provided in the die in the case of blanking operations and in the punch in the case of hole punching operations. Most often the shearing angle is provided so that the dimension is roughly equal to or more than the plate thickness.
2	Define flanging. BTL2 Flanging metal is the act of swiping sheet metal in a direction contrary to its previous position
3	What is the principle of magnetic pulse forming?BTL1 The basic principle is that discharging of a capacitor through coil over a period of micro seconds, the magnetic flux densities of the order of hundreds of kilojoules can be produced.
4	 Explain piercing and blanking.BTL1 a) Blanking is a process in which the punch operation removes a final product from a larger piece of sheet metal.
	b) Piercing is process in which punch operation cuts a hole / material by tearing operation from a final piece of sheet metal. Piercing is a blanking operation
JIT I/U	-JEPPIAAR/MECH/Mr.D.CHRISTOPHER SELVAM/II rd Yr/SEM 03/ME 8351/MANUFACTURING TECHNOLOGY- INIT 1 -5/OB+Kevs/Ver2.0

	Give the applications of electro hydraulic forming.BTL2
5	 a) Bulging b) Bending c) Drawing d) Blanking e) Piercing
	List out advantages of explosive forming. BTL2
6	a) Forming process occurs in Small interval of timeb) Very high compact densities can be obtained Mixtures of metal can be easily compacted
	List out major functions which affect the performance in electromagnetic forming. BTL2
7	a) High intensity between the coils Eddy currentb) Coil compression Flux concentration
	Enumerate the various typical applications of electro magnetic forming process. BTL2
8	a) Compression and expansion of circular bar was carried out.b) It is used for instrument gear assembly, embossing and sizing of cups etc.
	What is a progressive Die? BTL1
9	A progressive die has a series of stations. At each station, an operation is performed on a work piece during a stroke of the press. Between strokes, the piece in the metal strip is transferred to the next station. A finished work piece is made at each stroke of the press.
	Define hobbing. BTL2
10	It is the process of forming a very smooth, accurate polished shape on punch.
11	Define squeezing. BTL2 It is the operation in which the metal is caused to flow to all portions of the die cavity under the action of compressive force.
	Define Drawing. BTL2
12	Drawing is the process of forming a flat work piece into hollow shape by means of a punch which causes the blank to flow into a die cavity
	Define Bending. BTL2
13	In this operation material in the form of flat sheet or strip is uniformly strained around a liner axis which lies in the neutral plane perpendicular to the lengthwise direction of sheet or metal.
	What is lancing operation that is done on sheet metals? BTL1
14	Lancing is a piercing operation in which the workpiece is sheared and bent with one strike of the die. A key part of this process is that there is not reduction of material, only a modification in its geometry. This operation is used to make tabs, vents, and louvers
15	What are the limitations of explosive forming? BTL1

	It is necessary each time either to lower a die weighing many tons into the water or to evacuate the water from the basin and then refill it; ground tremors and the spillage of water owing to the force of the explosion make explosion forming in buildings difficult and usually make it necessary to carry it out at open-air sites Requies Skilled labours
16	What are the desirable qualities in metal for maximum streatchability? BTL1 Fine grain structure and arrangement of atoms in the lattice
17	What is shear angle? Why is it given in punches and dies? BTL1 The surfaces of the punch and of the die are both flat. Because the entire thickness is sheared at the same time, the force increases rapidly during shearing. The location of the regions being sheared at any particular instant can be controlled by bevelling the punch and die surface
	What is flanging? BTL1
18	Flanging is a process of bending the edges of sheet metals, usually to 90°. In shrink flanging, the flange is subjected to compressive hoop stresses that, if excessive, can cause the flange periphery to wrinkle.
	Name any two super plastic materials. BTL2
19	The large-grained Fe3Al and Fe Al alloys exhibit all deformation characteristics of conventional fine grain size super plastic alloys.
	What are the applications of rubber pad forming process? BTL1
20	 a) Flanged cylindrical and rectangular cups. b) Spherical domes, c) shells with parallel or tapered walls. d) For producing variety of unsymmetrical shapes.
	PART * B
1	Describe shearing operations in a sheet metal work with a neat sketch. BTL1
	Answer: Page 4.8 - Dr.Ramachandrana) Principle(2M)b) Types(3M)c) Application(3M)d) Diagram(5M)

-	
2	Discuss various types of bending operations with its neat sketches. BTL2
	Answer: Page 4.13 – Dr.Ramachandran
	a) Principle (2M)
	b) Types (3M)
	c) Application (3M)
	d) Diagram (5M)
	\square \square \square \square \square
	Single bend Double bend Straight Rango Figure 4.31 Curling or wiring
3	How magnetic pulse forming process is carried out on sheet metal? BTL2
	Answer: Page 4.44 – Dr.Ramachandran
	a) Diagram (4M)
	b) Principle (4M)
	c) Construction (3M)
	d) Advantages and Disadvantages (2M)

-	
4	Explain peen forming process with a neat sketch.BTL1
	Answer: Page 4.47 – Dr.Ramachandran e) Diagram (4M) f) Principle (4M) g) Construction (3M) h) Advantages and Disadvantages (2M)
5	What is super plastic of metal? How this process is carried out on sheet metals?BTL1
	Answer: Page 4.49 – Dr.Ramachandran

	Head Stock Finished Plant Bars Talistock Talis
	PART * C
1	Describe various types of drawing operations with its neat sketches.BTL2
	Answer:Page . 4.19 - Dr.S.Ramachandran a) Diagram (4M) b) Types (4M) c) Principle (4M) d) Application (3M)
2	Explain the Explosive forming process with suitable sketch.BTL1
	Answer:Page. 4.42- Dr.S.Ramachandran
	a) Diagram (4M)
	b) Principle (4M)

	c) Working (4M)
	d) Advantage (1M)
	e) Disadvantage (1M)
	f) Application (1M)
3	Explain stretch forming operation with a neat sketch. BTL2
	Answer: Page.4.23-Dr.Ramachandran
	a) Diagram (4M)
	b)Principle (4M)
	c) Working (4M)
	d)Advantage (1M)
	e) Disadvantage (1M)
	f) Application (1M)
<u> </u>	

	UNIT V – MANUFACTURING OF PLASTIC COMPONENTS
Types Worki Comp mould Therm	of plastics– Characteristics of the forming and shapingprocesses–Mouldingof Thermoplastics – ingprinciples and typical applications of–Injectionmoulding – Plunger and screw machines – ression moulding – Transfer moulding– Typical industrial applications–Introduction to Blow ling – Rotational moulding– Film blowing– Extrusion – Thermoforming–Bondingof noplastics forming – Micro forming
	PART * A
Q.No.	Questions
1.	Define the term polymers. BTL2 Any of numerous natural and synthetic compounds of usually high molecular weight consisting of up to millions of repeated linked units, each a relatively light and simple molecule.
2	Define Homopolymer. BTL2
	It is a polymer that is made up of identical monomer. Define positive mould and negative mould in thermoforming (APRII /MAV 2016) BTI 1
3	Depends upon the shape of the product it will be selected. In the positive(male) mould the plastic is stretched over the mould, and then vacuum is applied to draw the plastic down onto the surface of the mould. With a female mould the plastic is drawn down into a cavity by the vacuum
	$ \land \land$
	male mold
	Mate mold Image mold Image mold What are the uses of fillers? BTL1
4	What are the uses of fillers? BTL1 a) It improves the compressive and tensile strengths of the polymer. b) Beduces the cost of the final product.
4	Mate mold female mold, What are the uses of fillers? BTL1 a) It improves the compressive and tensile strengths of the polymer. b) Reduces the cost of the final product. What are the characteristic of thermoplastics? BTL2

	are soft and ductile. They have low melting temperature and can be repeatedly moulded and	
	remoulded to the required shapes.	
	Define the term synthetic resins. BTL2	
6	A resin having a polymeric structure: especially a resin in the raw state: used chiefly in plastics.	
	List out few characteristics of polymer. BTL2	
	a) High Corrosion resistance	
7	b) Low thermal and electrical properties Low density	
	c) Light weight	
	What is film blowing? BTL 1	
0	In this process a heated doughy paste of plastic compound is passed through a series of hot	
8	rollers where it is squeezed into the form of thin sheet of uniform thickness It is used for making	
	plastic sheets and films.	
	Define Polyaddition. (APRIL/MAY 2015) BTL2	
	Polyaddition are reactions in which the polymer is originated by successive additions of	
	functional groups (monomer A) inside of molecular structures with double bonds (monomer B).	
	Monomer A	
9		
	Monomer B	
	Polymer A+B	
	What are the characteristics of thermoplastics? BTL1	
	Thermoplastics (also referred to as thermo-engineering plastics) are high molecular weight	
10	polymers that become liquid upon heating and glassy solids on cooling. Bonding between	
10	molecules of a polymer could be of varying strength, thus resulting in different types of	
	thermoplastics, i.e., polythenes that have relatively weak attractive forces (van der Waals forces),	
	stronger hydrogen bonds in nylon, and very strong stacked aromatic ring bonds in polystyrene.	
	Differentiate thermosetting and thermo plastics. (NOV/DEC 2013) BTL2	
11	a) The main difference between thermoplastics and thermosets is that:	
	b) Thermoplastics can be re-melted and recycled fairly easily	
	c) Thermosets typically are cured and molded into shape and are not recycled as easily	
	What is rotational moulding of plastics? BTL1	
10	Rotational moulding (often referred to as Rotamoulding or Rotomoulding) is a process used for	
12	producing hollow plastic products. By using additional post-moulding operations, complex	
	components can be produced enabling the process to compete effectively with other moulding and	
	extrusion practices.	
13	Give the list of products produced using blow moulding. B1L2	
	Small products may include bottles for water, liquid soap, shampoo, motor oil, and milk, while	
	larger containers include plastic drums, tubs, and storage tanks.	
	what is nim blowing? (NUV/DEC 2013) BTL1	
1/	BIOWN TIME extrusion is a technology that is the most common method to make plastic films,	
14	through a dia and inflating to several times its initial diameter to form a thin film bubble. This	
	bubble is then collapsed and used as a lay flat film or can be made into bags. Usually	
	j bubble is men conapseu and used as a lay-flat fiffit of call be made fifto bags. Usually j	

	polyethylene is used with this process, and other materials can be used as blends with these
	polymers.
1.5	What is parison? BTL1
15	A cylindrical tube of resin that is placed within a mold. Positive air pressure forces the parison to
	fill the mold.
	Define the term thermoforming. BTL2
	Thermoforming is a manufacturing process where a plastic sheet is heated to a pliable forming
16	temperature, formed to a specific shape in a mold, and trimmed to create a usable product. The
	sheet, or "film" when referring to thinner gauges and certain material types, is heated in an oven
	shape
	What is prepred 2BTI 1
	The term "prepred" is actually an abbreviation for the phrase pre-impregnated. A prepred is an
17	FRP reinforcement that is pre-impregnated with a resin Most often the resin is an epoxy resin
	however other types of resins can be used, including the majority of thermoset and thermoplastic
	resins.
	List the advantage of cold forming of plastics. BTL2
	a) Speed, Net / Near net shape to eliminate or reduce secondary operations, Consistency /
	dimensional accuracy
18	b) Quality / surface finish
	c) Material savings & elimination of scrap
	d) Improvement in mechanical properties, greater strength to weight ratio, unbroken grain
	flow.
	What is lamination process? BTL1
19	The process of applying a film of plastic on the surface of any item is known as laminating. When
	plastic coating is added to any item it becomes tear-proof and waterproof, since the laminating
	film encapsulates the item completely by being bonded to both its sides.
	List any four types of adhesives used in adhesive bonding of plastics. (Nov/Dec 2014) B1L2
	Adhesive bonding has unique applications that require strength, sealing, thermal and electrical insulating without a domain and resistance to correction between disciplination. Machanical
20	fastening involves traditional methods of using various fasteners, especially blots, puts, adhesive
	bonding fusion fastening and rivets. The joining of plastics can be accomplished by various
	external or internal heat sources, and mechanical.
	PART * B
1	With a neat sketch explain the process of plasticiniectionmoulding. (13M) BTL1
	Answer: Page 5.26 – Dr.Ramachandran
	a)Principle (2M)
	b)Construction(3M)
	c)Application (3M)
	d)Diagram (5M)

2	Give the sequence of operations in transfer moulding forthermosettingprocess.(13M) BTL2
	Answer: Page 5.41 – Dr.Ramachandran
	a) Principle (2M)
	b) Types (3M)
	c) Application (3M)
	e) Diagram (5M)
	Illustrate with suitable sketch, the blow moulding process for producing
3	nlasticsheveragehottles (13M) BTI 2
	Answer: Page 5.46 – Dr Ramachandran
	a)Diagram(4M)
	b)Principle (4M)
	c)Construction (3M)
	d)Appplication (2M)

	HASTIC POWDER HEAT MOTOR By Viryon
4	Describe the procedure involved inrotational moulding. (13M) BTL2
	Answer: Page 5.53 – Dr. Ramachandran a)Diagram (4M) b)Principle (4M) c)Construction (3M) d)Advantages and Disadvantages (2M)
5	Describe in detail about the vaccumformingprocess. (13M) BTL1
	Answer: Page 5.71 – Dr.Ramachandran
	a)Diagram (4M)
	b)Principle (3M)
	c)Construction (3M)

	d)Application (3M)
6	Describe in detail about the compression mouldingprocess.(13M) BTL2
	Answer:Page 5.37 Dr.S.Ramachandran
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (2M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)
7	Answer:Page 5.37 Dr.S.Ramachandran a)Diagram (4M) b)Principle (3M) c)Construction (3M) d)Application (3M)

I/UNIT 1 -5/QB+Keys/Ver2.0

	Answer:Page 5.76- Dr.S.Ramachandran a) Diagram (4M) b) Principle (3M) c) Construction (3M) d) Application (3M)
	Explain the structure of thermoplastic and thermosetting plastics. Compare thermo and
8	thermosetting plastics. (13M) BTL2
	Answer: Page 5.14 – Dr.S.Ramachandran a)Diagram (3M) b)Types (4M) c)Advantages (3M) d)Application (3M)
	Thermoplastic Elastomer Thermoset
	PART * C
1	D escribe the working principle of film blowing and Thermoforming. (15M)BTL2
	Answer: Page 5.59 - Dr.S.Ramachandran
	a)Diagram (4M) b)Types (4M)

c)Principle (4M)
d)Application (3M)

2	Illustrate with suitable sketch, the Micro forming Process. (15M) BTL1
	Answer:Page 5.86- Dr.S.Ramachandran
	a)Diagram(4M)
	b)Principle (4M)
	c)Working(4M)
	d)Advantage (1M)
	e)Disadvantage (1M)
	f)Application (1M)
3	Write down the characteristics of shaping processes for plastics.(15M) BTL2
<u> </u>	

S.No	Processes	Characteristics
a)	Injection Moulding	 1. High ProductionRate 2. Good dimensionalAccuracy 3. Complex shapes of varioussizes 4. Costlytoolings 5. Eliminatingassembly
b)	Blow Moulding	 Hollow-thin walled parts 2. Low cost for making container High production rates.
c)	Rotational Moulding	 Low toolingcost Low productionrates Large hollow shapes of relatively
ď) Extrusion	1. Widetolerance 2. High ProductionRates 3. Low toolingCost 4. Long, Uniform, solid or hollow complex cross sections.
e)	Thermo forming	 Medium productionrates Shallow or relatively deepcavities Low toolingcost.
(f)	Compression moulding	 Relatively inexpensivetooling Medium productionrates Parts similar to impression dieforging.
g)	Transfer moulding	 Some scraploss Medium toolCost More complex than compression moulding 4. High productionrates.
h	Casting	1.Low productionrates 2.Simple or intricate shapes made with flexible moulds

EE 8353 ELECTRICAL DRIVES AND CONTROLS

OBJECTIVES:

- To understand the basic concepts of different types of electrical machines and their performance.
- To study the different methods of starting D.C motors and induction motors.
- To study the conventional and solid-state drives

UNIT 1 INTRODUCTION

Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives Heating and cooling curves – Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors

UNIT II DRIVE MOTOR CHARACTERISTICS

Mechanical characteristics – Speed-Torque characteristics of various types of load and drive motors – Braking of Electrical motors – DC motors: Shunt, series and compound - single phase and three phase induction motors.

UNITIIISTARTINGMETHODS

Types of D.C Motor starters – Typical control circuits for shunt and series motors – Three phase squirrel cage and slip ring induction motors.

UNIT IV CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES

10 Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard

UNIT V CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES

10

Speed control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery scheme – Using inverters and AC voltage regulators – applications.

TOTAL: 45 PERIODS

OUTCOME:

Upon Completion of this subject, the students can able to explain different types of electrical machines and their performance

TEXT BOOKS:

1. Nagrath .I.J. & Kothari .D.P, "Electrical Machines", Tata McGraw-Hill, 2006

control system - Using controlled rectifiers and DC choppers -applications.

2. VedamSubrahmaniam, "Electric Drives (Concepts and Applications)", Tata McGraw-Hill, 2010

REFERENCES:

1. Partab. H., "Art and Science and Utilisation of Electrical Energy", DhanpatRai and Sons, 2017

Year/Semester: II /03

2. Pillai.S.K "A First Course on Electric Drives", Wiley Eastern Limited, 2012

3. Singh. M.D., K.B.Khanchandani, "Power Electronics", Tata McGraw-Hill, 2006.

Subject Code: EE8353

JIT-JEPPIAAR/EEE/Mr..A.ANTONY CHARLES. IIrdYr/SEM 03 /EE8353/ELECTRICAL DRIVES AND CONTROLS/UNIT 1-5/QB+Keys/Ver2.0

L T P C 3 0 0 3

8

9

8

Subject Name: Electrical Drives and Controls

Subject Handler: Mr.A.Antony Charles

UNIT I INTRODUCTION		
Basic H	Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and	
cooling	to thermal overloading and L and variation factors	
regard	to thermal overloading and Load variation factors	
Q.No.	PART*A	
	List out the types of electric drives.(NOV/DEC 2016) BTL1	
1.	Group electric drives,	
	• Individual drives,	
	Multi motor electric drives.	
	State the basic elements of an electric drive system.(MAY/JUNE 2014)(MAY/JUNE 2016)BTL1	
	Electrical motors and load	
2	Power modulator	
	• Source	
	Control unit	
	• Sensing unit	
	Mention the factors affecting the selection of electrical drives. (NOV/DEC 2015) BTL1	
3	• Steady state	
	• Acceleration including starting	
	Deceleration including stopping	
4	Define duty factor. B1L1 The ratio of ON time (T_{-}) of the drive to total time period $(T_{-} + T_{-})$ is called duty factor	
	The ratio of ON time (T_{on}) of the drive to total time period $(T_{on} + T_{off})$ is called duty factor.	
	Differences between Drive and Electric Drive. BTL1	
	Drive: A combination of prime mover, transmission equipment and mechanical working load is called	
5	adrive	
5	Electric drive: An Electric Drive can be defined as an electromechanical device for converting	
	electrical energy to mechanical energy to impart motion to different machines and mechanisms for	
	various kinds of process control.	
	How heating occurs in motor drives?(APRIL/MAY 2015)BTL1	
6	When a machine is switched off from the mains or when the load on the motor is reduced, the machine	
6	cools. The curve obtained temperature drop Vs time when the drive is switched off or load on the drive	
	is removed.	
	Mention the necessity of nower rating BTL 2	
	Power rating of electric drives for particular operation is important since, following reasons	
7	To wer fulling of electric all tes for particular operation is important since, fond wing reasons.	
	• Get economy with reliability	
	• To obtain the maximum efficiency on their full load.	
0	List out some examples of prime movers. BTL2	
δ	• I.C Engines	
	Steam Engine	

	Turbines Electric Motors
	• Electric Motors. List the factors affecting the selection of electric drives (APRIL/MAV 2017) BTL 2
9	 Efficiency Braking Load factor Availability of supply Effects of supply variations Economical aspects
	Define four – quadrant operation.BTL2
10	A motor operate in two modes and braking. In motoring, it converts electrical energy into mechanical energy, which supports its motion. In braking it works as a generator converting mathematical energy into electrical energy and thus, opposes the motion. Motor can provide motoring and braking operations for both forward and reverse directions.
	What are the advantages and disadvantages of Group drive (Shaft drive)? BTL3
11	 Advantages: A single large motor can be used instead of a number of small motors. The rating of the single motor may be appropriately reduced taking into account the diversity factor of loads. Disadvantages:
	 There is no flexibility; Addition of an extra machine to the main shaft is difficult. The efficiency of the drive is low, because of the losses occurring in several transmitting mechanisms.
12	Mention the types of electrical drives.BTL3 DC drives AC drives
13	Mention the various classes of duty BTL3 • Continuous duty
	 Continuous duty, variable loads Short time loads
	What is the three method of operation for electrics drive?BTL1
14	 Steady state Acceleration including starting Deceleration including stopping
	Mention power rating of linear movement in AC motors.BTL4
15	Efficiency of load and transmission systemdepend on the type of load. v – Velocity of linear motion, m/s

16	Compare a multi motor electric drive.Give some examples.(Nov/Dec 2014) BTL5 In this drive, there are several drives, each of which serves to activate on of the working parts of the driven mechanisms. Metal cutting machine tools, paper making machines, rolling mills, traction drive, Traveling cranes etc.,
	Define cooling curve.(April/May 2017) BTL5
17	When a machine is switched off from the mains or when the load on the motor is reduced, the machine cools. The curve obtained temperature drop Vs time when the drive is switched off or load on the drive is removed.
18	 State individual electric drive.(April/May 2015) BTL1 In this drive, each individual machine is driven by a separate motor. This motor also imparts motion to various other parts of the machine. Single spindle drilling machine, Lathe machines etc.
	What are the advantages and disadvantages of individual drive? BTL6
19	 Advantages: Flexibility of layout If any failure or maintenance carried out in main motor, corresponding load will be affected or idle. Efficiency is high because no load losses are less. Disadvantages: Cost is high compared to group drive PPIAAR
20	 State the selection of motor based on load variation (or) Types of mechanical loads.BTL1 Continuous or constant loads Continuous variable loads Pulsating loads Impact loads Short time loads
21	 Give some examples of Electric Drives.BTL1 Driving fans, ventilators, compressors and pumps. Lifting goods by hoists and cranes.
22	State the some of the advantage of an electric drive system.BTL1
	 Control characteristic can be manipulated as per requirements Availability of simple and easy speed control methods
23	Mention the application of electrical drives.BTL1
	• Paper mills
	Electric traction
	• Cement mills
	Steel mills
24	Define cooling time constant.BTL1
	It is defined as the ratio between C and A cooling time constant is denoted as α

	$\alpha = C/A$
25	 What are the advantages and disadvantages of Group drive (Shaft drive)?BTL1 Advantages: A single large motor can be used instead of a number of small motors. The rating of the single motor may be appropriately reduced taking into account the diversity factor of loads. Disadvantages:
	 There is no flexibility; Addition of an extra machine to the main shaft is difficult. The efficiency of the drive is low, because of the losses occurring in several transmitting mechanisms.
	FARI*B
	Explain the factors governing the selection of motors. (13M) BTL1
1.	 Answer : Page :1.20 - J.Gnanavadivel, J.Kartnikeyan Transient Operation(3M) A system is said to be in a transient state when a process variable or variables have been changed and the system has not yet reached a steady state. The time taken for the circuit to change from one steady state to another steady state is called the transient time. Related with source(3M) Need of Cost(5M)
	Describe in detail the determination of power rating of motors. (13M) (BTL1)
2	 Answer: Page :1.9-J.Gnanavadivel,J.Karthikeyan Continuous duty
	Describe about thesimplifications based on which the heating and cooling calculations of an electric motor are made.(13M) BTL1 Answer: Page:1.10-J.Gnanavadivel,J.Karthikeyan
3	 Heat developed(6M) Heat dissipated(7M)

	Describe the different types of leading of drives (ADD/MAV 2017)(13M) PTI 1
	Answer: Page :1.23-J.Gnanavadivel.J.Karthikevan
4	 Based on load conditions (2M) Based on mode operation (3M)
	 Based on controlling action(3M) Based on Number machines(5M)
	Give the brief note on classes of duty for an electric motor(13M) BTL2
5	 Answer: Page :1.17-J.Gnanavadivel,J.Karthikeyan Continuous duty(3M) Fluctuating loads (5M) Short time and Intermittent duty(5M)
	Explain about the torque and power methods for Fluctuating and Intermittent loads.(13M)
	BTL2
6	Answer: Page:1.29-J.Gnanavadivel,J.Karthikeyan
	• Actual variable motor current(5M)
	• Core loss and friction loss (5M)
	• Copper loss (3M)
	Explain the Load Equalization.(13M)BTL2
	Answer: Page :1.30-J.Gnanavadivel,J.Karthikeyan
	• Torque Fluctuation(5M)
7	The vibrating force due to the combustion pressure causes torque fluctuationin the crankshaft,
	 Electric hammer Steel rolling(3M)
	 Voltage fluctuation (5M)
	Calculate the load rising from 0to 400KW:5min
	Remains idle for 2 min(13M) BTL3
	Answer: Page :1.3-J.Gnanavadivel,J.Karthikeyan
8	• Uniform load =60(5M)
	• load =5A(2M)
	• Rated power=20 W(3M)
	• KIVIS value = 50 v(3NI)

	PART *C
	A 100 KW motor ,having rated temperature is 60 C has a full load efficiency of 80% and the maximum efficiency occurs at85% full load.It has a thermal constant of 80 minutes and 65 minutes It is cyclically loaded,120% of full load for one hour and 50% of full load for next hour. Find the temperature rise after 3hrs.(15M) BTL2
1.	Answer: Page:1.36-J.Gnanavadivel,J.Karthikeyan
	 Temperature-25 C (6M) full load- 10A(2M) Output power-200 Watts(2M) Full load loss-20(2M) Temperature rise-30C(2M)
	Explain the pattern of characteristics under steady state Short time &intermittent time. (15M) (Nov/Dec 2016) BTL3
2	 Answer: Page:1.27-J.Gnanavadivel,J.Karthikeyan Short time & temperature rise intermittent time-(7M) Temperature rise- (3M) Constant load (3M) Number of cycles (2M)
	Find the rating of a 100KW motor when subjected to a duty cycle of 18 minutes on full load followed by 30 minutes on no load. The heating and cooling time constant of the motor are 90 and 120 minutes respectively. Assume that loss are proportional to square of load current.(15M) BTL5 Answer: Page :1.33-J.Gnanavadivel,J.Karthikeyan
3	Heating and cooling time constant-(6M) Loss-(3M) T1=65.5 °C.(3M) Th1=55.34C
	Draw a typical temperature rise –time curve and derive equation for temperature rise in an electric drive(15M) BTL6
4	Answer: Page:1.16-J.Gnanavadivel,J.Karthikeyan
	 Temperature rise (8M) Cooling curves (6M)
UNIT II DRIVE MOTOR CHARACTERISTICS

Mechanical characteristics – Speed-Torque characteristics of various types of load and drive motors – Braking of Electrical motors – DC motors: Shunt, series and compound - single phase and three phase induction motors.

Q.No.	PART-A
1.	 Define back EMF in a D.C. Motor and State its expression. BTL1 Armature starts rotating, the main flux gets cut by the armature winding an EMF gets induced in the armature. This EMF opposes the applied DC voltage and is called back EMF denoted as E_b.
2	 Write the voltage equation of D.C. Motor. BTL1 V=E_b+I_aR_a. The back EMF is always less than supply voltage (E_b<v).< li=""> But Ra is very small hence under normal running conditions, the difference between back EMF and supply voltage is very small. </v).<>
3	 State the various types of D.C. Motors.BTL1 Separately excited DC Motor DC Shunt motor
4	Define slip. BTL1 The difference between the synchronous speed (N _s) and actual speed (N) of the rotor is known as slip speed. The percentage of slip is given by % slip s = $[(N_s - N) / N_s] *100$ - JEPPIAAR
5	What is synchronous speed? BTL1 The speed depends on the supply frequency (f) and the number of poles for which stator winding is wound (P).It is called synchronous speed denoted as N_s and given by $N_s = 120 \text{ f} / \text{P}$ in RPM
6	What is rotor conductor and end ring? BTL1 The rotor core is cylindrical and slotted on its periphery. The rotor consists of un insulated copper or aluminum bars called rotor conductors.
7	 Mention the important characteristics of a DC motor.BTL2 Torque – Armature current characteristics Speed – Armature current characteristics Speed- Torque Characteristics
8	 Why DC motors should not be started without starters? (NOV/DEC 2016) BTL2 Under light load or no load as flux is very small, the motor tries to run at dangerously high speed which may damage the motor mechanically. This can be seen from the speed – armature current and the speed- torque characteristics
9	 State Induction motor as a transformer. B1L2 Transformer is a device in which two windings are magnetically coupled and when one winding is excited by AC supply of certain frequency

	Draw the speed torque characteristics of DC shunt and series motors. (MAY/JUNE 2016)BTL2
10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
11	 Why a single phase induction motor does not Self start? BTL3 When a single phase supply is fed to the single phase induction motor. Its stator winding produces a flux which only alternates along one space axis. It is not a synchronously revolving field, as in the case of a 2 or 3phase stator winding, fed from 2 or 3 phase supply. Compare electrical braking and mechanical braking.BTL3
12	Electrical brakingMechanical braking(i)Frequent Maintenance(i)Less maintenance(ii)Braking is not smooth(ii)Braking is smooth
13	 Mention the three regions in the speed -torque characteristics of induction motor. BTL4 Motoring region (0< s<1) Generating region(s<0) Plugging region (1<s<2)< li=""> </s<2)<>
14	 What are the different types of Electric braking?(APRIL/MAY 2015)(NOV/DEC 2015)BTL4 Rheostatic or dynamic braking Plugging Regenerative braking D.C. Dynamic braking
15	Define transformation ratio. BTL4 $K = E_2 / E_1(or) k = N_2 / N_1$ Where $E_1 =$ Stator EMF per phase in volts $E_2 =$ Rotor induced EMF per phase in volts at start when motor is at standstill.
16	 Mention the types of Single phase induction motors.BTL5 Split phase induction motor Capacitor start induction motor
17	 Dynamic braking of electric motors occurs when the energy stored in the rotating mass is dissipated in an electrical resistance. This requires the motor to operate as a generator to convert this stored energy into electrical.
18	Define Plugging. BTL6
	JIT-JEPPIAAR/EEE/MrA.ANTONY CHARLES. II rd Yr/SEM 03 /EE8353/ELECTRICAL DRIVES AND CONTROLS/UNIT 1-5/OB+Kevs/Ver2.0

	It is one method of braking of induction motor. When phase sequence of supply of the motor running at a
	speed is reversed, by interchanging connections of any two phases of stator.
	What is meant by Regenerative Braking?BTL1
20	• Regenerative braking occurs when the motor speed exceeds the synchronous speed.
	• In this case, the induction motor would runs as the induction machine is converting the mechanical
	power into electrical power, which is delivered back to the electrical system.
	What are the advantages of electric braking over other type of braking?(NOV/DEC 2014) BTL1
21	Rheostat or dynamic braking
21	 Plugging Degenerative braking
	 Regenerative braking D.C. Dynamic braking
	List the advantage of squirrel cage IM BTL1
	• Cheaper
	 Light in weight
22	Rugged in construction
	• More efficient
	Require less maintenance
	Can be operated in dirty and explosive environments
	Why a three phase induction motor does not Self start? BTL1
	• When a three phase supply is fed to three phase induction motor. Its stator winding produces a flux
23	which only alternates along one space axis.
	• It is not a synchronously revolving field, as in the case of a 2 or 3phase stator winding, fed from 2 or
	3 phase supply.
	What are the types of single phase induction motor? BTL1
2.4	• Split phase induction motor
24	• Capacitor start induction run motor
	• Capacitor start Capacitor run motor
	Shaded pole induction motor Commons Slip ving and Equippel ages motor, DTL 1
25	Compare Sup ring and Squirrei cage motor. B1L1
23	 Uigh starting torque is added
	• High starting torque is added
	PARI*B
	Describe the various types of electric braking and discuss the various braking of DC shunt and DC
	series motor. (13M) (NOV/DEC 2014)B1L1 Answer: Bara (2.45) I Change adivel I Kenthikevon
	Answer: Page :2.45- J.Gnanavadivel, J.Kartinikeyan
1.	 Regenerative blacking(4W) Braking is an energy recovery mechanism which slows a vehicle or object by converting its kinetic
	• Draking is an energy recovery mechanism which slows a vehicle of object by converting its kinetic energy into a form which can be either used immediately or stored until needed
	• Dynamic braking (3M)
	 Dynamic of aking (SW) Plugging or Reverse current braking (6M)
	Write the braking characteristics available for induction motors and explain in details (13M)BTL1
-	Answer: Page:2.56- J.Gnanavadivel, J.Karthikevan
2	• DC dynamic braking (6M)
	The motor now works as a generator, producing the braking torque. for the braking operation
L	JIT-JEPPIAAR/EEE/Mr., A.ANTONY CHARLES. II rd Yr/SEM 03 /EE8353/ELECTRICAL DRIVES AND CONTROLS/UNIT

1-5/QB+Keys/Ver2.0

	in dynamic braking.
	• AC dynamic braking (7M)
	Explain the torque –speed characteristics for the DC motors. (APR/MAY 2015) (13M)BTL1 Answer: Page:2.31- J.Gnanavadivel, J.Karthikeyan
3	 Motoring region (4M) The torque-speed curve for the normal MOTORING REGION, where the speed lies between zero and just below synchronous, we must ask what happens if the speed is above the synchronous speed, or is negative. Generating region (6M) Plugging region (3M)
4	 Describe the various torque -slip characteristics for the DC motors.(13M)BTL1 Answer: Page.:2.28- J.Gnanavadivel, J.Karthikeyan Stable operating region (4M) The solid line is the torque-speed curve of the motor, while the dotted lines Unstable operating region (6M) The concept of stability of induction motor is very important and vital for interview point of view or and motorspeed torque characteristics determines the point of stableoperation of motor Normal operating region(3M)
5	 Explain the advantages and disadvantages of electrical braking over mechanical braking.(13M) BTL2 Answer: Page:2.38- J.Gnanavadivel, J.Karthikeyan Regenerative braking(4M) Energy recovery mechanism which slows a vehicle or object by converting its kinetic energy into a form which can be either used immediately or stored until needed. Plugging(6M) A part of energy is returned to the supply consequently the running cost is reduced. Dynamic braking(3M)
6	 Give the various load characteristics of DC Shunt Motor.(APR/MAY 2015) (13M) BTL2 Answer: Page:2.29- J.Gnanavadivel, J.Karthikeyan Armature resistance (7M) At the moment a DC motor is started the armature is stationary and there is no counter EMF being generated. Shunt field winding resistance (6M)
7	 Describe about the operation of Single phase induction induction motor. (13M) BTL2 Answer:Page:2.32- J.Gnanavadivel, J.Karthikeyan Lacking of starting torque(6M) Wound type rotor induction motor addition of external resistance is possible this makes a wide usage like speed control, high starting torque by decreasing Reduced power factor(4M) Less efficiency(3M)

1-5/QB+Keys/Ver2.0

	State and explain single-phase induction motors speed torque curve in details. (13M) B1L3
	Answer: Page.:2.39- J.Gnanavadivel, J.Karthikeyan
	• Resistance start(3M)
	• The phase-angle difference between current in the run winding and current in the start
	winding of a resistance-start induction-run motor is generally 35 to 40 degrees
	Sr
	1- Phase V S Rotor
8	supply E C CS
	S 3Xm
	RA XA IA
	•····•
	Auxiliary Winding
	(1994) (1
	• Single-phase induction motors are not self-starting without an auxiliary stator winding driven
	by an out of phase current of near 90°.
	• Capacitor Run(4M)
	• The capacitor start capacitor run motor has a cage rotor and its stator has two windings
	known as Main and Auxiliary Windings.
	• Shaded pole(3M)
	Describe the regenerative braking employed in DC Motors (13M) BTI 3
	Answer: Page: 2.56. I Chanavadivel I Karthikevan
	Hoisting mechanism (6M)
	• The lifting the second second second for an listing in the second second second for an listing in the second
9	• The lifting three-phase induction electric motors are designed for application in the main motion of
	rope and cham holsts, their brake is electromagnetic with dc supply voltage, non -adjustable.
	• Variable frequency (/M)
	• Variable-frequency drive is a type of adjustable-speed drive used in electro-mechanical drive
	systems to control ac motor speed and torque by varying motor
	Explain the 30 induction motor. (13M) BTL4
	Answer: Page:2.21- J.Gnanavadivel, J.Karthikeyan
	• Types (6M)
	• 1. Squirrel cage induction motor and 2. phase wound induction motor (slip-ring induction motor).
	• Principle & Operation of motor(4M)
10	• A motor is an electrical machine which converts electrical energy into mechanical energy.
	• The principle of working of a DC motor is that "whenever a current carrying conductor is placed in a
	magnetic field, it experiences a mechanical force".
	• Advantages & Disadvantages(3M)
	The primary advantage of the DC motor is that it can develop constant torque over a wide speed
	application. Power supply is an important consideration in the application of DC motors
	approximit over suppry to an important consideration in the approximet of DC motors.

	PART * C
	Explain about the various load characteristics of DC Shunt Motor.(15M) BTL2
	Answer: Page:2.16- J.Gnanavadivel, J.Karthikeyan
1.	• Speed-Armature characteristics (3M)
	• Torque-armature characteristics(4M)
	• Speed-Torque characteristics(8M)
	Explain anyone method of electrical braking of DC Machines.(NOV/DEC 2014) (15M)BTL6
	Answer: Page:2.56- J.Gnanavadivel, J.Karthikeyan
	• Downward mechanism(8M)
	• A dc motor is any of a class of rotary electrical machines that converts direct current electrical .this
2	feature is used to slow down and recharge batteries on hybrid car.
	• variable frequency(7M)
	• avariable-frequency drive is a type of adjustable-speed drive used in electro-mechanical drive
	systems to control ac motor speed and torque by varying motor.
	Classify the different types of load torques available and sketch few load torques curves of typical (15) (N $(15$
	loads. (15) (Nov/Dec 2016)B1L5
	Answer: Page.:2.51- J.Gnanavadivel, J.Kartinkeyan
	• Motoring region(4M)
2	• Energy recovery mechanism which slows a vehicle of object by converting its kinetic energy into a form which can be either used immediately or stored until needed
3	• Concreting region (6M)
	• A part of energy is returned to the supply consequently the running cost is reduced
	 A part of energy is returned to the suppry consequently the running cost is reduced. Plugging region
	 Flugging regioni (SM) Plugging aircuit a reverse torque is developed even when the ermeture has some to a stop. Circuit
	• Flugging circuit, a reverse forque is developed even when the armature has come to a stop. Circuit interruption is usually controlled by an automatic null-speed device mounted on the motor shaft
	Create a torque- slip Characteristics of three phase induction motor (15M) (April/May 2016)BTI 6
	Answer: Page:2.36- J.Gananavadivel. J.Karthikevan
	• Stable region (5M)
4	Essential condition that defines a stable operating point is that it is the point where the torque
	requirement curve crosses the motor capability curve in a region where the motor torque capability
	is declining as speed increases.
	• Unstable operating region (5M)
	• Normal operating region(5M)
	• A DC motor is any of a class of rotary electrical machines that converts direct current electrical
	• Introduction of DC motorsand an electrical grid system to run machinery starting in the 1870s
	started a new second industrial revolution.

UNIT III STARTING METHODS

Types cage a	of D.C Motor starters – Typical control circuits for shunt and series motors – Three phase squirrel and slip ring induction motors.
Q.No.	PART-A
1.	Why we need starters for starting electric motors?(NOV/DEC 2014) BTL1
	• At starting, when the motor is stationary, there is no back EMF ($E_b = 0$) in the armature.
	This current will damage the motor.
2.	What is meant by starting resistance? BTL1
	• To restrict this high starting armature current, a variable resistance is connected in series with
	the armature at start.
3	• I his resistance is called starter of a starting resistance.
5.	Two Point starter
	Two Fount starter
	Four Point starter
4.	List the main parts of three point starter. BTL1
	• L = Line terminal
	• A = Armature winding
	• F = Field winding
5.	What are the disadvantages of three point starter? BTL1
	• The 3 point starter suffers from a serious drawback for motors with a large variation of speed
	by adjustment of the field rheostat.
	• To increase the speed of the motor, the field resistance should be increased. Therefore, the current through the shunt field is reduced
6	What is the use of four point starter? BTL1
0.	• The 4 point starter like in the case of a 3point starter also acts as a protective device that
	helps in safeguarding the armature of the shunt or compound excited DC motor against the
	high starting current produced in the absence of back EMF at starting.
7.	State automatic starter. BTL2
	• Upon pressing ON-push button (start button), current limiting stating resistors get connected
	in series with armature circuit in DC motor.
	• Then, some form of automatic control progressively disconnects these resistors until full-line voltage is queilable to the armeture girauit.
8	Why DC motors should not be started without starters?BTL?
0.	• In DC motors starters are used to limit the starting current within about 2 to 3 times the
	rated current by adding resistance in series with the armature circuit.
9.	What is the objective of rotor resistance starter?(APRIL/MAY 2015) BTL2
	• Due to addition of resistance in the stator side cause the voltage available to the motor X
	times the normal voltage.
	• The starting current drawn by the motor as well as the current drawn from the supply get
	reduced by X times where as the starting torque developed gets reduced by X ₂ times.
10	State the basic principle of increasing rotor resistance in the rotor circuit of a 3-phase
•	induction motor as starting. B1L3
	• Due to addition of resistance in rotor circuit by the stator not only reduces the

	staring current
	• Addition to that the starting torque developed than those given by DOL starting
11	What are the advantages of Electronic starter?BTL3
	• The moving parts and contacts get completely eliminated
	• The arcing problem gets eliminated
	 Minimum maintenance is required as there are no moving parts
	 The operation is reliable
	Starting time also gets reduced
	What are the various types of reducing starting current of induction motor? $(\Delta PR/M\Delta V)$
12	2015)BTI 4
	Stator resistance starter
	Autotransformer starter
	• Star-delta starter
	Rotor resistance starter
	• Direct on line starter
13	State the function of starters. BTL2
	• For large capacity induction motors is to reduce the starting current
	• Having necessary control devices to limit the starting current
14	Define star-delta starter. BTL1
	• This is the cheapest starter of all and hence used very commonly for the induction motors.
	• It uses triple pole double throw (TPDT) switch.
	• The switch connects the stator winding in star at start.
	• Hence per phase voltage get reduced by the factor 1/.3. Due to this reduced voltage, the
	staring current is limited.
15	Define autotransformer starter.BTL5
•	• A three phase star connected autotransformer can be used to reduce the voltage applied to the
	stator.
	• Such a starter is called as autotransformer starter.
1.6	List the various drawback of three point starter. BTL5
16	• In a three-point starter, the no-volt release coil is connected in series with the shunt field
•	circuit so that it carries the shunt field current.
	• During speed control, speed is varied through field regulator;
	• The field current may be weakened to such an extent that the no-volt release coil may not be
	able to keep the starter arm in the ON position.
	• This may disconnect the motor from the supply when it is not desired.
	• This drawback is overcome in the four point starter. State, the function of No Volt Poloose (NVP) on No Volt Coil (NVC) PTL 2
	The Ney Volt magnet keeps starter handle at run position against the control spring
17	 The No Volt magnet attracts the soft iron has placed in the handle.
	 The No-Volt magnet is energized by the current flowing through the field circuit
	 If there is no No-Volt magnet the starter handle is pulled back the off position by the control
	spring and the motor Point Starter is switched Off
18	What is the function of Over Load Release (OLR) or Over Current magnet (OC)? RTI 1
10	• When the load on motor increases above the roted limit then the armsture takes high current
•	• When the motor is left unprotected from this high current then it is demaged the over
	• when the motor is left unprotected from this high cuttent, then it is damaged, the over

	current magnet is used for this protection.
	When there is high current due to over load or due to short circuit the over current magnet is
	energized and attracts soft iron rod H. As a result, the soft, iron rod H closes the switch S.
	• When the switch S is closed, it short circuits the No-Volt magnet. As a result No Volt
	magnet is de-energized and release the starter handle to the off position.
19	What is Soft Starter? BTL1
	• Soft starting an AC motor refers to any one of several starting methods that limit the starting current and torque of the motor
	• The reduced voltage starters and will be referred to as soft starting
	 The reduced voltage starters, and will be referred to as soft starting. The soft starter eliminates unnecessary jerks during the start
	 Gradually, the voltage and the torque increase so that the machinery starts to accelerate the
	• Oradiany, the voltage and the torque increase so that the machinery starts to accelerate the motor by means of thyristor (SCRs)
20	What are the advantages of soft starter? BTL1
	• Reduced wear on mechanical gears, chains and sprockets, and unexpected repair of broken
	belts and jammed gearboxes.
	• Lower inventory of spare mechanical parts and operating costs.
	 Increased production rates by reducing machine maintenance downtime.
	• Prolonged life of electrical switchgear with lower inrush currents.
	• Soft stops on pumping applications reduce piping system stresses and "hammer" effect.
	PART-B
1.	How the different types of starters used in cage induction motor with a neat
	sketch?(13M)BTL1
	Answer: Page :3.1- J.Gnanavadivel, J.Karthikeyan
	• Basic function of 2 point starter is to protect dc series motor from high starting current. at the time
	of starting large armature current is drawn by the motor which is limited by 2 point starter by
	connection resistance (3M)
	• motor starteris shown in the figure below this no volt trip coil is connected in series with the field
	winding of the motor(3M)

1-5/QB+Keys/Ver2.0

-	
	Stator 3 (Rotor)
	• Main Different between Star and Delta Connections. In STAR connection, the starting or finishing ends (Similar ends) of three coils are connected together to form the neutral point
	 A common wire is taken out from the neutral point which is called Neutral; Line Current is
	Equal to Phase Current(3M)
9	Explain the star-delta starting method.(13M) BTL4
	Answer: Page :3.12- J.Gnanavadivel,J.Karthikeyan
	• Starting current is reduced 3-4 times of the direct current due to which voltage drops and
	hence it causes less losses(5M)
	• Star delta starter circuit comes in circuit first during starting of motor, which reduces voltage
	3 times, that is why current also reduces up to 3 times and hence less motor burning is
	JII-JEPPIKAR

Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system-Using controlled rectifiers and DC choppers –applications.

Q.No	PART*A
	What are the various parameters that control speed of DC motors?(NOV/DEC 2014)BTL1
1	• Flux in the air gap
1.	Resistance in the armature circuit
	Voltage applied to the armature circuit
	List the advantages of field control. (APRIL/MAY 2017) BTL1
2	 The regulating resistance, which has to carry only a small current
	Power wasted in regulating resistance is very small
	What will happen due to change in supply voltage on the speed of dc shunt motor? BTL1
4	• The reduction of supply voltage to the armature of dc shunt motor causes reduction of back-
-	emf of the motor which in turn reduces the speed the speed is directly proportional to the back
	emf
	Define speed control. BTL1
5	• The initial change of drive speed to a value required for performing the specific work
	process is called as a speed control.
	What are the advantages of field control method?(APR/MAY 2016)BTL1
6	Conventional and easy method
0	• Shunt field current I _{sh} is small the power wasted in the field rheostat also small
	Independent of load on the motor

	Economical and efficient method
	What are the disadvantages of field control method? BTL1
7	• There is a maximum limit of speed that can be obtained with this method.
	• It is due to fact that flux per pole is too much weakened commutation becomes poorer.
	State the application of ward- Leonard system speed control.(April/May 2015)BTL2
8	• This method normally adopted in very sensitive speed control like electric excavators
	elevators, coillery winders, main drives in steel mills and paper mills.
	What are the advantages of Ward-Leonard speed control? BTL2
	• Wide range of speed control is possible
	Full forward and reverse speed can be achieved
0	• Power is automatically regenerated to the ac line through the motor generator set which speed is
9	reduced.
	Short time over load capacity is large
	The armature current of the motor is smooth
	Mention the various types of control in motor.BTL2
10	• For armature control method (or) voltage control method the field current is kept
10	constant
	• For field control (or) flux control the armature current kept constant
	What is meant by solid state speed control? BTL2
11	• A process which is used to control the speed by using purely semi conducting material.
11	• Power semiconductor devices like thyristors, power Transistors, MOSFET and etc., is called
	solid state speed control.
	Mention the arrangements are available using power semi conducting materials. B1L3
	Controlled converters
12	• AC voltage regulator
	• Switch (or)chopper
	Cyclo converter
	• Cyclo converter What are the advantages of solid state drive methods? BTL 4
	• Very fast response
13	• Less losses
	Higher efficiency
	Pollution free method
	Small size maintenance easy and controlled
	What are disadvantage of solid state drive methods? BTL4
	• Very difficult to regeneration of power
14	• It contains low power overload capacity
	• Causes the interference in commutation in communication system due to harmonics in supply
	What is meant by dc Chopper?(Nov/Dec 2014) BTL4
15	• It is a device which is used to converter fixed dc voltage into variable dc voltage.
15	• This is designed with the help of power Semiconductor devices like Power Transistors,
	MOSFETS, Thyristors
16	What are the different types of choppers?(MAY/JUNE 2015) BTL5
10	Class A or First quadrant chopper –Motoring control

	• Class B or Second quadrant chopper – Braking control
	 Class C or Two quadrant Type A chopper
	 Class D or Two quadrant Type R chopper Class D or Two quadrant Type R chopper
	 Class D of 1 wo quadrant 1 ype B chopper Class E or Four quadrant shopper
	• Class E of Four quadrant chopped What is meant by flux control (or) field control method? PTL 5
17	• By verying the field flux the speed can be controlled is called flux control
	 By varying the field hux the speed can be controlled is called hux control. This method can be used for increasing the speed of the motor is inversely propertional to the
	• This method can be used for increasing the speed of the motor is inversely proportional to the field flux
	State static Ward – Leonard drive BTL 6
18	• Controlled rectifiers are used to get variable do voltage from an accource of fixed
	voltage
	 Controlled rectifiers fed dc drives are known as "static Ward – Leonard drive"
	Mention the advantage of flux control method BTI 6
	Convenient and easy method
19	 In this method is independent of load on the motor
	 Economical and efficient method
	What is meant by armature resistance control? (MAY/JUNE 2014) BTL2
	• The armature having controller resistance in series during the speed control. By varying the
20	controller resistance R, the potential drop across the armature is varied.
	• Hence the speed of the motor also varied.
	• This method of speed control is applicable for speed less than no load speed.
	What is the function of freewheeling diode? BTL1
21	• Freewheeling diodes are introduced to maintain the continuous current flow to the load whenever
	all thyistors are turned off condition.
	Mention the output voltage equation for single phase full converter and half
	converter.BTL1
22	• Half converter
	• $V_0 = V_m/2\pi (1 + COS\alpha)$
	• Full converter
	• $V_0 = 2V_m / \pi \cos \alpha$
	State the advantages of DC chopper drives?BTL1
23	High efficiency
	• Flexibility control
	Quick response
	What are the disadvantages of conventional Ward-Leonard schemes? BTL1
	• Higher initial cost due to use of two additional machines.
24	• Heavy weight and size.
	• Needs more floor space and proper foundation
	• Required frequent maintenance.
	Higher noise and higher loss.
25	Mention the drawbacks of rectifier fed dc drives.BTL1
	• Distortion of supply.
	• Low power factor.
	Ripple in motor current

Let us now take a look of these classifications and the characteristics of various classifications. This type of chopper is shown in the figure. It is known as first-quadrant chopper or type A chopper. (6M) When the chopper is on, $v_0 = V_S$ as a result and the current flows in the direction of the load. (3M) Explain about two quadrant method of speed control DC shunt motor.(13M)BTL2(April/May 7 2017) Answer: Page:4.37- J.Gnanavadivel.J.Karthikevan Flux control method. It is already explained above that the speed of a dc motor is inversely ٠ proportional to the flux per pole. ...------(4M)Armature control method. ... Voltage Control Method. • • Flux control method. ... Variable resistance in series with armature. ... Series-parallel control.-----(6M) Motor armature current is decided by the load. On less load or no load, the armature current drawn by the motor is very small. and on no load as I is small hence flux produced is also very small. ... This is the reason why series motor should never be started on light loads or no load conditions-----(3M) Discuss the procedure to find Four quadrant chopper.(13M) (BTL3) Answer: Page :4.39- J.Gnanavadivel, J.Karthikevan Four Quadrant Operation of Motors • All types of DC-DC converters are capable of operating the motor operation in the first quadrant. Some converters are capable of operating in two quadrants and some in all four quadrants. Power semiconductor devices (like SCR, MOSFET) used in chopper circuits are unidirectional devices. • Polarities of output voltage V_0 and the direction of output current I_0 are restricted. Semiconductor devices and passive components, a chopper can operate in any of the four 8 quadrants. Based on the number of quadrant a chopper can operate, the chopper circuits can be classified as follows: Single Quadrant Chopper:-Example: Type-A Chopper, Type-B Chopper • Two quadrant Chopper:-Example: Type-C Chopper, Type-D Chopper Four quadrant Chopper:-• Example: Type-E Chopper In some text books these chopper circuits are mentioned as Class-A, Class-B Class-E in place

JIT-JEPPIAAR/EEE/Mr..A.ANTONY CHARLES. IIrdYr/SEM 03 /EE8353/ELECTRICAL DRIVES AND CONTROLS/UNIT 1-5/QB+Keys/Ver2.0

- There are some disadvantages for flux control method and armature control method such as poor speed regulation and poor efficiency. Voltage control method overcome these problems.
- JIT-JEPPIAAR/EEE/Mr..A.ANTONY CHARLES. IIrdYr/SEM 03 /EE8353/ELECTRICAL DRIVES AND CONTROLS/UNIT 1-5/QB+Keys/Ver2.0

of the line current is more at lower values of inductance because of possible discontinuous load current. As the inductance increases the harmonic factor decreases. The peak value of current decreases with additional inductance. This improves the commutating capability.-----(5M)

2 Determine the speed control of DC series motor (15M)BTL3 Answer: Page :4.5- J.Gnanavadivel,J.Karthikeyan

- By varying the supply voltage.
- By varying the flux, and by varying the current through field winding.
- By varying the armature voltage, and by varying the armature resistance.----(5M)
- When supply voltage (V) and armature resistance Ra are kept constant, the Speed is directly proportional to armature current (Ia). -----(5M)
- An electronic speed control or ESC is an electronic circuit with the purpose to vary an servomotor's speed, its direction and possibly also to act as a dynamic brake. ESCs are often used on motors essentially providing an electronically-generated three-phase electric power low voltage source of energy for the motor------ (5M)

UNI	UNIT V CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES		
Speed	d control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery		
scher	ne – Using inverters and AC voltage regulators – applications.		
Q.No	PART*A		
1.	What is meant by voltage control in induction motor? BTL1		
	• In Induction motor speed can be controlled by varying the stator voltage.		
	• This can be done by using transformer.		
	This method is called voltage control		
2	What is stator voltage control? BTL1		
	• Three phase induction motor speed can be controlled by varying the stator voltage.		
	• This stator voltage can be varied by using ac voltage controller.		
	• This method of speed control of induction motor is called as stator voltage control		
	What are the various conventional speed control methods used in induction		
	motors?(NOV/DEC 2014)BTL1		
3	Changing applied voltage		
	Changing the applied frequency EPPI/AR		
	Rotor rheostat control		
	Mention the advantageof squirrel cage induction motor over a DC motor.(NOV/DEC 2016)BTL1		
	• Speed control by changing supply frequency		
4	• Speed control by changing no. of poles		
	• Speed control by changing slip		
	What is Slip-Power recovery system? BTL1		
~	• The slip power can be recovered to the supply source can be used to supply an additional		
5	motor which is mechanically coupled to the main motor.		
	• This type of drive is known as slip-power recovery system		
	Define V/F control?(Nov/Dec 2014) BTL1		
	• When the frequency is reduced the input voltage must be reduced proportionally so as to maintain		
6	constant flux.		
	• Otherwise the core will get saturated resulting in excessive iron loss and magnetizing current.		
	• This type of induction motor behavior is similar to the working of dc series motors.		

	State the main feature of v/f control. BTL2
7	• starting current is constant
	Maximum torque should be constant
	State about stator frequency control. BTL2
8	The three phase induction motor speed can be controlled by varying the stator frequency. The variable
	stator frequency can be obtained by inverters circuit.
	What are the advantages of slip-power recovery system? BTL2
9	• The slip power from the slip-rings can be recorded and fed back to the supply.
	The overall efficiency also improved
	What are the advantages of stator voltage control? BTL2
10	Very simple control circuit
10	More compact and less weight
	Quick response and economical method.
11	What is meant by stator current control? BTL3
	The stator current control means in three phase stator current can be controlled by stator current
	control. The stator current can be varied by using current source inverter.
	What are the disadvantages of stator voltage control? BTL4
	Input Power factor is low
12	• Operating efficiency is low
12	• Voltage and current waveform are highly distorted due to harmonics, which affects the efficiency
	of the machine
	State ac voltage controller. BTL4
13	AC voltage controller is nothing but, which is used to converters fixed ac voltage into variable ac voltage
	without changing supply frequency
	Mentionthe possible methods of speed control available by using inverters.BTL5
	 Variable voltage input (VVI) inverter control
14	 Variable voltage output (VVO) inverter control
	Pulse width modulated (PWM) inverter control
	 Current controlled inverter.
15	What is meant by PWM inverter control?BTL5

	The output from inverter is square with some harmonic contents so we have to remove or reducing the
	harmonic contents by using some voltage control technique called PWM
	Mention the classifications of PWM technique?BTL1
16	• Single pulse width modulation
	Multiple pulse PWM modulation
	 Sinusoidal Pulse PWM
	Mention the applications of stator voltage control.BTL2
17	The application of the stator voltage control method is suitable for torque demand reduced with speed,
	which points towards its suitability for ,Fan, Pump drives
	Mention the applications of AC drives.BTL1
	AC drives are used in a number of applications are:
	• Fans
18	• Blowers
10	• Steel mills
	Cranes IIT_IFPPI/AR
	• Conveyors and
	• Traction etc.
	Mention the advantages of stator voltage control method.BTL1
	The advantages of stator voltage control method are:
19	The control circuitry is simple
	Compact size
	Quick response time
	What is meant by soft start? BTL1
20	The soft start means, the AC voltage controllers allow a steeples control of supply voltage from zero to
	rated volt. They are used for soft start of motors.
	What is meant by frequency control of induction motor? BTL1
21	The frequency control of induction motor means the speed of an induction motor is controlled by
	Changing the supply frequency, because the speed is directly proportional to supply frequency.
	what is meant by stator current control? (NOV/DEC 2015) (BTL1)
22	The stator current control means in three phase stator current can be controlled by stator current

JIT-JEPPIAAR/EEE/Mr..A.ANTONY CHARLES. IIrdYr/SEM 03 /EE8353/ELECTRICAL DRIVES AND CONTROLS/UNIT 1-5/QB+Keys/Ver2.0

JIT-JEPPIAAR/EEE/Mr..A.ANTONY CHARLES. IIrdYr/SEM 03 /EE8353/ELECTRICAL DRIVES AND CONTROLS/UNIT 1-5/QB+Keys/Ver2.0

	Answer: Page:5.43- J.Gnanavadivel, J.Karthikeyan
	• The controlled rectifier works as an inverter and converts the DC power back into AC and feeds it back to the AC source(6M)
	• The power is fed into the rotor through the slip ring.(4M)
	• The mechanical power is injected by the shaft and the output power is obtained from the stator and
	rotor circuit(3M)
7	Explain about the operation of CSI fed DC drives(13M)BTL2
	Answer: Page:5.30- J.Gnanavadivel,J.Karthikeyan
	• When the supply is AC, a controlled rectifier is connected between the supply and inverter. When
	the supply is, DC a chopper is interposed between the supply and inverter(3M)
	• The commutation capacitance C ₁ -C ₆ reduces the voltage spikes by reducing the rate of rising and fall of the current(4M)
	• A large value of capacitance is required to sufficiently reduce the voltage spikes(6M)
8	Mention the necessity speed control schemes of phase induction motors.(13M) BTL3
	 Answer: Page:5.17- J.Gnanavadivel, J.Karthikeyan A three phase induction motor is basically a constant speed motor so it's somewhat difficult to control its speed (6M)
	• It is the part of the motor which will be in a rotation to give mechanical output for a given amount of electrical energy(3M)
9	Explain the speed control of a three phase induction motor using three phase bridge
	rectifier.(NOV/DEC 2014) (13M)BTL4
	Answer: Page:5.27- J.Gnanavadivel,J.Karthikeyan
	• There are mainly two types of Induction Motor: Squirrel Cage Induction Motor and Slip Ring or
	Wound Rotor Induction Motor. This classification is based on the constructional difference
	between them (4M)
	• The field windings in the stator of an induction motor set up a rotating magnetic field through the
	rotor. The relative motion between this field and the rotation of the rotor induces electric current in
	the conductive bars.

	Aluminum End Ring
	• A Double Cage Induction motor is that type of motor in which a double cage or two rotor windings
	or cages are used(3M)
	PART* C
1.	State the relationship speed control of AC motors by using three phase AC Voltage
	regulators.(15M)BTL2.
	 Answer: Page:5.23- J.Gnanavadivel,J.Karthikeyan An alternating current (AC) in one winding creates a time-varying magnetic flux in the core, which induces a voltage in the other windings(8M) A voltage regulator is used to regulate voltage level. When a steady, reliable voltage is needed, then voltage regulator is the preferred device(7M)
2	Explain the power circuit arrangement of three phase variable frequency inverter for the speed
	control of three phase induction motor and explain its working(15M) BTL6
	Answer: Page:5.19- J.Gnanavadivel,J.Karthikeyan
	 Various automation processes in the industry need control of AC induction motors using AC drives(5M) A simple control panel is wired using an Allen Bradley PLC for demonstration (5M) These allow current to flow in only one direction; the direction shown by the arrow in the diode symbol(5M)