

QUESTION BANK

REGULATION :2013

YEAR : IV

SEMESTER : 07

BATCH : 2016-2020

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision of the Institution

Jeppiaar Institute of Technology aspires to provide technical education in futuristic technologies with the perspective of innovative, industrial and social application for the betterment of humanity.

Mission of the Institution

- To produce competent and disciplined high-quality professionals with the practical skills necessary to excel as innovative professionals and entrepreneurs for the benefit of the society.
- To improve the quality of education through excellence in teaching and learning, research, leadership and by promoting the principles of scientific analysis, and creative thinking.
- To provide excellent infrastructure, serene and stimulating environment that is most conducive to learning.
- To strive for productive partnership between the Industry and the Institute for research and development in the emerging fields and creating opportunities for employability.

To serve the global community by instilling ethics, values and life skills among the students needed to enrich their lives.

DEPARTMENT VISION

To enhance and impart futuristic and innovative technological education for the excellence of Electronics and Communication Engineering with new ideas and innovation to meet industrial expectation and social needs with ethical and global awareness reinforced by an efficiency through research platform for the advancement of humanity.

MISSION

M1:To produce competent and high quality professional Engineers in the field ofElectronics and Communication Engineering for the benefit of the society globally.

M2: To provide a conducive infrastructure and environment for faculty and students with enhanced laboratories, to create high quality professionals.

M3:To provide Prerequisite Skills in multidisciplinary areas for the needs of Industries, higher education and research establishments and entrepreneurship

M4: To handle Socio Economic Challenges of Society by Imparting Human Values and Ethical Responsibilities.

Program Educational Objectives (PEOs)

PEO 1:Graduate Engineers will have knowledge and skills required for employment and an advantage platform for lifelong learning process.

PEO 2:Graduate Engineers willbe provided withfuturistic education along with the perspective research and application based on global requirements.

PEO 3:Graduate Engineers will have effective communication skills and work in multidisciplinary team.

PEO 4:Graduate Engineers will develop entrepreneurship skills and practice the profession with integrity, leadership, ethics and social responsibility.

Program Specific Outcomes (PSOs)

PSO 1 : Ability to develop and utilize novel, compact and power efficient coherent theoretical and practical methodologies in the field of analog and digital electronics.

PSO 2: Ability to implement analog, digital and hybrid communication Protocol to aspect the challenges in the field of Telecommunication and Networking.

BLOOM'S TAXONOMY

Definition:

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition like thinking, learning and understanding.

Objectives:

- To classify educational learning objectives into levels of complexity and specification. The classification covers the learning objectives in cognitive, affective and sensory domains.
- > To structure curriculum learning objectives, assessments and activities.

Levels in Bloom's Taxonomy:

- BTL 1 Remember The learner recalls, restate and remember the learned information.
- BTL 2 Understand The learner embraces the meaning of the information by interpreting and translating what has been learned.
- BTL 3 Apply The learner makes use of the information in a context similar to the one in which it was learned.
- BTL 4 Analyze The learner breaks the learned information into its parts to understand the information better.
- BTL 5 Evaluate The learner makes decisions based on in-depth reflection, criticism and assessment.
- BTL 6 Create The learner creates new ideas and information using what has been previously learned.

TABLE OF CONTENT

EC6701 – RF AND MICROWAVE ENGINEERING		
Unit No.	Торіс	Page No.
	Syllabus	1-1
Ι	Two port network theory	1-2
II	RF amplifiers and matching networks	1-11
III	Passive and active microwave devices	1-21
IV	Microwave generation	1-29
V	Microwave measurements	1-37
	EC6702- OPTICAL COMMUNICATION AND NETWORK	S
	Syllabus	2-1
Ι	Introduction to optical fibers	2-2
II	Signal degradation optical fibers	2-11
III	Fiber optical sources and coupling	2-17
IV	Fiber optic receiver and measurements	2-24
V	Optical networks and system transmission	2-30
	EC6703-EMBEDDED AND REAL TIME SYSTEMS	
	Syllabus	3-1
Ι	Introduction to embedded computing and ARM processor	3-3
II	Embedded computing platform design	3-10
III	Processes and operating systems	3-17
IV	System design techniques and networks	3-23
V	Case study	3-29
	EC6004 – SATELLITE COMMUNICATION	
	Syllabus	4-1
Ι	Satellite orbits	4-3
II	Space segment and satellite link design	4-10
III	Earth design	4-20
IV	Satellite access	4-31
V	Satellite application	4-39
EC6009– ADVANCED COMPUTER ARCHITECTURE		
	Syllabus	5-1
Ι	Fundamentals of computer design	5-2
II	Instruction level parallelism	5-9
III	Data level parallelism	5-19
IV	Thread level parallelism	5-26
V	Memory and I/O	5-31

EC6015 – RADAR AND NAVIGATIONAL AIDS		
	Syllabus	6-1
Ι	Introduction to radar equation	6-3
II	MTI and pulse Doppler radar	6-16
III	Detection of signal noise	6-27
IV	Radio direction and ranges	6-35
V	Satellite navigation system	6-43

REGULATION: 2013

EC6701

RF AND MICROWAVE ENGINEERING

OBJECTIVES:

- To deal with the microwave generation and microwave measurement techniques
- To instill knowledge on the properties of various microwave components.
- To deal with the issues in the design of microwave amplifier.
- To inculcate understanding of the basics required for circuit representation of RF networks.

UNIT I - TWO PORT NETWORK THEORY

Review of Low frequency parameters: Impedance, Admittance, Hybrid and ABCD parameters, Different types of interconnection of Two port networks, High Frequency parameters, Formulation of S parameters, Properties of S parameters, Reciprocal and lossless Network, Transmission matrix, RF behavior of Resistors, Capacitors and Inductors.

UNIT II - RF AMPLIFIERS AND MATCHING NETWORKS

Characteristics of Amplifiers, Amplifier power relations, Stability considerations, Stabilization Methods, Noise Figure, Constant VSWR, Broadband, High power and Multistage Amplifiers, Impedance matching using discrete components, Two component matching Networks, Frequency response and quality factor, T and Pi Matching Networks, Microstrip Line Matching Networks.

UNIT III - PASSIVE AND ACTIVE MICROWAVE DEVICES

Terminations, Attenuators, Phase shifters, Directional couplers, Hybrid Junctions, Power dividers, Circulator, Isolator, Impedance matching devices: Tuning screw, Stub and quarter wave transformers. Crystal and Schottkey diode detector and mixers, PIN diode switch, Gunn diode oscillator, IMPATT diode oscillator and amplifier, Varactor diode, Introduction to MIC.

UNIT IV- MICROWAVE GENERATION

Review of conventional vacuum Triodes, Tetrodes and Pentodes, High frequency effects in vacuum Tubes, Theory and application of Two cavity Klystron Amplifier, Reflex Klystron oscillator, Traveling wave tube amplifier, Magnetron oscillator using Cylindrical, Linear, Coaxial Voltage tunable Magnetrons, Backward wave Crossed field amplifier and oscillator.

UNIT V - MICROWAVE MEASUREMENTS

Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Qfactor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters.

OUTCOMES:

After studying this course, the student should be able to:

- Explain the active & passive microwave devices & components used in Microwave communication systems.
- Measure and analyze Microwave signal and parameters.
- Generate Microwave signals and design microwave amplifiers.
- Analyze the multi- port RF networks and RF transistor amplifiers.

TEXT BOOKS:

1.Reinhold Ludwig and Gene Bogdanov, "RF Circuit Design: Theory and Applications", Pearson Education Inc., 2011. (UNIT I, II, III, IV, V)

2. Robert E Colin, "Foundations for Microwave Engineering", John Wiley & Sons Inc, 2005 (UNIT I, II, III, IV, V) **REFERENCES**

1. David M. Pozar, "Microwave Engineering", Wiley India (P) Ltd, New Delhi, 2008.

2. Thomas H Lee, "Planar Microwave Engineering: A Practical Guide to Theory, Measurements and Circuits", Cambridge University Press, 2004.

3. Mathew M Radmanesh, "RF and Microwave Electronics", Prentice Hall, 2000.

4. Annapurna Das and Sisir K Das, "Microwave Engineering", Tata Mc Graw Hill Publishing Company Ltd, New Delhi, 2005.

JIT-JEPPIAAR/ECE/Ms.A.PARIMALA/IVthYr/SEM 07/EC6701/RF AND MICROWAVE ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

L T P C 3003

9

9

9

9

9

TOTAL: 45 PERIODS

Subject Code: EC6701Year/Semester: IV /07Subject Name: RF AND MICROWAVE ENGINEERINGSubject Handler: Ms.A.Parimala

UNIT I - TWO PORT NETWORK THEORY			
Reviev Differ Form Trans	Review of Low frequency parameters: Impedance, Admittance, Hybrid and ABCD parameters, Different types of interconnection of Two port networks, High Frequency parameters, Formulation of S parameters, Properties of S parameters, Reciprocal and lossless Network, Transmission matrix, RF behavior of Resistors, Capacitors and Inductors.		
	PART * A		
Q.No.	Questions		
1	Define s-matrix. [Nov/Dec2016] BTL1		
	In a microwave junction there is intersection of three or more components. There will be an		
	output port, in addition there may be reflection from the junction of other ports. Totally there may		
	be many combinations, these are represented easily using a matrix called S matrix.		
2	Enumerate the Properties of s-matrix. [Nov/Dec2012, April /May 15] BTL1		
	1. It possess symmetric property sij =sji 2. It possess unitery property		
	2. It possess unitary property 3. $[s][s]*=[i]$		
3	Why s-matrix is used in MW analysis? [Nov/Dec2011] BTL1		
U	S matrix is used in MW analysis to overcome the problems which occurs when		
	H,Y,&Z parameters are used in high frequencies.		
	• Equipment is not readily available to measure total voltage &total current at the		
	ports of the network.		
	• Short and open circuits are difficult to achieve over a broad band of frequencies.		
	• Active devices, such as power transistor & tunnel diodes, frequently won"t have		
	stability for a short or open circuit.		
4	Give ABCD matrix for a two port network. BTL1		
	V I = A B V2		
	II = C		
	D -12		
5	What is ABCD matrix? [April/May2017] BTL1		
	ABCD matrix is a transmission matrix these parameters express voltage and current at output in		
	terms of those at input port.		
	V1=AV2-BI2		
	I1=CV2-DI2		
6	List the advantages of ABCD matrix. BTL1		
	• They are used in power transmission lines.		
	• They are very helpful in the case of cascade networks.		
7	Evaluate the Scattering matrix for N port device. BTL1		
-	[S] = S11 S12		
	S13 S1n S21		
	S22S2n		

	S31 S32S3n
	••
	Sm1 Sm2 Smm
8	Give the S matrix of uniform transmission line. BTL1
	S=0 e ³
	e-jbl 0
9	Mention the properties of impedence [z] & admittance[y] matrix. BTL1
	• For a lossless junction y and z are symmetric.
	• [y]=[z] ⁻¹
	• Elements of matix [Z] &matrix [Y] are Frequency dependent.
10	State the properties of scattering matrix for a lossless junction. BTL1
	• The product of any column of the S-matrix with conjugate of this column equals unity
	• The product of any column of the scattering matrix with the complex
	conjugate of any other column is zero.
11	Define transmission matrix. BTL1
	when a number of microwave devices are connected in cascade. Each junction is represented by a transmission matrix which gives the output quantities in terms of input
	quantities
12	Express power input and power output under matched conditions for a two port
	network in terms of wave components. [May/June 2013] BTL2
	reflected waves amplitude with those of incident waves.
	The incident and reflected amplitudes of microwave at any port are used to characterize a
	microwave circuits.
	Input power at n th port P _{in} = $\frac{1}{2} a_n ^2$
	Reflected power at the n th port $P_{in} =$
	$\frac{1}{2} b_{\mu} ^{2}$
- 10	2 * ** Write the voltage matrix for an N-nort microwave circuits BTI 1
13	write the voltage matrix for an it-port merowave circuits.
	V1 Z11 Z12 Z1N I1
	V2 Z12 Z22 Z2N I2
	.=
	VN ZNI ZN2 ZNN IN
	Where Zij=Elements of impedence

	matrix. [Z]=Impedence martrix
14	Give two examples for two port junctions. BTL2
	 The junction of two rectangular guides of unequal height A symmetrical junction consisting of two similar rectangular guides joined by an intermediate guide of greater width.
15	State the unique property of Scattering matrix. BTL1 Unitary Property: the row of a scattering matrix multiplied by the complex conjugate of the
	same row of the scattering matrix is one.
16	Write the scattering matrix for a ideal waveguide section.BTL1
	[S]=[0 11 0]
17	Define reciprocal and symmetrical networks.[May/June2013]BTL1
	A reciprocal network is defined to be a network that satisfies the reciprocity theorem. It states that when some amount of emf(or voltage) is applied at one point in a passive linear network, that will produce the current at any other point. The same amount of current is produced when the same emf is applied in the new location. In terms of S parameter,
	$S_{ij} = S_{ji}$ (i not equal to j),where, i=1,2N &j=1,2,N Due to symmetry of the network topology, the input impedance at the input port is equal to the impedance in the output network. The equality of the input and output impedance leads to the equality of input and output reflection coefficients. In general, for any symmetrical passive n port network,
	$S_{ij} = S_{ji}$
	What is ESR? [Nov/Dec2013] BTL1
18	
	Practical capacitors and inductors are used in electric circuit not ideal components with only capacitance or inductance. The ideal capacitances and inductors are in series with resistance. This type of resistance is called equivalent series resistance(ESR).
19	List any four reasons for the wide use of RF. [May/June 2014] BTL1
	(i) RF is reusable
	(ii) Low cost, and
	(iv) Bandwidth efficiency
20	Give the relationship between S and Z. [May/June 2014] BTL2
	$S = (Z-Z_0I) / (Z+Z_0I)$ Where, Z0 - Characteristic impedance
21	I- Circuit Current.
41	Conventional vacuum triodes, tetrodes, and pentodes are less useful signal sources
	at the frequencies above 1FHz due to
	(i) Lead – Inductance (ii) Interelectrode – Capacitance effects

	(iii)	Transit – Angle effects	
	(iv)	Gain – BW product limitation.	
22	Enlist the	applications of inductors.	BTL3
	Inductors l	have a variety of applications in RF circuits	such as,
	(i)	Resonance circuits	
	(ii)	Filters	
	(iii)	Phase shifters	
	(iv)	Delay networks	
	(v)	RF Chokes.	
23	Why the S	5-parameters are used in microwaves? [N	ov/Dec 2011] BTL2
		The H, Y, Z and ABCD parameters are d	lifficult at microwave frequencies due to
	follo	wing reasons.	
	• Eq	uipment is not readily available to measure	total voltage and total current at the ports
	of	the networks.	
	• Sh	ort circuit and open circuit are difficult to ac	chieve over a wide range of frequencies.
	• Pr	esence of active devices makes the circ	cuit unstable for short (or) open circuit.
	Th	erefore, microwave circuits are analyses	using scattering (or) S parameters which
	line	early relate the reflected wave"s amplitude	with those of incident waves.
24	Mention t	he purpose of resistors.	BTL3
	F	Purpose of Resistors:	
		In transistor bies not works to establish a	
		In transistor bias networks, to establish a	n operating point.
		i. In signal combiners, to produce a higher	ver.
	i i	In transmission lines, to create matched	conditions
25	Dofino Ou	$\frac{1}{10000000000000000000000000000000000$	BTI 1
25	Denne Qu	It is defined as "the measure of the ability	DTLT w of an element to store energy equal to 2π
	time	the average energy stored divided by the e	nergy dissipated per cycle"
	times	, the average energy stored arvided by the e	norgy dissipated per cycle .
26	State the	difference between low frequency a	and high frequency measurements in
	microway	e circuits. [April/May 2015], [May/June 2	2016] BTL4
			•••
	SL.NO	Low frequency measurements	Microwave measurements
	1	At low frequency it is convenient to	At microwave frequencies the amplitude
	1.	measure voltage and current and use them to	of voltage and current on a transmission
		calculate power.	line are the functions of distance and are
			not easily measurable.
			-
	2	At low frequency ,circuits use lumped	At microwave frequencies ,the circuit
		elements.	elements are distributed.
27	Specify X	band frequency range. [Nov/Dec 2018]	BTL1
	The X-ba	nd trequency range : $8 - 12.5 \text{ GHz}$	
	The X-ban	a wavelength : $3.7 - 2.4$ cm	
28	Define los	sless network. [Nov/Dec 2018]	BTL1

	In any lossless passive netwo	ork, its containing no resist	ive elements, always the power entering
29	List RF bands available in r	nicrowave system. [Nov/I	Dec 2016]. [April/May 2017] BTL1
	3-30MHz HF	HE	······································
	30-300MHz VHF	VHF	
	0.3-1GHz LIHE		
	1-2GHz	I	
	2-4GHz		
	2-40HZ		
	2-40Hz 8 12CHz		
	0-12011Z		
	12-100HZ	Ku V	
	18-2/GHZ	K V.	
	27-40GHZ		
	40-300GHZ	Millimeter	
	>300GHz	SubMillimeter	
20	State the limitations in mea	asuring Z, Y and ABCD	parameters at microwave frequencies.
30	[Nov/Dec – 11], [Nov/Dec 2	017]	BTL1
	The limitations in measuring	Z, Y and ABCD parameter	s at microwave frequencies are,
	Equipment	t is not readily available to	measure total voltage and current at the
	ports of the	e network.	
	Short circu	uit and open circuit are di	fficult to achieve over a wide range of
	frequencie	s.	
	Presence of	of active devices such as po	ower transistors and tunnel diodes makes
	the circuit	unstable.	
31	Draw the equivalent circuit	with resistor and inducto	r. [April/May 2015, May/June2016] BTL1
	DILI DILI		
	Figure 1	^P P	
	-777-1AA-		
	- 's		
		C	
	C = Capacitance R _S = Equi	valent Series Resistance (ESR)	
	L = Inductance R _D = Insul	ation Resistance (IR)	
		PART B	
1	(i)Describe the properties an	nd applications of RF way	ves. (8M) [Nov/Dec 2016] BTL2
1	Ans: Text book: RF circui	it Design, Theory and ap	oplications by Reinhold Ludwig Gene
	Bogdanov. Pg:no: 163-166		
	1) Symmetry of [s] for a	a reciprocal network (2M)	
	2) Unitary property of los	sless network (2M)	
	3) Zero property and Phas	se shift property (2M)	
	4) Applications (2M)		
	(ii)Examine in detail about	low frequency parameter	ers. (8M) [April/May 2015, April/May

	$Y_{12} = I_1/V_2$ at $V_1 = 0$ = Reverse transfer admittance with input ports shorted.
	 Y₂₂= I₂/V₂at V₁=0 = Output admittance with output ports shorted. All of these parameters are impedance with dimensions in ohms. (ii)What are the limitations of ABCD,Z,Y and h parameters. (5M) BTL3 Ans: Refer notes Equipment is not readily available to measure total voltage and total current at the ports of the network
	 Short circuit and open circuit are difficult to achieve over a wide range of frequencies. Presence of active devices makes the circuit unstable for short or open circuit.
3	Verify the lossless and reciprocity properties of any two port network using scattering matrix. (16M) [Nov/Dec 2014, May/June 2016, Nov/Dec 2016]BTL3Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:1.8-1.11Reciprocity property(4M)Loosless network(4M)Proof(8M)Symmetry of [s] for a reciprocal network
	The reciprocal device has a same transmission characteristics in either direction of a pair of ports and is characterized by a symmetric scattering matrix S:: $sii \pm i \neq i$
	$S_{1j} = S_{1}^{T}, t \neq j$ Which results [S] $t = [S]$
	$[s] = ([z]+[u])^{-1} ([z] - [u])$ $[R] = [Z] - [U]$
	[Q] = [Z] + [U] For a reciprocal network Z matrix Symmetric [R] [Q] = [Q] [R]
	$[Q]^{-1}[R][Q][Q]^{-1} = [Q]^{-1}[Q][R][Q]^{-1}$ $[Q]^{-1}[R] = [R][Q]^{-1}$
	$[Q]^{-1}[R][\underline{S}] = [R][Q]^{-1}$
4	Give a detailed note on resistor, inductor and capacitor.(13M)BTL1Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:2.3-2.12Description of resistor, inductor and capacitor with circuit diagram (10M)

	Applications and its uses (3M)
5	Construct the transmission matrix of 2 port network (13M). [Nov/Dec 2016, Nov/Dec 2018]
5	BTL5
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:1.13-1.14 Definition of transmission matrix (2M)
	T-Matrix theory along with diagram (6M)
	Derivation (5M)
	b1 = T11 T12 a2
	a1 T21 T22 b2
	From S to T:
	$T_{11} = -det(S)$ Where $det(T)$ is the determinant of matrix
	S21
	$T_{12} = S_{11}$
	S21
	$T_{21} = -S_{22}$
	S21
	$T_{22} = 1$
	S21
	From T to S:
	$S_{11} = T_{12}$
	T22
	$S_{12} = det(T)$ Where $det(T)$ is the determinant of matrix
	122
	$s_{21} = 1$
	T22
	$s_{22} = -T_{21}$
	 T22
	PART * C
1	Discuss the importance of low frequency and high frequency parameters of two port
I	networks.(15M) [Nov/Dec 2014,April /May 15, April/May 2017] BTL 2
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:1.1-1.4
	Low Frequency Parameters: (7M)
	- Investores

	TT 1 '1
	• Hybrid
	High Frequency parameter (8M)
	1) S-parameter
	State and explain the properties of S-Parameters (15M)
2	[May/June 2013 May/June 2014 April/May 2015 April/May 2017 Nov/Dec 2017 Nov/Dec
	2013, May/June 2014, April/May 2013, April/May 2017, 100/Dec 2017, 100/D
	Ang: Def hook: DE and microwaya anginaaring by K Muralibaby Dg:no:18110
	Ans. Kei book. Ki and incrowave engineering by K.Muranbabu. 1 g.10.1.0-1.10
	• Define Zero diagonal elements for perfect matched network
	• Symmetry of [s] for a reciprocal network (4M)
	• Unitary property of lossless network (4M)
	• Zero property (2M)
	• Phase shift property (5M)
	The S never stars of a two next network are given by
3	The S parameters of a two port network are given by $S_{11} = 0.2 \times 00^{\circ}$ $S_{22} = 0.2 \times 00^{\circ}$
	511=0.2<90 $522=0.2<90$
	$512=0.5<90$ $521=0.5<0^{\circ}$
	(a) Determine whether the network is lossy or not and
	(b) is the network symmetrical and reciprocal? Find the insertion loss of network. (15M)
	[Nov/Dec 2013, Nov/Dec 2012] B1L3
	Ans: Refer notes
	• symmetry property of logglags nativork (10M)
	• Symmetry property of lossiess network (1010)
	• Reciprocal property (5M)
	Solution:
	$S_{11}S_{11}^{*}+S_{21}S_{21}^{*}=1$
	$ S_{11} ^2 + S_{21} ^2 = 1$
	$(0.2)^2 + (0.5) = 1$
	$(0.2)^{-1}(0.3)^{-1}$
	Therefore the network is not lossless
	For symmetrical and regimercal networks, we can always write as
	For symmetrical and reciprocal networks, we can always write as
	S11=S22
	S12=S21
	Since this is symmetrical and reciprocal network
	Insertion loss = $20\log 1/ S12 $
	= -20log S12
	= -20log $ 0.5 $
	= 6.02dB.

UNIT II – RF AMPLIFIERS AND MATCHING NETWORKS 9			
Characteristics of Amplifiers, Amplifier power relations, Stability considerations, Stabilization			
Metho	Methods, Noise Figure, Constant VSWR, Broadband, High power and Multistage Amplifiers,		
Imped	lance matching using discrete components, Two component matching Networks, Frequency		
respon	nse and quality factor, T and Pi Matching Networks, Microstrip Line Matching Networks		
	PART * A		
Q.No.	Questions		
1	Write the function of matching networks. [Nov/Dec 2015, Nov/Dec 2011] BTL1 Matching networks can help stabilize the amplifier by keeping the source and load impedances in the appropriate range. Impedance matching (or tuning) is an important issue for - Maximum power is delivered when load is matched to line (assuming the generator is matched) - Power loss is minimized. S/N- ratio of receiver components is increased Amplitude and phase errors are reduced.		
2	What is function of input and output matching networks? BTL1 Input and output matching networks are needed to reduce undesired reflections and improve the power flow capabilities.		
2	Paraprase the parameters used to evaluate the performance of an amplifier?		
3	[Nov/Dec2015]		
	BTL1		
	Key parameters of amplifier, to evaluate the performance are		
	• Gain and gain flatness(in dB)		
	• Operating frequency and bandwidth (in Hz)		
	• Output power (in dB)		
	• Power supply requirements (in V and A)		
	• Input and output reflection coefficients (VSWR)		
	• Noise figure (in dB)		
4	State transducer power gain.[Nov/Dec2013, April/May 2017] BTL1		
	I ransducer power gain is nothing but the gain of the amplifier when placed between source		
	G_T = Power delivered to the load/Available power from the source. GT=PL/Pavg		
5	Define Unilateral Power gain. [Nov/Dec 2014] BTL1		
3	It is the amplifier power gain, when feedback effect of amplifier is neglected i.e.S12=0.		
	$G_{TU} = \left S_{21}^{2} (1 - \Gamma_{S}^{2}) (1 - \Gamma_{L}^{2}) / (1 - \Gamma_{S}^{2} \Gamma_{in})^{2} (1 - S_{22} \Gamma_{L})^{2} \right $		
6	Describe available Power Gain (GA) at Load.BTL1		
	The available power gain for load side matching (TL = T^*Out) is given as,		
	G_A = Power available from the network/power available from the source $G_A = N/P_A$		
7	Interpret the principle of Operating Power Gain. BTL1		
	The operating power gain is defined as "the ratio of power delivered to the load to the power		
	supplied to the amplifier".		

	G= Power delivered to the load/Power supplied to the amplifier $G = P_L/P_{in}$
8	Write a short note on feedback of RF circuit. BTL1
0	(1)If T >1, then the magnitude of the return voltage wave increases called positive
	feedback, which causes instability (oscillator).
	(2) If $ T < 1$, then the return voltage wave is totally avoided (amplifier). It is called as
	negative feedback.
0	Give the expression that relates nodal quality factor (On) with loaded quality factor (O ₁).
9	[Nov/Dec 2013. April/May 2015] BTI 6
	Nodal quality factor (On) is defined as ratio of the absolute value of the reactance Xs to the
	corresponding Resistance R
	O = [X] / R
	The nodel quality factor is $\Omega_r = \Omega_c/2$
	What are the need of Impedance Matching Network? [May/June 2013 May/June 2016]
10	what are the need of impedance Matching Network : [May/June 2013, May/June 2010]
	DILI DILI
	• Minimal power loss in feed fine
	Maximum power delivery
	• Improving the S/N ratio of the system for sensitive receiver components
	• Reducing amplitude & phase errors in a power distribution networks
	Minimum reflection in transmission line
	Optimal efficiency
11	Define power gain of amplifier in terms of S- parameter and reflection coefficient.
	[Nov/Dec 2012, Nov/Dec 2013] BTL1
	Transducer Power Gain
	Transducer Power Gain is nothing but the gain of the amplifier when placed between source
	and load
	$(1- i ^2) S21 ^2(1- S ^2)$
	$G_{\rm T} = \frac{ 1 - S_{II} ^2 1 - S_{II} ^2}{ 1 - S_{II} ^2}$
	The Operating power gain is defined as the ratio of power delivered to the load to the power
	supplied to the amplifier.
	$(1- i ^2) S21 ^2$
	$a = \frac{ 1-\sin^2 1-522z ^2}{ 1-\sin^2 1-522z ^2}$
	$G_T = -S_{TT} + $
12	Enumerate the considerations in selecting a matching network.[Nov/Dec 2012] BTL1
	• Complexity of the system
	Bandwidth requirement
	Adjustability
	Implementation
	Maximum power delivery
	Optimal efficiency.
12	Define Stability. [May/June 2014] BTL1
15	Stability refers to the situation where the amplifier remains stable for any passive source and
	load at the selected frequency and bias condition.
14	State the significance of microstrip matching networks. [Nov/Dec 2014] BTL1
	Distributed microstrip lines and lumped capacitors
	 Less suscentible to parasitio

-		
	Easy to tune	
	Efficient PCB implementation	
	Small size for high frequency.	
15	Explicate noise figure. [Nov/Dec 2011, Nov/Dec2016]	BTL1
	Noise figure F is defined as "the ratio of the input SNR to the output SNR".	
	F = Input SNR/Output SNR	
16	Define unconditional stability. [May/June 2016,Nov/Dec2017]	BTL1
	It refers to the situation where the amplifier remains stable for any passive source an	d load at
	the selected frequency and bias conditions.	
17	Mention the advantages of smith chart in the design of matching networks.	BTL1
	The smith chart allows immediately observing whether or not a particular impedance	e
	transformation is capable of achieving the desired matching. Moreover, the total nur	nber of
	possible network configurations can be readily be seen.	
18	What is the advantage of T and Pi matching networks?	BTL1
10	The addition of third element into the two element (L) matching network introduces	an
	additional degree of freedom in the circuit and allows us to control the value of $Q_{\rm L}$ b	y
	choosing an appropriate intermediate impedance for wider (matching) bandwidth.	
19	Why we go for double stub matching networks?	BTL4
	(i)They require a variable length transmission line between the stub and the inpu	t port, or
	between the stub and load impedance.	c · 11
	1) Usually this does not a problem for fixed networks, but may create difficulties	for variable
	tuners.	
20	Designate the considerations in selecting a matching network. [Nov / Dec 2014]	BILI
	Factors in the selection of matching networks are Complexity of the system	
	Bandwidth requirement	
	• Adjustability	
	• Implementation	
	• Maximum power delivery or transfer	
	• Optimal efficiency Why it is a seese with as for microstrip metabing network? [New/Dec2018]	DTI 1
21	Matching networks can help stabilize the amplifier by keeping the source and load in	DILI mpedances in
	the appropriate range	inpedances in
	Matching network is important for the following reasons	
	Maximum power loss is in the feed line	
	 Maximum power delivery or transfer 	
	• Improving the S/N ratio of the system	
22	Mention the type of losses in microstrip line. [Nov/Dec 2013]	BTL1
22	• Dielectric looses	
	Ohmic losses	
	Radiation loss	
22	State the disadvantages of strip lines.	
43		BTL1
	Greater losses	
	• Lower Q	

	Ans: Refer notes
	VSWR definition, equations and procedure (4M)
	Noise figure definition, equation, procedure (4M)
	PART* C
1	Microwave amplifier is characterized by its s parameters. Derive equations for power gain, available gain and transducer gain. (15M) [Nov/Dec 2011, Nov/Dec 2012, May/June 2013,May/June 2016,April/May 2015] BTL4 Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:3.1-3.6 Transducer power gain:
	It is nothing but the gain of the amplifier when placed between source and load.
	G_T = Power delivered to the load/Available power from the source.
	GT=PL/Pavg
	Unilateral Power gain (7M)
	It is the amplifier power gain, when feedback effect of amplifier is neglected i.e.S12=0.
	$G_{TU} = \frac{ S_{21}^2 (1 - \Gamma_S ^2) (1 - \Gamma_L ^2)}{(1 - \Gamma_S (\Gamma_{in})^2 (1 - S_{22} \Gamma_L)^2}$
	Available power gain(8M) The available power gain for load side matching ($TL = T$ *Out) is given as,
	G _A = Power available from the network/power available from the source
	$G_A = P_N / P_A$
2	Discuss the smith chart approach to design the L-section and T- section matching networks (15M) [May/June 13, May/June 2014, Nov/Dec2018] BTL5 Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:3A.2-3A.5
	L-Section network (8M)
	$ \underbrace{jX}_{jB}_{Z_{L}} \xrightarrow{jX}_{Z_{L}} \xrightarrow{jX}_{Z$

9

UNIT III - PASSIVE AND ACTIVE MICROWAVE DEVICES

Terminations, Attenuators, Phase shifters, Directional couplers, Hybrid Junctions, Power dividers, Circulator, Isolator, Impedance matching devices: Tuning screw, Stub and quarter wave transformers. Crystal and Schottkey diode detector and mixers, PIN diode switch, Gunn diode oscillator, IMPATT diode oscillator and amplifier, Varactor diode, Introduction to MIC.

	PART * A
Q.No.	Questions
1	What are matched terminators? [May/June 2014] BTL1 Low power co axial termination Resistance strip BTL1 Standard mis matches Description Description
2	Name the microwave passive devices which make use of faraday rotation.[Apr/May 2015] BTL1 Isolator Gyrator Circulator
3	Define ferrites. Why it is needed in circulator? [Nov/Dec 2013], [May/June 2014] BTL2 Ferrites are non metallic meterials with resistives nearly 10 ⁻¹⁴ times greater than metals and also the dielectric constant is in between 10 ⁻¹⁵ and relative permeability of the order of 1000
4	Mention the application of gyrator and isolator. [Nov/Dec 2014] BTL3 Gyrator : • In can be in radar antenna as a duplexer • It will handle a low power . hence they are used as low power devices Isolator: • Isolator are generally used to improve the frequency stability of microwave generators, such as klystrons and magnetrons in which the reflection from the load affects the generating frequency
5	Interpret isolator. Why it is called uniline? [Nov/Dec 2016]BTL1An isolator or uniline is two port non reciprocal devices, which produce a minimum attenuation to wave in one direction and very high attenuation in the opposite direction.BTL1
6	Draw the Structure of Two hole Directional coupler. [May/June 2016] BTL3
7	Sketch the diagram for H - plan tee.[Nov/Dec 2012]BTL3

	H Plane Tee
	Port 1 E Side arm Port 3
8	What is H-Plane Tee? BTL1
	It is a wave guide tee in which the axis of the slide arm is shunting the E- field or parallel to the H-field of the main guide.
9	Give the applications of directional coupler. BTL3
-	Unidirectional power measurement
	• SWR measurement
	Unidirectional wave launching
	• Reflectometer
	Balanced duplexer. Define directivity of directional coupler PTI 1
10	It is defined as a ratio of forward nower P _e to the back nower P _e avpressed in dP
	$D(dB) = 10\log_{10} P_f/P_b$
	• It is a measure of how well the directional coupler distinguishes between the forward and
	reverse travelling powers.
11	Explain Gunn Effect and classify the elements that exhibit Gunn Effect.[May/June 2016]
	BIL2 Cup affect was first charmed by CUNN in a type CaAs bulk diada. According to CUNN
	above some critical voltage corresponding to an electric field of 2000-4000v/cm, the current
	in every specimen became a fluctuating function of time. The frequency of oscillation was
	determined mainly by the specimen and not by the external circuit.
	The elements area) Gallium arsenide b)Indium phosphate c) Cadmium telluride d)Indium
	arsenide
12	State the factors reducing efficiency of IMPATT diode. [April/May 2017] BTL1
	Space charge effect
	Keverse saturation current effect

	High frequency skin effect	
	Ionization saturation effect.	
13	What is Transferred electron effect?[Nov/Dec 2012]	BTL3
	Some materials like GaAs exhibit negative differential mobility, when biased above a	a threshold
	value of the electric field. This behavior is called transferred electron effect. The elect	rons in the
	lower energy band will move to the higher energy ban d its called TED.	
14	Enumerate the factors that reduces the efficiency in Impatt Diode.	BTL1
	Space charge effect	
	• Reverse saturation current effect	
	• High frequency skin effect	
	• Ionization saturation effect.	
15	Mention the ideal characterize of dielectric material in MMIC.[Nov/Dec 2017]	BTL2
	Small size and Weight	
	High reliability	
	Improved reproducibility	
	Improved performance	
	• Eventual cost reduction when produced in large quantities.	
16	What are the necessary condition for Gunn diode?	BTL1
	This mode is defined in the region when the fL value is about $10'$ cm/s and the n0/L >	10^{12} cm^2 .
	In this region the device is unstable because of the cyclic formation of either the acc	cumulation
	layer or the high field domain.	
17	List the gunn modes of operations.	BTL1
11	Transit time mode	
	LSA mode	
	Quenched time mode	
	Delayed mode	
18	Draw the equivalent circuit for varactor diode.[April/May 2015]	BTL3
19	Explain the use of power dividers.	BILI
	Power dividers are used to divide the input power into a number of smaller amounts of	power for
	exching the radiating elements in an array antenna.	
20	Interpret the principle of Microwave phase shifter. [Nov/Dec-2018]	BTL1
•	When a wave propagates on a line, a phase difference prevails between any two arbit	tary points
	along its paths. The phase difference between two points	
21	venat are junctions (Give some examples.	BIL2
	A inicrowave circuit consists of several microwave devices connected in some way the desired transmission of MW signal The interconnection of two or more microwave	to achieve
	regarded as MW junction Eg Magic Tee Hybrid Ring	ve may be
1		

22	What is Tee junction? Give two examples. BTL1
	In MW circuits a wave guide or coaxial junction with three independent ports is referred to as tee
	iunction. Eg: E- Plane Tee. H-plane Tee.
22	Demonstrate the principle of negative resistance in gunn diode. BTL1
23	The carrier drift velocity increases linearly from 0 to maximum when the electric field is
	increased from 0 to threshold value in gunndiodes. When the electric field is beyond the threshold
	value of 3000v/cm the drift velocity is decreased and the diode exhibit negative resistance.
24	State the applications of Magic Tee. [April/May 2017] BTL3
24	Measurements of impedance
	• As duplexer
	• As mixer
	• As an isolator
	Define coupling factor(C) BTI 1
25	• It is defined as the ratio of incident power Di to the forward power Df measured in
	dB Coupling factor (dB) = 10log10 Pi/nf
	• The coupling factor is a massure of how much of the incident power is being sampled
•	Flucidate the working principle of versetor diade [May/June 2016]
26	Varactor diode is a n junction diode whose canacitance is varied by varying the
	reverse voltage. The varactor diode should always be operated in reverse bias, when a reverse
	hiss voltage is applied the electrons from n-region and holes from n-region moves away from
	the junction As a result, the width of depletion region increases and the capacitance decreases
	Draw equivalent circuit of gunn diode [Nov/Dec 2018]
27	
	$r_{d} \rightarrow c_{d}$
	Parallel circuit
28	What is the s-Matrix of 4 port circulator? [April/May 2017] BTL3
20	Clockwise [S]=
	0 0 0 1
	1000
	0100
	0010
	Anticlockwise [S] =
	0100
	0010
	0 0 0 1
	0010
	PART B
1	Discuss Structure and principle of operation of Isolator.(8M) [Nov/dec-2011,12,13,
	Nov/Dec 2016, May/June 2016] BTL3
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:6.7-6.9
	Construction, Diagram (4M)
	Principle of operation (4M)

	$S = \begin{bmatrix} 0 & S_{12} & 0 & S_{14} \\ S_{21} & 0 & S_{23} & 0 \\ 0 & S_{32} & 0 & S_{34} \\ S_{41} & 0 & S_{43} & 0 \end{bmatrix}$
	$S = \begin{bmatrix} 0 & p & 0 & jq \\ p & 0 & jq & 0 \\ 0 & jq & 0 & p \\ jq & 0 & p & 0 \end{bmatrix}$
4	With neat schematic sketch explain the working principle and construction of phase
	shifter. (13M) BTL3 [Apr/May 2015, May/June 2016] BTL2
	Ans: Refer notes
	Schematic diagram and Construction (4M)
	Working Principle $(4M)$
5	Derivation of field component (E1,E2E0) (3M)
5	BTI 2
	Ans: Ref book: RF and microwave engineering by K.Muralibabu, Pg:no:8.4-8.7
	Schematic diagram and Construction (6M)
	Working Principle, Theory of operation (5M)
	Applications (2M)
	PART * C
1	Derive the equation for S matrix of magic TEE. (15M) [Nov /Dec 2012, May /June 2013,
	2014, Nov/ Dec 2013, Nov/Dec2017] BTL4
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:5.27-5.32
	Construction and working principle (10M)
	S Matrix (SM)
	Port 3
	Collinear Port 2
	arms E arm
	YZ
	Harm Port 4
	Port 1

 $\mathbf{S} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S & S & S & S & S \end{bmatrix}$ But $S_{21} = 0$, $S_{12} = 0$, $S_{43} = 0$, $S_{34} = 0$ $S_{11} = 0$, $S_{22} = 0$, $S_{33} = 0$, $S_{44} = 0$ $S_{14} = S_{24}, S_{13} = -S_{23}$ For port-3 and port-4 matched, the S matrix becomes $S = \begin{bmatrix} 0 & 0 & S_{13} & S_{14} \\ 0 & 0 & -S_{13} & S_{14} \\ S_{31} & S_{32} & 0 & 0 \\ S_{31} & S_{42} & 0 & 0 \end{bmatrix}$ $S = \begin{bmatrix} 0 & 0 & S_{13} & S_{13} \\ 0 & 0 & -S_{13} & S_{13} \\ S_{13} & -S_{13} & 0 & 0 \\ S_{13} & S_{13} & 0 & 0 \end{bmatrix}$ $S = \frac{1}{\sqrt{2}} \begin{vmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 - 1 & 0 & 0 \end{vmatrix}$ 2 With neat diagram, explain the working principle of Gunn diode mention its application.(15M) [Nov/Dec2011,12,13,14,May/June 2014, May/June 2016, April/May 2015, Nov/Dec2017 Nov/Dec2018] BTL2 Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:9.5-9.7 Ridley-Watkins-Hilsum (Rwh) Theory (8M) Two Valley Model Theory (7M)3 Draw the construction diagram and explain the working of IMPATT diode.(15M) BTL5 [Nov/Dec 2012,May/June 2013,April/May 2015,May/June 2016, April/May 2017] Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:10.7-10.11 Construction, Diagram (7M) Principle of operation (4M) Power output and efficiency (4M)4 Explain in detail with suitable diagrams the fabrication techniques of a monolithic microwave IC (15M) [Nov/Dec2018] BTL3 Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:11.7-11.11 Description of the following with necessary diagram • Diffusion (2M)

REGULATION: 2013

ACADEMIC YEAR: 2019-2020

• Oxidation and film deposition (2M)	
• Epitaxial growth (2M)	
• Lithography (3M)	
• Etching and photoresist(3M)	
• Deposition (3M)	

Review vacuur oscillat Voltag	v of conventional vacuum Triodes, n Tubes, Theory and application tor, Traveling wave tube amplifier, N e tunable Magnetrons, Backward wa	s, Tetrodes and Pentodes, High frequency effects in of Two cavity Klystron Amplifier, Reflex Klystron Magnetron oscillator using Cylindrical, Linear, Coaxial ave Crossed field amplifier and oscillator.
O N-		PARI * A
Q.No.		Questions
1.	What is the role of slow wave structu April/May 2017, Nov/Dec2017] Slow wave structure are a special cir wave velocity in a certain direction so	ure in TWT?[May/June 2013,May/June 2014, BTL1 rcuits that are used in microwave tubes to reduce the that the electron beam and the signal were interact
2	Compare M and O type tubes.	[Nov/Dec 2012,Nov/Dec2018, Nov/Dec2017] BTL4
	M type Tubes	O type Tubes
	Static magnetic field is perpendicute to the electric field	Static magnetic field is sameulardirectionto the electric field
	Magnetron is the M type Tube	Klystron and TWT are the O type tubes
	Electron travel in curved path	Electron travel in linear path
3	Compare TWT & Klystron. [N	Nov/Dec 2013, April/May 2015, April/May 2017] BTL4
	Klystron Amplifier T	ГШТА
	Linear beam or O type tubes L	Linear beam or O type tubes
	Uses a cavities for input and output Circuits	Uses non resonant wave circuit
4	State the limitation in conventional with the concentional tubes such as tridoscillators more efficiently. But these at high frequency (>1000MHZ) because The factors of contributing of our factors of contributing of our factors and the control of	vacuum tubes. [April/May 2015] BTL1 ode, tetrodes, pentodes can be used as amplifiers and conventional tubes can not used as amplifier or oscillator se at higher frequencies output drops off tput at UHF are pacitance

	• Transit time effects	
	• Cathode emission plate heat dissipation area	
	• Power loss due to skin effect, radiation and dielectric loss	
	Gain band width product	
5	Describe about convection current in TWT. [May/June 2014] BTL1	
	The convection current induced in the electron beam is by the axial electric field. When the	
	space charge effect is considered, the electron velocity, charge density, current density and the	
	axial electric field will perturbate about their averages or DC values.	
	$I = j\beta_e I_0 E_1 / 2VO(j\beta_e - \gamma)$	
0	Define resonant frequency. BILI Descret frequency fr at which the energy in the equity attains maximum	
	velue-2We or 2Wm	
	value=2 we or 2 will	
7	Mention the drawbacks available in klystron. BTL1	
	Klystrons are essentially narrowband devices	
	• In klystrons and magnetrons, the microwave circuit consists	
	of a resonant structures which limits the BW of the tube.	
8	What is TWT?[May/June 2016]BTL1	
	A travelling wave tube amplifier (TWTA) circuit uses a helix slow wave non resonant	
	microwave guiding structures. It is a bradband devices.	
0	State the characteristics of TWTA	
,	• Frequency range: 3GHz and higher	
	 Bandwidth: about 0.8GHz 	
	• Efficiency: 20 to 40%	
	Dower output: upto 10Kw average	
	 Power gain: upto foldB 	
10	Specify the applications of TWT. BTL3	
10	Microwave power satellite	
	Higher power satellite transponder output and	
	 Radar transmitters. 	
11	Expound the advantages of TWT BTL1	
	• BW is large	
	• High Reliability	
	• High gain	
	• Higher duty cycle.	
12	Name four types of slow wave structures. BTL1	
	Helical line	
	Folded back line	
	• Zigzag line and	
	Inter digital line.	
13	Define Velocity modulation. [April/May 2016] BTL1	
	The variation in electron velocity in the drift space is known as velocity modulation.	
1/	What is meant by hunching ?	
14	The electrons passing the first cavity gap at zeros of the gap voltage pass through with	
1	The elections pussing the mot eavily gap at zeros of the gap voltage pass unough with	
	unchanged velocity, those passing through the positive half cycles of gap voltage	undergo an
------	--	---------------
	increase in velocity; those passing through the negative half cycle of gap voltage	undergo an
	increase in velocity. As a result of these, electrons bunch together in drift space. The	his is called
15	bunching. State the newer gain newer autnut and officiency of two pavity blystron amplific	m DTI 1
15	State the power gain, power output and efficiency of two cavity klystron amplifie	r. BILI
	 Efficiency: about 40% Device extents Average power is unto 500KW and puls 	ad norman ia
	• Power output: Average power is upto 500K w and puts upto 30MW at 10GHz	ed power is
	 Power gain: about 30dB. 	
16	Classify the assumptions for calculation of RF power in Reflex Klystron?	BTL1
	• Cavity grids and repeller are plane parallel and very large in extent.	
	• No RF field is excited in repeller space	
	• Electrons are not intercepted by the cavity anode grid.	
	• No debunching takes place in repeller space.	
	• The cavity RF gap voltage amplitude V, is small compared to the dc beam vo	ltage VO
17	Establish the condition for oscillation in Reflex klystron.	BTL1
	The necessary condition for oscillation is that the magnitude of the negative real	
	part of the electronic admittance should not be less than the total conductance of the c	avity
	circuit i.e. $-Ge \ge G$.	
	Where $G=Gc + Gb + G1 = 1/Rsh Rsh - effective shunt resistance Gc - copper$	
	losses of cavity Gb- beam loading conductance G1 - load conductance	
18	What is the effect of transit time?	BTL1
10	There are two effects.	DILI
	• At low frequencies, the grid and anode signals are no longer 180 O ou	t of phase.
	thus causing design problems with feedback in oscillators.	
	• The grid begins to take power from the driving source and	
	the power is absorbed even when the grid is negatively	
	biased.	
19	Enlist the applications of reflex klystron.	BTL3
	• Signal source in MW generator	
	Local oscillators in receivers	
	• It is used in FM oscillator in low power MW links.	
	In parametric amplifier as pump source	
20	How the klystron amplifier can act as klystron oscillator?	BTL1
	When the klystron amplifier is given a positive feedback such that the overall phase	
	shift becomes zero 360° and Av = I then klystron amplifier acts as an oscillator.	
21	Define Transit time in Reflex klystron	BTL1
21	The time taken by the electron to travel into the repeller space and back to the gap.	DILI
	T = $n + \frac{3}{4}$	
22	Write the parameters on which bunching depend on.	BTL2
	Drift space should be properly adjusted.	
	D.C anode voltage	
	• Signal amplitude should be such that proper bunching takes place.	
1 23	State the characteristics of magnetice and of 2 parity blustion amplifice	

	Magnetron: [Nov/Dec 2016] BTL1
	Operating frequencies 70 GH z
	Output power 40 MW
	Efficiency 40 to 70%
	2-cavity klystron:
	Efficiency 40%
	Power output average power 500 KW
	Pulsed power 30 MW
	Power gain about 30 db
24	Describe strapping. BTL1
	The magnetron has eight or more coupled cavity resonators and hence several modes of oscillation
	are possible. The oscillating frequency of different modes are not same and are quite close to each
	other which results in mode jumping. i.e., a 3 cm π mode oscillation which is normal for a particular
	magnetron Could become a 3.05 cm 3/4 mode oscillation. This result in oscillations of reduced
	power at wrong frequency. To prevent this. Strapping is used. It consists of two rings of neavy gauge
	whe connecting alternate anode poles. It provides a phase difference of 2π fadians for the modes other = mode and thus preventing the accurrence of other modes avaint the = mode.
25	State the applications of magnetrons
25	State the applications of magnetrons. B1L5
	Puise work in radar
	• Linear particle accelerators.
	Radar transmitters
	Microwave ovens
26	Explain the concept of frequency pulling and frequency pushing in magnetrons. BTL1
	Frequency pulling is caused by changes in the load impedance reflected into the
	cavity resonators. Frequency pushing is due to the change in anode voltage which alters the
	orbital velocity of electron clouds.
27	Define electronic efficiency. B1L1
	The electronic efficiency of the klyston amplifier is defined as the ration of the output power
	to the input power.
	Efficiency: Pout/Pin = $\beta_{e}I_{e}V_{e}/2I_{e}V_{e}$
	Efficiency. Four Fin = $p_{012} v_{2/210} v_{0}$
28	What is hull cutoff condition? BTL1
	In a magnetron, the electron will just graze the anode and return towards the cathode depends
	on Vo and Bo. The hull cut of magnetic equation is $Boc = (8Vo m / e) \frac{1}{2} / b(1 - a 2 / b2)$
29	Classify the types of magnetron. BTL4
	Split anode magnetron
	Cyclotron-frequency magnetron
	Travelling wave magnetrons.
30	Why magnetron is called as cross filed device?BTL1
	In cavity magnetron, there exists a radial electric field and an axial magnetic field
	perpendicular to each other and hence magnetron is called as a cross filed device.
	PART B
1	Explain the working principle of reflex klystron and derive the expression of
	bunching parameters. (13M) [Nov/ Dec 2013, April/May 2017, Nov/Dec 2018] BTL5

	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no:12.19-12.22	
	Construction with schematic diagram (3M)	
	Velocity Modulation process with diagram(10M)	
2	A pulsed cylindrical magnetron is operated with following parameters:	
	Anode Voltage = 25KV (13M) [May/June 2013, Nov/Dec 2014, April/May 2015, May/June2016] BTL 5	
	Ans. Ref book. RF and microwave engineering by K Muralibahu Pg.no. SO 36	
	Beam current = 25A	
	Magnetic density = 0.35Wb/m2 Radius of cathode cylinder =4cm Radius of	
	anode cylinder = 8cm Calculate	
	a) The anguar frequency (4M)	
	(b)The cutoff voltage (4M)	
	(c)The cutoff magnetic flux density. (5M)	
	Solution:	
	$\omega_{-} = \frac{e}{B_{0}} B_{0}$	
	a) Angular frequency $m = 0$	
	$= 1.759 \times 10^{11} \times 0.34$	
	-0.62×10^{11} radian	
	= 0.02 radian	
	b) The cutoff voltage $V_{OC} = \frac{Bm}{Bm} \frac{B0^{-}b^{-}(1-\frac{1}{b^{2}})^{2}}{2}$	
	$= 1/8 \times 1.759 \times 10^{-1} \times (0.35)^{-1} \times (8 \times 10^{-2})^{-1} (1^{-16}/64)^{-1}$	
	$= 0.22 \times 7.84 \times 10^{7} \times 0.5625$	
	$= 9.7 \mathrm{MW}$	
	c) The cutoff magnetic flux density	
	(113.7×10 ⁻⁸)^0.5	
	$=\frac{(1-1)^{2}}{6\times10^{-2}} = 17.7 \text{mWh/m}^{2}$	
3	With neat diagrams and relevant equations, explain about helix traveling wave tube. (13M)	
	[April/May 2017,Nov/Dec 2018] BTL2	
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no: 13.3-13.5	
	Construction with schematic diagram, Principle of operation (6M)	
1	FART'C Explain the experiment of two equity bluetures complified and compare it with traveling	
1	wave tubes (15M) [Nov/Dec 2011 Nov/Dec 2012 May/June2013 May/June 2014	
	Nov/Dec 2014, April/May 2017, Nov/Dec 2016, May/June 2016] BTI 4	
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no: 12.3-12.9	
	1) Velocity Modulation process (8M)	
	2) Bunching Process with power output (7M)	
	$\frac{1.1610}{1.1610} \times \frac{V0}{V} = 0.58 I_0 V_0 = 0.58 P_0$	
	$Pout = \sqrt{2} \qquad \sqrt{2} \qquad 0.001_0 \\ r_0 \qquad 0.001_m$	
	Bunching Distance	

	$\beta_{0 I_2 V_2}$
	2 I _{0 V0}
	$\beta_0 \theta_0 \frac{J_1(X)}{2}$
	(b) The voltage gain $A_v = R_0 X R_{sh}$
	$(0.959)^2$ (40)(0.582)30 × 0 ³
	= 4×10 ⁴ ×1.841
	0.92 ×23.28 ×30
	<u> </u>
	64.253
	= 7.364
	A _v = 8.595
	$\beta_{0} I_{2} V_{2}$
	2 I ₀ V ₀
	(a)Efficiency $\eta =$
	Where $I_2 = 2 \beta_0 I_0 J_1(X)$
	$l_2 = 2 \times 25 \times 10^{-3} \times 0.582$
	$h_{0} = 29.1 \times 10^{-3}$
	$V_2 = \beta_0 I_2 R_{sh}$
	$=(0.959)(29.1\times10^{-5})(30\times10^{-5}) V_2=831V$
	Sub all values in η w get $\eta = 46.38\%$
3	Draw cross section of Magnetron oscillator and explain the process of bunching. (15M)
	[April/May 2015, Nov/Dec 2018] BTL3
	Ans: Kei Dook: KF and microwave engineering by K.Muralibabu. Pg:no: 14.2-14.4
	Cymuncar magnetron construction and working principle (8M) Bunching Process (7M)

Г

	UNIT V- MICROWAVE MEASUREMENTS 9		
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter,			
Qfacto	Ofactor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters.		
	PART * A		
Q.No.	Questions		
1.	Name the possible errors VSWR measurements.[May/June 2013, May/June 2016] BTL1		
	The signal source give a signal frequency. any spurious signals present leads to the shift in maxima and minima and hence error is resulted in the readings		
	There should not be any undesired reflection. for this matched load can be used as shown. These undesiresd reflection cause peaks and nodes to shift position in the standing wave pattern and		
	VSWR thus measured will not be accurate.		
	For higher VSWR near 10, the minimum voltage will be small and there will be deformation in the pattern because of high coupling at maximum voltage in errors.		
2	Classify the errors in impedance measurements [May/June 2014] BTL1		
	Scalar errors		
	Vector errors/Phase errors		
3	Explicit the significance of VSWR measurement. [Nov/Dec 2014]BTL1		
	VSWR and the magnitude of voltage reflection coefficient (1) are very important parameters		
	which determine the degree of impendence matching $VSWP$ and Γ are also used for measurement of load impendence by the slotted line		
	Method		
4	What is Bolometer? BTL1		
-	It is a power sensor whose resistance change with changed temperature as it absorb the		
	microwave power. It is a short thin metallic wire sensor with positive temperature coefficient of		
	reistance		
5	Define insertion loss. [Nov/Dec2017] BTL1		
	It is defined as difference in power arriving at the terminating load .with or without The network in circuit Insertion loss(db)=10 log(po/pi)		
6	Explain radiation pattern. BTL1		
	Radiation pattern is a representation of radiation characteristics of an antenna which is a function of elevation angle azimuth angle for a constant radial distance and frequency		
7	Interpret the concept of spectrum analyzer. [Nov/Dec2016] BTL1		
	Spectrum analyzer is a broad band super heterodyne receiver which is used to		
	display a wave in frequency domain additionally, power measurements, side bands		
	can also be observed.		
8	State the principle by which high power measurements could be done by calorimetric		
	Method. (April/May 2017) BTL2		
	The measurement involves conversion of microwave energy into heat, absorbing this heat in a		
	11010		

	(usually water) and then measuring the temperature rice of the fluid.	
9	Differentiate baretter and thermistor. [Nov/Dec2018]	BTL4
	Baretter	
	• baretter has positive temperature coefficient.	
	• it has thin wire.	
	• less sensitive.	
	• required less bias current	
	Thermistor	
	• negative temp coefficient.	
	• small bead of semi conductor material.	
	• more sensitive.	
	• require more sensitive.	
10	What are tunable detector?	BTL1
	The tunable detectors are used to demodulate the signal and couple the required ou	tput to high
	frequency scope analyzer. The low frequency demodulated output is detected using	; non
	reciprocal detector diode monunted in the microwave transmission line.	
11	Describe about slotted section with line carriage	BTI 1
11	It is a microwave sectioned coaxial line connecting a coaxial F-field probe which	DILI
	penetrates inside a rectangular waveguide slotted section The longitudinal slot i	s cut along
	the center of the waveguide broad walls. The probe is made to move along the	slotted wall
	which samples the electric field propotional to probe voltage.	
12	Enlist the main purpose of slotted section with line carriage. [April/May 2017	BTL2
	• For determination of location of voltage standing wave maxima and r	ninima
	• along the line.	
	• Measure the VSWR and standing wave pattern.	
	• Wavelength.	
	• Impedence.	
	Reflection coefficient.	
	• Return loss measurement.	
13	Describe about VSWR meter.[April/May 2015]BTL1	
	VSWR meter is a highly sensitive, high gain, high theta, low noise voltage amplifier	tuned
	normally at fixed frequency of 1KHZ of which microwave signals modulated. This	meter
	indicates calibrated VSWR reading fir any loads.	
14	What is calorimeter?	BTI 1
14	It is convenient device setup for measuring the high power at microwave which in	volves
	conversion of microwave energy in to heat absorbing the heat in a fluid and deter	nine the
	temp.	
15	Mention the disadvantages of single bridge circuit.	BTL1
	• Change in resistance due to mismatch at the microwave input port results in	n incorrect
	reading	
	• The thermistor is sensitive to change in the ambient temp resulting in false	Readings
		\mathbf{O}^{st}
16	How will you determine the VSWR and return loss in reflecto meter method?	
	[Nov/Dec2017]	BTL2

	The voltage ratio between port3 or port4 is known reflecting coefficient (T) determined
	we determine VSWR and return loss as
	VSWR= $(1+T)/(1-T)$ Return loss=-20 log(T)
17	List the different types of Impedence measurement methods. BTL4
	Slotted line method
	Reflectometer method
	Reactor discontructer method
18	List out the methods to measure microwave frequency. BTL1
	1.Wavemeter method 2.Slotted line method 3.Downconversion method
19	What is a wavemeter? BTL1
	It is a device used for frequency measurement in microwave. It has cylindrical cavity with a
	variable short circuit termination .It changes the resonant frequency of cavity by changing
	cavitylength.
20	Define dielectric constant. BTL1
	It is defined by the ratio of permittivity of medium to permittivity of freespace.
	xr=x/xo=((10^-9)/36p)
21	How the S-parameter of a microwave circuit measured? [Nov/Dec 2016] BTL2
	S-parameters are conveniently measured using the deschamps method which utilizes the
	measured value of complex input reflection coefficient under a number of a reactive
- 22	terminations.
22	Classify the methods for measuring dielectric constants. B1L1
	• Waveguide method
	• cavity pertubaration method
23	List the types of spectrum analyzer. BTL1
	• Real time spectrum analyzer
	• Swept tuned frequency spectrum analyzer
24	Mention some application of spectrum analyzer.[May/June 2016] B1L3
	Identifying frequency terms and their power levels measuring harmonic distortion in a wave
- 25	Determine type of wave modulation Signal to noise ratio for identifying wave distortion
25	What is network analyzer? [Nov/Dec 2016] B1L1
	A Network analyzer measures both amplitude and phase of a signal over a wide frequency range.
26	It requires accurate reference signal and a test signal.
20	VSWD and the magnitude of voltage reflection coefficient are the very important personators
	which determine the degree of impedance matching
27	Define SWD [April/May 2017] DTI 1
21	Standing wave ratio is defined as the ratio of maximum voltage to the minimum voltage
	Standing wave ratio is defined as the ratio of maximum voltage to the minimum voltage. $S = E_{max}/E_{min}$
	$Or S = 1 + \Gamma$
	$\Gamma = \frac{\Gamma}{\Gamma}$ Where $\Gamma = \text{Reflection coefficient}$
28	Name the errors possible in VSWR measurements [May/June 2013 May/June 2014]
20	Maw/June 2016] BTI 1
	• Vmax and Vmin may not be measured in the square law region of the
	crystal detector
	 The probe thickness and depth of penetration may produce reflections in
	the line and also distortion in the field to be measured
1	

	When VS measurem measurem	WR is < 1.05, the associated VSWR of the theorem of	of connector produces significant connectors should be used for ve	error in VSWR ery low VSWR
29	Distinguis [April/Ma	sh between low frequency measuren ay2015]	nents and microwave measurem	ents. BTL4
	S.No	Low frequency measurements	Microwave measurements	
	1	At low frequency it is convenient to	At Microwave frequencies the	•
		measure voltage and current and	amplitude of voltage and	
		use them to calculate power	currents on a distribution line	
			are the functions of a distance	
			and are not easily measurable.	
	2	At low frequency, circuits use	At Microwave frequencies the	
		lumped elements.	circuit elements are	
		-	distributed.	
		PAI	RT B	
1	Write sho	ort notes on network analyzer. (13M) [April/May 2015]	BTL2
	Ans: Refe	er notes		
		 Block diagram Theory of operation 	(6M) (7M)	
2	Explain	the procedure to measure the in	(7M) mnedance of load. (13M) [M	av/June 2014.
-	Nov/Dec2	2016, May/June 2016, April/May 201	7, Nov/Dec2018]	BTL2
	Ans: Ref	book: RF and microwave engineering	ng by K.Muralibabu. Pg:no: 15.	7-15.9
	Impedanc	e measurement with slotted line:		
	• BI	ock diagram (6M)	
2	• Pro	ocedure with theory of operation (/M) nt and attenuation massure	monta (12M)
5	INov/Dec	2018]	int and attenuation measure	BTL1
	Ans: Ref	book: RF and microwave engineering	ng by K.Muralibabu. Pg:no: 15.	11
	• Di	electric constant/Attenuation block dia	agram (6M)	
	• Th	eory with procedure	(7M)	
4	Explain s	pectrum analyzer and its application	ns. (13M)[Nov/Dec 2018]	BTL3
	Ans: Keie	er notes Block diagram	$(\mathbf{4M})$	
	•	Theory of operation	(4M)	
	•	Applications	(3M)	
5	Discuss in	detail about the measurement of fr	equency. [april/May 2017, Nov/	Dec2018]
	(13M)			
	Ama: D. C	heales DE and missions and in the	a hu V Muualikaha Daar 17	BTL2
	Ans: Ket	DOOK: KF and microwave engineering	ig by K.Muralidadu. Pg:no: 15.	14-13.13

	• Block diagram of frequency measurement (6M)
	• Theory of operation (7M)
	PART * C
1	Explain how low VSWR can be measured using microwave bench. (15M) [Nov/Dec 2011,
	Nov/Dec 2012,Nov/Dec 2014, Nov/Dec2016, May/June 2016, April/May 2017, Nov/Dec2018]
	BTL3
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no: 15.2-15.6
	• Double Minima method (8M)
	• Reflectometer method (7M)
2	Demonstrate the principle of microwave power measurements. (15M) [Nov/Dec 2011,
	May/June 2014, April/May15, Nov/Dec 2018] BTL3
	Ans: Ref book: RF and microwave engineering by K.Muralibabu. Pg:no: 15.16-15.24
	• Diode detector (4M)
	• Bolometer sensor (6M)
	• Thermocouple sensor (5M)
3	Discuss the working principle of operation and application of VSWR meter and
	Powermeter. (15M) BTL3
	Ans: Refer notes
	• Block diagram of VSWR meter and Power meter (8M)
	• Theory with principle of operation (7M)

EC6702 OPTICAL COMMUNICATION AND NETWORKS

OBJECTIVES:

- To Facilitate the knowledge about optical fiber sources and transmission techniques
- To Enrich the idea of optical fiber networks algorithm such as SONET/SDH and optical CDMA
- To Explore the trends of optical fiber measurement systems

UNITI INTRODUCTION TO OPTICAL FIBERS

Evolution of fiber optic system- Element of an Optical Fiber Transmission link-- Total internal reflection-Acceptance angle –Numerical aperture – Skew rays Ray Optics-Optical Fiber Modes and Configurations -Mode theory of Circular Waveguides- Overview of Modes-Key Modal concepts Linearly Polarized Modes -Single Mode Fibers-Graded Index fiber structure.

UNITII SIGNAL DEGRADATION OPTICAL FIBERS

Attenuation - Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides-Information Capacity determination -Group Delay-Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling -Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNITIII FIBER OPTICAL SOURCES AND COUPLING

Direct and indirect Band gap materials-LED structures -Light source materials -Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition -Rate equations -External Quantum efficiency - Resonant frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power Launching and coupling, Lencing schemes, Fiber -to- Fiber joints, Fiber splicing-Signal to Noise ratio, Detector response time.

UNITIV FIBER OPTIC RECEIVER AND MEASUREMENTS

Fundamental receiver operation, Pre amplifiers, Error sources – Receiver Configuration– Probability of Error – Quantum limit. Fiber Attenuation measurements- Dispersion measurements – Fiber Refractive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements.

UNITV OPTICAL NETWORKS AND SYSTEM TRANSMISSION

Basic Networks – SONET / SDH – Broadcast – and –select WDM Networks –Wavelength Routed Networks – Non linear effects on Network performance –-Link Power budget -Rise time budget Noise Effects on System Performance-Operational Principles of WDM Performance of WDM + EDFA system – Solutions – Optical CDMA – Ultra High Capacity Networks.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

- Discuss the various optical fiber modes, configurations and various signal degradation factors associated with optical fiber
- Explain the various optical sources and optical detectors and their use in the optical communication system.
- Analyze the digital transmission and its associated parameters on system performance

TEXT BOOK:

1. Gerd Keiser, "Optical Fiber Communication" Mc Graw -Hill International, 4 th Edition, 2010.

2. John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007. **REFERENCES:**

1. Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.

JIT-JEPPIAAR/ECE/Mr.Thandaiah prabu /IVth Yr/SEM 07/EC6702/OPTICAL COMMUNICATION/UNIT 1 -5/QB+Keys/Ver 2.0

3003

LTPC

9

9

9

0

9

2. J.Senior, "Optical Communication, Principles & Practice", Prentice Hall of India, 3rd Edition, 2008.
3. J.Gower, "Optical Communication System", Prentice Hall of India, 2001.

Subject Code: EC6702 Subject Name: Optical Communication and Networks

Year/Semester: IV/07 Subject Handler: Mr.R.Thandaiah Prabu

UNIT I - INTRODUCTION TO OPTICAL FIBERS

Evolution of fiber optic system- Element of an Optical Fiber Transmission link-- Total internal reflection-Acceptance angle –Numerical aperture – Skew rays Ray Optics-Optical Fiber Modes and Configurations -Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts Linearly Polarized Modes -Single Mode Fibers-Graded Index fiber structure.

PART * A

Q.No.	Questions
1.	Why partial reflection does not suffice the propagation of light? (Nov/Dec 2017) BTI 4
	• The reason is that at each reflection a part of the optical energy launched into the optical
	fiber would be lost and after a certain distance along the length of the fiber the optical
	power would be negligibly low to be of any use.
	Thus total internal reflection is an absolute necessity at each reflection for a sustained propagation
	of optical energy over long distance along the optical fiber.
2	A graded Index optical fiber has a core with a parabolic index profile which has a diameter
	of 50 micrometer. The fiber has a NA of 0.2. Calculate the total number of guided modes in
	the fiber when it is operating at a wavelength of 1micrometer.(Nov/Dec 2017) BTL3
	Given:
	NA=0.2
	Core diameter=50micrometer
	So, core radius=25micrometer
	Wavelength=1micrometer
	$V = \frac{2\pi}{\lambda} a(NA)$
	V=31.4
	The number of guided modes for a parabolic profile
	V^2
	$M_g = \frac{1}{4}$
	$M_g = 246.49 = 247.$
3	What are the advantages of Optical fiber? (Apr/May 2017) BTL1
	Enormous potential Bandwidth.
	Small size & Weight
	Electrical isolation
	Immunity to interference &crosstalk
	Signal security & low transmission loss.
4	A multimode silica fiber has a core refractive index n1=1.48 and cladding refractive index
	n2=1.46. Find Numerical Aperture of fiber. (Apr/May 2017) BTL3

	Given:
	Core refractive index $n_{1=1.48}$
	Cladding refractive index $n^2=1.46$
	$NA = \sqrt{n_{*}^{2} - n_{0}^{2}}$
	NA = 0.24248
5	Define acceptance angle and Numerical Aperture. (Nov/Dec 2016), (Nov/Dec 2014) BTL1
	Acceptance Angle
	Maximum angle to the axis at which light may enter the fiber in order to be propagated. Numerical Aperture (NA)
	It is to obtain a relationship between the acceptance angle & refractive indices of 3 media involved, Namely core, cladding & air.
	$NA = n_0 \sin \theta_a = \sqrt{(n_1^2 - n_2^2)}$
6	What are the conditions for light to be propagation inside a fiber? (Nov/Dec 2016) BTL2
	• The phenomenon of total internal reflection is used to guide the light in the optical fiber. To get total reflection, the ray should travel from denser region rarer region i.e. from core to clad region.
	• Of the fiber and the angle of incidence in the denser medium should be greater than the critical angle of that medium.
7	What are the conditions for the single mode propagation? (May/Jun 2016) BTL2
	The basic requirement for single mode fiber is that the core be small enough to restrict
	transmission to a single mode. This lowest-order mode can propagate in all fibers with smaller
	cores (as long as light can physically enter the fiber).
8	Define phase and group velocity (May/Jun 2016), (Nov/Dec 2015) BTL1
	Phase velocity : As a monochromatic light wave propagates along a waveguide in the direction of
	wave front with constant phase is called phase velocity
	Group velocity: Speed at which energy in a particular mode travels along a fiber.
9	What is total internal reflection in a fiber? (Nov/Dec 2015) B1L1
	indicate when light is insident on the dislocatio of lower index from the dislocatric of high index
	and the angle of incidence of the ray exceeds the critical value
10	List any 2 advantages of single mode fibers (Nov/Dec 2014) BTI 1
10	No intermodal dispersion
	 Information capacity of single mode Fiber is Large
11	The refractive indexes of the core and cladding of a silica fiber are 1.48 and 1.46
	respectively. Find the acceptance angle for the fiber. (Nov/Dec 2013) BTL3
	Core refractive index $n1=1.48$
	Cladding refractive index n2=1.46
	Maximum acceptance angle θ_{max} =Acceptance angle
	$\theta_A = \sin^{-1} NA$
	NA= $\sqrt{n_1^2 - n_2^2}$

	$=\sqrt{((1.48)^2 - (1.46)^2)}$
	NA = 0.24248
	$\theta_A = \sin^{-1} 0.24248$ $\theta_A = 14.032 \circ$
12	Determine the normalized frequency at 820nm for a step index fiber having a 25micrometer radius. The refractive indexes of the cladding and the core are 1.45 and 1.47 respectively. How many modes propagate in this fiber at 820nm? (Nov/Dec 2013) BTL3 Given: Wavelength $\lambda = 820$ nm
	Core radius a = 25micrometer Core refractive index n1=1.47 cladding refractive index n2=1.45
	normalized frequency v = $\frac{2*3.14*a}{\lambda}$ (NA) = $\frac{2*3.14*(25X10^{-6})}{(820X10^{-9})} \left(\sqrt{(1.47)^2 - (1.45)^2}\right)$ =46.33
	Mode propagation $M_g = \frac{V^2}{2}$ $M_g = 1073$
13	Calculate the cutoff wavelength of a single mode fiber with core radius of 4micrometer and Δ =0.003. (Nov/Dec 2012) BTL3
	normalized frequency $v = \frac{2*3.14*a}{\lambda} (NA)$
	Let V=2.405; n1=1 and a=4micrometer, Δ =0.003 λ = 0.809
14	For a fiber with core refractive index of 1.54 and fractional refractive index difference of 0.01. Calculate its Numerical Aperture. (Nov/Dec 2012) BTL3
	Core refractive index $n1=1.54$ $\Delta=0.01$
15	$NA = n1\sqrt{2\Delta}$ NA=0.217 Assume that there is a glass rod of refractive index 1.5. surrounded by air. Find Critical
10	incident angle. BTL3 Given Glass rod(core) refractive index $n1 = 1.5$
	Cladding refractive index n2=1 $\varphi_c = \sin^{-1}(\frac{n_2}{n_1})$
	$=\sin^{-1}(\frac{1}{1.5}) = 41.81$ degrees

16	What are the limitations of optica	l fiber Communication systems? E	BTL2
	• It is costly and it has limited	bend radius	
	• Because of the impuritie	s present in optical fiber, absor	rption leads to loss of
17	What is the necessity of cladding for an optical fiber? BTL2		
_	• To avoid leakage of light from the fiber		
	• To avoid mechanical strength for the fiber		
	 To protect core from scratches and other mechanical damages. 		
18	List the uses of optical fiber. BTL2		
	• To act as light source at the inaccessible places		
	• To transmit the optical imag	es. (example: endoscopy)	
	• To act as sensors to do mech	nanical, electrical and magnetic meas	surements
	• To transmit the information	which are in the form of coded signa	als of the telephone
	communications, computer of	data etc.	
19	What is Snell's law? BTL1		
	The relationship at the interface is c	alled Snell's Law.	
	It is given by the equation		
	$n1\sin\varphi 1 = n2\sin\varphi 2$		
20	Why step index single mode fiber	preferred for long distance Comm	nunication? BTL4
	The step index single mode fiber is preferred for long distance communication because		
	• They exhibit higher transmission bandwidth because of low fiber losses.		
	• They have superior transmission quality because of the absence of the model noise.		
	• The installation of single mode fiber is easy and will not require any fiber replacement		
21	Over twenty plus years. Differentiate hatered means and film of the DTL 4		
21	Mono-mode fiber	Multi-mode fiber	*
	fiber	More than one ray passes	
	liber	unough noer at a time.	
	Coupling officiency is loss	Coupling efficiency is	
	Coupling enficiency is less.	large.	
	LED is not suitable for single	LED is suitable for multi	
	mode	mode fiber	
fiber. mode fiber Intermodal dispersion is not Intermodal dispersion is			
present. present Fabricating single mode fiber is Fabricating multi-mode			
22	Define- Birefringence. BTL1		
	• Manufactured optical fibers have imperfections such as asymmetrical lateral stresses, non		
	- circular cores and variations in refractive index profiles.		
	• These imperfections break the circular symmetry of the ideal fiber and lift the degeneracy		

	of the two modes. These modes propagate with different phase velocity and it is called as		
22	tiber biretringence.		
25	Day ontics Wave ontics		
	Ray optics	wave optics	
	It is used to represent the light propagation	It is used to analyze mode theory	
	It is used to study reflection and refraction of light	It is used to analyze diffraction and interference of light waves	
24	What is V number of a fiber? BT Normalized frequency or V number among three design parameters var and the operating wavelength λ . It is expressed as $V = (2^*\pi^* \text{ Number})$	L1 r is a dimensionless parameter and represent the relationship iables of the fiber viz core radius a, relative refractive index Δ rical aperture(a)) / λ	
25	What is meant by linearly polariz	zed mode? BTL1	
	The field components HE, EH, TE,	, TM forms linearly polarized modes. Linearly polarized	
	Modes are labeled LPjm where j an	id m are integers designation mode solutions.	
26	Define Refractive Index. BTL1	and a Malanian of The Laboration and a dimension	
	Ratio of velocity of Light in vacuul	m to velocity of Light in Medium.	
1		PAK1 * B	
1	Explain phase shift with total int	ernal reflection and evanescent field.(15M) (Nov/Dec 2017)	
	BILI		
	Answer:Page:10-12- Notes		
	Snells law $n1sin\phi 1 = n2sin\phi 2$	(2M)	
	Refraction-diagram (3M)		
	Critical angle-diagram and explanation (4M)		
	 Ray should travel from denser region rarer region i.e. from core to clad region. Fiber and the angle of incidence in the denser medium should be greater than the critical angle of that medium. 		
	• Total Internal reflection of	occurs at the interface between two dielectrics of different	
	refractive indices when ligh of high index and the angle	it is incident on the dielectric of lower index from the dielectric of incidence of the ray exceeds the critical value	
2	Discuss whether TEM waves e	xist in an optical Fiber. If not what type of mode will	
	propagate in a practical optical f	iber(13M) (Nov/Dec 2017) BTL4	
	Answer:Page:26-28- John M seni	ior	
	Planer wave propagation diagram	(6M)	
	TE & TM mode in practical fibe	er & Figure (5M)	

JIT-JEPPIAAR/ECE/Mr.Thandaiah prabu /IVth Yr/SEM 07/EC6702/OPTICAL COMMUNICATION/UNIT 1 -5/QB+Keys/Ver 2.0

3 Compare the structure and characteristics of step index and graded index fiber./ Classify fibers and Explain them./ Explain the Features of Multimode and single mode Step index fiber and compose them. (Nov/Dec 2016) (13M), (Nov/Dec 2011) BTL4 Answer:Page:19-21 &33-35- notes **Types of fiber** (3M) Step index(refractive index is uniform)- Single mode, Multimode Graded index(refractive index varies throughout the fiber)- Multimode **Structure Figure** (5M) **Refractive index Formula** (5M)For step index--- $n_2 = n_1(1 - \Delta)$ For graded Index--- $n(r) = \begin{pmatrix} n_1 [1 - 2\Delta(\frac{r}{a})^{\alpha}]^{\frac{1}{2}} & \text{for } 0 \le r \le a \\ (n_1 (1 - 2\Delta)^{\frac{1}{2}}) = n_2 & \text{for } r \ge a \end{pmatrix}$ 4 A graded Index optical fiber has a core with a parabolic index profile (α =2) which has a diameter of 50 micrometer. The fiber has a NA of 0.2. Calculate the total number of guided modes in the fiber when it is operating at a wavelength of 1micrometer.(7M)(Nov/Dec 2017) BTL4 Answer:Page:84 - notes $M_g = \frac{V^2}{4}$ $M_{g} = \frac{v^{-}}{4}$ $V = \frac{2\pi a}{\lambda} NA$ V=31.4 (3) $M_{g} = 246.49$ (1M)(1M) (3M) (2M) 5 Find the core radius necessary for single mode operation at 1320nm of a step index fiber with n1=1.48 and n2=1.478. Determine the numerical Aperture and acceptance angle of this optical fiber.(13M) (Apr/May 2017) (13M) BTL4 Answer:Page:84-85- notes $V = \frac{2\pi a}{\lambda} n_1 \sqrt{2\Delta} = => a = 6.5 \mu m$ (5M) $NA = \sqrt{n_1^2 - n_2^2} = > NA = 0.076$ (4M) $\theta_a = \sin^{-1} NA = 4.35^{\circ}$ (4M)Explain the Evolution of optical Fiber (8M) BTL1 6 Answer: page:4-5 -Notes **First Generation** (3M)• Operated at 850nm • GaAS based source optical source, silicon photodiode Second generation (2M)

	• Operated at 1300nm		
	 Bit rate range from 10 to 100 Mb/s over distance ranging from 500m to tens of KMs 		
	Third generation (3M)		
	• 1550nm.		
	• Lowest attenuation but high dispersion.		
	Remedy: Dispersion Shifted Fiber.		
7	Discuss the mode theory of circular waveguides. (8M) BTL3		
	Answer: page:4-5 -Notes		
	• Introduction (1M)		
	• Overview of Modes (2M)		
	Key Modal Concept & Linearly Polarized Wave (5M)		
8	A step index multimode fiber with a numerical aperture of 0.2 support appr	rox. 1000 modes	
	at an 850nm wavelength. What is the diameter of its core? (7M) (Apr/May 2	2017) BTL4	
	Answer:Page:85- notes		
	$N = 4.9 \left[\frac{d NA}{\lambda} \right]^2 \tag{4M}$		
	N=60.7μm (3M)		
9	Derive Numerical Aperture of an optical fiber. (8M)(May/Jun 2016), (Nov/I	Dec 2013) BTL1	
	Answer:Page:14-16- notes		
	Figure representation(3M)		
	Snell's law == > $n1\sin\varphi 1 = n2\sin\varphi 2$ (1M)		
	Derivation (4M)		
	$NA = n_0 \sin \theta_a = \sqrt{(n_1^2 - n_2^2)}$		
10	Discuss on the transmission of light through graded index fiber. (13M) (Nov	//Dec 2014)	
	BTL2		
	Answer:Page:33-34- notes		
	Introduction Refractive index varies throughout the fiber. (1)	(M	
	Structure diagram (2M)		
	$\left(n_1 \left[1 - 2\Delta \left(\frac{r}{r}\right)^{\alpha} \right]^{\frac{1}{2}} \right) \qquad for \ 0 \le r \le a \right)$		
	Refractive index $n(r) = \begin{pmatrix} 1 & a & 1 \end{pmatrix}$	(2M)	
	$ \left(n_1(1-2\Delta)^2 \right) = n_2 \qquad \text{for } r \ge a $	()	
	Local Numerical Aperture		
	$NA(r) = \left(\left[n^{2}(r) - n_{2}^{2} \right]^{\frac{1}{2}} = NA(0) \sqrt{1 - \left(\frac{r}{a}\right)^{\alpha}} \right)$	(2M)	
	Axial Numerical Aperture		
	$NA(0) = \left([n^{2}(0) - n_{2}^{2}]^{\frac{1}{2}} = [n_{1}^{2} - n_{2}^{2}]^{\frac{1}{2}} \right) = n_{1}\sqrt{2\Delta}$	(2M)	
	Modes		

JIT-JEPPIAAR/ECE/Mr.Thandaiah prabu /IVth Yr/SEM 07/EC6702/OPTICAL COMMUNICATION/UNIT 1 -5/QB+Keys/Ver 2.0

	$M = \frac{\alpha}{\alpha+2} \alpha^2 k^2 n_1^2 \Delta$	(2M)
	Comparison of NA and Fibers for various α- Graph	(2M)
14	A SI fiber with silica-core refractive index of 1.45	8, V=75 and NA=0.3 is to operated at
	820nm. What should be its core size and cladding	g refractive index? Calculate the total
	number of modes entering this fiber. (6M) (Nov/Dec	2012) BTL4
	Answer:Page:87- notes	
	$NA = \sqrt{n_1^2 - n_2^2} = => n_2 = 1.426 \tag{2M}$	
	$V = \frac{2\pi a}{\lambda} n_1 \sqrt{2\Delta} = \Rightarrow a = 32\mu m \tag{2M}$	
	$M = \frac{V^2}{2} = > 2812.5 \tag{2M}$	
15	Calculate NA of silica fiber with its core refractive in	dex (n1) of 1.48 and cladding refractive
	index of 1.46 What should be the new value of n1 in	n order to change the NA to 0.23. (6M)
	(Nov/Dec 2011) BTL4	
	Answer:Page:44-45- notes	
	$NA = \sqrt{n_1^2 - n_2^2} = > NA = 0.242 (3M)$	
	For NA= 0.23 $n_1 = 1.47$ (3M)	
17	Calculate NA of silica fiber with its core refractive in	dex (n1) of 1.48 and cladding refractive
	index of 1.46 What should be the new value of n1 in	order to change the NA to 0.23. (7M)
	(Nov/Dec 2011) BTL4	
	Answer:Page:45- notes	
	$NA = \sqrt{n_1^2 - n_2^2} = > NA = 0.242 $ (4M)	
	For NA= 0.23 $n_1 = 1.47$ (3M)	
	PART*C	
1	Draw the block diagram of optical fiber transmission	on link and explain/With the help of a
	block diagram explain the different components of an	n optical fiber link. (15M) BTL1
	Answer:Page:5-9- notes	
	Introduction (2M)	
	Block diagram & explanation (8M)	
	Block Diagram	
	Explanation	
	Optical fiber- core, cladding, splicer, connector	
	Transmitter – LED,LASER, WDM	
	Receiver- PIN, Photo diode	
	Advantages (2M)	
	• Enormous potential Bandwidth.	
	 Small size & weight, Electrical isolation Immunity to interference, forecastally 	
	 Infinitumely to interference & crossialk Signal security & low transmission loss 	
	- Signal security & low transmission loss.	

	Applications (3M)		
	• To act as light source at the inaccessible places		
	• To transmit the optical images. (example: endoscopy)		
	• To transmit the information which are in the form of coded signals of the telephone		
	communications, computer data etc.		
2	Consider a fiber with 25micrometer core ra	dius, core index n1=1.48 and Δ =0.01. if	
	λ =1320nm, what value of V and how many mod	les propagate in the fiber. What percent of	
	optical power flows in the cladding? If the core	cladding difference is reduced to Δ =0.003,	
	how many modes does the fiber support and wh	at fraction of the optical power flows in the	
	cladding? (15M) (Nov/Dec 2016) BTL4		
	Answer:Page:46- notes		
	For $\Delta = 0.01$		
	$V = \frac{2\lambda \alpha}{\lambda} n_1 \sqrt{2\Delta} = > v = 25$	(3M)	
	$M = \frac{V^2}{2} = => 312.5$	(3M)	
	Percentage of power flows= $\frac{4}{3\sqrt{M}} = > 7.5\%$	(2M)	
	For Δ=0.003		
	$V = \frac{2\pi a}{\lambda} n_1 \sqrt{2\Delta} = > v = 9.20$	(3M)	
	$M = \frac{v^2}{2} = > 40.5$	(2M)	
	Percentage of power flows= $\frac{4}{3\sqrt{M}} = > 20.95\%$	(2M)	
3	With diagram, Explain acceptance angle and	Numerical Aperture of Fibers and total	
	internal reflection.(15M) (Nov/Dec 2015), (May/.	Jun 2014) BTL1	
	Answer:Page:12-16- notes		
	Total Internal Reflection(5M)		
	Total Internal reflection occurs at the	interface between two dielectrics of different	
	of high index and the angle of incidence of t	he ray exceeds the critical value	
	Acceptance Angle (4M) Maximum angle to the axis at which light may enter the fiber in order to be propagated. Numerical Aperture (6M)		
	It is to obtain a relationship between the	e acceptance angle & refractive indices of 3	
	media		
	Involved, Namely core, cladding & air.		
	Figure representation		
	Snell's law== > $n1\sin\varphi 1 = n2\sin\varphi 2$		
	Derivation		
	$NA = n_0 \sin \theta_a =$	$\sqrt{(n_1^2 - n_2^2)}$	

UNIT II – SIGNAL DEGRADATION OPTICAL FIBERS

Attenuation – Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides-Information Capacity determination –Group Delay-Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling –Design Optimization of SM fibers-RI profile and cut-off wavelength.

PART * A			
Q.No.	Questions		
1.	Define Attenuation. (Nov/Dec 2017) BTL1		
	• Attenuation is Fiber loss or signal loss determines the maximum unamplified or repeater less separation between transmitter and receiver.		
	• Attenuation mechanisms are: Absorption, Scattering & Radiative losses of optical energy.		
2	A manufacturer's data sheet lists the material dispersion Dmat= 110ps/nm.km at a		
	wavelength of 860nm. Find the RMS pulse broadening per km due to material dispersion if		
	the optical source has a spectral width 40nm at 0 an output wavelength of 800nm. (Nov/Dec 2017) ptt 4		
	2017) B1L4 Given:		
	$o_{\lambda} = 40 nm$		
	IVI-110ps/IIII.KIII DMS pulse breadening, nor km due to motorial dispersion		
	Kivis pulse broadening per kin due to material dispersion $= (1 \ VM) = - IM = (40) + 1 + (110 m c km) + 4 m c km 1$		
2	$O_m(1 \text{ KM}) = O_\lambda LM = (40) * 1 * (110ps \text{ Km}) = 4.4 \text{Hs Km} - 1$ What is intra model dispersion? (App/May 2017) PTL 1		
3	what is intra modal dispersion? (Apr/May 2017) B1L1		
	• It is the pulse spreading that occurs within a single mode fiber.		
	• The spreading arises from the finite spectral emission width of an optical source. This		
	phenomenon is also known as Group velocity Dispersion (GVD).		
	Causes of Intramodal Dispersion: Waveguide dispersion, Material Dispersion.		

4	Define group delay. (Apr/May 2017) BTL2		
	• Each Spectral component of any particular mode takes different amount of time to travel a certain distance. As a result of this difference in time delays, optical signal pulse spreads out with time as it is transmitted over the fiber.		
	Group delay depends on wavelength.		
5	What are the causes of absorption? (Nov/Dec 2016) BTL2		
	Atomic defects		
	• Extrinsic Absorption by impurity atoms in the glass material		
	Intrinsic Absorption by basic constituent atoms of the fiber material		
6	What is Polarization Mode Dispersion (PMD)? / What do you meant by polarization		
	dispersion in a fiber? (Nov/Dec 2016),(Nov/Dec 2015) BTL2		
	• Signal energy at a given wavelength occupies 2 orthogonal polarization modes.		
	• A varying Birefrengence along its length will cause each mode to travel at a slightly		
	different velocity. The resulting difference in propagation times will result in pulse		
	spreading which is called as PMD.		
7	What is chromatic dispersion? (May/Jun 2016) BTL2		
	• It is also called as Intramodal dispersion.		
	• It is the pulse spreading that occurs within a single mode fiber.		
	• The spreading arises from the finite spectral emission width of an optical source. This		
	phenomenon is also known as Group velocity Dispersion (GVD).		
0	Causes of Chromatic Dispersion: Waveguide dispersion, Material Dispersion.		
8	What are the types of fiber losses which are given per unit distance? (Nov/Dec 2014) B1L2		
	• Absorption loss.		
	• Scattering Loss.		
0	• Radiative loss of optical energy Distinguish maridional rays from Skow rays (May/Jun 2014) (Nay/Dec 2013) BTI 4		
9	A maridianal ray is a roy that passes through the axis of an antical fiber (Total Internal		
	• A mendional ray is a ray that passes through the axis of an optical fiber. (Total internal Reflection)		
	• A skew ray is a ray that travels in a non-planar zigzag path and never crosses the axis of		
	an optical fiber (Helical Path).		
10	Identify the causes of scattering loss. (May/Jun 2014) BTL4		
	• Microscopic variations of material density		
	Compositional Fluctuations		
	Structural inhomogeneities		
	Defects during manufacturing		
11	What are the 2 reasons for Chromatic dispersion? (Nov/Dec 2012) BTL4		
	Causes of Chromatic Dispersion:		
	Waveguide dispersion, Material Dispersion.		
12	What are the most important non linear effects of optical fiber communication? (Nov/Dec		
	2012) BTL2		

	Wavelength Division Multiplexing(WDM)	
	• Four wave mixing	
	Cross phase modulation.	
13	Define Attenuation Coefficient of a fiber. (Nov/Dec 2011) BTL1	
	• If P (0) is the optical power in a fiber at the origin (at $Z = 0$), then the power P(Z) at a	
	distance z further down the fiber then $P(z) = P(0) e^{-\alpha p z}$.	
	• The above equation can be rewritten as $\alpha p = (1 / z) \{P(0) / P(z)\}$. Where αp is the fiber	
	attenuation coefficient given in units of km-1.	
14	What are the types of material absorption losses in silica glass fibers? BTL2	
	The types of material absorption losses in the glass composition are	
	• Absorption by impurity atoms in the glass material.	
	• Intrinsic absorption by the basic constituent atoms in the glass material.	
15	Differentiate linear scattering from non-linear scattering. BTL4	
	• Linear scattering mechanisms cause the transfer of some or all of the optical power	
	contained within one propagating mode to be transferred linearly into a different mode.	
	• Non-linear scattering causes the optical power from one mode to be transferred in either the forward on boolward direction to the same on other modes at different frequencies.	
	the forward of backward direction to the same of other modes at different frequencies.	
16	What are the ways to reduce macro bending losses? BTL4	
	• Designing fibers with large relative refractive index differences.	
	Operating at the shortest wavelength possible.	
17	Define – Group Velocity Dispersion. (GVD). BTL1	
	The spreading arises from the finite spectral emission width of an optical source. This	
	phenomenon is known as Group Velocity Dispersion	
18	Define- Beat Length. BTL1	
	Beat Length is defined as the period of interference effects in a bi-refringent medium.	
	When two waves with different linear polarization states propagate in a bi-refringent medium,	
	their phases will evolve differently.	
19	What is wave guide dispersion? BTL2	
	• Wave guide dispersion occurs because of a single mode fiber confines only about 80% of artical generates the agent. Dispersion original gives a property of light proposition in aladding	
	travels faster than the light confined to the core	
	• Amount of wave-guide dispersion depends on fiber design. Other factor for pulse	
	spreading is inter modal delay.	
20	What is material dispersion? BTL2	
	• Material dispersion arises from the variation of the refractive index of the core material as	
	a function of wavelength. Material dispersion is also referred to as chromatic dispersion.	
	This causes a wavelength dependence of group velocity of given mode.	
	• So it occurs because the index of refraction varies as a function of optical wavelength.	
	Material dispersion is an intra modal dispersion effect and is for particular importance for	

	single mode wave guide.		
21	What is pulse broadening? BTL2		
	 The broadening arises from the finite spectral emission width of an optical source. Dispersion induced signal distortion is that, a light pulse will broaden as it travels along the fiber. This pulse broadening causes a pulse to overlap with neighboring pulses. After a time 't', the adjacent pulses can no longer be individually distinguished at the receiver and error will occur 		
22	What is polarization? BTL2		
	Polarization is a fundamental property of an optical signal. It refers to the electric field orientation of a light signal which can vary significantly along the length of a fiber.		
23	What is fiber birefringence? BTL2		
	Imperfections in the fiber are common such as symmetrical lateral stress, non circular imperfect variations of refractive index profile. These imperfections break the circular symmetry of ideal fiber and mode propagate with different phase velocity and the difference between their refractive index is called fiber birefringence.		
24	Write a note on scattering losses. BTL2		
	Arises from microscopic variation in the material density from compositional fluctuation and		
	from structural in-homogeneities or defects occurring during fiber manufacture.		
25	25 What is the measure of information capacity in optical waveguide? BTL2		
	• It is usually specified by bandwidth distance product in Hz.		
	• For a step index fiber the various distortion effects tend to limit the bandwidth distance		
	product to 20 MHz.		
	PART *B		
1	A multimode step index fiber has a numerical Aperture of 0.3 and a core refractive index of 1.45. the material dispersion for the fiber is 250ps.nm-1km-1 which makes material dispersion the totally dominating chromatic dispersion mechanism. Estimate (a) the total rms pulse broadening per km when the fiber is used with an LED source of rms spectral width 50nm and (b)the corresponding bandwidth – length product of the fiber. (13M) (Nov/Dec 2017) BTL4 Answer:Page:84- notes $\sigma_{\lambda} = \sigma_{\lambda}LM == 12.5ns \ km^{\Lambda} - 1$ (4M) $\sigma_{s} = \frac{L(NA)^{2}}{4\sqrt{3} n_{1}c} == 29.9ns \ km^{-1}$ (6M) B*L= 6.2MHz.KM (3M)		
2	Discuss about the design optimization of single mode fiber. (13M) (Nov/Dec 2016) BTL2		
	Answer: Page: 78-82- notes Introduction_ (3M) Application of SM fiber - Telecomm companies, microwave speed localized applications Features - Very low attenuation, large Bandwidth, High quality signal transfer Refractive index Profiles_ (5M) 1300nm optimized fibers Dispersion shifted fibers		

	Dispersion flattened fibers		
	Large Effective core area fibers		
	Cut off wavelength (5M)		
	Effective cutoff wavelength: largest wavelength - mode power 0.1db		
3	What is waveguide dispersion? Derive an expression for time delay produced due to		
	waveguide dispersion. (6M) (Nov/Dec 2016) BTL2		
	Answer:Page:68-69- notes		
	Definition (2M) 80% power confined in core 20% power in cladding, cladding power propagates faster than		
	Core - waveguide dispersion.		
	Derivation (4M)		
	$\tau = \frac{L}{n_{\rm c}} \left[n_{\rm c} + n_{\rm c} \Lambda \frac{(d(Vb))}{d} \right]$		
	$\frac{v_{wg} - c \left[\frac{n_2 + n_2 \Delta}{dv} \right]}{dv}$		
4	When the mean optical power Launched into an 8km length of fiber is 120 λ w, the mean		
	optical power at the fiber output is $3\lambda w$. Determine (a) the overall signal attenuation or less		
	in decibels through the fiber assuming there are no connector or splices. (b) The signal		
	attenuation per kilometer for the fiber. (c) The overall signal attenuation for a 10km optical		
	link using the same fiber with splices at 1 km intervals, each giving an attenuation of 1 dB.		
	(d) The numerical input/output power ratio.(13M) (May/Jun 2016) BTL4		
	Answer:Page:84-85- notes		
	Overall signal attenuation =10 $\log \frac{P_i}{P_o} = => 16 db$ (3M)		
	signal attenuation per km $\alpha_{dB}L = 10 \log \frac{P_i}{P_c} = > 2 dB km^{-1} $ (3M)		
	over all signal attenuation = 29Db (3M)		
	$A = \frac{dB}{dB}$		
	Numerical power ratio = $10_{10} = > 794.3$ (4M)		
5	Derive an expression for pulse broadening in graded index fiber./ What do you meant by		
	pulse broadening? Explain its effect on information carrying capacity of a fiber.		
	(7M)(Apr/May 2017), (Nov/Dec 2011) BTL2		
	Answer:Page:73-77- notes		
	Derivation (5M)		
	$\sigma = (\sigma^2_{intermodal} + \sigma^2_{intramodal})^{\frac{1}{2}}$		
	Information carrying capacity (2M)		
	Bandwidth* Distance product (MHz.Km)		
	Step index B*L= about 20MHz.Km		
	Graded Index $B*L = > 2.5 GHz.Km$		
6	What are the causes of signal attenuation in optical fiber? Explain about it in detail.(13M)		
	(Apr/May 2017) (Nov/Dec 2015) BTL2		
	Answer:Page:51-61- notes		
	Introduction (2M)		

	Fiber loss- determines max, unamplified separation of transmitter - receiver		
	Absorption loss (4M)		
	Absorption- atomic defects in the glass imperfections		
	Intrinsic – imperfection in atoms of the fiber material		
	Extrinsic - impurity atoms in the glass material		
	Scattering Loss (4M)		
	Rayleigh scattering		
	Bending loss (3M)		
	Micro bending- Small bends		
	Macro bending- Bend radii > fiber diameter		
	PART*C		
1	With necessary diagrams, Explain the causes and types of fiber attenuation loss. (15M)		
	(Nov/Dec 2015) (May/June 2014) (Nov/Dec 2013) BTL2		
	Answer:Page:51-61- notes		
	Introduction (2M)		
	Fiber loss- determines max, unamplified separation between transmitter - receiver		
	Absorption loss (5M)		
	Absorption- atomic defects in the glass imperfections		
	Intrinsic – imperfection in atoms of the fiber material		
	Extrinsic - impurity atoms in the glass material		
	Scattering Loss (4M)		
	Rayleigh scattering		
	Bending loss (4M)		
	Micro bending- Small bends		
	Macro bending- Bend radii > fiber diameter		
	Figures		
2	With diagram, Explain Intra and inter modal dispersion.(15M) (Nov/Dec 2015), (May/Jun		
	2014), (Nov/Dec 2013) B1L1		
	Answer: Page: 103-100- notes Pulse broadening_explanation (5M)		
	Derivation (JM)		
	$\sigma = (\sigma^{2}_{intermodal} + \sigma^{2}_{intramodal})^{\overline{2}}$ Information carrying capacity Bandwidth* Distance product (MHz.Km)		
	Step index B*L= about 20MHz.Km		
	Graded Index $B*L = > 2.5 GHz.Km$		
	Intra model dispersion (5M)		
	Waveguide Dispersion		

JIT-JEPPIAAR/ECE/Mr.Thandaiah prabu /IVth Yr/SEM 07/EC6702/OPTICAL COMMUNICATION/UNIT 1 -5/QB+Keys/Ver 2.0

	Definition- 80% power confined in core, 20% power in cladding- cladding power		
	propagates faster than Core - waveguide dispersion.		
	$\tau_{wg} = \frac{L}{C} \left[n_2 + n_2 \Delta \frac{(d(Vb))}{dv} \right]$		
	Intermodal dispersion (5M)		
	different values of group delay		
3	When the mean optical power Launched into an 8km length of fiber is 120 λ w, the mean		
	optical power at the fiber output is $3\lambda w$. Determine (a) the overall signal attenuation or less		
	in decibels through the fiber assuming there are no connector or splices. (b) The signal		
	attenuation per kilometer for the fiber. (c) The overall signal attenuation for a 10km optical		
	link using the same fiber with splices at 1 km intervals, each giving an attenuation of 1 dB. (d) The numerical input/output power ratio.(15M) (May/Jun 2016) BTL4 Answer:Page:84-85- notes		
	Overall signal attenuation =10 $\log \frac{P_i}{P_o} = => 16$ db	(3M)	
	signal attenuation per km $\alpha_{dB}L = 10\log \frac{P_i}{P_0} = > 2dBkm^{-1}$	(4M)	
	over all signal attenuation = 29 db (4M)		
	Numerical power ratio = $10^{\frac{aB}{10}} = > 794.3$	(4M)	

UNIT III – FIBER OPTICAL SOURCES AND COUPLING

Direct and indirect Band gap materials-LED structures -Light source materials -Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition -Rate equations -External Quantum efficiency -Resonant frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power Launching and coupling, Lencing schemes, Fiber -to- Fiber joints, Fiber splicing-Signal to Noise ratio, Detector response time.

PART * A		
Q.No.	Questions	
1	Write the laser diode rate equation. (Nov/Dec 2017) BTL1	
	Steady state Photon density= Stimulated photon + Spontaneously Generated Photon	
	$P_s = \frac{\tau_{ph}}{qd} \left(J - J_{th} \right) + \tau_{ph} R_{sp}$	
2	Give some possible Lensing schemes to improve optical source to fiber coupling Efficiency.	
	(Nov/Dec 2017) BTL1	

	Non imaging microscope in	contact with both fiber and source
	i ton maging meroseope m	
	 Spherical ended Fiber 	
	 Taper ended Fiber 	
3	What are the mechanisms behind	lasing action? (Nov/Dec 2016) BTL 2
5	If emitting area of source is s	smaller than the core area, a miniature lens may be placed in
	between the source and the fiber to	o improve power coupling efficiency. This is the mechanism
	behind lasing action	o improve power-coupling efficiency. This is the meenanism
1	Define external quantum efficience	vy (Nov/Dec 2016) BTI 1
4	The external quantum efficiency	y is defined as the number of photons emitted per Radiative
	electron-hole pair recombination ab	ove threshold
5	What is minimum detectable onti	cel nower? (Anr/May 2017) BTI 1
5	It is defined as the optical pow	ver necessary to produce a photocurrent of the same magnitude
	as the root mean square of the total	current
6	Compare the optical sources: I A	SFR and LFD (Apr/May 2017) (Nov/Dec 2013) $BTL A$
0	compare the optical sources. LA	
	LED	Laser
	The output obtained is	The output obtained is scherent
	incoherent.	The output obtained is concrent.
	Less expensive and less	More expensive and more
	complex.	complex.
	Long life time.	Less life time.
		Their response is faster than
	Their response is fast	LED
		Bandwidth of Laser diode is
	Bandwidth of LED is moderate	higher
	wide range of wavelengths are	A small range of wavelength is
	available	available
7	What are the numping mechanism	ns used in Erbium Doned Fiber Amplifier (May/Jun 2016)
	BTL1	
	• Co directional pumping	
	• Counter directional pumping	g
	Bidirectional pumping	
8	Why is the double hetero-structure	re preferred for optical fiber communication? Justify your
	answer. (May/Jun 2016) BTL4	
	• Very large injection efficier	ncies, essentially only injecting the majority carriers from the
	wide-gap material into the si	mall-gap material.
	• If the refractive indices of the	he material of core are proper then light confinement will also
	be proper.	
9	What is meant by hetero junction	structure? (Nov/Dec 2015) BTL1
	• A hetero-junction is an int	erface between two adjoining single crystal semiconductors
	with different band-gap energy	rgies. Devices are fabricated with hetero junctions are said to
7 8 9	LED The output obtained is incoherent. Less expensive and less complex. Long life time. Their response is fast Bandwidth of LED is moderate wide range of wavelengths are available What are the pumping mechanismer BTL1 • Co directional pumping • Bidirectional pumping • Bidirectional pumping • Very large injection efficient wide-gap material into the structure answer. (May/Jun 2016) BTL4 • Very large injection efficient wide-gap material into the structure indices of the proper. What is meant by hetero junction • A hetero-junction is an into with different band-gap energy	Laser The output obtained is coherent. More expensive and more complex. Less life time. Their response is faster than LED Bandwidth of Laser diode is higher A small range of wavelength is available ns used in Erbium Doped Fiber Amplifier.(May/Jun 20 g re preferred for optical fiber communication? Justify y ncies, essentially only injecting the majority carriers from mall-gap material. he material of core are proper then light confinement will estructure? (Nov/Dec 2015) BTL1 erface between two adjoining single crystal semiconduc rgies. Devices are fabricated with hetero junctions are sai

	have hetero-structure.		
	 Advantages of Hetero-juncti 	on are	
	Carrier and optical conf	finement	
	High output power		
	High coherence and sta	bility	
10	Define internal quantum Efficien	cy of LED and LASER. (Nov/De	c 2015), (Nov/Dec 2014),
	(May/Jun 2014) BTL1		
	• The internal quantum efficie	ency is the fraction of the electron-	hole pairs that Recombine
	radiatively.		-
	• If the Radiative recombination	ion rate is R and the nonradiative r	ecombination ratio is Rnr,
	then the internal quantum ef	ficiency is the ratio of the Radiative	e recombination rate to the
	total recombination rate.		
11	Compare and contrast of surface	LED and Edge LED. (Nov/Dec 20	12) BTL4
	Surface Emitting LED	Edge emitting LED	
	Wider spectral width	Narrow spectral width	
	(typically 125 nm)	(typically 75 nm)	
	(typically 125 mil)	(typically 75 mil)	-
	Emission pattern is less	Emission pattern is	
	directional	more directional	
12	Why silicon is not used to fabricat	te LED or LASER diode? (Nov/De	ec 2011) BTL4
	• LEDs and LASER are of	onstructed of gallium arsenide (GaAs) gallium arsenide
	phosphide (GaAsP), or galling	um phosphide (GaP).	Carlo), gamani alsemae
	• Silicon and germanium are	e not suitable because those juncti	ons produce heat and no
	appreciable IR or visible light	nt.	ions produce near and no
13	What are the advantages of LED?	BTL2	
	The advantages of LEDs are		
	• They have long life		
	• LEDs are less complex circu	uits than Laser diodes	
	• Fabrication is easier. Less ex	pensive	
	• Used for short distance com	munication	
14	What do you mean by direct band	gap Materials? BTL2	
	• In some materials a direct tra	ansition is possible from valance ba	nd to conduction band.
	• In other words, Electron and	1 Hole has the same momentum va	lue, such type of materials
	is called as direct band gap r	naterials.	
	• Example: GaAs, InP, InGaA	S.	
15	What do you mean by in direct ba	and gap Materials? BTL2	
	• Conduction band minimum	and valence band Maximum energy	v levels occur at different
	values of momentum. Hence	e band to band recombination must	involve a third particle to
	conserve momentum. Such t	ype of materials is called as indirect	t band gap materials.
	• Example: Silicon, Germaniu	im.	
16	What is meant by hetero-junction	? List the advantages of hetero iu	nction. BTL1
	A hetero-junction is an interface	between two adjoining single cry	stal semiconductors with
	different band-gap energies. Device	es are fabricated with hetero junctio	ns are said to have hetero-

	structure.		
	Advantages of Hetero-junction are		
	Carrier and optical confiner	nent	
	• High output power		
	High coherence and stabilit	у.	
17	What is population inversion? B'	TL1	
	• Under thermal equilibrium	, the lower energy level E1 of the two level atomic systems	
	contains more atoms than u	pper energy level E2.	
	• To achieve optical amplif	ication, it is must to create non-equilibrium distributions of	
	atoms such that population	of the upper energy level is greater than lower energy level i.e.	
	N2 is $>$ N1.This condition i	s known as population inversion.	
18	Distinguish between direct and e	xternal modulation of LASER diodes. BTL4	
	Direct Modulation	External Modulation	
	Easy to demonstrate and has	Complex and expensive	
	low cost.	complex and expensive	
	Low gain	High gain	
19	What is a DFB LASER? Differen	ntiate DFB LASER from other types of LASERs? BTL1	
	• In Distributed Feedback L	ASER, the lasing action is obtained by periodic variations of	
	refractive index, which are	incorporated into multilayer structure along the length of the	
	diode.		
	• DFB LASER does not requ	ire optical feedback unlike the other LASERs.	
20	List out the disadvantages of dire	ect band gap materials. BTL1	
	• Direct band gap materials a	re not used for making conventional diodes and recombination	
	process is efficient, it produ	ace narrow spectral width.	
	• As a result, recombination	of electrons and holes, then carriers gets reduced.	
21	What are the advantages of doub	ele hetero structure optical sources? BTL1	
	High quantum efficiency		
	• High brightness(Radiance)		
22	Give an example for each direct	and indirect band gap materials. BTL2	
	For direct bandgap material: GaAl	As, InGaAsP; For Indirect Band gap material: Si, Ge	
23	Define – Responsivity of a photo	detector. BTL1	
	Responsivity is defined as the ratio	of output photo current to the incident optical power.	
24	Define – Avalanche Effect. BTL1		
	The newly created carriers are acc	elerated by the high electric field, thus gaining enough energy	
	to cause further impact ionization.	This phenomenon is called avalanche effect.	
25	Define – Impact Ionization. BTL	1	
	In order for carrier mu	tiplication to take place, the photo-generated carriers must	
	traverse a region where a very hi	gh electric field is present. In this high field region, a photo	
	generated electron or hole can gain	n energy so that it ionizes bound electrons in the valence band	
	upon colliding with them. This cur	rent multiplication mechanism is known as impact ionization.	
PAKI * B			
1	Give an account on the direct and	d indirect band gap materials. (7M) BTL2	
	Answer:Page:147- Keiser		

	Introduction (2M)
	• Band Gap : represents the minimum energy difference between the top of the valence
	band and the bottom of the conduction band.
	Figure (3M)
	Explanation (2M)
	• Electron and hole - same momentum value – direct band gap
	• Indirect band gap – occurs at different values of momentum.
2	With diagram, Explain surface and edge emitters LED Structures, (7M) (May/Jun 2014),
	(Nov/Dec 2011) BTL1
	Answer:Page:96-99- notes
	0
	Introduction
	Features- no stabilization circuit required, requires less complex, Economic
	LED Structures (1M)
	2 configuration
	Homo junction & Hetero junction
	2 configuration for fiber optics
	Surface emitters – active Light emitting region – perpendicular to axis of the fiber
	Edge emitters – Active region- Parallel to fiber axis & 2 Guiding Region
	Surface emitters (3M)
	Active Light emitting region – perpendicular to axis of the fiber
	Figure
	Edge emitters (3M)
	Active region- Parallel to fiber axis & 2 Guiding Region
2	Figure
3	With steps, derive the internal quantum efficiency of LED. (13M) (Nov/Dec 2017), (Nov/Dec 2012) DET 4
	2013) B1L4
	Answer:Page:96-104- notes
	Introduction (IM)
	Features- no stabilization circuit required, requires less complex, Economic
	2 configuration (OM)
	2 configuration Homo junction & Hotoro junction
	2 configuration for fiber optics
	2 configuration for fiber optics
	Edge emitters $-$ Active region- Parallel to fiber axis $-$ 2 Guiding Region
	Internal Quantum Efficiency (6M)
	Fraction of electron hole pairs that recombine radiatively
	R_r
	$\eta_{int} = \frac{\eta_{int}}{\eta_{r} + \eta_{nr}}$
4	A double Heterojunction LED emitting at a peak wavelength of 1310nm has Radiative and
	non-radiative recombination time of 45ns and 95ns respectively. The drive current is 35
	mA. Determine internal quantum efficiency and internal power level. If the refractive index
	of the light source material is n=3.5, find the power emitted from the devices.(7M) (Nov/Dec
	2016) BTL4

	Answer:Page:136- notes
	$\eta_{int} = \frac{\tau}{-} = 0.678ns \tag{3M}$
	$\tau = \frac{\tau_r}{r_r \tau_{nr}} = 20 \text{F}^{2m_2} \tag{1}$
	$\tau = \frac{\tau_r + \tau_{nr}}{\tau_r + \tau_{nr}} = 50.55hS \tag{4M}$
5	Draw and explain the structure of Fabry-Perot resonator cavity for a laser diode. Derive
	laser diode rate equations. (13M) BTL1,2
	Answer:Page:163-167- Keiser
	Introduction (IM)
	 Laser diode - improved LED - uses stimulated emission in semiconductor - Fabry-Perot resonator with both optical corrier confinements
	Characteristics (2M)
	Nanosecond - even picosecond response time (GHz BW)
	 Spectral width of the order of nm or less
	 High output power (tens of mW)
	 Narrow beam (good coupling to single mode fibers)
	Structure & Explanation (6M)
	 Three distinct radiation modes - Longitudinal, lateral, transverse modes.
	• End mirrors- Provides strong optical feedback in longitudinal direction- roughening the
	edges, cleaving the facets, radiation-longitudinal direction rather than lateral direction.
	Rate Equations (4M)
	$d\Phi = C_{T} \Phi + B = \Phi$
	$\frac{dt}{dt} = Cn\Phi + R_{sp} - \frac{\tau_{sp}}{\tau_{sp}}$
	dn I n
	$\frac{dn}{dt} = \frac{3}{ad} - \frac{n}{z} - Cn\Phi$
	$u_{i} q_{i} \iota_{sp}$
8	Describe about Fibre –to- Fibre joints (7M) B1L2
	Answer: Page: 215-220- notes
	Introduction (IM)
	Interconnects occur at
	• Optical source
	Photo detector
	Within the cohle
	 Intermediate point in a link
	Types (4M)
	Dermanent hond: SPI ICE
	 Fasily demountable connection: CONNECTOR
	Easily demodratable connection. CONVLETOR FIGURE
	Three different types of misalignment can occur (2M)
	• Longitudinal Separation
	Angular misalignment
	Axial displacement or lateral displacement
9	Explain with necessary expressions, about Power Launching and coupling. (13M) BTL2
	Introduction (2M)
	Introduction (2M)

	Coupling Efficiency
	Measure of the optical power emitted from a source that can be coupled into an optical fiber
	$n - \frac{P_f}{f}$
	$\eta = P_s$
	Flylead : short length o fiber attached to optical source
-	
	ensing Schemes (2M)
	Used to improve coupling Efficiency
	Types
	Round ended fiber
	• Non imaging microscope in contact with both fiber and source
	• Spherical ended Fiber
	• Taper ended Fiber
Fi	oure (3M)
N	on imaging Microscone (AM)
11	Figure (4W)
	$r_{s} = r_{s} = r_{s}$
	$\begin{pmatrix} (-r_s)^2 N A^2 & \frac{-\sigma}{a} > N A \end{pmatrix}$
	$\eta_{max} = \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\} \left\{ \begin{array}{c} \frac{r_s}{s} > NA \end{array} \right\}$
-	
L	aser diode to Fiber Coupling (2M)
	• Edge emitting laser diodes - emission pattern – FWHM- 30– 50 in the plane perpendicular
	to the active area junction & $5 - 100$ in the plane parallel to the junction.
	• Coupling efficiencies- between 50 and 80%.
	PART-C
1 D	raw and compare LED and LASER diode Structures.(15M) (Nov/Dec 2015), (Nov/Dec
20	14), (Nov/Dec 2011) BTL1,2
A	nswer:Page:96-101 &107-111- notes
L	ED (7M)
Ι	ntroduction (1M)
	Features- no stabilization circuit required, requires less complex, Economic
L	ED Structures (3M)
	2 configuration
	Homo junction & Hetero junction
	2 configuration for fiber optics
	Surface emitters – active Light emitting region – perpendicular to axis of the fiber
	Edge emitters – Active region- Parallel to fiber axis & 2 Guiding Region
Fi	gures (3M)
L	ASER(8M)
In	troduction (1M)
	Basic principle- Absorption, Spontaneous Emission, Stimulated Emission
Fe	bry Perot resonator cavity (3M)
	Latitude. Longitudinal. Transverse
	Figure
Di	stributed Feedback LASER (4M)

-	
	Optical Feedback not required ,Feedback grating Figure
2	With neat sketch explain about Lencing schemes. (15M) BTL2
	Answer:Page:212-215- notes
	Types (3M)
	• Rounded end fiber
	• Nonimaging Microsphere (small glass sphere in contact with both the fiber and
	source)
	• Imaging sphere (a larger spherical lens used to image the source on the core area of
	the fiber end).
	 Cylindrical lens (generally formed from a short section of fiber)
	 Spherical surfaced LED, spherical ended fiber
	 Spherical suffaced LED, spherical ended fiber. Taper ended fiber
	• Taper ended fiber.
	Figure (4W) Droblem in using longe (2M)
	• Lens size – small, fabrication, handling difficulties.
	• Taper end fiber - Greater precision
	Non imaging Microscope (3M)
	• Assumptions: refractive indices shown in the fig., emitting area - circular.
	• Figure
	Laser diode to fiber Coupling (3M)
	• Edge emitting laser diodes - emission pattern - FWHM-
	-500 in the plane perpendicular to the active area junction & 5 – 100 in the plane
	50° = 500 in the plane perpendicular to the active area junction & 5 = 100 in the plane parallel to the junction
	Coupling officiancies, between 50 and 200/
2	• Coupling efficiencies- between 30 and 80%. What is Fiber Spliging? Discuss About Eusion Spliging and Mashania Spliging (15M)
5	(New/Dec 2016) PTI 1.2
	(NOV/Dec 2010) B1L1,2 Answer Deger 127, 120, notes
	Answer: Page: 127-129- notes
	Need of splicing (3M)
	Permanent joint- used to create long optical link.
	Points to be consider: mechanical strength, geometrical difference in fiber. Fiber misalignment
	at joint.
	Types of Splicing (3M)
	Fusion splice – permanent splice, thermal bond to fiber ends, less loss.
	V-groove mechanical splice- v-shaped channel loss depends on fiber size & eccentricity
	Elastic tube splice – lateral, longitudinal & Angular alignment done automatically
	Figures (6M)
	Splicing Single Mode Fiber (3M)
	UNIT IV – FIBER OPTIC RECEIVER AND MEASUREMENTS
Fund	amental receiver operation. Pre amplifiers. Error sources – Receiver Configuration. Probability of
Frror	- Quantum limit Fiber Attenuation measurements. Dispersion measurements - Fiber Defractive
indev	profile measurements - Fiber cut, off Wave length Measurements - Fiber Numerical Aporture
mucx	prome measurements - riber eut- on wave length measurements - riber numerical Aperture

Measurements – Fiber diameter measurements. PART * A O.No. **Ouestions** Draw the generic structure of trans impedance amplifier.(Nov/Dec 2017) BTL1 1 11,0 $H_H(f)$ H_ (r) Hous (f) Photodetector Equalized LLO .. (1) Photodetector and its bias resistor Amplifier and its input parameters 2 Define Receiver Sensitivity. (Nov/Dec 2017) BTL2 Receiver sensitivity is the minimum magnitude of input signal required to produce a specified output signal having a specified signal-to-noise ratio, or other specified criteria. 3 What are the methods employed for measuring attenuation in optical fiber? (Apr/May 2017) BTL1 • Cut back method. Insertion loss Method. • OTDR based Attenuation Measurement. Define BER. (Nov/Dec 2016) BTL1 4 To divide the number of errors (N_{e}) occurring over a certain interval t by the number of pulses (N_t) transmitted during this interval. This is called either bit rate or bit error rate. $\frac{N_e}{N_t} = \frac{N_e}{B_t}$ BER: What is cut back method? (Nov/Dec 2016) BTL1 5 Taking a set of optical output power measurements over the required Spectrum using a long length of fiber usually at least a kilometer is known as cut back technique. The fiber is then cut back to a point 2 m from the input end and maintaining the same launch conditions, another set of power output measurements are taken. Mention a Fiber diameter Measurement Technique. (Nov/Dec 2015) BTL1 6 • Shadow method 7 State the significance of maintaining the fiber outer diameter constant.(Nov/Dec 2014) BTL1 Speed is large • More accuracy • Faster Diameter measurement What are the receiver error sources? 8 or Mention error sources in fiber optic receiver. (May/Jun 2014), (Nov/Dec 2012), (Nov/Dec 2011) BTL1
	The error sources of receiver are,
	• Thermal noise.
	• Dark current noise.
	• Quantum noise.
9	List out different methods for measuring refractive index profile. BTL1
	The different methods for measuring refractive index profile are,
	• Interferometric method.
	Near field scanning method.
	End field scanning method.
10	Define Quantum Limit. BTL1
	Quantum Limit is defined as the minimum received optical power required for a specific bit
	error rate performance in a digital system.
11	A digital fiber optic link operating at 1310 nm, requires a maximum BER of 10-8. Calculate
	the required average photons per pulse. (N/D 2013) BTL4
	The probability error $Pr(o) = e^{-N} = 10-8$
	Solving for $N = 8 \log 10 = 18.42$
10	An average of 18 photons per pulse is required for this BER.
12	How does dark current arise? BTL4
	• When there is no optical power incident on the photo detector a small reverse leakage
	current flows from the device terminals known as dark current.
	• Dark current contributes to the total system noise and gives random fluctuations about the
	average particle flow of the photocurrent.
13	Define Modal Noise and Mode Partition Noise. BTL1
	• Disturbances along the fiber such as vibrations, discontinuities, connectors, splices and
	source / detector coupling may cause fluctuations in the speckle patterns. It is known as
	modal noise.
	• Phenomenon which occurs in multimode semiconductor LASERs when the modes are
1.4	not well stabilized is known as mode partition noise.
14	what is meant by (1/1) noise corner frequency? Billi
	• The $(1/f)$ noise corner frequency is defined as the frequency at which $(1/f)$ noise, which
15	dominates the FET hoise at low frequencies and has (1/1) power spectrum.
15	List out different methods for measuring refractive index profile are
	Interferometric method
	Interferometric method
	• Near field scanning method.
16	• End field scanning method.
10	what are the standard liber measurement techniques? B1L2
	The standard riber measurement techniques are,
	 Fiber attenuation measurement & Fiber dispersion measurement. Ether refusctive in dev profile measurement.
	 Fiber retractive index profile measurement. Eiber sutoff would at the accurrence of the Eiber superior is a superior in the superior in the superior is a superior in the superior in the superior is a superior in the superior is a superior in the superior in the superior in the superior in the superior is a superior in the superior in
	• Fiber cutoff wavelength measurement & Fiber numerical aperture measurement.
17	Fiber diameter measurement.
1/	What are the methods used to measure fiber dispersion? BTL1

	The methods used to measure fiber dispersion are,
	• Time domain measurement.
	• Frequency domain measurement.
18	What are the methods used to measure fiber refractive index profile? BTL1
	The methods used to measure fiber refractive index profile are,
	• Interferometric method.
	• Near infra scanning method.
	Refracted near field method.
19	What are the noise effects on system performance? BTL1
	The main penalties are
	Modal noise.
	• Wavelength chirp.
	• Spectral broadening.
	Mode-partition noise.
20	What are the system requirements? BTL1
	The key system requirements are as follows
	• The desired or possible transmission distance.
	• The data rate or channel bandwidth.
	• Bit error rate (BER).
21	Define – Extinction Ratio. BTL1
	The extinction ratio ε is defined as the ratio of the optical energy emitted in the 0 bit period to that
	emitted during 1 bit period.
22	Define – Modal Noise. BTL1
	• It arises when the light from a coherent LASER is coupled into a multimode Fiber
	operating at 400Mbps and higher.
	• It mainly occurs due to mechanical vibrations and fluctuations in the frequency of the
	optical source.
23	What are the measures to avoid modal noise? BTL4
	The measures to avoid modal noise are,
	• Use LEDs
	Use LASER having more longitudinal modes
	• Use a fiber with large numerical aperture
	• Use a single mode fiber
24	What is reflection maine? DTL 1
24	what is reflection noise; B1L1
	• It is the optical power that gets reflected at the refractive index discontinuities such as
	splices, couplets and filters of connectors.
	• The reflected signals can degrade both the transmitter and receiver performance.
25	What do you mean by thermal noise? BTL2
	• Thermal noise is due to the random motion of electrons in a conductor.
	• Thermal noise arises from the detector load resistor and from the amplifier electronics.
	1

	PART * B		
1	1 Discuss the fundamental receiver operation with neat block diagram.(13M) BTL1		
	Answer:Page:144-146- notes		
	Block Diagram (3M)		
	Explanation (3M)		
	Digital Signal Transmission		
	$(T_b \text{ for binary 1})$		
	$I(t) = \begin{pmatrix} 0 & \text{for binary } 0 \end{pmatrix}$		
	Transmitter—conversion of Electrical signal i(t) into optical output power P(t)		
	Receiver –PIN or Avalanche Photodiode		
	Amplifier Filter Decision circuit		
	Diagrammatic Representation of Each step (7M)		
2	What are the performance measures of a digital receiver? Derive an expression for bit error		
2	rate of a digital receiver. (13M) (Nov/Dec 2016) BTL1		
	Answer:Page:152-155- notes		
	Introduction (4M)		
	$V_{out}(t) > threshold = binary 1$		
	$V_{out}(t) < threshold = binary 0$		
	Probability of Error (6M)		
	$BER = \frac{N_e}{N} = \frac{N_e}{R_t}$		
	$\frac{N_{t}}{1} \int \left(\begin{array}{c} Q \\ Q \end{array} \right)$		
	$BER = \frac{1}{2} \operatorname{errc}\left(\frac{1}{\sqrt{2}}\right)$		
	BER = $P_e(Q) = \frac{1}{2} [1 - erfc(\frac{V}{2\sqrt{2}})]$		
	Ouantum Limit $(3M)$		
	Minimum received power level		
	$P_{r}(0) = e^{-\overline{N}}$		
3	Discuss about optical detection noise. /Explain the error sources of fundamental receiver		
	operations. (7M) (Nov/Dec 2015) BTL2		
	Answer:Page:146-148- notes		
	Introduction (2M)		
	Noise- unwanted Components of electrical signal		
	Noise source Model- figure		
	Types of Noise (5M)		
	Internal Noise- Shot Noise, Thermal noise		
	External Noise		
	Inter symbol Interference		
4	Explain any 2 types of preamplifiers used in a receiver. (13M) (Nov/Dec 2013) BTL4		
-	Answer:Page:305-311- Keiser		
	Preamplifier need (2M)		
	To provide low noise level, high BW, high gain, high dynamic range.		

	Circuit, Explanation and waveform of any 2 of the following (11M)
	• High-impedance FET
	• High Impedance Bipolar
	• Trans impedance
	High speed circuits
5	Explain the dispersion measurements methods in optical fiber. (13M) (Nov/Dec 2017),
	(Nov/Dec 2014), (May/Jun 2014) BTL1,2
	Answer:Page:164-168- notes
	Classification (1M)
	Intermodal dispersion
	Chromatic dispersion
	Polarization – Mode dispersion
	Time domain intermodal dispersion measurement(6M)
	Narrow pulse optical energy insertion in one end- measuring broadening at another end
	Figure
	Optical 3 db Bandwidth & Electrical 3 db bandwidth
	Relation between Optical & Electrical Bandwidth - $\frac{1}{\sqrt{2}}$
	Frequency domain intermodal dispersion measurement (6M)
	Figure
	$H(f) = \frac{p_{out}(f)}{r}$
6	$p_{in}(f)$
0	Explain now alternation measurements could be done. (7N1) (Nov/Dec 2015) B1L1,2
	Answer: Page: 101-100- notes
	Autenuation Pasult of absorption scattering and waveguide effect (1M)
	Types
	Cut back method (3M)
	Experimental setup figure
	$10 l_{P} = P_N$
	$\alpha = \frac{1}{L} \log \frac{1}{P_F}$
	Insertion loss method (3M)
	$A = 10 \log \frac{P_1(\lambda)}{P_2(\lambda)}$
7	Write Short Notes on Fiber cut off wavelength Measurement. (7M)(Nov/Dec 2012),
	(Nov/Dec 2011) BTL1
	Answer:Page:169-171- Notes
	Definition (2M)
	Effective cut off wavelength is a wavelength greater than the ratio between total power to
	the launched higher order modes and fundamental modes.
	Experimental setup diagram (3M)
	Waveforms (2M)
8	Explain the measurement techniques used in the case of Fiber diameter. (13M) (Nov/Dec
	2011) BTL1

	Answer:Page:173-174- Notes
	Outer diameter (8M)
	Shadow Method- uses fiber image projection & Experimental setup- figure
	Advantages (2M)
	High speed, High accuracy
	Core diameter (3M)
	Step change in refractive index profile at the core-cladding interface.
	PART*C
1	Discuss on the Numerical Aperture measurements of optical fiber. (15M) (Nov/Dec 2017),
	(Nov/Dec 2014), (May/Jun 2014), (Nov/Dec 2011) BTL2
	Answer:Page:171-173- Notes
	Introduction (1M)
	NA- Light gathering capacity- $NA = \sin \theta_a = \sqrt{n_1^2 - n_2^2}$
	Measurement Technique (14M)
	Far field angle from fiber using a scanning photo detector and a rotating stage
	Far field pattern by trigonometric fiber
	$NA = \underline{A}$
	$(A^2+4D^2)^{\frac{1}{2}}$
2	Explain any 2 methods used for measurement of refractive index profile of the fiber. (15M)
	(May/Jun 2016), (Nov/Dec 2012), (Nov/Dec 2011) BTL2
	Answer:Page:175-179- Notes
	Introduction (2M)
	To determine NA and Number of modes propagating within the fiber
	Types
	Interferometric method (7M)
	Transmitted light Interferometric, reflected light Interferometric
	$\delta_{rr} = \frac{q\lambda}{2}$
	Figure Defrected Near field method (Near Field scenning method (6M)
	Figure & Advantages No leaky mode correction factor no external calibration
3	Define the terms 'Quantum limit' and 'Probability of Error' with respect to a receiver with
5	typical values (15M)(Nov/Dec 2013) BTI 1/
	Answer: Page: 152, 155. Notes
	Introduction (3M)
	$V_{\text{rut}}(t) > threshold = hinary 1$
	$V_{out}(t) < threshold = hinary 0$
	Probability of Error (8M)
	$BER = \frac{N_e}{N_e} = \frac{N_e}{N_e}$
	$\begin{pmatrix} N_t & Bt \\ 1 & \langle 0 \rangle \end{pmatrix}$
	$BER = \frac{1}{2} \operatorname{erfc}\left(\frac{1}{\sqrt{2}}\right)$
	$PEP = P(Q) = \frac{1}{\left[1 - \alpha r f_{Q}(V)\right]}$
	$DLR - r_e(Q) = \frac{1}{2} \left[1 - er \int c(\frac{1}{2\sqrt{2\sigma}}) \right]$

Quantum Limit	(4M)	
Minimum received power level		
$P_{n}(0) = e^{-\overline{N}}$		

UNIT V - OPTICAL NETWORKS AND SYSTEM TRANSMISSION

Basic Networks – SONET / SDH – Broadcast – and –select WDM Networks –Wavelength Routed Networks – Non linear effects on Network performance –-Link Power budget -Rise time budget Noise Effects on System Performance-Operational Principles of WDM Performance of WDM + EDFA System – Solutions – Optical CDMA – Ultra High Capacity Networks.

5	Obtain the transmission bit rate of the basic SONET frame in Mbps. (Nov/Dec 2013) BTL4 The transmission bit rate of the basic SONET frame is.			
	STS-1= (90bytes/row)(9rows/frame)(8bits/byte)(125microseconds/frame) -51.84Mb/s			
6	-51.64100/5. How inter channel cross talk occurs in a WDM system? (Nov/Dec 2013) BTI 2			
0	• It arises when an interfering signal comes from a neighboring channel that operates at			
	different wavelength.			
	• Power penalty of inter channel crosstalk is, $penalty_{inter} = -5 \log (1-\epsilon)$			
7	7 Enumerate Various SONET/SDH Layers. (Nov/Dec 2011) BTL1			
	SONET defines 4 layers namely,			
	• photonic layer			
	Section layer			
	• Line layer			
	• Path layer			
8	What are the common topologies used for fiber optical network? (Nov/Dec 2011) BTL1			
	The three topologies used for fiber optical network are,			
	Bus topology			
	Ring topology and Star topology			
9	Calculate the number of independent signals that can be sent on a single fiber in the 1525-			
	1565 nm bands. Take the spectral spacing as per ITU-T recommendation G.692. (Nov/Dec			
	2011) BTL3			
	Given: Mean trequency spacing as per ITU- T is 0.8nm.			
	Wavelengtn = 1565nm - 1525nm = 40 nm.			
10	Number of independent channel = $(40 \text{ nm} / 0.8 \text{ nm}) = 50 \text{ channels}$			
10	• In fiber optic communications, wavelength, division multiplaying (WDM) is a technology			
	• In moet-optic communications, wavelength –utvision multiplexing(wDivi) is a technology which multiplexes a number of optical carrier signals into a single optical fiber by using			
	different wavelengths (i.e. colors) of LASER light			
	 This technique enables hidirectional communications over one strand of fiber as well as 			
	multiplications of capacity.			
11	What are the drawbacks of broadcast and select networks for wide area network			
	applications? BTL2			
	• Without the use of optical booster amplifiers, splitting losses occurs.			
	• More wavelengths are needed as the number of nodes in the network Grows			
12	The specifications of the light sources are converted to equivalent rise time in rise time			
	budget. Why? BTL3			
	• A rise time budget is a convenient method to determine the dispersion, Limitation of an			
	optical link.			
	• For this purpose, the specifications of the light sources (both the fiber and the photo			
	detector) are converted to equivalent rise time.			
	• The overall system rise time is given in terms of the light source rise time, fiber dispersion			
	time and the photo detector rise time.			
13	What are the types of broadcast and select network? BTL1			

	The types of broadcast and select network are
	Single – hop networks Multi – hop networks
14	What is meant by power penalty? BTL1
	When nonlinear effects contribute to signal impairment, an additional amount of power will be
	needed at the receiver to maintain the same BER. This additional power (dB) is known as the
	power penalty.
15	What is meant by cross- phase modulation (XPM)? BTI 1
15	Cross- phase modulation, which converts power fluctuations in particular wavelength channel to
	phase fluctuations in the co propagating channels
16	What is reflection noise? BTL1
	• It is the optical power that gets reflected at the refractive index discontinuities such as
	splices, couplers and filters or connectors.
	• The reflected signals can degrade both the transmitter and receiver performance.
17	What are the effects of reflection noise in high speed systems? BTL1
	They cause optical feedback which leads to optical instabilities that may lead to inter-symbol
	interference and intensity noise.
18	What is chirping? BTL1
	• The D.C. modulation of a single longitudinal mode semiconductor LASER can cause a
	dynamic shift of the peak wavelength emitter from the device.
	• This phenomenon, which results in dynamic line width broadening under the direct
10	modulation of the injection current, is referred to us frequency chirping.
19	The basic performances of WDM are
	• Insertion loss
	Channel width
	Cross talk
20	What are the two different types of WDM? BTL1
20	The two different types of WDM are
	• Unidirectional WDM
	Bidirectional WDM
21	What is the best way to minimize chirping? BTL4
	It is to choose the LASER emission wavelength close to the zero-dispersion of the wavelength of
	the fiber.
22	What are the components of system rise time? BTL2
	The four basic components that contribute to the system rise time are
	Modal dispersion time of the link
	• Material dispersion time of the fiber
	• Transmitter (source) rise time
	• Receiver rise time.
23	Give the range of system margin in link power budget. BTL1
	I ne system margin is usually (6 -8)db. A positive system margin ensures proper operation of the
	CIFCUIL. A pagetive value indicates that insufficient newsrawill reach the detector to achieve the hit error
	A negative value indicates that insufficient power will reach the detector to achieve the bit error

	rate, BER.	
	PART * B	
1	Draw the generic configuration of SONET and Explain the multiplexer in SONET. (13M) (Nov/Dec 2016) BTL1	e functions of add drop
	(i) Answer:Page:197-199- Notes Introduction to SONET/SDH	(6M)
	 Synchronous optical Network/synchronous digital Hierarchy ANSI TI 105.06 standard/ ITU-T G.957 standard STS-N&OC-N/STM-M 	
	• Structure of SONET	
	(ii) Answer:Page:204- Notes	
	Introduction to add or drop MUX	(2M)
	• Different Links- point to point link, Linear chain, U	PSR, BLSR, Interconnected
	rings Add/Drop Multiplever	(5M)
	Add/Drop With pieces $-$ OC 12 Path and OC 3path Figure	(5141)
2	Explain the layered architecture and transmission formats of SON	JET. (7M) (May/Jun 2016)
-	BTL2	(1210 (7101) (1010) (1010)
	Answer:Page:197-199- Notes	
	• Synchronous optical Network/synchronous digital Hierarchy	(1M)
	• ANSI TI 105.06 standard/ ITU-T G.957 standard	(1M)
	Structure of SONET	(2M)
	• STS-N&OC-N/STM-M	(3M)
3	Explain with neat sketch of 2 popular architecture of SONET. (13	M) (May/Jun 2016) BTL2
	Answer:Page:197-199- Notes	
	Ring Architecture(1M)Chair (Chair)(2M)	
	Classification (2M)	
	Path switching (4M)	
	Figure (Primary path Secondary Path)	
	Line switching (6M)	
	2 fiber/ 4 fiber bidirectional line switched ring	
	Figure (Primary path, Secondary Path)	
	Figure- Protection Switching	
4	Explain SONET Layers and frame structure with diagram. (7M)	(Nov/Dec 2015), (May/Jun
	2014) BTL2	
	Answer:Page:197-199- Notes	
	Synchronous optical Network/synchronous digital Hierarchy	(1M)
	• ANSI TI 105.06 standard/ ITU-T G.957 standard	(1M)
	• Structure of SONET	(2M)
	STS-N&OC-N/STM-M	(3M)
5	Discuss the following:	

	 (i) WDM Networks (7M) (ii) Ultra High Capacity Networks (6M)) (Nov/Dec 2014) BTL2
	(i) Answer-Page-215-218- Notes	(((()))))))))))))))))))))))))))))))))))
	(1) Answer if age. 213-210- Notes Link Dondwidth $D = \sum^{N} D$	
	Link Bandwidth- $B = \sum_{i=1}^{n} B_i$	(2IVI)
	Optical power requirements for specifi	C BER-(BER=140B& SINR=18-2000)-(2M)
	Cross talk – Inter channel, Intra channel	el (3M)
	(11)Answer:Page:221-224- Notes	
	Ultrahigh capacity WDM	(2M)
	1530-1560nm to 1530-1610nm	
	Bit interleaved TDM	(2M)
	Figure	
	Small channels operating at peak	rate (media rate)
	Time slotted TDM	(2M)
	100Gb/s Speed	
	High speed Networks	
	Large data blocks. Shorter user acc	ess time. low delay
8	What is "four- fiber BLSR" ring I in a SONET	? Explain the reconfiguration of the same
-	during node or fiber failure. (13M) (Nov/Dec 2	013) BTL2
	Answer:Page:201-203- Notes	
	Ring Architecture	(1M)
	Classification	(5M)
	Path switching	
	2 fiber, Unidirectional path switched ring	
	Line switching	
	2 fiber/ 4 fiber bidirectional line switched	l ring
	Figure (Primary path, Secondary Path)	0
	Figure- Protection Switching	
	4 fiber bidirectional line switched ring	(4 M)
	Figure (Primary path Secondary Path)	
	Figure Protection Switching	(3M)
9	Explain nonlinear effects on network performa	unce. (13M) (Nov/Dec 2011) BTL2
,	Answer Page 422 - 501- Keiser	
	Classification	
	Effective Length & Area	(3M)
	Stimulated Ramann Scattering	(3M)
	Stimulated Brillouin Scattering	(3M)
	Four wave mixing	$(3\mathbf{M})$
1		
1	explain SONE I/SDH. Draw the generic configuration of add drop multiplever in SONET (15M) BT	guration of SONET and explain the functions
	or add drop manuplexer in SOMP1. (ISM) D1.	
	Answer:Page:197 -199- Notes	
	Introduction to SONET/SDH	(7M)

	Synchronous optical Network/synchr	onous digital Hierarchy
	• ANSI TI 105.06 standard/ ITU-T G.9	957 standard
	 STS-N&OC-N/STM-M 	
	Structure of SONET	(2M)
	(ii)Answer:Page:204- Notes	
	Introduction to add or drop MUX	(2M)
	Different Links- point to point link, Linear c	hain, UPSR, BLSR, Interconnected rings
	Add/Drop Multiplexer	(4M)
	OC-12 Path and OC-3path F	Pigure.
2	Explain in detail different types of Broa	dcast and select WDM networks (or) Discuss the
	concepts of Media Access Control Protoc	ol in Broadcast and Select Networks. (or) What is
	'Broadcast and select multi hop network'	? Explain. (15M) (May/Jun 2016), (Nov/Dec 2012)
	BTL2	
	Answer:Page:206 -210- Notes	
	Introduction	(2M)
	Single hop: No electrical conversion	
	Multi hop: electro-Opto conversion	
	Classification	
	Broadcast & select single hop Networks	(5M)
	Broadcast & select single hop Networks	(5M)
	Shuffle Net Multihop Networks	(3M)

	Multiple Choice Questions (MCQ)
	UNIT-1 INTRODUCTION TO OPTICAL FIBER
1	Multimode step index fiber has
	a) Large core diameter & large numerical aperture
	b) Large core diameter and small numerical aperture
	c) Small core diameter and large numerical aperture
	d) Small core diameter & small numerical aperture
	Answer: a
2	Optical fibers for communication use are mostly fabricated from
	a) Plastic
	b) Silica or multicomponent glass
	c) Ceramics
	d) Copper
	Answer: b
3	A multimode step index fiber has a large core diameter of range
	a) 100 to 300 µm
	b) 100 to 300 nm
	c) 200 to 500 µm
	d) 200 to 500 nm
	Answer: a
4	Multimode graded index fibers with wavelength of $0.85\mu m$ have numerical aperture of 0.29
	have core/cladding diameter of
	a) 62.5 μm/125 μm
	b) 100μm/140 μm
	c) 85 μm/ 125 μm
	d) 50 μm/ 125μm
	Answer: b

5	Fiber mostly suited in single-wavel	ength transmission in O-band is
	a) Low-water-peak non dispersion-sh	ifted fibers
	b) Standard single mode fibers	
	c) Low minimized fibers	
	d) Non-zero-dispersion-shifted fibers	
	Answer: b	
6	Light incident on fibers of angles_	the acceptance angle do not propagate into the fiber
	a) Less than	
	b) Greater than	
	c) Equal to	
	d) Less than and equal to	
	Answer: b	
7	What is the numerical aperture of t	he fiber if the angle of acceptance is 16 degree
	a) 0.50	
	b) 0.36	
	c) 0.20	
	d) 0.27	
	Answer: d	
8	When a ray of light enters one med	ium from another medium, which quality will not change
	a) Direction	
	b) Frequency	
	c) Speed	
	d) Wavelength	
	Answer: b	
9	In an optical fiber, the concept of N	umerical aperture is applicable in describing the ability of
	a. Light Collection	
	D. Light Scattering	
	c. Light Dispersion	
	d. Light Polarization	
10	Answer: a	
10	which among the following is/are of	lectronined by the liber characterization?
	a. Fiber integrity & performance for (
	D. Instantion practices	11 of the above
	c. Service implementation d. A	II OI LIE above
11	Allswell: u	guided through the core due to total internal
11	in the structure of fiber, the light is	guided through the core due to total internal
	b refraction	
	a diffraction d d	sparsion
		spersion
12	In the structure of a fiber which as	monant provides additional strength and prevents the
12	fiber from any damage?	inponent provides additional strength and prevents the
	a Core	
	a. Colt	

	b. Cladding
	c. Buffer Coating
	d. None of the above
	Answer: c
13	Which rays exhibit the variation in the light acceptability ability of the fiber?
	a. Meridional
	b. Skew
	c. Leaky
	d. All of the above
	Answer: b
14	The difference between the mode's refractive indices is called as
	a) Polarization
	b) Cutoff
	c) Fiber birefringence
	d) Fiber splicing
	Answer: c
15	Plastic fibers are less widely used than glass fibers. State whether the statement is true or false.
	a) True
	b) False
	Answer: a
	UNIT-2 SIGNAL DEGRADATION OPTICAL FIBERS
1	Which kind of dispersion phenomenon gives rise to pulse spreading in single mode fibers?
	a. Intramodal
	b. Intermodal
	c. Material
	d. Group Velocity
	Answer: a
2	A typically structured glass multimode step index fiber shows as variation of attenuation in
	range of
	a) 1.2 to 90 dB km ⁻¹ at wavelength 0.69μ m
	b) 3.2 to 30 dB km ⁻¹ at wavelength 0.59μ m
	c) 2.6 to 50 dB km ⁻¹ at wavelength 0.85μ m
	d) 1.6 to 60 dB km ⁻¹ at wavelength 0.90μ m
	Answer: c
3	A fiber which is referred as non-dispersive shifted fiber is
	a) Coaxial cables b) Standard single mode fibers
	c) Standard multimode fibers d) Non zero dispersion shifted fibers
	Answer: b
4	During the design of FOC system, which among the following reasons is/are responsible for an
	extrinsic absorption?
	a. Atomic defects in the composition of glass
	b. Impurity atoms in glass material
	c. Basic constituent atoms of fiber material
	d. All of the above

	Answer: b
5	Rayleigh scattering is the type of
	a) Linear scattering losses
	b) Non-linear scattering losses
	c) Fiber bends losses
	d) Splicing losses
	Answer: a
6	Absorption losses due to atomic defects mainly include-
	a) Radiation
	b) Missing molecules, oxygen defects in glass
	c) Impurities in fiber material
	d) Interaction with other components of core
	Answer: b
7	Optical fibers suffer radiation losses at bends or curves on their paths. State true or false
	a) True
	b) False
	Answer: a
8	How the potential macro bending losses can be reduced in case of multimode fiber?
	a) By designing fibers with large relative refractive index differences
	b) By maintaining direction of propagation
	c) By reducing the bend
	a) By operating at larger wavelengths
	Answer: a
9	What is dispersion in optical fiber communication?
	a) Compression of light pulses
	b) Broadening of transmitted light pulses along the channel
	c) Overlapping of light pulses on compression
	d) Absorption of light pulses
	Answer: a
10	Chromatic dispersion is also called as intermodal dispersion. State whether the given statement
	true or false.
	a) True
	b) False
	Answer: b
11	In waveguide dispersion, refractive index is independent of
	a) Bit rate b) Index difference
	c) Velocity of medium d) Wavelength
	Answer: d
12	Polarization modal noise can the performance of communication system.
	a) Degrade
	b) Improve
	c) Reduce d) Attenuate
10	Answer: a
13	Dispersion-shifted single mode fibers are created by

	a) Increasing fiber core diameter and decreasing fractional index difference
	b) Decreasing fiber core diameter and decreasing fractional index difference
	c) Decreasing fiber core diameter and increasing fractional index difference
	d) Increasing fiber core diameter and increasing fractional index difference
	Answer: a
14	The variant of non-zero-dispersion-shifted fiber is called as
	a) Dispersion flattened fiber
	b) Zero-dispersion fiber
	c) Positive-dispersion fiber
	d) Negative-dispersion fiber
	Answer: d
	UNIT 3 FIBER OPTICAL SOURCES AND COUPLING
1	In spontaneous emission, the light source in an excited state undergoes the transition to a state
	with
	a. Higher energy
	b. Moderate energy
	c. Lower energy
	d. All of the above
	Answer: C
2	Ravleigh scattering is the types of
	a) Linear scattering losses
	b) Non-linear scattering losses
	c) Fiber bends losses
	d) Splicing losses
	Answer: a
3	A device which converts electrical energy in the form of a current into optical energy is called
_	as
	a) Optical source
	b) Optical coupler
	c) Optical isolator
	d) Circulator
4	Miswell, a Which process gives the laser its special properties as an entical source?
	a) Dispersion
	b) Stimulated absorption
	c) Spontaneous emission d) Stimulated emission
	A newore d
5	Allower, u
5	stimulated emission of a second photon
	a) Light amplification
	b) Attenuation
	c) Dispersion d) Population inversion
6	Allower: a In gunfage emitter I EDg. more advantage can be abtained by waing
0	In surface emitter LEDS, more advantage can be obtained by using

	a) BH structures b) QC structures
	c) DH structures d) Gain-guided structure
	Answer: c
7	In a multimode fiber, much of light coupled in the fiber from an LED is
	a) Increased
	b) Reduced
	c) Lost
	d) Unaffected
	Answer: c
8	The internal quantum efficiency of LEDs decreasing with
	temperature.
	a) Exponentially, decreasing
	b) Exponentially, increasing
	c) Linearly, increasing d) Linearly, decreasing
	Answer: b
9	The optical bandwidth is the electrical bandwidth.
	a) Smaller b) Greater
	c) Same as d) Zero with respect to
	Answer: b
10	Quantum efficiency is a function of photon wavelength. Determine the given statement is true
	or false.
	a) True b) False
	Answer: b
11	The more advantages optical amplifier is
	a) Fiber amplifier b) Semiconductor amplifier
	c) Repeaters d) Mode hooping amplifier
	Answer: b
	UNIT 4 FIBER OPTIC RECEIVER AND MEASUREMENT
1	refers to any spurious or undesired disturbances that mask the received signal
	in a communication system.
	a) Attenuation
	b) Noise
	d) Depending of the second sec
2	Allswer: D Which are the two main sources of noise in photodiades without internal gain?
2	a) Gaussian poise and dark current poise
	b) Internal noise and external noise
	c) Dark current noise & Quantum noise
	d) Gaussian noise and Quantum noise
	Answer: c
3	A technique used for determining the total fiber attenuation per unit length is
	method.
	a) Frank
L	

[b) Cut-off
	c) cut back
	d) Erlangen
	A pswort o
1	Answer: c What type of a light course is usually present in the out back method?
4	a) Tungsten or vonon
	a) Lesser
	c) Laser (d) Photo-sensor
5	Answer: a
5	The device used to remove any scattered optical power from the core is
	a) Mode setup terminator
	b) Nodal spectrum c) Mode stripper
	d) Attenuator
	Answer: c
6	Measurement checks the impurity level in the manufacturing process.
	a) Material reflectometry
	b) Material absorption loss
	c) Material attenuation loss
	d) Calorimetric loss
	Answer: c
7	Measurement give an indication of the distortion to the optical signals as they
	propagate down optical fibers.
	a) Attenuation
	b) Dispersion
	c) Encapsulation
	d) Frequency
	Answer: b
8	The detailed knowledge of the refractive index profile predicts the of the fiber.
	a) Nodal response
	b) Variation in frequency
	c) Impulse response
	d) Amplitude
	Answer: c
9	have been widely used to determine the refractive index profiles of optical
	fibers.
	a) Interference microscopes
	b) Gyro meters
	c) Mode-diameter device
	d) Tunable microscopes
	Answer: a
10	The method gives an accurate measurement of the refractive index profile.
	a) Slab
	b) Biometric
	c) GSLB

	d) Tuning
	Allowel. a
11	A multimode fiber has many sutoff wayslangths. State whether the given statement is two or
11	A multimode liber has many cutoff wavelengths. State whether the given statement is true or
	Talse.
	a) False
	b) True
	Answer: b
12	The method is the most commonly used method for the determination of the fiber
	refractive index profile.
	a) Refracted near-field method
	b) Bending-reference
	c) Power step method
	d) Alternative test method
	Answer: a
	Answer: a
13	The affects the light gathering canacity and the normalized frequency of the
	fiber
	a) Numerical aperture
	b) Amplitude modulation
	a) Perpensivity
	d) Quantum officianay
	a) Quantum erriciency
14	Answer: a The shedow velocity is given by 0.4 up us ⁻¹ and shedow pulse of width 200 us is periotoped at an
14	instant by the photodetector. Determine the outer diameter of the optical fiber in um.
	a) 100 µm
	b) 120 µm
	c) 140 µm
	d) 90 μ m
	Answer: h
15	The numerical aperture for a step index fiber is sine angle of the
-	a) Efficient angle
	b) Aperture
	c) Acceptance angle
	d) Attenuation
	Answer: c
	UNIT-5 OPTICAL NETWORKS AND SYSTEM TRANSMISSION
1	Which type of scattering occurs due to interaction of light in a medium with time dependent
	optical density variations thereby resulting into the change of energy (frequency) & path?
	a. Stimulated Brilliouin Scattering (SBS)
	h . Stimulated Raman Scattering (SRS)
	c Mie Scattering
	d Rayleigh Scattering
	u Nayitigii Stalltillig

JIT-JEPPIAAR/ECE/Mr.Thandaiah prabu /IVth Yr/SEM 07/EC6702/OPTICAL COMMUNICATION/UNIT 1 -5/QB+Keys/Ver 2.0

	Answorth
2	Answer: 0 Each stage of information transfer is required to follow the fundamentals of
2	Each stage of information transfer is required to follow the fundamentals of
	a) Optical Interconnection
	b) Optical nibernation
	c) Optical networking
	d) Optical regeneration
	Answer: c
3	The ring and star topologies are combined in a configuration.
	a) Mesh
	b) Fringe
	c) Data
	d) Singular
	Answer: a
4	Electrical devices in optical network are basically used for
	a) Signal degradation
	b) Node transfer
	c) Signal control
	d) Amplification
	Answer: c
5	The standardization towards a synchronous optical network termed SONET commenced in US
	in
	a) 1985
	b) 1887
	c) 2001
	d) 1986
	Answer: a
6	The sits at the top of hierarchy of the OSI layer model.
	a) Session layer
	b) Transport layer
	c) Application layer
	d) Data link layer
	Answer: c
7	Which of the following is used to provide wavelength signal service among the nodes?
	a) Regularization
	b) Hopping
	c) Optical enhancing
	d) Pulse breakdown
	Answer: b
8	The routing and wavelength assignment problem addresses the core issue of
	a) Traffic patterns in a network
	b) Wavelength adjustment
	c) Wavelength continuity constraint

	d) Design problem
	Answer: c
9	SONET stands for
	a) synchronous optical network
	b) synchronous operational network
	c) stream optical network
	d) shell operational network
	Answer: a
10	In SONET, STS-1 level of electrical signalling has the data rate of
	a) 51.84 Mbps
	b) 155.52 Mbps
	c) 466.56 Mbps
	d) none of the mentioned
	Answer: a
11	The photonic layer of the SONET is similar to the of OSI model.
	a) network layer
	b) data link layer
	c) physical layer
	d) none of the mentioned
	Answer: c
12	In SONET, each synchronous transfer signal STS-n is composed of
	a) 2000 frames
	b) 4000 frames
	c) 8000 frames d) 16000 frames
	Answer: c
13	Which one of the following is not true about SONET?
	a) frames of lower rate can be synchronously time-division multiplexed into a higher-rate frame
	b) multiplexing is synchronous TDM
	c) all clocks in the network are locked to a master clock
	d) none of the mentioned
	Answer: d
14	What is SDH?
	a) sdh is similar standard to SONET developed by ITU-T
	b) synchronous digital hierarchy
	c) both (a) and (b)
	d) none of the mentioned
	Answer: c

ACADEMIC YEAR: 2019-2020

EC6703

EMBEDDED & REAL TIME SYSTEMS L TPC

3 003

т .1

OBJECTIVES:

- □ Learn the architecture and programming of ARM processor.
- \Box Be familiar with the embedded computing platform design and analysis.
- \Box Be exposed to the basic concepts of real time Operating system.
- □ Learn the system design techniques and networks for embedded systems

UNIT I INTRODUCTION TO EMBEDDED COMPUTING & ARM PROCESSORS

Complex systems and micro processors– Embedded system design process –Design example: Model train controller- Instruction sets preliminaries - ARM Processor – CPU: programming input and output-supervisor mode, exceptions and traps – Co-processors- Memory system mechanisms – CPU performance- CPU power consumption.

UNIT II EMBEDDED COMPUTING PLATFORM DESIGN

The CPU Bus-Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs-Models of programs-Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.

UNIT III PROCESSES AND OPERATING SYSTEMS

Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive real-time operating systems-Priority based scheduling- Interprocess communication mechanisms – Evaluating operating system performancepower optimization strategies for processes – Example Real time operating systems-POSIX-Windows CE.

UNIT IV SYSTEM DESIGN TECHNIQUES AND NETWORKS

Design methodologies- Design flows - Requirement Analysis – Specifications-System analysis and architecture design – Quality Assurance techniques- Distributed embedded systems – MPSoCs and shared memory multiprocessors.

UNIT V CASE STUDY

Data compressor - Alarm Clock - Audio player - Software modem-Digital still camera - Telephone answering machine-Engine control unit – Video accelerator.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

- Describe the architecture and programming of ARM processor.
- Outline the concepts of embedded systems
- Explain the basic concepts of real time Operating system design.
- Use the system design techniques to develop software for embedded systems
- Differentiate between the general purpose operating system and the real time operating system

9

9

9

9

9

• Model real-time applications using embedded-system concepts.

TEXT BOOK:

1. Marilyn Wolf, "Computers as Components - Principles of Embedded Computing System Design", Third Edition "Morgan Kaufmann Publisher (An imprint from Elsevier), 2012.

REFERENCES:

- 1. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third Edition Cengage Learning, 2012.
- 2. David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, Addison-Wesley Professional, 2007.
- 3. Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems- From Design to Networking with C/C++", Prentice Hall, 1999.
- 4. C.M. Krishna, Kang G. Shin, "Real-Time Systems", International Editions, Mc Graw Hill 1997
- 5. K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", Dream Tech Press, 2005.
- 6. Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata Mc Graw Hill, 2004.

Subject Code:EC6703 Year/Semester: IV /07 Subject Name: EMBEDDED & REAL TIME SYSTEMS Subject Handler: W.NANCY

	UNIT I - INTRODUCTION TO EMBEDDED COMPUTING & ARM PROCESSORS
Complex systems and micro processors– Embedded system design process –Design example: Model train controller- Instruction sets preliminaries - ARM Processor – CPU: programming input and output-supervisor mode, exceptions and traps – Co-processors- Memory system mechanisms – CPU performance- CPU power consumption.	
	PART * A
Q.No.	Questions
1.	What is an embedded system? (BTL 1) An embedded system employs a combination of hardware & software (a "computational engine") to perform a specific function; is part of a larger system that may not be a "computer"; works in a reactive and time-constrained environment.
2	What are the typical characteristics of an embedded system? (BTL 1) Typical characteristics: a. Perform a single or tightly knit set of functions; b. Increasingly high-performance & real-time constrained; c. Power, cost and reliability are often important attributes d. That influence design:
3	 What are the advantages of embedded system? (BTL 1) Advantages: a. Customization yields lower area b. power and cost.
4	What are the disadvantages of embedded system ? (BTL 1) Disadvantages: Higher HW/software development overhead design, compilers, debuggers etc., may result in delayed time to market.
5	 What are the applications of an embedded system? (NOV/DEC 2017) (BTL 1) Embedded Systems Applications: a) Consumer electronics, e.g., cameras, camcorders, b) Consumer products, e.g., washers, microwave ovens, c) Automobiles (anti-lock braking, engine control,) d) Industrial process controllers & avionics/defence applications e) Computer/Communication products, e.g., printers, FAX machines.
6	What are the real-time requirements of an embedded system? (BTL 1)

JIT-JEPPIAAR/ECE/Mrs.W.Nancy/IV Yr/SEM 07 /EC6703/EMBEDDED & REAL TIME SYSTEMS/UNIT 1-5/QB+Keys/Ver2.0

REGUL	ATION :2013 ACADEMIC YEAR : 2019-2020
	Hard-real time systems: where there is a high penalty for missing a deadline
	e.g., control systems for aircraft/space probes/nuclear reactors; refresh rates for video, or DRAM.
	Soft real-time systems: where there is a steadily increasing penalty if a deadline is missed.
	e.g., laser printer: rated by pages-per-minute, but can take differing times to print a page
	(depending on the \"complexity\" of the page) without harming the machine or the customer.
	What are the various embedded system requirements? (BTL 1)
	Types of requirements imposed by embedded applications:
7	a) Functional requirements
	b) Temporal requirements
	c) Dependability requirements
	What are the main components of an embedded system? (BTL 1)
	Three main components of embedded systems: (D1L1)
8	a) The Hardware
0	a) The Haldware b) Application Software
	b) Application Software
	C) KIUS
	Define embedded microcontroller. (BTL 1)
9	An embedded microcontroller is particularly suited for embedded applications to perform
	dedicated task or operation.
-	Example: 68HC11xx, 8051, PIC, 16F8/7, etc.
10	What are the two essential units of a processor on an embedded system? (B1L 1)
10	a) Program flow control unit (CU)
	b) Execution unit (EU)
	What does the execution unit of a processor in an embedded system do? (BTL 1)
11	The execution unit implements data transfer and data conversion. It includes ALU and
	circuits that execute instruction for jump, interrupt, etc.
	Give examples for general purpose processor. (BTL 1)
	a) Microprocessor
12	b) Microcontroller
12	c) Embedded processor
	d) Digital Signal Processor
	e) Media Processor
	Define microprocessor. (BTL 1)
13	A microprocessor fetches and processes the set of general-purpose instructions such as data
15	transfer, ALU operations, stack operations, I/O operations and other program control
	operations.
	What is the need for LCD and LED displays? (BTL 1)
	Uses of LCD and LED display:
14	a) It is used for displaying and messaging.
	b) Example: Traffic light status indicator, remote controls, signals, etc.,
	c) The system must provide necessary circuit and software for the output to LCD controller.
	Give some examples for small scale embedded systems. (BTL 1)
15	68HC05, PIC 16F8x, 8051, etc.
	8051, 80251, 80x86, 80196, 68HC11xx
	ARM7, Power PC, Intel 80960, etc.
	Define system on chip (SOC) with an example. (BTL 1)
16	Embedded systems are being designed on a single silicon chip called system on chip. SOC is a
	new design innovation for embedded system.
	Eg. Mobile phone.
1	

JIT-JEPPIAAR/ECE/Mrs.W.Nancy/IV Yr/SEM 07 /EC6703/EMBEDDED & REAL TIME SYSTEMS/UNIT 1-5/QB+Keys/Ver2.0

	List the important considerations when selecting a processor. (BTL 1)
	a. Instruction set
17	b. Maximum bits in an operand
	c. Clock frequency
	d. Processor ability
	What are the various types of memory in embedded systems? (BTL 1)
18	a. RAM internal External
10	b. ROM/PROM/EEPROM/Flash
	c. Cache memory
19	What is watch dog timer? (BTL 1)
	Watch dog timer is a timing device that resets after a predefined timeout.
	When is Application Specific System processors ASSPs) used in an embedded system? (BTL
20	
	An ASSP is used as an additional processing unit for running the application specific tasks in
	place of processing using embedded software.
	Define KOM image. (BIL I)
21	Final stage software is also called as ROW image. The final implement able software for a
	product embeds in the KOM as an image at a frame. Bytes at each address must be defined for
	Name some of the software's used for the detailed designing of an embedded system (PTI
	1)
	Final machine implementable software for a product
	I mai maemile implementable software for a product
22	a. Assembly language
	b. High level language
	c. Machine codes
	d. Software for device drivers and device management.
-	What are the requirements of embedded system? (BTL 1)
	a. Reliability
23	b. Low power consumption
	c. Cost effectiveness
	d. Efficient use of processing power
	What are the challenges of embedded systems? (BTL 1)
	a. Hardware needed
24	b. Meeting the deadlines
	c. Minimizing the power consumption
	d. Design for upgradeability
	Give the steps in embedded system design? (BTL 1)
	a. Requirements
25	b. Specifications
	c. Architecture
	a. Component
	PAKI * B
1	
	Explain in details about Model train controller. (13M) (NOV/DEC 2017) (BTL2)
	Answer: Page: 28-34 - Marilyn wolf

	Model train control system. (3M)
	System setup. Signaling the train. Power supply and the console.
	Requirements.(2M)
	The console shall be able to control upto 8 trains on a single track.
	Inertia control, throttle control.
	Requirements in chart form.
	Digital Command Control.(4M)
	The DCC standard given in 2 documents
	Standard 9.1 & standard 9.2
	The electrical standard deals with voltage and current on the track
	Bit encoding in DCC
	Concentual specification (4M)
	A train control system turns commands into packets
	Command comes from the command unit
	Console class formatter class transmitter class receiver class controller class motor interface
	class, tormatter class, transmitter class, receiver class, controller class, motor metrace
	Explain in datails about Embaddad System Design Process (13M) (APP 2016) (BTL 2)
	Answer: page 10 - 12 Marilyn wolf
	Major levels of abstraction (6M)
	Requirements specification architecture components system integration
2	Ton down approach (AM)
2	To begin with most abstract description of the system and conclude with concrete details
	Bottom un annroach (3M)
	To start with components to build a system
	To start with components to build a system Do not have perfect insight into how latter stages of the design process changes out
	What is Formalisms for system Design 2 (12M) (PTL 2)
	A newory page 20 21 Marilyn wolf
	Unified Modeling Language (7M)
	Useful because it encourages design by successive refinement & progressively adding detail to
3	the design
5	Designed to be useful at many levels of abstraction in the design process
	Object oriented design Vs Programming (6M)
	It allows a system to be described in a way that closely models real world objects
	It provides a basic set of primitives
	What is Instruction Sate and avalain in details about APM instruction sate?(13M)
	(NOV/DEC 2017) (BTL 2)
	Answer: nage 28-34 Marilyn wolf
	Memory organization (1M)
	Computer architecture taxonomy
	Von – Neumann & Harvard architecture
	Complex instruction set computer & Reduced instruction set computer
4	Data operations (3M)
	APM a load store architecture
	A KIVI a load $-$ store atchilecture. D egister direct addressing(2M)
	Add r_0 r_1 r_2 The instruction sets register r_0 to sum of the values, stored in r_1 r_2
	Indirect addressing $(1M)$
	I DR r(1 [r1])
	More addressing modes (3M)
	wive autressing invice. (Jivi)

JIT-JEPPIAAR/ECE/Mrs.W.Nancy/IV Yr/SEM 07 /EC6703/EMBEDDED & REAL TIME SYSTEMS/UNIT 1-5/QB+Keys/Ver2.0

	Base + offset addressing
	Auto indexing, post indexing.
	Explain in details Supervisor mode, Exceptions and traps. (I3M) (BTL 2)
	Answer: page 114 - 115 Marilyn wolf
	Supervisor mode. (4M)
	A DM instruction in supervisor mode colled SWI
5	Exceptions (5M)
	Internally detected error. It requires both prioritization and vectoring
	The vector number for an exception is pre-defined by the architecture
	Traps. (4M)
	Also known as software interrupt. This causes the CPU to enter supervisor mode.
	Explain in detail about Memory System Mechanisms and CPU performance in a
	coprocessor system. (13M) (Apr/May 2016) (BTL 2)
	Answer: page 116 - 122 Marilyn wolf
	Caches.(4M)
	Widely used to speed up reads and writes in memory systems.
6	First and Second level cache. (4M)
0	A small fast memory that holds copies of some of the contents of main memory.
	Cache organization.(4M)
	A cache controller mediates between the CPU and the memory system comprised of the cache
	and main memory.
	Cache hit, cache miss, Average memory access time.
	ARM caches. (IM)
	write the flow of control in ARM. (8M)(Apr/May 2017) (B1L 2)
	Answer: page 00-71 Marnyn won Bronch instruction (4M)
	The basic mechanism in ARM for changing the flow of control
	Branches PC relative the branch specifies the offset from the current PC value to the branch
7	target.
	B #100.
	C functions. (4M)
	The other important class of C statement to consider the function. Sub routines and procedures
	the common name.
	Nested function calls.
	Explain in detail the operation of ARM processor and coprocessor. (13M) (Apr/May 2016)
	(BTL 2)
	Answer: page 57 – 60, 115 – 116 Marilyn wolf
	Operation of ARM. (7M)
	A family of RISC architecture. Arm / uses a von – Neumann architecture, while Arm 9 uses a
0	Harvard architecture.
8	It supports 2 basic types of data: Standard Arm word is 22 bit long
	The word may be divided into four 8 bit bytes
	A load - store architecture Other important basic register current program status
	register(CPSR)
	Co-processors in ARM.(6M)
	It provides flexibility at the instruction set level.

	Co – processor instructions can load and store co – processor registers or can perform internal
	operations.
	What are ways of programming the input and output devices in an embedded system
	design? (13M)(Apr/May 2017) (BTL 2)
	Answer: page 96-102 Marilyn wolf
	Input and output devices (4M)
	They have some analog or non electronic component.
	The interface between the CPU and the device's internals a set of registers.
9	Devices typically have several registers : Data registers, Status registers.
-	Input and Output primitives (4M)
	Microprocessors can provide programming support for input and output in two ways:
	I/O instructions
	Memory – mapped I/O
	Busy wait I/O (5M)
	The simplest way to communicate with devices in a program.
	Asking an I/O device whether it finished by reading its status register often called polling.
	Discuss on the operation of coprocessor used with ARM processor. (13M) (NOV/DEC 2017)
	(BTL2)
	Answer: page 115-116 Marilyn wolf
	Operation. (/M)
10	It provides flexibility at the instruction set level.
10	Co - processor instructions can load and store $co - processor$ registers or can perform internal
	operations.
	Functions (6M)
	Most architectures use illegal instruction traps to handle these situations.
	The ARM architecture provides support for up to 16 co – processors attached to a CPU.
	An example ARM co – processor the floating – point unit.
	Elaborate Requirements in detail and all other Embedded system design process. (15M)
	(Apr/May 2017) (BTL 2)
	Answer: page 10-19 Mariyin woll Dequirements (7M)
	It may be functional or non-functional
	Turnical non functional requirements include:
	Performance cost physical size and weight power consumption
	Validating requirements : one way to build a mock _ up
	As part of system design we will use simple requirements methodology. Internal consistency of
	As part of system design we will use simple requirements methodology. Internal consistency of requirements
1	Specification (2M)
	It is the contract between the customer and the architects
	Design (2M)
	It is a plan for the overall structure of the system A sample system architecture given in the form
	of a block diagram
	Components (2M)
	It includes in general both hardware – FPGA boards - and software modules
	Integration, (2M)
	Bugs typically found during system integration and good planning can help us find the bugs
	auickly.
L	yuunij.

REGUI	LATION :2013 ACADEMIC YEAR : 2019-2020
	Briefly elaborate CPU performance. (15M) (BTL 2)
	Answer: page 128-132 Marilyn wolf
	Pipelining. (7M)
	Modern CPU's designed as pipelined machines in which several instructions executed in parallel.
	ARM 7 has a 3 – stage pipeline: Fetch, Decode, Execute. Risc machines designed to keep the
	pipeline busy.
2	Pipeline stalls – multiple load instruction an example of an instruction that requires several
	cycles.
	Branches also introduce control stall delays into the pipeline, also known as branch penalty.
	Cache Performance. (8M)
	The extra time required to access a memory location not in the cache often called the cache miss
	penalty.
	Compulsory miss, conflict miss, capacity miss.
	Explain in detail CPU power consumption. (15M) (Apr/May 2017) (BTL 2)
	Answer: page 133-134 Marilyn wolf
	CMOS power characteristics. (8M)
	Virtually all digital systems built with CMOS circuitry.
	Power supply voltage – Power consumption of a CMOS circuit proportional to square of the
	power supply voltage (v^2) .
	Capacitive toggling – By reducing the speed at which the circuit operates, we can reduce it's
3	power consumption.
5	Leakage – The only way to eliminate leakage current to remove the power supply.
	Static and Dynamic Power management. (7M)
	Static power management – This mechanism invoked by the user but does not otherwise depend
	on CPU activities.
	e.g., Power – down mode
	Dynamic power management – This mechanism takes actions to control power based upon the
	dynamic activity in the CPU.
	e.g., CPU may turn off certain sections of the CPU.

Subject Code:EC6703 Year/Semester: IV /07 Subject Name: EMBEDDED & REAL TIME SYSTEMS Subject Handler: W.NANCY

UNIT II - EMBEDDED COMPUTING PLATFORM DESIGN		
The CPU Bus-Memory devices and systems-Designing with computing platforms - consumer		
electronics architecture - platform-level performance analysis - Components for embedded programs-		
Model	s of programs- Assembly, linking and loading - compilation techniques- Program level	
perfor	mance analysis – Software performance optimization – Program level energy and power analysis	
and op	timization – Analysis and optimization of program size- Program validation and testing.	
	PART * A	
Q.No.	Questions	
	Differentiate synchronous communication and iso-synchronous communication. (BTL 1)	
	Synchronous communication	
1	When a byte or a frame of the data is received or transmitted at constant time intervals	
1.	with uniform phase difference, the communication is called synchronous communication.	
	Iso-synchronous communication	
	Iso-synchronous communication is a special case when the maximum time interval can be varied.	
	What are the three ways of communication for a device? (BTL 1)	
2	1. Iso-synchronous communication	
2	2. synchronous communication	
	3. Asynchronous communication	
	Expand a) SPI b) SCI (BTL 1)	
3	a) SPI—serial Peripheral Interface	
	b) SCI—Serial Communication Interface	
	Define software timer. (BTL 1)	
4	This is software that executes and increases or decreases a count variable on an interrupt from	
•	a timer output or form a real time clock interrupt. A software timer can also generate interrupt	
	on overflow of count value or on finishing value of the count variable.	
	What is I2C? (BTL 1)	
5	I2C is a serial bus for interconnecting ICs .It has a start bit and a stop bit like an UART. It has	
5	seven fields for start,7 bit address, defining a read or a write, defining byte as acknowledging	
-	byte, data byte, NACK and end.	
	What is a CAN bus? Where is it used? (BTL 1)	
6	CAN is a serial bus for interconnecting a central Control network. It is mostly used	
0	inautomobiles. It has fields for bus arbitration bits, control bits for address and data length data	
	bits, CRC check bits, acknowledgement bits and ending bits.	
	What is USB? Where is it used? (BTL 1)	
7	USB is a serial bus for interconnecting a system. It attaches and detaches a device from the	
	network. It uses a root hub. Nodes containing the devices can be organized like a tree structure. It	
	is mostly used in networking the IO devices like scanner in a computer system.	
	What are the features of the USB protocol? (BTL 1)	
8	A device can be attached, configured and used, reset, reconfigured and used, share the bandwidth	
	with other devices, detached and reattached.	

REGUL	ATION :2013					ACADEMIC YEA	R: 2019-2020	
	Why are SP	CI parallel b	uses importa	nt? (BTL 1)				
9	SPCI serial	buses are in	nportant for d	istributed de	evices. The	latest high speed so	phisticated	
	systems use i	new sophistic	ated buses.					
	what is mea	What is meant by UART? (BTL 1)						
	1. UAR	T stands for ι	iniversal Asyn	chronous Re	ceiver/Transi	mitter.		
10	2. UAR	T is a hardy	vare compone	nt for transl	ating the da	ta between parallel	and serial	
	interf	aces.						
	3. UAR	T does conve	rt bytes of data	a to and from	asynchronoi	us start stop bit.		
	4. UAR	T is normally	used in MOD	EM.				
	What does U	JART contai	n? (BTL 1)					
11	I. A clo	ck generator.						
11	2. Input	and Output s	tart Registers					
	3. Buffe	ers.	. 1					
	4. Irans	miller/Receiver	$\frac{1}{29}$ (DTL 1)					
		C stands for '	Uigh Lovel D	ata Link Con	trol"			
12		C scalles for C is a bit or c	nigli Level Da	ata Link Con				
	2. HDL	C is a synchronic	neu protocol.	k lovor				
	Urito the H	DI C's fram	structure (F	RTI 1)				
-	write the m	DLC S IT alli		•			
13	Flag	Address (ontrol Dat	a FCS	S Flag	τ		
	1 lug					2		
	NT			1)				
	Name some	control bit o	Tumer. (BIL	1)				
1.4		1.11mer 1						
14	2. Timer start							
	3. Up count Enable 4. Timer Interrupt Enable							
	What is stat	Here the second		C				
15								
	Status flag is the hardware signal to be set when the timer reaches zeros.							
	List out some applications of timer devices. (BTL 1)							
	1.Real Time clock							
16	2. watchdog timer							
	5.input pulse counting 4 TDM							
	5 Scheduling of various tasks							
	State the sne	cial features	$\frac{1}{10000000000000000000000000000000000$	1)	,			
	State the spe	1 Low cc	st					
17	2 Easy implementation							
	3. Moderate speed upto 100 kbps)							
18	Write the di	sadvantages	of I ² C. (BTL)	1)				
	1	1 Slave hardware does not provide much support						
	2.Open collector drivers at the master leads to be confused							
	Draw the da	ta frame for	mat of CAN.	(BTL 1)				
19	Start	Arhitration		Data field	CRC field	Acknowledgement	End Of	
		Field	Field			Field	frame	
		1.1610	1.1610			11010	manne	

JIT-JEPPIAAR/ECE/Mrs.W.Nancy/IV Yr/SEM 07 /EC6703/EMBEDDED & REAL TIME SYSTEMS/UNIT 1-5/QB+Keys/Ver2.0 3.11

REGULATION	:2013
------------	-------

	1 12 6 0-64 16 2 7
	What is ISA? (BTL 1)
20	1.ISA stands for Industry standard Architecture.
20	2.Used for connecting devices following IO addresses and interrupts vectors as per
	IBM pc architecture.
	Define CPCI. (BTL 1)
	1.CPCI stands for Compact Peripheral Component Interfaces.
21	2.CPCI is to be Connected via a PCI.
	3.CPCI is used in the areas of Telecommunication Instrumentation abd data
	communication applications.
	What is meant by PCI-X? (BTL 1)
22	1.PCI X offers more speed over PCI.
	2.30 times more speed than PCI.
	Define Real Time Clock RTC. (BTL 1)
22	Peal time clock is a clock which once the system state does not stop and cant be reset
23	Real time clock is a clock which once the system stats does not stop and cant be reset
	and its count value cant be reloaded.
	Define Time-out or Time Overflow. (BTL 1)
24	A state in which the number of count inputs exceeded the last acquirable value and on
	reaching that state, an interrupt can be generated.
	What are the two standards of USB? (BTL 1)
25	1.USB 1.1
	2.USB 2.0
	PART * B
	Explain in details about Memory Devices. (13M) (BTL 2)
	Answer: page 172 – 175 Marilyn wolf
	Memory system organization. (7M)
	DRAM Organization – Most bulk memory in modern systems are dynamic RAM & very dense.
	Value must be refreshed periodically, because the values inside the memory cells decay over
	time.
	* A simple memory is organized as a two – dimensional array.
	Special modes – Burst and page mode.
	Types of DRAM – Synchronous DRAM, Extended data out DRAM (EDO DRAM).
1	Fast page mode DRAM (FPM DRAM), double data rate DRAM (DDR DRAM), (2M)
	Memory packaging – Single in – line memory module (SIMMs)
	Double in – line memory module (DIMMs)
	Memory controllers – It is the interface between the CPU and memory components (2M)
	Channels and Banks – These are 2 ways to add parallelism to the memory system
	ROM – These are preprogrammed with fixed data (1M)
	Flash memory – It can be erased and rewritten using standard system voltages (1M)
	Boot $=$ block flash $=$ It keeps the boot $=$ up code in a protected block but allow updates to other
	blocks
	Fynlein in deteile about different Due Structures 12m DTI 1
2	Explain in details about different bus Structures. 1511, $B \perp L = 1$
	Answer: page 159 – 101, 1/0 - 1/2 Marilyn Woll

	CPU bus. (1M)					
	The bus is the mechanism by which the CPU communicates with memory and devices.(3M)					
	Bus organization and protocol. (2M)					
	Bus master – CPU serves as the bus master.(2M)					
	Four cycle handshake – it is the basic building block.(2M)					
	System bus configuration. (1M)					
	A small block of a logic known as a bridge allows the buses to connect to each other.(2M)					
	Design a system with computing platforms in detail.(13M) (BTL 4)					
	Answer: page 176 – 183 Marilyn wolf					
	Choosing a platform. (1M)					
	Hardware – CPU, bus, memory, input and output devices.(2M)					
	Software – digital filtering and FFT.(1M)					
	Intellectual property. (2M)					
	Run time software libraries.					
3	Software development environments.					
	Schematics, netlists, and other hardware design information.					
	Development environments . (3M)					
	Software development done on a pc is host.					
	The hardware on which the code will finally run is known as target.					
	Debugging techniques. (4M)					
	Important debugging tool is break point.					
	1.Microprocessor in – circuit emulator,2.logic analyzer.					
	Explain in details about Development and Debugging techniques. (13M) (APR/MAY					
	2016) (BTL2)					
	Answer: page 180 – 183 Marilyn wolf					
	Cross compiler. (1M)					
	It is a compiler that runs on one type of machine but generates code for another.(2M)					
	Test bench program. (2M)					
4	We often create a test bench program.					
	Debugging techniques. (3M)					
	A good deal of software debugging can be done by compiling and executing code on a pc.					
	1.ICE. (2M)					
	2. Micro processor in $-$ circuit emulator (ICE) is a specialized software tool.					
	3.Logic Analyzer. (3M)					
	What is analyzis and antimization of execution time, never, analyzing and program size?					
	(13M) (NOV/DEC 2017) (BTI 2)					
	(13W) (NOV/DEC 2017) (B1L2) Answer: page 266 270 Marilyn wolf					
	The execution time of a program often varies with the input data (2M)					
	The cache has a major effect on program performance (1M)					
	Execution times may vary even at the instruction level (1M)					
5	Measuring execution speed $-$ average case execution time, worst case execution time, best case					
	weasuring execution speed – average case execution time, worst case execution time, best case execution time $(2M)$					
	Flaments of program performance :					
	Execution time - measure acts + instruction timing (2M)					
	1 By equinon time = program bain + instruction timing (70/1)					
	Execution time = program pain + instruction timing.(2M) Measurement driven performance analysis					
	Execution time = program path + instruction timing.(2M) Measurement driven performance analysis. Program level energy and power analysis and optimization: (2M)					
	Execution time = program path + instruction timing.(2M) Measurement driven performance analysis. Program level energy and power analysis and optimization: (2M) Measuring energy consumption for a piece of code (1M)					

	Try to use registers efficiently.					
	Analyze cache behavior to find major cache conflicts. Instruction conflicts, array data					
	conflicts.(1M)					
	Make use of page mode accesses. (1M)					
	Explain Assembly, Linking and Loading.(13M) (BTL 2)					
	Answer: page 228 – 234 Marilyn wolf					
	Program generation work flow.(1M)					
	The assemblers job is to translate symbolic assembly language statements into bit level of					
	instructions known as object codes.(2M)					
	Absolute and Relative addresses. (2M)					
	Absolute addresses – assembler assumes that the starting address of the assembly language					
	program has been specified by the programmer.					
6	Relative addresses – origin of the assembly language module is to be computed later.					
	Assemblers. (2M)					
	Translates opcodes and formats the bit in each instruction.					
	Symbol table.(2M)					
	The name of each symbol and its address is stored in a symbol table.					
	Linking. (2M)					
	A linker allows a program to be stitched together out of several smaller pieces.					
	Loader: (2M)					
	Dependent of the basic security of the basic security for execution is called a loader.					
	Describe the basic compliation techniques. (15M) (APK/MAY 2017, B1L2),(NOV/DEC 2017) (PTL2)					
	2017) (D1L2) Answer: page 236 245 Merilyn welf					
	Compilation process (2M)					
	Speed size power consumption (3M)					
_	Compilation process : compilation = translation + optimization. $(2M)$					
7	Basic compilation methods. (2M)					
	We consider the basic job of translating the high – level language program with little or no					
	optimization. (2M)					
	Procedures. (1M)					
	The linkage mechanism provides a way for the program to pass parameters in to the					
	program.(1M)					
	Explain in detail optimization of program size of an embedded system. (13M) (APR/MAY					
	2017) (BTL2)					
	Answer: page 266 – 270 Marilyn wolf					
0	Program level energy and power analysis and optimization: (2M)					
8	Measuring energy consumption for a piece of code.(3M)					
	I ry to use registers efficiently. (3M)					
	Analyze cache behavior to find major cache conflicts. Instruction conflicts, array data conflicts.					
	(SM) Make use of page mode accesses (2M)					
	Discuss various programming models in detail (APR/MAV 2017) (13M) (NOV/DEC					
	2017 (BTL2)					
0	Answer: page 223 – 226 Marilyn wolf					
9	Programming models (1M)					
	1.One fundamental model for programs is the control / data flow graph (CDFG). (3M)					
	It has constructs that model both data(arithmetic and other computations) and control					

	operations(conditionals). (3M)			
	2.Data flow graphs – it is a model of a program with no conditionals. (2M)			
	More precisely with only one entry and exit point – is known as a basic block. (2M)			
	Control / data flow graphs – 2 types of nodes. (1M)			
	Decision nodes and data flow nodes. (1M)			
	Describe the basic types of memory components commonly used in embedded systems.			
	(13M) (APR/MAY 2016) (BTL 2)			
	$\frac{1000}{1000} (1000) $			
	DRAM Organization (AM) Most bulk memory in modern systems are dynamic RAM. It is			
	DRAW Organization (4W) - Wost burk memory in modern systems are dynamic RAW. It is			
	very dense. Its value must be refreshed periodically, because the values miside the memory cens			
10	Tuesday over time.			
	Types of DRAM (SM) – Synchronous DRAM, Extended data out DRAM (EDU DRAM), Tast			
	page mode DRAM (FPM DRAM), double data rate DRAM (DDR DRAM).			
	ROM (2M) – These are preprogrammed with fixed data.			
	Flash memory $(2M)$ – It can be erased and rewritten using standard system voltages.			
	Boot – block flash (2M) – It keeps the boot – up code in a protected block but allow updates to			
	other blocks.			
	PART *C			
	Elaborate program validation and testing.(15M) (BTL 2)			
	Answer: page 271 – 279 Marilyn wolf			
	Clear box testing. (6M)			
	The control / data flow graph extracted from a programs source code is an important tool.			
	We must accomplish the following 3 things in a test:			
	Provide the program with inputs.			
	Execute the program to perform the test.			
	Examine the outputs to determine whether the test was successful.			
1	Execution paths – we want to test the program by forcing it to execute along chosen paths.			
	Black box testing.(5M)			
	These are generated without knowledge of the code being tested. When used in conjunction			
	with clear box tests they help provide a well – rounded test set.			
	Random tests – are generated with a given distribution			
	Regression tests – form an extremely important category of tests			
	Evaluating functional tests $(4M)$			
	Methodological techniques are important for understanding the quality of your test			
	One interesting method for analyzing the coverage of your tests is error injection			
	Explain in detail about Program level performance analysis and explain the entimization			
	of program level operation and program size (15M) (APP/MAV 2017, 2016) (BTI 2)			
	A newore page 254 , 250 , 266 , 270 Marilyn wolf			
	Answer: page 254 – 259, 200 – 270 Warnyn won Drogrom level nerfermenes enelysis (2M)			
	Program level performance analysis (ow)			
	Because embedded systems must perform functions in real time, we often need to know now fast			
2	a system runs.			
2	The execution time of a program often varies with the input data.			
	The cache has a major effect on program performance.			
	Execution times may vary even at the instruction level.			
	Measuring execution speed – average case execution time, worst case execution time, best case			
	execution time.			
	Elements of program performance :			
	Execution time = $program path + instruction timing$.			
REGUL	ATION :2013 ACADEMIC YEAR : 2019-2020			
-------	--			
	Measurement driven performance analysis.			
	Program level energy and power analysis and optimization: (7M)			
	Measuring energy consumption for a piece of code.			
	Try to use registers efficiently.			
	Analyze cache behavior to find major cache conflicts. Instruction conflicts, array data conflicts.			
	Make use of page mode accesses.			
	Discuss the design pattern, loop transformations and scheduling.(12M)			
	Explain clear – box testing. (3M) (NOV / DEC 2015) (BTL 2)			
	Answer: page 245,251,271 Marilyn wolf			
	Loop transformation (6M)			
	Loops are important program structures. Many techniques have been designed to optimize loops.			
	A simple but useful transformation is known as loop unrolling.			
	Loop fusion – it combines 2 or more loops in to a single loop.			
	Loop distribution – is the opposite of loop fusion.			
3	Loop tiling – breaks up a loop into a set of nested loops.			
	Array padding – adds dummy data elements to a loop.			
	Dead code – it can never be executed.			
	Register allocation – is a very important compilation phase.			
	Scheduling (6M) – we may be able to improve the register allocation by changing the order.			
	Software pipelining technique for reordering instructions.			
	One useful code for generating code is template matching.			
	Clear box testing. (3M)			
	The control / data flow graph extracted from a programs source code is an important tool.			

Subject Code:EC6703Year/Semester: IV /07Subject Name: EMBEDDED & REAL TIME SYSTEMSSubject Handler: W.NANCY

UNIT III – PROCESSES & MULTIPLE OPERATING SYSTEM	
Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive real-time operating	
systems- Priority based scheduling- Interprocess communication mechanisms – Evaluating operating	
system	1 performance- power optimization strategies for processes - Example Real time operating
system	ns-POSIX-Windows CE.
	PART * A
Q.No.	Questions
	What are the states of a process? (BTL1)
1	1. Running
1.	2. Ready
	3. Waiting
2	What is the function in steady state? (BTL1)
2	Processes which are ready to run but are not currently using the processor are in the 'ready' state.
	Define scheduling. (BTL1)
3	This is defined as a process of selection which says that a process use the processor at
	given time.
	What is scheduling policy? (BTL1)
4	It says the way in which processes are chosen to get promotion from ready state to
	running state.
	What is schedulability? (BTL1)
5	It indicates any execution schedule is there for a collection of process in the system's
	functionality.
	What are the types of scheduling? (BTL1)
6	1. Time division multiple access scheduling.
	2. Round robin scheduling.
-	Define round robin scheduling. (BTL1)
7	This type of scheduling employs the hyper period as an interval. The processes run in the given
	order.
0	What is scheduling overhead? (BTL1)
0	It is defined as time of execution needed to select the next execution process.
0	What is meant by context switching? (BTL1)
9	The actual process of changing from one task to another is called a context switch.
10	Define priority scheduling. (BTL1)
10	A simple scheduler maintains a priority queue of processes that are in the runnable state.
	What is critical instant analysis? (BTL1)
11	It is used to know about the schedule of a system. Its says that based on the periods given,
	the priorities to the processes has to be assigned.

REGUL	ATION :2013 ACADEMIC YEAR : 2019-2020
	Define earliest deadline first scheduling. (BTL1)
12	This type of scheduling is another task priority policy that uses the nearest deadline as the
	criterion for assigning the task priority.
	What is IDC mechanism? (BTL1)
13	It is necessary for a 'process to get communicate with other process' in order to attain a
	specific application in an operating system.
	What are the two types of communication? (BTL1)
14	1. Blocking communication
	2. Non blocking communication
	Give the different styles of inter process communication. (BTL1)
15	1. Shared memory.
	2. Message passing.
16	What is critical instant? (BTL1)
10	It is the situation in which the process or task possess highest response time.
	What is rate monotonic scheduling? (BTL1)
17	Rate monotonic scheduling is an approach that is used to assign task priority for a preemptive
	system.
	Define initiation time. (BTL1)
18	It is the time at which the process goes from the waiting to the ready state.
	It is generally measured from the event.
10	Define aperiodic process. (BTL1)
19	It is initiated by an event, such as external data arriving or data computed by another process.
	Define Deadline. (BTL1)
20	It specifies when a computation must be finished.
20	The deadline for an aperiodic process is measured from initiation time.
	The deadline for a periodic process may occur at sometime other than the end of the period.
1	Define Utilization. (BTL1)
21	It is defined as the CPU time for useful work to the total available CPU time.
	Name the scheduling states. (BTL1)
	1. Waiting
22	2.Ready
	3. Execution
	Define scheduling policy (BTL1)
23	It defines how processes are selected for promotion from the ready state to the running state
	What is kornal? (BTL 1)
24	It is a part of the operating system that determines what process is munning
	It is a part of the operating system that determines what process is fully integrating.
	what are the major styles of interprocess communication? (B1L1)
25	1. Shared memory
	2. Message passing
	PART * B
1	1. Explain in details about Real time Operating systems. (13M) (BTL 2)

	Answer: Page: 319 – 325 Marilyn wolf
	> Preemptive operating system and to use priorities to control what runs at any given
	time. (2M)
	Two basic concepts. (3M)
	Introduce preemption alternative to C function.
	> Introduce priority based scheduling.
	Processes, context, (3M)
	Steady state – everything initialized, OS timer interrupt.
	 Processes, object oriented design, (5M)
	 UML processes active objects An active class in UML. A collaboration diagram with
	active and normal objects
	Explain in detail process state and scheduling (13M) APR/MAV 2016 (BTL 2)
	Answer: Dage 316 317 Marilyn wolf
	Answer. 1 age $510 - 517$ Walling woll 2 has a scheduling states (4M)
	The operating system considers a process to be in one of 2 basic scheduling states :
	Weiting ready or executing
2	 Waiting, feady, of executing. Scheduling states of a message (2M)
Z	Scheduling states of a process. (3M)
	A process can go in to the executing state only when it has all its data, is ready to run.
	Scheduling policy. (3M)
	Fit defines now processes are selected for promotion from the ready to the running state.
	Scheduling overhead. (3M)
	> The execution time required to choose the next execution process.
	Explain in details about Inter Process communication mechanisms. (13M) (APR/MAY
	2017,APR/MAY 2016, NOV/DEC 2017) (B1L2)
	Answer: Page 340 - 344 Marilyn wolf
	Shared memory communication.(4M)
	Two components such as a CPU and an I/O/ device, communicate through a shared
	memory location.
3	Message passing.(4M)
	It complements the shared memory model.
	A queue is a common form of message passing.
	Signals.(3M)
	Another form of inter process communication commonly used in Unix is signals.
	Mailboxes.(2M)
	It is a simple mechanism for asynchronous communication.
	Explain evaluating operating system performance in detail (13M) (BTI 2)
	Answer: Page 344 – 347 Marilyn wolf
	$\sum_{n=1}^{\infty} Context switching time (AM)$
	It depends on several factors:
	The amount of CPU context that must be saved
	 Scheduler execution time
4	 Juterrunt latency (3M)
	 Interrupt factory. (SIVI) It is printical bacquise data may be lost when an intermunt is not conviced in a timely.
	fishion
	$\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$
	The langest the existent descents of the first of the langest sector.
	➤ The longer the critical section, the greater the potential delay.
	> ISH performs the minimal operations required to respond to the device.

	 Caches and RTOS performance. (3M)
	> A properly sized cache can allow a microprocessor to run a set of processes much more
	quickly.
	Explain in detail about Power optimization strategies for processes.(13M) (APR/MAY
	2017,NOV/DEC 2017) (BTL2)
	Answer: Page 349 – 352 Marilyn wolf
	➢ Power down trade - offs. (4M)
5	It is strategy for determining when to perform certain power management options.
	Power up the system when a request is received.
	Predictive power management.(3M)
5	A more sophisticated method is predictive shut down.
	A simple technique is to use fixed times.
	Architecture.(3M)
	A more advanced technique is based on a more thorough analysis of the system state.
	ACPI.(3M)
	Advanced configuration and power interface is an open industry standard for power
	management services.
	Explain in detail rate monotonic scheduling with example. (13M) (BTL 2).
	Answer: Page 326 – 330 Marilyn wolf
	\blacktriangleright Theory (5M)
	It was introduced by Liu and Layland.
	First scheduling policies developed for real time systems.
6	RMS is a static scheduling policy.
0	The theory underlying RMS is rate monotonic analysis (RMA).
	CPU Utilization. (4M)
	Total CPU utilization for a set of n tasks is
	\succ U = $\sum_{i=1}^{n} \frac{T_i}{t_i}$
	▶ Implementation. (4M)
	\triangleright C code for an RMS scheduler run at the operating systems timer interrupt.
	With neat diagram explain Shared Memory communication. (13M) (BTL2)
	Answer: Page 340 - 341 Marilyn wolf
	Shared memory communication.(7M)
7	> Two components such as a CPU and an I/O/ device, communicate through a shared
	memory location.
	Shared memory communication implemented on a bus. (6M)
	CPU, shared location, I/O device and bus.
	Brief about multiple tasks and multiple processes. (13M) (APR/MAY 2016) (BTL2)
	Answer: Page 308 – 310 Marilyn wolf
8	Tasks and processes. (4M)
	I asks are part of the systems functionality.
	 A process is a single execution of a program. Processes that share the same address space is thread
	 Frocesses that share the same address space is thread. Scheduling overhead. (5M)
	 Scheduling overhead is paid for at a non linear rate.
	 Character compressor compression table bit queue
	A synchronous input (4M)
	• A control nanel on a machine provides an example of a different type of rate control
	· A control panel on a machine provides an example of a different type of fate control

	problem, the asynchronous input.
	Explain in detail earliest deadline first scheduling. (13M) (APR/MAY 2017) (BTL2).
	Answer: Page 308 – 310 Marilyn wolf
	Earliest deadline first scheduling. (8M)
	➢ It is a well known scheduling policy.
0	▶ It is a dynamic priority scheme – it changes process priorities during execution based on
9	initiation times.
	It can achieve higher CPU utilizations than RMS.
	➤ Implementation (5M)
	EDF can achieve 100% utilization.
	The implementation of EDF is more complex than the RMS code.
	PART *C
	Explain multirate systems with neat diagrams. (15M) (BTL 2)
	Answer: Page 310 – 319 Marilyn wolf
	Timing requirements. (4M)
	> Two important requirements on processes: initiation time and deadline.
	> The period of a process is the time between successive executions.
	\blacktriangleright A set of processes with data dependencies is known as a task graph.
	\rightarrow CPU usage metrics. (5M)
1	\blacktriangleright The simplest and most direct measure is utilization.
	CPU time for useful work
	total available CPU time
	Process state and scheduling. (4M)
	The operating system considers a process to be in one of 3 basic scheduling states:
	waiting, ready, or executing.
	Running periodic processes. (2M)
	First step: while loop, a timed loop, multiple timers, timer plus counters.
	Explain in detail Priority based scheduling. (15M) (BTL 2)
	Answer: Page 325 – 333 Marilyn wolf
	Round robin scheduling (2M)
	A common scheduling algorithm in general purpose OS.
	Rate monotonic scheduling. (4M)
	It was introduced by Liu and Layland.
	First scheduling policies developed for real time systems.
	RMS is a static scheduling policy.
•	The theory underlying RMS is rate monotonic analysis (RMA). Shared measured (5M)
2	Shared resources. (SM)
	We may create a critical timing race or race condition that causes erroneous operation.
	Semaphores – a primitive provided by the OS.
	Priority inversion. (2M)
	A low priority process blocks execution of a higher priority process by keeping hold of its
	resource.
	EDF Scheduling. (2M)
	 It is a well known scheduling policy.
	It is a dynamic priority scheme – it changes process priorities during execution based on initiation times
1	i minimutation times.

	It can achieve higher CPU utilizations than RMS.
	Brief the functions of
	i)POSIX and (8M) (APR/MAY 2017) (BTL2)
	ii)Windows CE. (7M) (NOV/DEC 2017) (BTL2)
	Answer: Page 352-360 Marilyn wolf
	Posix. (8M)
	➢ It is a version of the Unix OS created by a standards organization.
	A new process is created by making a copy of the existing one.
	A dual – kernel approach uses a specialized kernel.
3	> Processes in POSIX, process model, Real time scheduling in POSIX, Posix semaphores,
	posix pipes, posix message queues.
	Windows CE. (7M)
	It supports devices such as smart phones, electronic instruments etc.
	> Windows CE is designed to run on multiple hardware platforms and instruction set
	architectures.
	▶ Win CE architecture, Win CE memory space, OAL architecture in windows CE, Win CE
	threads and drivers, kernel and user address spaces.
	Win CE scheduling, win CE interrupts – ISH, ISR, IST.

Subject Code:EC6703 Year/Semester: IV /07 Subject Name: EMBEDDED & REAL TIME SYSTEMS Subject Handler: W.NANCY

UNIT IV – SYSTEM DESIGN TECHNIQUES AND NETWORKS

Design methodologies- Design flows - Requirement Analysis - Specifications-System analysis and architecture design - Quality Assurance techniques- Distributed embedded systems - MPSoCs and shared memory multiprocessors.

PART * A	
Q.No.	Questions
1.	Define process. (BTL1) Process is a computational unit that processes on a CPU under the control of a scheduling kernel of an OS. It has a process structure, called Process control block. A process defines a sequentially executing program and its state.
2	What is meant by PCB? (BTL1) Process Control Block' is abbreviated as PCB.PCB is a data structure which contains all the information and components regarding with the process.
3	Define task and Task state. (BTL1) A task is a set of computations or actions that processes on a CPU under the control of a scheduling kernel. It also has a process control structure called a task control block that saves at the memory. It has a unique ID. It has states in the system as follows: idle, ready, running, blocked and finished
4	Define Task Control Block TCB. (BTL1) A memory block that holds information of program counter, memory map, the signal dispatch table, signal mask, task ID, CPU state and a kernel stack.
5	What is a thread? (BTL1) Thread is a concept in Java and UNIX and it is a light weight sub process or process in an application program. It is controlled by the OS kernel. It has a process structure, called thread stack, at the memory. It has a unique ID. It has states in the system as follows, running, blocked and finished.
6	 Define Inter process communication. (BTL1) An output from one task passed to another task through the scheduler and use of signals, exception, semaphore, queues, mailbox, pipes, sockets, and RPC. What is shared data problem? (BTL1)
/	(That is shared data problem. (D1D1)

REGUL	ATION :2013 ACADEMIC YEAR : 2019-2020
	If a variable is used in two different processes and another task interrupts before the operation is
	completed then the value of the variable may differ from the one expected. This is known as
	shared data problem.
	Define Semaphore. (APR/MAY 2017) (BTL1)
	Semaphore provides a mechanism to let a task wait till another finishes. It is a way of
8	synchronizing concurrent processing operations. When a semaphore is taken by a task then that
	task has access to the necessary resources. When given resources unlock, Semaphore can be used
	as an event flag or as a resource key.
	Define Mutex. (BTL1)
9	A phenomenon for solving the shared data problem is known as semaphore. Mutex is a
	semaphore that gives instance to two tasks mutually exclusive access to resources.
	Differentiate counting semaphore and binary semaphore.(BTL1)
	Binary semaphore
10	When the value of binary semaphore is one, it is assumed that no task has taken it and
10	that it has been released. When the value is 0, it is assumed that it has been taken.
	Counting semaphore is a semaphore which can be taken and given number of times
	Counting semaphores are unsigned integers.
	What is Priority inversion? (APR/MAY 2017) (BTL1)
11	A problem in which a low priority task inadvertently does not release the process for a
	higher priority task.
	What is Deadlock situation? (BTL1)
12	A set of processes or threads is deadlocked when each process or thread is waiting for a
	resource to be freed which is controlled by another process.
	Define Message Queue. (BTL1)
13	A task sending the multiple FIFO or priority messages into a queue for use by another
	task using queue messages as an input.
14	Define Mailbox and Pipe. (BTL1)
	A message or message pointer from a task that is addressed to another task
15	Define Socket. (B1L1)
15	It provides the logical link using a protocol between the tasks in a client server or peer to
	Define Remote Procedure Call (BTI 1)
16	A method used for connecting two remotely placed methods by using a protocol. Both
10	systems work in the peer to peer communication mode and not in the client server mode.
	What is RTOS? (BTL1)
17	An RTOS is an OS for response time controlled and event controlled processes. RTOS is
	an OS for embedded systems, as these have real time programming issues to solve.
18	List the set of OS command functions for a device. (BTL1)
	1.Create and open
	2. WILL 3. Read
	4.Close and delete
	What are the three methods by which an RTOS responds to a hardware source "call on
19	interrupt"? (BTL1)

REGULATION :2013 ACADEMIC YEAR : 2019-202	
	1. Direct call to ISR by an interrupt source
	2. Direct call to RTOS by an interrupt source and temporary suspension of a scheduled task.
	3. Direct call to RTOS by an interrupt source and scheduling of tasks as well as ISRs by the RTOS.
	Name any two important RTOS. (BTL1)
20	1. MUCOS
	2. VxWorks
21	What is meant by well tested and debugged RTOS? (BTL1)
21	An RTOS which is thoroughly tested and debugged in a number of situations
	What is sophisticated multitasking embedded system? (BTL1)
22	A system that has multitasking needs with multiple features and in which the tasks
	have deadlines that must be adhered to.
	What are the features of UC/OS II? (BTL1)
	1. Preemptive
23	2. Portable
	3. Scalable
	4. Multitasking
	What are the real time system level functions in UC/OS II? State some? (BTL1)
24	1. Initiating the OS before starting the use of the RTOS fuctions.
2.	2. Starting the use of RTOS multi-tasking functions and running the states.
	3. Starting the use of RTOS system clock.
	What are the different types of scheduling supported by VxWorks? (BTL1)
25	1. Preemptive priority
	2. Time slicing
	PART * B
	Explain in details about Accelerated system design. (13M) (APR/MAY 2016) (BTL2) Answer: Page: 432- 434 Marilyn wolf
	• Accelerators (5M)
	 Processing elements for embedded multiprocessors.
	• Provide large performance increases - applications with computational kernels.
1	• Hardware / software co-design (4M)
	• The design of accelerated systems - example.
	• The simultaneous design of hardware and software - meeting system objectives.
	• CPU accelerators in system (4M)
	• Memory, CPU, CPU bus, Accelerator (data registers, control registers, accelerator logic)
	Discuss in detail about several interconnected networks used especially for distributed
	embedded computing. (13M) (APR/MAY 2016) (BTL2)
	Answer: Page: 414 – 419 Marilyn wolf
	• Network abstraction (5M)
2	• The OSI model layers.
	• Physical, data link, network, transport, session, presentation, application.
	• CAN bus (4M)
	• Designed for automotive electronics.
	• Uses bit serial transmission. Recessive, dominant.

10002	
	• Sends data on network in packets as data frames.
	• Architecture of CAN controller. (4M)
	• Bus interface, protocol controller, host interface.
	Explain in detail the advanced techniques for specification. (13M) (BTL 2)
	Answer: Page:391 – 394 Marilyn wolf
	• Control oriented specification languages. (7M)
	• SDL language, state charts, AND / OR tables.
	• A well known technique for state based specification - State chart.
3	• SDL language for specifying communication protocols, telephone systems.
	• Advanced specification. (6M)
	Specification of real world
	Uses safety critical system in aircraft.
	Used in many applications - much of the complexity in control structure.
	Explain the features and applications of Internet enabled embedded systems. (13M)
	(APR/MAY 2016) (BTL2)
	Answer: Page:429 – 431 Marilyn wolf
	• Internetworking (4M)
	• IP - fundamental protocol.
	• A node transmits data among different types of networks - known as router.
4	• Protocol utilization (3M)
	• Node A. Router, Node B.
	• IP packet structure (3M)
	Header data payload with data
	• Internet service stack (3M)
	• FTP HTTP SMTP Telnet SNMP TCP LIDP IP
	Explain networks for embedded systems and Internet-enabled embedded system. (13M)
	(BTL 2)
	Answer: Page: 414 – 416, 429 – 431 Marilyn wolf
	• Network abstraction. (3M)
	• The OSI model layers.
	• Physical, data link, network, transport, session, presentation, application.
	• CAN bus (4M)
5	• Designed for automotive electronics.
Ũ	• Uses bit serial transmission Recessive dominant
	• Sends data on the network in packets - data frames
	• Internetworking (6M)
	• The IP -fundamental protocol
	 A node transmits data among different types of networks -router
	 Protocol utilization - Node A Router Node B
	• IP nacket structure
	Elaborate I2C bus with neat diagram. (13M) (BTL 2)
6	Answer: Page: 422-425 Marilyn wolf
	• Physical layer (4M)
	Used to link microcontrollers in to systems
	 2 lines – SDL and SCL.
	 Electrical interface to the I2C bus (3M)
	- Licentear interface to the 120 bus (JVI)

JIT-JEPPIAAR/ECE/Mrs.W.Nancy/IV Yr/SEM 07 /EC6703/EMBEDDED & REAL TIME SYSTEMS/UNIT 1-5/QB+Keys/Ver2.0

REGUL	ATION :2013 ACADEMIC YEAR : 2019-2020
	• Structure of an I2C bus system (3M)
	• Data link layer (3M)
	• Every I2C device has an address.
	• Format of an I2C address transmission.
	Explain in detail catagories of multiprocessors. (13M) (BTL 2)
	Answer: Page:412 - 414 Marilyn wolf
	• Major types. (4M)
	 Shared memory Vs message passing
7	• System – on chip Vs distributed
	• Architectures. (4M)
	Shared memory architecture, message passing architecture.
	• MPSOCs. (5M)
	Very common in single chip embedded multiprocessors.
	Explain how the concepts of MPSOC and shared memory multiprocessors are used in
	embedded application. (13M) (NOV/DEC 2017) (BTL2)
	Answer: rage:412 - 414 Marilyn wolf
0	• MPSOC (/M)
8	• Very common in single chip embedded multiprocessors.
	• e.g., ARM MPcore.
	• Shared memory multiprocessors (6M)
	• Shared memory VS message passing
	• Shared memory architecture and message passing architecture.
	Explain design flows with a neat sketch. (15M) (B1L 2)
	Answer: Page: 383 – 386 Marilyn wolf
	• Waterfall model. (5M)
	• The first model proposed for the software development process.
1	• Consists of 5 major phases: requirements, architecture, coding, testing, maintenance.
1	• Spiral model. (5M)
	• Alternative model of software development.
	• System feasibility, specification, prototype, initial system, enhanced system.
	• Successive refinement. (5M)
	• Rough prototype, successive models of the system further refined.
	Write down the quality assurance for system design techniques. (15M) (APR/MAY
	2017,NOV/DEC 2017) (BTL2).
	Answer: Page: 400 – 406 Marilyn wolf
	• Techniques. (5M)
	• Vital for delivery of satisfactory system.
2	• ISO 9000: process crucial, Documentation important, Communication important.
_	• Verifying the specification. (5M)
	• Long live bugs more expensive to fix Requirements validation prototyping languages
	validation of specifications.
	• Design reviews (5M)
	 Design reviews. Design review format - designers review leader review audience
	• Design review format – designers, review feader, review addrence.

	Elaborate Can bus, I2c bus and distributed computing in cars and airplanes. (15M)
	(APR/MAY 2017) (BTL2).
	Answer: Page: 416 – 425 Marilyn wolf
	• Can bus. (6M)
	• Designed for automotive electronics.
	• Uses bit serial transmission. Recessive, dominant.
	• Sends data on the network in packets - data frames.
2	• I2c bus. (5M)
3	• Used to link microcontrollers in to systems.
	• 2 lines – SDL and SCL.
	• Electrical interface to the I2C bus
	• Structure of an I2C bus system
	• Data link layer (4M)
	• Every I2C device has an address.
	• Format of an I2C address transmission.
	Distributed computing.

Subject Code:EC6703

Year/Semester: IV /07

Subject Name: EMBEDDED & REAL TIME SYSTEMS Subject Handler: W.NANCY LINIT V CASE STUDY

UNIT V – CASE STUDY		
Data compressor - Alarm Clock - Audio player - Software modem-Digital still camera - Telephone		
answering machine-Engine control unit – Video accelerator.		
PART * A		
Q.No. Questions		

Q.No.	Questions		
1.	What is PIC? BTL1 PIC refers to Programmable Intelligent Computer. PIC is microprocessor lies inside a personal computer but significantly simpler, smaller and cheaper. It can be used for operating		
	relays, measuring sensors etc.		
2	What are the main elements inside a PIC? BTL1		
2	Processing engine, Program memory, data memory and Input/Output.		
2	What are the types of program memory in a PIC? BTL1		
3	Read-only, EPROM and EEPROM, Flash		
	Define pseudo-code. BTL1		
4	Pseudo-code is a useful tool when developing an idea before writing a line of true code or when		
	explaining how a particular procedure or function or even an entire program		
	What is a PDA? BTL1		
5	PDA (Personal Digital Assistant) is a device that can be used to receive, display and transcribe		
	information. PDA can run a wide variety of applications		
	What is a set-top box or STB or STU? BTL1		
	A set top box (STB) or set top unit (STU) is an information appliance device that generally		
	contains a tuner and connects to a television set and an external source of signal, turning the		
6	source signal into content in a form that can then be displayed on the television screen or other		
	display device.		
	USES :		
	Cable television and satellite television system		
7	What are FOSS tools in embedded systems? BTL1		
,	GNU Compiler Collection (gcc) and GNU debugger (gdb) are the most popular FOSS (Free		

	and open source) tools used in embedded systems.		
	List the major components in the Personal Digital Assistant System. BTL1		
	Process or memory		
8	Connectivity		
	Power management unit		
	User interface.		
	Why most designers use FOSS tools in embedded system development? BTL1		
	Because,		
9	It makes software portable.		
	It speeds up the development process		
	It provides good foundation for system development activities.		
	What is signal servicing function? BTL1		
	The signal service is a bureau of the government organized to collect from the whole country		
10	simultaneously report to local metrological condition upon comparison of which at certain		
	office, predictions concerning the weather are telegraphed to various sections also known as		
	signal publicity display.		
	Write short notes on H/W and S/W co-design. BTL1		
	Embedded systems architecture design is the task of selecting and programming a suitable		
11	configuration of components for a required system application. Building an embedded system		
11	is not an easy task. Every embedded system consist of an embedded hardware and embedded		
	software.		
	So software and hardware plays a main role in design of embedded system architecture.		
	Why we go for Co-Design? BTL1		
	Need For Co-Design :		
	Co-design refers to parallel or concurrent development of hardware and software for an		
	embedded system.		
12	Co-design reduces the overall design and development cycle of the embedded		
	system.		
	It helps the designer to find the bugs at early stage.		
	It also reduces the number of errors, particularly at the hardware-software interface		
	What is MBasic Compiler Software? BIL1		
12	From version 5.3.0.0 onward, Basic Micro offers one version of its MBasic compiler, the		
15	From Windows 05 to Windows VD. The commuter requires on DS 222 port for compaction to		
	from windows 95 to windows AP. The computer requires an RS-232 port for connection to		
	the ISP-PRO programmer board.		
1.4	What is a Jog Memory: BILI It is used to huffer data to maintain playing during a log to the drive. The player reads sheed and		
14	nuts data into the jog memory.		
	What is FFM? BTI 1		
15	Fight to fourteen encoding. It is used to ensure a minimum transition rate		
	State block motion estimation? BTL1		
16	Rather than sending each frame separately as in motion IPEG some frames are sent as modified		
	forms of other frames using a technique known as block motion estimation		
	What is Engine control Unit? BTL1		
17	This unit controls the operation of a fuel injected engine based on several measurements taken		
11	from the running engine.		

REGUL	ATION :2013 ACADEMIC YEAR : 2019-2020
	Define Emios. BTL1
18	Enhanced modular IO subsystem.
	It provides 28 input and output channels controlled by timers.
	Each channel can perform a variety of functions.
	Define OPWFMB. BTL1
10	Output pulse width and frequency modulation buffered mode.
19	It will automatically generate a waveform whose period and duty cycle can be varied by writing
	registers in the Emios.
	What is SAE? BTL1
20	Society of Automotive Engineers.
20	It has several standards for automotive software.
	e.g., J2632 – Coding practices for C code.
	What is EXIF? BTL1
21	Exchangeable Image File Format.
	It is a standard widely used to further extend the information stored in an image file
	What is DCF standard? BTL1
	Design rule for Camera File standard
	It specifies 3 major steps
22	1 IPEG Compression
	2 EXIE file generation
	3 DOS FAT image store
	What is TIFF? BTI 1
	Tagged Image File Format
23	It is often used to store uncompressed images
	It also supports several compression methods as well
	Weite al and three here 19 DTL 1
	It is the smaller version of a file used for quick display
24	It is widely used both by compress and computers
	It is widely used boil by callelas and computers.
	It saves computation time and energy.
	What is Perpetual Coding? BTL1
25	Audio compression is a lossy process that relies on perpetual coding.
	The coder eliminates certain features of the audio stream so that the result can be encoded in
	fewer bits.
	PART * B
	Explain the working of telephone answering machine. (13M) BTL 2
	Answer: Page: 361 – 363 Marilyn wolf
	Operation (5M)
	Adaptive differential pulse code modulation coding scheme.
1	Simple technique but yields 2X compression ratios on voice data.
	ADPCM compression system. (1M)
	Encoder, Decoder. (7M)
	The answering machine ultimately connect to a telephone subscriber line.
	At the other end of the subscriber line is the central office.
	Explain the working of Engine control unit. (13M) (APR/MAY 2017) BTL2
2	Answer: Page: 369 – 370 Marilyn wolf
2	Operation. (7M)
	The engine measures throttle, rpm, intake air volume, and other variables.

	The engine controller computes injector pulse width, spark.			
	Working(6M)			
	The engine controller must deal with processes that happen at different rates.			
	The controller adjusts duration up or down based upon readings from the exhaust oxygen sensor.			
	Explain Video compression techniques in video accelerator. (13M) BTL 2			
	Answer: Page: 441 – 443 Marilyn wolf			
2	Compression techniques (8M)			
5	It uses several component algorithms together in a feedback loop.			
	The DCT used in JPEG plays a key role in MPEG 2.			
	Black motion estimation, macro blocks, block diagram, block motion estimation.(5M)			
	Explain briefly Data Compressor. (13M) BTL 2			
	Answer: Page: 137-141 Marilyn wolf			
	Requirements, algorithm (6M)			
	Use Huffman coding technique.			
4	It takes in a sequence of input symbols and then produces a stream of output symbols.			
	UML collaboration (5M)			
	Input, data compressor, output for the data compressor.			
	Name, data compression module.			
	Specifications (2M)			
	Definition of data compressor			
	Elaborate the system architecture of Alarm clock. (13NI) B1L 2			
	Answer: Page: 197-199 Marilyn wolf Maion as ftware companying (7M)			
	State diagram for seen key board			
5	Interrupt driven routing can undate the current time			
	A foreground program can poll the buttons and execute their commands			
	Functions (6M)			
	Preprocessing button inputs			
	Brief about Audio player with appropriate diagrams. (13M) (NOV/DEC 2017) BTL2			
	Answer: Page: 200-202 Marilyn wolf			
	Theory of operation (5M)			
	Auto decompression, perceptual coding, masking.			
6	Layer 1, layer 2, layer 3.			
	Theory of Requirements (5M)			
	Purpose, inputs, outputs, functions, performance etc.			
	MPEG Layer 1 encoder and decoder (3M)			
	Filter bank, FFT, quantizer / encoder, masking model.			
	With neat diagram explain the operation and requirements of Software Modem.(13M)			
	(NOV/DEC 2017) BTL2			
7	Answer: Page: 280-283 Marilyn wolf			
	Operation (/M) ESK detection scheme. Dessiving hits in the modern with start hit and massage hit along with			
	FSK detection scheme. Receiving bits in the modern with start bit and message bit along with			
	Sampling interval mentioned. D aquiroments $(6M)$			
	Purpose inputs outputs functions performance manufacturing cost and power physical size			
	and weight			
	Explain the operation of Digital Still Camera (13M) (APR/MAV 2017) RTI 2			
8	Answer: Page: 285-290 Marilyn wolf			
L				

	Theory of operation (5M)				
	Determine the exposure and focus.				
	Capture the image, develop the image, compress the image.				
	Generate and store the image as a file.				
	Imaging algorithms (3M)				
	Pixels, luminance, chrominance, histogram.				
	Image Compression (2M)				
	Lossless and lossy compression, JPEG.				
	Requirements (3M)				
	Purpose, inputs, outputs, functions, performance, manufacturing cost and power, physical size				
	and weight.				
	PART *C				
	Flaborate operation requirements specification testing of a telephone answering machine				
	(15M) BTL 2				
	Answer: Dage: 361 360 Marilyn wolf				
	Answer. Lage. 501-509 Marinyii woli Operations (5M)				
	Adaptive differential pulse and modulation (ADDCM) and in a scheme ADDCM compression				
	Adaptive differential pulse code modulation (ADPCM), coding scheme, ADPCM compression				
	Begwingments (4M)				
1	Requirements (4M)				
	Purpose, inputs, outputs, functions, performance, manufacturing cost and power, physical size				
	and weight.				
	Specification (4M)				
	Class diagram for the answering machine, physical class interfaces, message classes, operational				
	classes and state diagram.				
	Testing (2M)				
	The modules should be tested.				
	Brief about Engine control unit with architecture and component design and testing.				
	(15M) (NOV/DEC 2017) B1L2				
	Answer: Page: 3/1 – 3/4 Marilyn wolf				
	Operation. (/M)				
	The engine measures throttle, rpm, intake air volume, and other variables.				
2	The engine controller computes injector pulse width, spark.				
	Working(6M)				
	The engine controller deals with processes that happen at different rates.				
	The controller adjusts duration up or down based upon readings from the exhaust oxygen sensor.				
	Design and testing. (2M)				
	Any testing performed on an actual engine must be conducted using an engine controller.				
	Explain design process in software modem. (15M) (APR/MAY 2016) BTL2				
	Answer: Page: 280 - 285 Marilyn wolf				
	Operation (4M)				
	FSK detection scheme.				
	Receiving bits in the modem with start bit and message bit along with sampling interval				
3	mentioned.				
	Requirements (2M)				
	Purpose, inputs, outputs, functions, performance, manufacturing cost and power, physical size				
	and weight.				
	Specification. (3M)				
	Class diagram for modem. The class include physical classes for line – in, line – out.				

System architecture. (4M)One small subsystem – Interrupt handlers2 major subsystems – Transmitter, ReceiverComponent design, testing. (2M)Test bench construction. Test the bit detectors.

EC6004

SATELLITE COMMUNICATION

L T P C 3 0 0 3

OBJECTIVES:

The student should be able to:

- Understand the basics of satellite orbits.
- Understand the satellite segment and earth segment.
- Analyze the various methods of satellite access.
- Understand the applications of satellites

UNIT I SATELLITE ORBITS

Kepler"s Laws, Newton"s law, orbital parameters, orbital perturbations, station keeping, geo stationary and non Geo - stationary orbits – Look Angle Determination Limits of visibility – eclipse - Sub satellite point – Sun transit outage - Launching Procedures - launch vehicles and propulsion

UNIT II SPACE SEGMENT AND SATELLITE LINK DESIGN

Spacecraft Technology - Structure, Primary power, Attitude and Orbit control, Thermal control and Propulsion, communication Payload and supporting subsystems, Telemetry, Tracking and command. Satellite uplink and downlink Analysis and Design, link budget, E/N calculation - performance impairments - system noise, inter modulation and interference, Propagation Characteristics and Frequency considerations System reliability and design lifetime.

UNIT III EARTH SEGMENT

Introduction – Receive – Only home TV systems – Outdoor unit – Indoor unit for analog (FM) TV – Master antenna TV system – Community antenna TV system – Transmit – Receive earth stations – Problems – Equivalent isotropic radiated power – Transmission losses – Free - space transmission – Feeder losses – Antenna misalignment losses – Fixed atmospheric and ionospheric losses – Link power budget equation – System noise – Antenna noise – Amplifier noise temperature – Amplifiers in cascade – Noise factor – Noise temperature of absorptive networks – Overall system noise temperature – Carrier to - Noise ratio – Uplink – Saturation flux density – Input back off – The earth station - HPA – Downlink – Output back off – Satellite TWTA output – Effects of rain – Uplink rain – Fade margin – Downlink rain – Fade margin – Combined uplink and downlink C/N ratio – Inter modulation noise.

UNIT IV SATELLITE ACCESS

Modulation and Multiplexing: Voice, Data, Video, Analog – digital transmission system, Digital video Brocast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum communication, compression – encryption.

UNIT V SATELLITE APPLICATIONS

INTELSAT Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, INMARSAT, LEO, MEO, Satellite Navigational System. Direct Broadcast satellites (DBS) - Direct to home Broadcast (DTH), Digital audio broadcast (DAB) – World space services, Business TV(BTV), GRAMSAT, Specialized services – E –mail, Video conferencing, Internet.

OUTCOMES:

Upon Completion of the course, the students will be able to:

- Analyze the satellite orbits.
- Analyze the earth segment and space segment.
- Design various satellite applications

JIT-JEPPIAAR/ECE/Mrs.M.Benisha /IVth Yr/SEM 07/EC6004/SATELLITE COMMUNICATION/UNIT 1 -5/QB+Keys/Ver 2.0

TOTAL: 45 PERIODS

9

9

9

9

9

TEXT BOOK:

1. Dennis Roddy, "Satellite Communication", 4th Edition, Mc Graw Hill International, 2006.

REFERENCES:

- 1. Wilbur L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, 2007.
- 2. N.Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.
- 3. Bruce R. Elbert, "The Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997.
- Tri T. Ha, "Digital Satellite Communication", IInd edition, 1990. 4.
- Emanuel Fthenakis, "Manual of Satellite Communications", Mc Graw Hill Book Co., 1984. 5.
- 6.
- Robert G. Winch, "Telecommunication Trans Mission Systems", Mc Graw Hill Book Co., 1983. Brian Ackroyd, "World Satellite Communication and earth station Design", BSP professional Books, 1990. 7.
- G.B.Bleazard, "Introducing Satellite communications", NCC Publication, 1985. 8.
- 9. M.Richharia, "Satellite Communication Systems Design Principles", Macmillan 2003.

Subject Code: EC6004 Subject Name: SATELLITE COMMUNICATION

Year/Semester: IV /07 Subject Handler: R.Thandaiah Prabu

UNIT I - SATELLITE ORBITS

Keplers Laws, Newtons law, orbital parameters, orbital perturbations, station keeping, geo stationary and non Geo - stationary orbits – Look Angle Determination Limits of visibility – eclipse - Sub satellite point – Sun transit outage - Launching Procedures - launch vehicles and propulsion.

PART * A					
Q.No.	Questions				
1.	What is Satellite? BTL1 An artificial body that is projected from earth to orbit either earth (or) another body of solar systems. Types: Information satellites and Communication Satellites				
2	Define Satellite Communication. BTL1 It is defined as the use of orbiting satellites to receive, amplify and retransmit data to earth stations.				
3	State Kepler's first law. BTL1 It states that the path followed by the satellite around the primary will be an ellipse. An ellipse has two focal points F1 and F2. The center of mass of the two body system, termed the barycenter is always centered on one of the foci. e = Isquare root of (a2-b2) 1/a				
4	State Kepler's second law. BTL1 It states that for equal time intervals, the satellite will sweep out equal areas in its orbital plane, focused at the barycenter				
5	State Kepler's third law. BTL1It states that the square of the periodic time of orbit is perpendicular to the cube of the mean distance between the two bodies.Where, n = Mean motion of the satellite in rad/sec. μ = Earth's geocentric gravitational constant. With the n in radians per sec. the orbital period in second is given by, $a^3 = \frac{\mu}{n^2}$ $p = \frac{2\pi}{n}$				
6	Define apogee. BTL1 The point farthest from the earth.				
7	Define Perigee. BTL1 The point closest from the earth.				
8	What is line of apsides? BTL1 The line joining the perigee and apogee through the center of the earth.				
9	Define ascending node. BTL1 The point where the orbit crosses the equatorial plane going from south to north				
10	Define descending node. BTL1 The point where the orbit crosses the equatorial plane going from north to south				

RI	EGULATION: 2013 ACADEMIC YEAR: 2018-2019
	Define Inclination. BTL1
11	The angle between the orbital plane and the earth's equatorial plane. It is measured at the
	ascending node from the equator to the orbit going from east to north.
12	Define mean anomaly. BTL1
	It gives an average value of the angular position of the satellite with reference to the perigee.
12	Define true anomaly. BTL1
13	It is the angle from perigee to the satellite position, measured at the earth's center.
	What is meant by azimuth angle? BTL1
14	It is defined as the angle produced by intersection of local horizontal plane and the plane passing
	through the earth station, the satellite and center of earth.
	Give the 3 different types of applications with respect to satellite systems. BTL1
15	The largest international system (Intelsat)
10	• The domestic satellite system (Dom sat) in U.S.
	U.S. National oceanographic and atmospheric administrations (NOAA)
	Mention the 3 regions to allocate the frequency for satellite services. BTL1
16	Region1: It covers Europe, Africa and Mangolia
	• Region2: It covers North & South Ameriaca and Greenland.
	Region3: It covers Asia, Australia and South West Pacific.
	Give the types of satellite services. BTL1
	• Fixed satellite service,
17	Broadcasting satellite service
	• Navigational satellite services,
	• Mobile satellite service
	• Meteorological satellite services
18	What is mean by Dom sat? BILI
10	Domestic Satellites.
	What is mean by INTELSAT & SADSAT 2 DTL 1
19	International Telecommunication Satellite Search and rescue satellite
	Define polar-orbiting satellites BTI 1
20	Polar orbiting satellites orbit the earth in such a way as to cover the north and south polar regions
	Give the advantage of geostationary orbit BTL1
21	There is no necessity for tracking antennas to find the satellite positions
22	Define look angles, BTL1
	The azimuth and elevation angles of the ground station antenna are termed as look angles.
	Write short notes on station keeping. BTL1
22	It is the process of maintenance of satellite's attitude against different factors that can cause drift
23	with time. Satellites need to have their orbits adjusted from time to time, because the satellite is
	initially placed in the correct orbit, natural forces induce a progressive drift.
	What are the geostationary satellites? BTL1
24	The satellites present in the geostationary orbit are called geostationary satellite.
	The geostationary orbit is one in which the satellite appears stationary relative to the earth.
	It lies in equatorial plane and inclination is '0'.
	The satellite must orbit the earth in the same direction as the earth spin.
	The orbit is circular.

RI	REGULATION : 2013 ACADEMIC YEAR : 2018-2019			2018-2019		
	5. The inclination – angle from equator					
	6. The right ascens	sion of the ascending node	– first tim	e arises to ascer	nding node	
	1. Kepler's first la	aw - Orbit elliptical, sun or	ne of the f	oci. (6 M)		
	2. Kepler's second	d law - Equal time interval	ls, satellite	will sweep equ	al areas	
	^{3.} Kepler's third	law square of the periodic	time of or	bit $=$ cube of the	e mean distan	ice
	$(D_1/D_2)^3 = (P_1/I_1)^3$	$(P_2)^2$				
	Explain about Geo	o-stationary & near Geo-	stationary	orbits. (13 M)	BTL2	
	Answer: Page: 77,	89 - Dennis Roddy				
	Satellite follows as	It revolves around earth (3)	M)			
	Depending on: Alt	itude, inclination & Orbita	al Period			
	$1 \text{ able} - (\mathbf{S} \mathbf{N} \mathbf{I})$	Footuros	CEO	MEO	IFO	
3	Hoig	ht (Km ² s)	36000	6000 - 12000	200 -	
5	Incig	iit (IXIII S)	50000	0000 - 12000	3000	
	Time	ner arhit (Hrs)	24	5 - 12	1.5	
	Snee	d (Km's / hr)	11000	19000	27000	
	Time	Delay (ms)	250	80	10	
	Time	in Site of Gateway	Always	2-4 hrs	< 15 min	
	Satel	lite for Global Coverage	3	10 - 12	50 - 70	
	Explain about free	uency allocations for sat	ellite serv	ices. (13 M) B	<u>г</u> г2	
	Answer: Page: 2 D	ennis Roddy				
	share limited freque	ency band (6 M)				
	Table - (7 M)					
		Band Uplink (GHz)	Downlink	(GHz)		
Δ		C 6	4			
-		Ku 14	12			
		Ka 30	20			
		X 8.2	7.5	;		
		<u>S</u> 40	20			
		Q 44	21			
		L 1.525 to 1.559	1.626 to	1.660		
	Explain about the	Orbital perturbations in	detail (13	5 M) BTL2		
	Answer: Page: 38 - Dennis Roddy Gravitational pull of sun and moon (2 M) Effect of a Non Scherical Forth (3 M)					
	Oblate Spheroid	iencai Eartii (3 IVI)				
	Ublate Spheroid $\begin{bmatrix} -k & (1 - 1) \end{bmatrix} = \frac{1}{2} \sum_{i=1}^{n-2} \sum_{j=1}^{n-2} \sum_{i=1}^{n-2} \sum_{i=1}^{n-2}$					
5	$n = n_0 \left[1 + \frac{\kappa_1 (1 - 1.5 \text{ sm}^{-1})}{2^2 (1 - 2^2)^{1.5}} \right]$					
	Anamalistic period	l - earth's oblateness (2 M))			
		`	2π			
		p	$A = \frac{1}{n}$			
	Regression of the r	nodes - opposite to the dire	ection of sa	atellite motion (2	2 M)	
	Equatorial ellipticity - not perfectly circular, eccentricity order 10^{-5} . (2 M)					
	Atmospheric drag - below about 1000 km (2 M)					
6	Determine the lim	its of visibility for an ear	rth station	n situated at m	ean sea leve	l, at latitude

ACADEMIC YEAR : 2018-2019

N	ACADEMIC LEAK : 2010-2017					
	48.42° north, and longitude 89.26 degrees west. Assume a minimum angle of elevation of 5°. (13 M) BTL3					
	Answer: Page: 87 - Dennis Roddy					
	$\lambda_{\rm r} = 48 42^{\circ} \Phi F = -89 26^{\circ} Fl {\rm min} = 5^{\circ} (1 {\rm M})$					
	$\Lambda_E = +0.42$, $\Psi L = -0.420$, $L t = -0.420$					
	$\sigma_{\min} = 90^\circ - El_{\min} = 95^\circ$ (2 M)					
	$S = \arcsin\left(\frac{R}{\sigma}\sin\sigma_{\min}\right) = 8.66^{\circ}$ (2 M)					
	$b = 180 - \sigma_{\min} - S = 76.34^{\circ}$ (2 M)					
	$\mathbf{P} = \operatorname{arrang}\left(\frac{\cos b}{\cos b}\right) (0.15\%) (2.15\%)$					
	$B = \arccos\left(\frac{1}{\cos\lambda_E}\right) = 69.15^{\circ} (2 \text{ NI})$					
	$\Phi E + B \approx -20^{\circ}$ (2 M)					
	$\Phi E - B \approx -158^\circ$ (2 M)					
	A geostationary satellite is located at 00°W Calculate the azimuth angle for an earth station					
	A geostationally satellite is located at 70 W. Calculate the azimuth angle for an earth station					
	antenna at faitude 55 N and fongitude 100 W. And also find the range and antenna					
	elevation angle. (15 M) B1L5					
	Answer: Page: 78 - Dennis Roddy					
	$\Phi_{\rm SS} = -90^{\circ} ({\rm West}) , \lambda_E = 35^{\circ} ({\rm North}), \Phi_E = -100^{\circ} ({\rm West}) (1 {\rm M})$					
	$B = \Phi_E - \Phi_{\rm SS} = -100 + 90 = -10^{\circ} \ (2 \text{ M})$					
7	$b = \arccos(\cos B \cos \lambda_E) = 36.23^{\circ} (2 \text{ M})$					
	$A = \arcsin\left(\frac{\sin B }{2}\right) - 171^{\circ}$ (2 M)					
	$H = \operatorname{dicsin}\left(\frac{1}{\sin b}\right) = 17.1 (2101)$					
	azimuth is, by inspection, $\lambda_E > 0$ and $B < 0$, therefore $Az = 180^{\circ} - A = 162.9^{\circ}$ (2 M)					
	$d = \sqrt{R^2 + a_{GSO}^2 - 2Ra_{GSO}\cos b} = 37215 \text{ km} (2 \text{ M})$					
$El = \arccos\left(\frac{a_{GSO}}{d}\sin b\right) = 48^{\circ}(2 \text{ M})$						
	PART * C					
	Illustrate the procedures employed for launching spacecraft in GEO orbits (15 M) BTL3					
	Answer: Page: 04 - Dennis Roddy					
	Answer. 1 age. 94 - Dennis Koudy					
	SPACECRAFT					
	STEP 7: MECH ANICAL DEPLOYMEN IS					
	ORBIT INSERTION ROCKET ENGINES AND STEP 6: SATEL LITE IN ITIAL CHECK JUT AND POWERING UP					
	PROPELLANT TANKS STEP5: ORBIT IN SERTION THRUSTING					
	MAIN VE HICLE STEP4: SHROUD O PENING					
1	SOLID ROCKE T FROP ELLANT TANKS STEP 3: MAIN ENGINE CUT-OF F AND SEPARATION					
	SOLID STRA' ONS FOR					
	INCREASE INITIAL THE A A A STEP 2: BOOSTER CUT-OFF AND SEPARATION					
	STEP 1: IG NIT: ON AND LAUNCH					
	ENGINE / NOZ ZLE S • MECHAN ISM FOR					
	COMEINING FROPELLANTS AND FOCUSING THRUST					
	(0 M)					
	Launen veneres. expendable of reusable. (1 141)					

REGULATION: 2013

UNIT II - SPACE SEGMENT AND SATELLITE LINK DESIGN

Spacecraft Technology - Structure, Primary power, Attitude and Orbit control, Thermal control and Propulsion, communication Payload and supporting subsystems, Telemetry, Tracking and command. Satellite uplink and downlink Analysis and Design, link budget, E/N calculation - performance impairments - system noise, inter modulation and interference, Propagation Characteristics and Frequency considerations - System reliability and design lifetime.

PART * A			
Q.No.	Questions		
1.	Give the two segments of basic satellite communication. BTL1		
	a. Earth segment (or) ground segment b. Space segment		
	Write short notes on attitude control system? BTL1		
2	It is the system that achieves and maintains the required attitudes. The main functions of attitude		
2	control system include maintaining accurate satellite position throughout the life span of the		
	system.		
	What is declination? BTL1		
3	The angle of tilt is often referred to as the declination which must not be confused with the		
	magnetic declination used in correcting compass readings.		
4	What is meant by payload? BTL1		
	It refers to the equipment used to provide the service for which the satellite has been launched.		
	What is meant by transponder? BTL1		
5	In a communication satellite, the equipment which provides the connecting link between the		
	satellites transmit and receive antennas is referred to as the transponder.		
	Write short notes on station keeping. BTL1		
6	It is the process of maintenance of satellite's attitude against different factors that can cause drift		
0	with time. Satellites need to have their orbits adjusted from time to time, because the satellite is		
	initially placed in the correct orbit, natural forces induce a progressive drift.		
_	What is meant by Pitch angle? BTL1		
1	Movement of a spacecraft about an axis which is perpendicular to its longitudinal axis. It is the		
	degree of elevation or depression.		
8	What is an propellant? BTL1		
	A solid or liquid substance burnt in a rocket for the purpose of producing thrust		
9	What is an Yaw? BTL1		
	Y aw is the rotation of a vehicle about its vertical axis.		
10	What is an zero 'g'? BTL1		
10	Zero 'g' is a state when the gravitational attraction is opposed by equal and opposite inertial		
	forces and the body experiences no mechanical stress.		
11	Describe the spin stabilized satellites. BTL1		
	In a spin stabilized satellites, the body of the satellite spins at about 30 to 100 rpm about the axis		
	perpendicular to the orbital plane. The satellites arm normally dual spin satellites with a spinning		
	section and a despun section on which antennas are mounted. These are kept stationary with		
	respect to earth by counter rotating the despun section.		
12	what is meant by irequency reuse: BILI The corrier with encoded of relation were could in framework This is the		
	The carrier with opposite senses of polarization may overlap in frequency. This technique is		

REGULATION: 2013

	known as frequency reuse.
13	What is meant by spot beam antenna? BTL1
	A beam generated by a communication satellite antenna of sufficient size that the angular spread
	of sufficient size that the angular spread of the energy in the beam is very small with the result
	that a region that is only a few hundred km in diameter is illuminated on earth.
14	What is meant by momentum wheel stabilization? BTL1
	During the spin stabilization, flywheels may be used rather than spinning the satellite. These
	flywheels are termed as momentum wheels.
15	What is polarization interleaving? BTL1
	Overlap occurs between channels, but these are alternatively polarized left hand circular and right
	hand circular to reduce interference to acceptable levels. This is referred to as polarization
	interleaving.
16	Define S/N ratio. BTL1
	The S/N introduced in the preceding section is used to refer to the ratio of signal power to noise
	power at the receiver output. This is known as S/N ratio.
17	What is an intermodulation noise? BILI
	Intermodulation distortion in high power amplifier can result in signal products which appear as
	noise and it is referred to as intermodulation noise.
18	What is an antenna loss? BILI It is added to poise received as rediction and the total antenna poise temperature is the sum of the
	acuivalent noise temperature of all these sources
	What is TWTA 2 BTL 1
19	TWTA means Traveling Wave Tube Amplifier. The TWTA is widely used in transponder to
	provide the final output power required to the trans tube and its power supplies
20	What is meant by thermal control and why this is necessary in a satellite? BTL1
	Equipment in the satellite generates heat which has to be removed. The element used in the
	satellite to control thermal heat is called thermal control. The most important consideration is that
	the satellite's equipment should operate as nearly as possible in a stable temperature environment
21	What are the functions carried out in TT&C? BTL1
	Telemetry- Gathering or measure information about satellite.
	Tracking- track the satellite's movement and send correction signals as Required
	Comment- sends information about the satellite to earth station.
22	List out the advantages of TWT. BTL1
	The advantage of the TWT over other types of tube amplifiers is that it can provide amplification
	over a very wide bandwidth. Input levels to the TWT must be carefully controlled, however, to
	minimize the effects of certain forms of distortion
23	Define input back off. BTL1
	In a TWTA, the operating point must be backed off to a linear portion of the transfer
	characteristic to reduce the effects of intermodulation distortion. The point from the saturation
	point to linear region at the input is called input backoff.
24	What is meant by Pitch, yaw and roll axis? BTL1
	Koll, pitch, and yaw axes. The yaw axis is directed toward the earth's center, the pitch axis is
∠4	normal to the orbital plane, and the roll axis is perpendicular to the other two.
	For an equatorial orbit, movement of the saterine about the roll axis moves the antenna footprint
	norm and south, movement about the price axis moves the tootprint east and west, and movement

JIT-JEPPIAAR/ECE/Mrs.M.Benisha /IVth Yr/SEM 07/EC6004/SATELLITE COMMUNICATION/UNIT 1 -5/QB+Keys/Ver 2.0

REGULATION: 2013

UNIT III - EARTH SEGMENT

Introduction – Receive – Only home TV systems – Outdoor unit – Indoor unit for analog (FM) TV – Master antenna TV system – Community antenna TV system – Transmit – Receive earth stations – Problems – Equivalent isotropic radiated power – Transmission losses – Free - space transmission – Feeder losses – Antenna misalignment losses – Fixed atmospheric and Ionospheric losses – Link power budget equation – System noise – Antenna noise – Amplifier noise temperature – Amplifiers in cascade – Noise factor – Noise temperature of absorptive networks – Overall system noise temperature – Carrier to - Noise ratio – Uplink – Saturation flux density – Input back off – The earth station - HPA – Downlink – Output back off – Satellite TWTA output – Effects of rain – Uplink rain – Fade margin – Downlink rain – Fade margin – Combined uplink and downlink C/N ratio – Inter modulation noise.

DADT * A

Q.No.	Questions
1.	Define Saturation flux density. BTL1 The flux density required at the receiving antenna to produce saturation of TWTA is termed the saturation flux density.
2	The range between a ground station and a satellite is 42000 km. Calculate the free space loss a frequency of 6 GHz. – BTL3 [Free space loss] = 32.4 + 20 log 42000 + 20 log 6000 = 200.4 dB
3	What is noise power spectral density? BTL1 Noise power per unit Bandwidth is termed as the noise power spectral density.
4	Explain about MATV system. BTL1 MATV – Master Antenna TV system. It is used to provide reception of DBS TV channels to the user group. Example : Apartment users It consists of one outdoor unit and various indoor units. Each user can independently access all the channels.
5	What is mean by ODU and IDU. BTL1 ODU – The Home Receiver Outdoor Unit IDU – The Home Receiver Indoor Unit
6	Give the difference between KU-band and the C-band receive only systemsBTL1 Operating frequency of outdoor unit.
7	Define earth segment. BTL1 Earth segment of a satellite communication system consists of transmit earth station and receive earth station. Example : TV Receive Only systems (TVRO systems)
8	Define diplexer & <i>orthocoupler.</i> BTL1 The same feed horn may be used to transmit and receive carriers with the same polarization. The transmit and receive signals are separated in a device known as a <i>diplexer</i> , The polarization separation takes place in a device known as an <i>orthocoupler</i> , or <i>orthogonal mode transducer</i> (OMT). Separate horns also may be used for transmit and receive functions, with both horns using the same reflector.
9	What is an EIRP? BTL1 EIRP means Equivalent Isotropic Radiated Power

	An isotropic radiator is one that radiates equally in all directions.						
	It is a measure of radiated or transmitted power of an antenna.						
	$P_t = P_{out}/L_t$ $EIRP = P_t G_t = G p_s$						
	Maximum flux density $\varphi_m = \frac{Gp_s}{4\pi r^2}$						
	$[EIRP] = [P_s] + [G] dBW$						
	$\boxed{\begin{array}{c} \hline Transmitter \end{array} \xrightarrow{P_T} \xrightarrow{P_S} \xrightarrow{P_{RAD}} \xrightarrow{P_{RAD}} \end{array}}$						
	Write about CATV system. BTL1						
10	CATV – Community Antenna TV system.						
10	As in MATV system, it consists of one outdoor unit and separate feeds for each sense of						
	polarization.						
	When the available bandwidth is 500 MHz, how many transponder each of bandwidth 36						
11	MHz can be accommodated. – BTL3						
11	500 MHz Bandwidth – 12 transponders						
	12 * 36 MHz + 12*4 MHz (guard time) = 500 MHz						
	What is known as polarization interleaving with reference to the downlink frequency?						
	BTL1						
	Overlap occurs between channels, but these are alternatively polarized left hand circular and right						
12	hand circular to reduce interference to acceptable levels. This is referred to as polarization						
	interleaving.						
	The downlink frequency band spans a range of 500 MHz are arbitrary polarized, left hand circular						
	polarization and right hand circular polarization to reduce the interference to acceptable levels.						
	A satellite downlink of 10GHz operates with a transmit power of 5W and an antenna gain of						
13	48.2 dB. Calculate the EIRP in dBw – B1L3						
	$[EIRP] = [P_S] + [G] dBW$						
	$[EIRP] = 10 \log (6W/1W) + 48.2 = 56 \text{ dBW}$						
	List the attitude of a satellite controlled through active control. B1L1						
	• To stabilize the attitude control on spacecraft by spin stabilization						
14	• 3 axis stabilization						
14	Momentum wheel stabilization						
	Reaction wheel						
	Magnetic torques						
	• Gas jets or thrusters						
	Write the objectives with which the downlink of any satellite communication system must						
	be designed B1L1						
15	• Expected performance of the earth station receiver						
	Frequency band determination						
	• Determine transponder output power from its gain or output backoff						
	• Establish a downlink power and noise budget for the receiving earth station						

R	EGULATION: 2013 ACADEMIC YEAR: 2018-2019
	Why is noise temperature a useful concept in communication receiver? BTL1
	• Noise temperature is a useful concept in communication receivers, since it provides the way
	of determining how much thermal noise is generated by active and passive devices in the
16	receiving system.
	• At microwave frequencies, temperature increase can generate electrical noise over a wide
	bandwidth
	• C/N ratio requirements met by making the noise level low
	For a given satellite and signal transmission and signal transmission, what are the earth
	station parameters affecting the C/N ratio? BTL1
17	• FIRP – Equivalent Isotronic radiated power
	 G/T - Gain of the receiving antenna & temperature increase due to losses
	Why thermal control is needed? BTI 1
	The state of the set of the set of the set which has to be removed. The slowent word in the
	• Equipment in the satellite generates heat which has to be removed. The element used in the
	satellite to control thermal heat is called thermal control.
18	• In spacecraft, the function of thermal control system is to keep the spacecraft component
	systems within acceptable temperature ranges during all mission phases.
	• To maintain the optimum performance and success of the mission.
	• Protects the equipment from overheating either by thermal insulation from external heat & by
	proper heat removal from internal sources
10	Define sky noise. BTL1
19	It is a term used to describe the microwave radiation which is present throughout universe and
	which appears to originate from matter in any form, at finite temperature.
	Define noise factor. BTL1
20	An alternative way of representing amplifier noise is by means of its noise factor. In defining the
	noise factor of an amplifiers, usually taken as 290k
	What is meant by redundant receiver? BTL1
21	A duplicate receiver is provided so that if one fails, the other is automatically switched in. The
21	combination is referred to as a <i>redundant receiver</i> , meaning that although two are provided, only
	one is in use at a given time.
	An antenna has a noise temperature of 35 K and is matched into a receiver which has a
	noise temperature of 100 K. Calculate (a) the noise power density and (b) the noise power
	for a bandwidth of 36 MHz. – BTL3
22	$N = \frac{P_N}{KT}$
	$N_o = \frac{1}{B_N} = N T_N$
Ť	$N_o = (35 + 100) * 1.38 * 10^{-23} = 1.86 * 10^{-21} J$
	$P_N = K T_N B_N$
	$P_N = 1.86 * 10^{-21} * 36 * 10^6 = 0.067 pW$
	Define Cross-Polarization Discrimination. BTL1
	Depolarization can cause interference where orthogonal polarization is used to provide isolation
23	between signals, as in the case of frequency reuse.
23	The most widely used measure to quantify the effects of polarization interference is called Cross-
	Polarization Discrimination
	XPD = 20 log (E_{11}/E_{12})
24	For a satellite circuit the carrier-to-noise ratios are uplink 23 dB, downlink 20 dB,
24	intermodulation 24 dB. Calculate the overall carrier- to-noise ratio in decibels. – BTL3

REGULATION: 2013

	$\left[\frac{C}{N}\right] = \left[\frac{C}{N_0}\right] - \left[B_N\right]$
	$\left[\frac{C}{N_0}\right] = \left[\frac{C}{N}\right] + \left[B_N\right]$
	$\left[\frac{C}{N_0}\right] = [EIRP] + \left[\frac{G}{T}\right] - [LOSSES] - [K]$
	Discuss the various design issues related with uplink design and Input Backoff. (13 M)
	BTL2 Answer: Page: 367 - Dennis Roddy Uplink: Earth station to satellite (2 M) $\begin{bmatrix} C \\ N_0 \end{bmatrix}_U = [EIRP]_U + \begin{bmatrix} G \\ T \end{bmatrix}_U - [LOSSES]_U - [K] (8 M)$
	$[\varphi_m] = [EIRP] + 10\log\frac{1}{4\pi r^2}$
	$-[FSL] - 10\log\frac{\lambda^2}{4\pi} = 10\log\frac{1}{4\pi r^2}$
6	$[\varphi_m] = [EIRP] - [FSL] - 10\log\frac{\lambda^2}{4\pi}$
	$[A_o] = 10 \log \frac{\lambda^2}{4\pi}$
	$[EIRP] = [\varphi_m] + [FSL] + [A_0]$
	$[EIRP] = [\varphi_m] + [FSL] + [A_0] + [AA] + [PL] + [AML]$
	$[EIRP]_U = [\varphi_S] + [A_O] + [LOSSES]_U - [RFL]$
	Input back off: Earth station EIRP - reduced Back Off (3 M) $[EIRP]_U = [EIRP_S]_U - [B_O]_i$
	$\left[\frac{C}{N_0}\right]_U = [\varphi_S] + [A_0] - [B_0]_i + \left[\frac{G}{T}\right]_U - [K] - [RFL]$
-	(i) For a satellite circuit the carrier-to-noise ratios are uplink 23 dB, downlink 20 dB, intermodulation 24 dB. Calculate the overall carrier- to-noise ratio in decibels. (7 M) BTL 3
7	Similar Problem: Page: 366 - Dennis Roddy $\frac{N_o}{C} = \left(\frac{N_o}{C}\right)_U + \left(\frac{N_o}{C}\right)_D + \left(\frac{N_o}{C}\right)_{IM} (3 \text{ M})$

$$G = \eta_I \left(\frac{\pi D}{\lambda}\right)^2$$
$$G = \eta_I (10.472 \ fD)^2$$

Antenna Gain (3 M)

$$G(\theta) = \frac{P(\theta)}{P_0/4\pi}$$

 $[\mathbf{P}_{\mathbf{R}}] = [\mathbf{EIRP}] + [\mathbf{G}_{\mathbf{R}}] - [\mathbf{LOSSES}]$ $[\mathbf{EIRP}] = [\mathbf{P}_{\mathbf{S}}] + [\mathbf{G}] dBW, where:$ $[\mathbf{LOSSES}] = [\mathbf{FSL}] + [\mathbf{RFL}] + [\mathbf{AML}] + [\mathbf{AA}] + [\mathbf{PL}],$

[FSL] - free-space spreading loss [RFL] - receiver feeder loss [AML] - antenna misalignment loss [AA] - atmospheric absorption loss [PL] -polarization mismatch loss

$$P_r = \frac{P_t G_t G_r}{L_p L_a L_{ta} L_{ra} L_{pol} L_{other} L_r}$$

The transmission formula: (3 M)

$$P_r = EIRP - L_{ta} - L_p - L_a - L_{pol} - L_{ra} - L_{other} + G_r - L_p$$

UNIT IV SATELLITE ACCESS

Modulation and Multiplexing: Voice, Data, Video, Analog – digital transmission system, Digital video Broadcast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum communication, compression – encryption.

	PART * A
Q.No.	Questions
1.	What is a single mode of operation? - BTL1 A transponder channel abroad a satellite may be fully loaded by a single transmission from an earth station. This is referred to as a single access mode of operation.
2	What are the methods of multiple access techniques? - BTL1 FDMA – Frequency Division Multiple Access Techniques TDMA – Time Division Multiple Access Techniques
3	What is an CDMA? - BTL1 CDMA – Code Division Multiple Access Techniques In this method, each signal is associated with a particular code that is used to spread the signal in frequency and time.
4	Give the types of CDMA BTL1 • Spread spectrum multiple access • Pulse address multiple access
5	What is SCPC? - BTL1 SCPC means Single Channel Per Carrier. In a thin route circuit, a transponder channel (36 MHz) may be occupied by a number of single carriers, each associated with its own voice circuit.
6	What is a thin route service? - BTL1 SCPC systems are widely used on lightly loaded routes, this type of service being referred to as a thin route service.
7	 What is an TDMA? What are the advantages? - BTL1 TDMA – Time Division Multiple Access Techniques Only one carrier uses the transponder at any one time, and therefore Inter modulation products, which results from the non -linear amplification of multiple carriers are absent. Advantages: The transponder traveling wave tube can be operated at maximum power output
8	What is preamble? - BTL1 Certain time slots at the beginning of each burst are used to carry timing and synchronizing information. These time slots collectively are referred to as preamble.
9	Define guard time. - BTL1 It is necessary to prevent the bursts from overlapping. The guard time will vary from burst to burst depending on the accuracy with which the various bursts can be positioned within each frame.
10	What is meant by decoding quenching? - BTL1 In certain phase detection systems, the phase detector must be allowed for some time to recover from one burst before the next burst is received by it. This is known as decoding quenching.
11	What is meant by direct closed loop feedback? - BTL1 The timing positions are reckoned from the last bit of the unique word in the preamble. The loop

REGULATION: 2013

	method is also known as direct closed loop feedback.
	What is meant by feedback closed loop control? - BTL1
12	The synchronization information is transmitted back to an earth station from a distant that is
	termed feedback closed loop control.
13	Define frame efficiency BTL1
	It is measure of the fraction of frame time used for the transmission of traffic
	What is meant by digital speech interpolation? - BTL1
14	The point is that for a significant fraction of the time, the channel is available for other
	transmission and advantages are taken of this in a form of demand assignment known as digital
	speech interpolation.
15	What is meant by telephone load activity factor? - BTL1
15	The fraction of time a transmission channel is active is known as the telephone load activity
	Tactor.
16	What are the types of digital speech interpolation: - BILI Disital time assignment speech interpolation. Speech and disting an add communications
	Digital time assignment speech interpolation, Speech predictive encoded communications
	What is meant by freeze out: - BILI It has assumed that a free setallite channel will be found for any incoming speed spurt, but there is
17	a finite probability that all channels will be occupied and the speech spurt lost. Losing a speech
	a finite probability that an channels will be occupied and the speech spurt lost. Losing a speech spurt in this manner is referred to as freeze out
	What are the advantages of SPEC method over DSI method? - BTI 1
18	Freeze out does not occur during overload conditions
	Define satellite switched TDMA? - BTL1
19	Space Division Multiplexing can be realized by switching the antenna interconnections in
	synchronism with the TDMA frame rate, this being known as satellite switched TDMA.
20	What are SS / TDMA? - BTL1
20	repetitive sequence of satellite switch modes, also referred to as SS/TDMA
21	What is processing gain? - BTL1
21	The jamming or interference signal energy is reduced by a factor known as the processing gain.
22	What is burst code word? - BTL1
	It is a binary word, a copy of which is stored at each earth station.
	What is meant by burst position acquisition? - BTL1
23	A station just entering, or reentering after a long delay to acquire its correct slot position is known
	as burst position acquisition.
24	What is an single access? - BTL1
24	A transponder channel aboard a satellite may be fully loaded by a single transmission from earth
	station.
25	A transponder to be leaded by a number of carriers. These may originate from a number of carth
23	A transponder to be loaded by a number of carriers. These may originate from a number of earth
	What is meant by space division multiple access? BTI 1
	The satellite as a whole to be accessed by earth stations widely separated geographically but
26	transmitting on the same frequency that is known as frequency reuse. This method of access
	known as space division multiple access.
	What are the limitations of FDMA-satellite access? - BTL1
27	• If the traffic in the downlink is much heavier than that in the uplink, then FDMA is relatively
27	• If the traffic in the downlink is much heavier than that in the uplink, then FDMA is relatively

REGULATION : 2013

I.I.									
	CDMA Throughput								
	$N = \frac{(k-1)P_R}{k}$								
	$N_0 = \frac{B_N}{B_N}$								
	With the neat block diagram explain the system of video compression method using								
	MPEC-1 $(13 \text{ M}) = \text{BTL} 2$								
	Angwan Daga 526 Dannia Daddy								
	Answer: rage: 550 - Dennis Kouuy								
	Sub-bands								
	Audio Quantize – Bit-stream								
	input								
2									
Z	Compute .								
	→ Compute masking								
	(6 M)								
	Masking tone - Test tone (7 M)								
	18 dB - Masking threshold								
	S/N= 6 db								
	S/N=0 d0								
Frequency masking									
	Mpeg-1 - DBS systems - 192 ko/s								
	Filter Bank – Quantizer – Masking								
	Illustrate pre assigned FDMA and Demand assigned FDMA (13 M) – BTL 3								
	Answer: Page: 425 - Dennis Roddy								
	pre assigned FDMA (7 M)								
	Three earth stations – Ottawa - New York - London.								
	single satellite transponder								
	Communicates each other's.								
	Ĩ								
2									
3									
	chain								
	for New York								
	New York to London and Ottawa London and Ottawa to New York								
Terrestrial multiplexed baseband lines									
	Demand assigned FDMA (6 M)								
	Transponder frequency handwidth subdivided number of channels								
	Delling method - moster conthestation continuously collar conthestations in contract of the station of the stat								
	Coll request an encountered frequency slots and real and stations in sequence								
	Call request – encountered - frequency slots assigned - pool available frequencies.								
4	Illustrate the pre Assigned and Demand Assigned TDMA $(13 \text{ M}) - \text{BTL } 3$								
4	Answer: Page: 452 - Dennis Roddy								
	CSC - 49 earth stations - network - reference station (6 M)								

UNIT V SATELLITE APPLICATIONS

INTELSAT Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, INMARSAT, LEO, MEO, Satellite Navigational System. Direct Broadcast satellites (DBS) - Direct to home Broadcast (DTH), Digital audio broadcast (DAB) – World space services, Business TV(BTV), GRAMSAT, Specialized services – E – mail, Video conferencing, Internet.

	PART * A
Q.No.	Questions
	Give the 3 different types of applications with respect to satellite systems. BTL1
1.	• The largest international system (Intelsat)
	• The domestic satellite system (Dom sat) in U.S.
	• U.S. National oceanographic and atmospheric administrations (NOAA)
	Mention the 3 regions to allocate the frequency for satellite services. BTL1
2	Region1: It covers Europe, Africa and Mongolia
2	• Region2: It covers North & South America and Greenland.
	Region3: It covers Asia, Australia and South West Pacific.
	Give the types of satellite services. BTL1
	• Fixed satellite service
3	Broadcasting satellite service
5	Mobile satellite service
	Navigational satellite services
	Meteorological satellite services
4	What is mean by Dom sat? BTL1
	Domestic Satellites. These are used for voice, data and video transmissions within the country.
5	What is mean by INTELSAT? BTL1
	International Telecommunication Satellite.
6	What is mean by SARSAT? BTL1
	Search and rescue satellite.
	what are the applications of Kadarsat: BILI
7	 Shipping and fisheries. Occor footure menning.
/	• Ocean reactive mapping
	Crop monitoring
	• Crop monitoring What is FCFF2 BTI 1
8	The geocentric equatorial coordinate system is used with the GPS system. It is called as earth
0	centered earth fixed coordinate system
	What is dilution of precision? BTL1
	Position calculations involve range differences and where the ranges are nearly equal: any error is
9	greatly magnified in the difference. This effect, brought a result of the satellite geometry is
	known as dilution of precision.

R	EGULATION : 2013 ACADEMIC YEAR : 2018-2019
	What is PDOP? BTL1
10	With the GPS system, dilution of position is taken into account through a factor known as the
	position dilution of precision.
	What is DBS? BTL1
11	Satellites are used to provide the broadcast transmissions. It is used to provide direct
11	transmissions into the home. The service provided is known as Direct Broadcast Satellite
	services. Example: Audio, TV and internet services.
	Give the frequency range of US DBS systems with high power satellites. BTL3
12	• Uplink frequency range is 17.3 GHz to 17.8 GHz
12	• Downlink frequency range is 12.2 GHz to 12.7 GHz
	Give the frequency range of US DBS systems with medium power satellites. BTL3
13	• Uplink frequency range is 14 GHz to 14.5 GHz
	• Downlink frequency range is 11.7 GHz to 12.2 GHz
	What is DTH? BTL1
	DBS television is also known as Direct To Home (DTH).
14	• DTH stands for Direct-To-Home television. DTH is defined as the reception of satellite
14	programmes with a personal dish in an individual home.
	• DTH Broadcasting to home TV receivers take place in the ku band(12 GHz). This service is
	known as Direct To Home service.
	Write about bit rates for digital television. BTL1
15	It depends format of the picture.
15	Uncompressed Bit rate = (Number of pixels in a frame) * (Number of pixels per second) *
	(Number of bits used to encode each pixel)
	Give the satellite mobile services. BTL1
	• DBS – Direct Broadcast satellite
	VSATS – Very Small Aperture Terminals
16	• MSATS – Mobile Satellite Service
10	• GPS – Global Positioning Systems
	Micro Sats
	 Orb Comm – Orbital Communications Corporation
	• Iridium
	What are GCC and GEC? BTL1
17	GCC - Gateway Control Centers
	• GEC – Gateway Earth Stations
	What is INMARSAT? BTL1
	It is the first global mobile satellite communication system operated at L band and internationally
18	used by 67 countries for communication between ships and coast so that emergency lifesaving
	may be provided. Also it provides modern communication services to maritime, land mobile,
	aeronautical and other users.
	List out the regions covered by INMARSAT. BTL1
	• Atlantic ocean region, east (AOR-E)
19	• Atlantic ocean region, west (AOR-W)
	• Indian ocean region (IOR)
	• Pacific ocean region (POR)

R	EGULATION : 2013 ACADEMIC YEAR : 2018-2019
	What is INSAT? BTL1
	INSAT – Indian National Satellite System.
20	INSAT is a Indian National Satellite System for telecommunications, broadcasting, meteorology
	and search and rescue services. It was commissioned in 1983. INSAT was the largest domestic
	communication system in the Asia-Pacific region.
	What do you meant by VSAT? BTL1
21	VSAT stands for very small aperture terminal system. The trend is toward even smaller dishes,
	not more than 1.5 m in diameter
	List out the INSAT series. BTL1
	• INSAT -1
22	• INSAT-2
	• INSAT-2A
	• INSAT-2E
	• INSAT-3
	What is GSM? BTL1
	GSM (Global System for Mobile communications: originally from Groupe Spécial Mobile) is the
22	most popular standard for mobile phones in the world. GSM differs from its predecessors in that
23	both signaling and speech channels are digital, and thus is considered a second generation (2G)
	mobile phone system. This has also meant that data communication was easy to build into the
	system.
	What is GPRS? BTL1
24	General packet radio service (GPRS) is a packet oriented mobile data service available to users of
24	the 2G cellular communication systems global system for mobile communications (GSM), as
	well as in the 3G systems. In the 2G systems, GPRS provides data rates of 56 -114 kbit/s.
	What is GPS? BTL1
	In the GPS system, a constellation of 24 satellites circles the earth in near-circular inclined orbits.
	By receiving signals from at least four of these satellites, the receiver position (latitude, longitude,
25	and altitude) can be determined accurately. In effect, the satellites substitute for the geodetic
	position markers used in terrestrial surveying. In terrestrial the GPS system uses one-way
	transmissions, from satellites to users, so that the user does not require a transmitter, only a GPS
	receiver.

ACADEMIC YEAR : 2018-2019

	Cutside unit Inside unit							
	IP SIGNAL Duese converter Down converter Filters LNA making Converter Demodulator Converter Demodulator Converter Twister Converter Twister Converter Twister Converter Twister Channel selector TV SET							
	 Advantage: (4 M) Digital quality: picture - sound quality. Interactive channels provide local channels Satellite broadcast: rural - semi-urban areas 							
	Briefly explain about the GRAMSAT and list the silent features. (13 M) BTL2							
	Answer: Page: 492 - Dennis Roddy							
	ISRO - GRAMSAT satellites (4 M)							
	Eradicate illiteracy - rural belt							
	Rural development of the nation.							
	Features of GRAMSAT: (4 M)							
	 Connecting state capital to districts - blocks - villages. 							
4	• computer connectivity data broadcasting							
	• TV-broadcasting facilities: e governance - development information - teleconferencing -							
	helping disaster management.							
	• Providing rural - education broadcasting.							
	Gramsat projects (5 M)							
	Interactive training							
	Broadcasting services - rural development							
	 Computer interconnectivity and data exchange services 							
	• Tele health and telemedicine services							
5	Illustrate the various configurations of INSAT Series. (13 M) BTL3							
5	Answer: Page: 487 - Dennis Roddy							

	ú	¢	Ó		Ŷ			
Designation: Intelsat	I	П	ш	tv	IV A	v	V A/V B	VI
Year of first launch	1965	1966	1968	1971	1975	1980	1984/85	1986/87
Prime contractor	Hughes	Hughes	TRW	Hughes	Hughes	Ford Aerospace	Ford Aerospace	Hughes
Width (m)	0.7	1.4	1.4	2.4	2.4	2.0	2.0	3.6
Height (m)	0.6	0.7	1.0	5.3	6.8	6.4	64	64
Launch vehicles	823	Thor Deita		Atlas	Centaur	Atlas-Centaur and Ariane	Atlas-Centaur and Ariane	STS and Ariane
Spacecraft mass in transfer orbit (kg)	68	182	293	1385	1489	1946	2140	12,100/3720
Communications payload mass (kg)	13	36	56	185	190	235	280	800
End-of-life (EOL) power of equinox (W)	40	75	134	480	800	1270	1270	2200
Design lifetime (years)	1.5	3	5	7	7	7	7	10
Capacity (number of voice channels)	480	480	2400	8000	12,000	25,000	30,000	80,000
Bandwidth (MHz)	50	130	300	500	800	2122	2490	2520
Any 6 Paramet	ers (13 M	L)	P	ART * C				
Briefly explain i) Sate ii) Inte iii) Vide Answer: Page: Satellite-email Internet services Features and B • No need - c • Service - lo	the follo illite ema rnet (5 M eo confer 488 - De services: s - terrest Genefits configure w bandw	wing conc il services f) encing (5] ennis Rodd rial networ an e-mail c idth Inmer	epts (5 M) M) BTL2 y ks, client	als	(5 M)			
 service - 10 previewing No surcharg Service bill 	Inbox an ge – No n ed - stanc	d deleting nonthly sub lard airtime	any unwa oscription e prices.	nted e-mai fees	ils			
Video Confere Two way intera	ncing: ctivity - 1	ower cost.			(5 M)			

	video conferencing - connect each site
	Satellite Internet access:(5 M)Internet access - communications satellites.geostationary satellites - high data speeds , Ka band - downstream data speeds - 50 Mbps.
	Illustrate the concept of GSM architecture and its services. (15 M) BTL3 Answer: Page: 492 - Dennis Roddy
2	GSM - standard DCS1800 - cellular communications systems GSM architecture: (5 M) Mobile Station (MS) Base Station Sub-System (BSS) Network and Switching Sub-System (NSS) Operation Sub -System (OSS) channels air interface: (5 M) FCCH, SCH, PAGCH, RACH, CBCH, BCCH, FACCH, TCH/F, TCH/H
	Mobility Management: ability to support roaming users. Difficulties (5 M) a. Remote/Rural Areas. b. Time to deploy. c. Areas of 'minor' interest. d. Temporary Coverage. GSM service security: Cryptographic algorithms - security. A5/1. A5/2. A5/3 - stream ciphers - air voice privacy.
3	Illustrate the Direct Broadcast Satellite service in detail. (15 M) – BTL3 Answer: Page: 209 - Dennis Roddy Direct broadcast satellite (DBS) service (2 M) Directly to home TV receivers Ku (12-GHz) band Dish diameter - 1.83 m (6 feet) to about 3 m (10 feet) (2 M)

EC6009 ADVANCED COMPUTER ARCHITECTURE L

OBJECTIVES: The student should be made to:

- Understand the micro-architectural design of processors
- Learn about the various techniques used to obtain performance improvement and power savings in current processors

UNIT I FUNDAMENTALS OF COMPUTER DESIGN

Review of Fundamentals of CPU, Memory and IO – Trends in technology, power, energy and cost, Dependability - Performance Evaluation

UNIT II INSTRUCTION LEVEL PARALLELISM

ILP concepts – Pipelining overview - Compiler Techniques for Exposing ILP – Dynamic Branch Prediction – Dynamic Scheduling – Multiple instruction Issue – Hardware Based Speculation – Static scheduling - Multi-threading - Limitations of ILP – Case Studies.

Q

UNIT III DATA-LEVEL PARALLELISM

Vector architecture - SIMD extensions - Graphics Processing units - Loop level parallelism.

UNIT IV THREAD LEVEL PARALLELISM

Symmetric and Distributed Shared Memory Architectures – Performance Issues –Synchronization – Models of Memory Consistency – Case studies: Intel i7 Processor, SMT & CMP Processors

UNIT V MEMORY AND I/O

Cache Performance – Reducing Cache Miss Penalty and Miss Rate – Reducing Hit Time – Main Memory and Performance – Memory Technology. Types of Storage Devices – Buses – RAID – Reliability, Availability and Dependability – I/O Performance Measures.

9

OUTCOMES: At the end of the course, the student should be able to:

- Evaluate performance of different architectures with respect to various parameters
- Analyze performance of different ILP techniques
- Identify cache and memory related issues in multi-processors

TEXT BOOK:

1. John L Hennessey and David A Patterson, -Computer Architecture A Quantitative Approach, Morgan Kaufmann/ Elsevier, Fifth Edition, 2012.

REFERENCES:

1 Kai Hwang and Faye Briggs, -Computer Architecture and Parallel Processingl, Mc Graw-Hill International Edition, 2000.

² Sima D, Fountain T and Kacsuk P, ^IAdvanced Computer Architectures: A Design Space Approach^I, Addison Wesley, 2000.

L T P C 3003

9

9

9

Subject Code: EC6009 Subject Name: Advanced Computer Architecture

Year / Sem : IV / 7 Subject Handler: Mrs.R.Dayana

UNIT I FUNDAMENTALS OF COMPUTER DESIGN

Review of Fundamentals of CPU, Memory and IO – Trends in technology, power, energy and cost, Dependability - Performance Evaluation

Q. No Question & Answers Define Personal Mobile Device (PMD) (Nov/Dec 2016)BTL1 Personal Mobile Device (PMD) is the term we apply to a collection of wireless devices with multimedia user interfaces such as cell phones, tablet computers and so on. Applications on PMD are often Web-based and media-oriented like the Google Goggles. Explain soft real timeBTL2 In some applications, a more nuanced requirement exists: the average time for a particular task is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel.	PART A				
 Define Personal Mobile Device (PMD) (Nov/Dec 2016)BTL1 Personal Mobile Device (PMD) is the term we apply to a collection of wireless devices with multimedia user interfaces such as cell phones, tablet computers and so on. Applications on PMD are often Web-based and media-oriented like the Google Goggles. Explain soft real timeBTL2 In some applications, a more nuanced requirement exists: the average time for a particular task is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computer, called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applications: DLP and TLP? (Nov/Dec 2016)BTL4 Mata – Level Parallelism (TLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Mata re the avays in which a computer har	Q. No	Question & Answers			
 Personal Mobile Device (PMD) is the term we apply to a collection of wireless devices with multimedia user interfaces such as cell phones, tablet computers and so on. Applications on PMD are often Web-based and media-oriented like the Google Goggles. Explain soft real timeBTL2 In some applications, a more nuanced requirement exists: the average time for a particular task is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computer, called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (DLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 The general categories of operations are data transfer, arithmetic logical, control and floating		Define Personal Mobile Device (PMD) (Nov/Dec 2016)BTL1			
 multimedia user interfaces such as cell phones, tablet computers and so on. Applications on PMD are often Web-based and media-oriented like the Google Goggles. Explain soft real timeBTL2 In some applications, a more nuanced requirement exists: the average time for a particular task is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tensed to be driven to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters.	1	Personal Mobile Device (PMD) is the term we apply to a collection of wireless devices with			
 PMD are often Web-based and media-oriented like the Google Goggles. Explain soft real timeBTL2 In some applications, a more nuanced requirement exists: the average time for a particular task is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise?(Apr/May 2016)BTL3 The desktop market tense to optimise? (Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (DLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Gamerat cutegories of operations are data transfer, arithmetic logical, control and floating points.<!--</td--><th>L</th><td>multimedia user interfaces such as cell phones, tablet computers and so on. Applications on</td>	L	multimedia user interfaces such as cell phones, tablet computers and so on. Applications on			
 Explain soft real timeBTL2 In some applications, a more nuanced requirement exists: the average time for a particular task is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications. Data – Level Parallelism (DLP) arises because tasks of work are created that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Requested Level Parallelism Requested Level Parallelism Eunumerate operand isizes		PMD are often Web-based and media-oriented like the Google Goggles.			
 In some applications, a more nuanced requirement exists: the average time for a particular task is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications. Data – Level Parallelism (TLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism		Explain soft real timeBTL2			
 2 is constrained as well as the number of instances when some maximum time is exceeded. Such approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Requested Level Parallelism Reque		In some applications, a more nuanced requirement exists: the average time for a particular task			
 approaches, sometimes called soft real time, space arise when it is possible to occasionally miss the time constrain on an event, as long as not too many are missed. What does the desktop market tensed to be driven to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Paral	2	is constrained as well as the number of instances when some maximum time is exceeded. Such			
 miss the time constrain on an event, as long as not too many are missed. What does the desktop market tense to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism G Vactor Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism Requested Level Parallelism Requested Level Parallelism Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		approaches, sometimes called soft real time, space arise when it is possible to occasionally			
 What does the desktop market tense to optimise?(Apr/May 2016)BTL3 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. 		miss the time constrain on an event, as long as not too many are missed.			
 The desktop market tensed to be driven to optimise price: performance. This combination of performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (DLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism Requested Level Parallelism Requested Level Parallelism Sequence of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character),		What does the desktop market tense to optimise?(Apr/May 2016)BTL3			
 3 performance (measured primarily in terms of compute performance and graphic performance) and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Soft of operations are data transfer, arithmetic logical, control and floating points. Banemarate operand s		The desktop market tensed to be driven to optimise price: performance. This combination of			
 and price of the system is what matters most to customers in this market and hence to computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism Requested Level Parallelism Requested Level Parallelism Requested Level Parallelism Response to operations are data transfer, arithmetic logical, control and floating points. Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 	3	performance (measured primarily in terms of compute performance and graphic performance)			
 computer designer. What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism Requested Level Parallelism Requested Level Parallelism Requested Level Parallelism Requested Level Parallelism Response of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		and price of the system is what matters most to customers in this market and hence to			
 What are clusters?BTL1 The growth of Software has a Service (SaaS) for applications like search, social networking, and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. Benumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		computer designer.			
 A and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operationsBTL3 S and the general categories of operationsBTL3 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		What are clusters?BTL1			
 and video sharing, multiplayer games, online shopping and so on has led to the growth of a class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Exist out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		The growth of Software has a Service (SaaS) for applications like search, social networking,			
 class of computers called clusters. Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 	4	and video sharing, multiplayer games, online shopping and so on has led to the growth of a			
 Clusters are collection of desktop computers or servers connected by local area networks to act as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because there are many data items that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		class of computers called clusters.			
 as a single large computer. Explain the two kinds of parallelism in applicationsBTL2 There are basically two kinds of parallelism in applications: Data – Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		Clusters are collection of desktop computers or servers connected by local area networks to act			
 Explain the two kinds of paraheirsm in applications FTL2 There are basically two kinds of paraheirsm in applications: Data – Level Paraheirsm (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Paraheirsm (TLP) arises because there are many data items that can operate independently and largely in paraheirs What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Paraheirsm Vector Architecture and Graphic Processor Units (GPUs) Thread Level Paraheirsm Requested Level Paraheirsm List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		as a single large computer.			
 5 Data - Level Parallelism (DLP) arises because there are many data items that can be operated on at the same time. Task - Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 7 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		Explain the two kinds of parahelisin in applications of 112			
 5 Data – Lever Parametrsin (DLP) arises because there are many data items that can be operated on at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 6 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism 7 List out the general categories of operationsBTL3 7 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		Data Laval Darallalism (DLD) arises because there are many data items that can be operated			
 at the same time. Task – Level Parallelism (TLP) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 	5	on at the same time			
 ask Level Farallelish (TEF) arises because tasks of work are created that can operate independently and largely in parallel. What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		Task – Level Parallelism (TLP) arises because tasks of work are created that can operate			
 What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec 2016)BTL4 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		independently and largely in parallel			
 6 ¹ Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism 7 List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		What are the ways in which a computer hardware can exploit DLP and TLP? (Nov/Dec			
 Instructions Level Parallelism Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		2016)BTL4			
 Vector Architecture and Graphic Processor Units (GPUs) Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		Instructions Level Parallelism			
 Thread Level Parallelism Requested Level Parallelism List out the general categories of operationsBTL3 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 	6	Vector Architecture and Graphic Processor Units (GPUs)			
Requested Level Parallelism List out the general categories of operationsBTL3 7 List out the general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character),		Thread Level Parallelism			
 Figure 1 and a size state operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		Requested Level Parallelism			
 7 The general categories of operations are data transfer, arithmetic logical, control and floating points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character), 		List out the general categories of operationsBTL3			
points. 8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character),	7	The general categories of operations are data transfer, arithmetic logical, control and floating			
8 Enumerate operand sizes that most ISAs support?BTL5 Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character),		points.			
• Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character),	o	Enumerate operand sizes that most ISAs support?BTL5			
	ð	Most ISAs like 80 x 86, ARM ad MIPS support operand sizes of 8-bit (ASCII character),			

	16-bit (Unicode character or half word), 32-bit (integer or word), 64-bit (double word or					
long integer), and IEEE 754 floating points in 32-bit (single precision) and						
	precision).					
	What are the five implementation techniques which are critical to modern					
	implementation?BTL1					
	Integrated circuit logic technology					
9	Semiconductor DRAM (dynamic random-access memory)					
	Semiconductor Flash (electronically erasable programmable read-only memory)					
	Magnetic disk technology					
	Network technology					
	What is bandwidth?BTL1					
10	Bandwidth is the total amount of work done in a given time, such as mega-bytes per so					
_	for a disk transfer. It is also known as throughput.					
	What is latency?BTL1					
11	Latency is the time between the start and the completion of an event, such as milliseconds					
••	for a disk access. It is also known as response time					
	List out the two basic choices of an encoding BTL3					
12	The two basic choices of encoding are fixed length and variable length All ARM and MIPS					
12	instructions are 32 bits long, which simplifies instruction decoding					
	What are the conditional branches that ISAs support?BTL3					
	Virtually all ISAs, support conditional branches, unconditional jumps, procedure calls and					
13	returns. All three uses PC-relative addressing where the branch address is specified by an					
	address field that is added to the DC					
	What does on ADM stand for 2DTL 1					
	What does an AKIVI stand IOF (BILI					
14	ARM stands for Advanced RISC Mission, which is one of the most popular example of DISC such testands of ADM succession of the testand in 2010 succession.					
	RISC architectures. ARM processors wherein 6.1 billion chips shipped in 2010 or roughly					
	20 times as many chips that shipped with 80 x 86 processors.					
	Point out the biggest challenge that a computer designer faces in every class of					
15	Power is the biggest challenge facing the computer designer for nearly every class of					
	computer. First, power must be brought in and distributed around the chip, and modern					
	microprocessors use hundreds of pins and multiple inter connect layers just for power and					
	ground. Second, power is dissipated as heat and must be removed.					
	Define sustained power consumption. BTL1					
	This metric is widely called the thermal design power (TDP), since it determines the cooling					
16	requirement. TDP is neither peak power, which is often 1.5 times higher, nor it is the actual					
10	average power that will be consumed during a given computation, which is likely to be					
	lower still. A typical power supply for a system is usually sized to exceed the TDP, and a					
	cooling system is usually designed to match or exceed TDP.					
	What is called dynamic energy? BTL2					
17	For CMOS chips, the traditional primary energy consumption has been in switching					
17	transistors, also called dynamic energy. The energy required per transistor is proportional to					
	the product of the capacitive load driven by the transistor and the square of the voltage.					
	Definethe power required per transistor. BTL1 (Apr/May 2016)					
18	The power required per transistor is just the product of the energy of a transitions multiplied					
	by the frequency of transitions. For a fixed task slowing clock rate reduces power but not					

	energy.
	Label the formula used to calculate the cost of packaged integrated circuitBTL4
	Cost of integrated circuit = (Cost of die + Cost of testing die + Cost of packaging and final
19	test)/ Final test yield
	Where,
	Cost of die = Cost of wafer / (dies per wafer x die yield)
	Illustrate the Wall-clock timeBTL3
20	The most straight forward definition of time is called Wall-clock time, response time or
	elapsed time, which is the latency to complete a task, including disk accesses, memory
	accesses, input/ output activities, operating system overhead, etc.
21	What is die?BTL2
	Die is the square area of the wafer containing the integrated circuit.
	How is the cost of die calculated?BTL3
22	The cost of a die is determined from cost of a wafer; the number of dies fit on a wafer and
	the percentage of dies that work, i.e., the yield of the die.
••	What is the sustained power consumption?BTL1
23	The metric is widely called the thermal design power (TDP), since it determines the cooling
	requirement.
	Define latencyBTL1
24	Latency or response time is the time between the start and the completion of an event, such
	as miniseconds for a disk access
	An ambaddad system is a special purpose system in which the computer is completely
25	An embedded system is a special-pulpose system in which the computer is completely
23	computer an embedded system performs pre-defined tasks usually with very specific
	requirements
	PART B
	IARID
Q.No	Questions
1	Illustrate the fundamentals of CPU along with the classification of various generation
	of computer (13M)
	Answer:Page 2- John L. Hennessy BTL3
	• Explanation on the progression and development (7M) Computer technology -
	incredible progress - first general-purpose electronic computer
	Personal computer - more performance- more main memory - more disk
	• rapid improvement -advances in the technology - innovation in computer design.
	Classification of various generations of computer (5M)

	Generation (begun)	Processor technology	Memory innovations	I/O devices introduced	Dominant look & fell	
	0 (1600s)	(Electro-) mechanical	Wheel, card	Lever, dial, punched card	Factory equipment	
	1 (1950s)	Vacuum tube	Magnetic drum	Paper tape, magnetic tape	Hall-size cabinet	
	2 (1960s)	Transistor	Magnetic core	Drum, printer, text terminal	Room-size mainframe]
	3 (1970s)	SSI/MSI	RAM/ROM chip	Disk, keyboard, video monitor	Desk-size mini	
	4 (1980s)	LSI/VLSI	SRAM/DRAM	Network, CD, mouse,sound	Desktop/ laptop micro	
	5 (1990s)	ULSI/GSI/ WSI, SOC	SDRAM, flash	Sensor/actuator, point/click	Invisible, embedded	
	 Desktop Comput Servers (2M) profile Embedded Computed machines Clusters/Warehownetworking Instruction Set Arefer to the actual 	ting (2M) The ovide larger-sc puters (2M)E ouse-Scale C Architecture: programmer	e first, and still cale and more overyday mach omputers(2M (3M) The My	I the largest m reliable file an ines—most m I) Application vopic View of	arket in dolla nd computing nicrowaves, m ns like search Computer A	r terms services. lost washing ch - social Architecture
3	Describe the trends in t (Nov/Dec 2018) (13M) Answer:Page 17 - John	echnology alo L. Hennessy	ong with the i BTL3	mplementatio	on technologi	ies
	 Explanation (1M)design Four implementation tech implementations: Integrated circus 35% per year Semiconductor I Magnetic disk tech per year - doublin Network technol 	ned to survive nnologies, - ch it logic techno DRAM (4M) chnology (4M ig in three yea logy (4M)—b	rapid changes nange at a drar ology (4M)—' (dynamic rand 1)—Prior to 1 rs. oth on the per	- computer te natic pace - cr Transistor den om-access me 990 - density i formance of sy	chnology. itical to mode sity increases emory increased by a witches - on th	ern by about about 30% he
4	performance of the Illustrate the system per 2017) (13M)	e transmissio rspective of p	n system. ower and ene	ergy in Integr	rated circuits	(Apr/May
	Trends in Power in Inte	egrated Circu	uits: (7M)			

	Explanation
	• switching transistors - dynamic power
	Power required per transistor
	Energy and Power within a Microprocessor
	For CMOS chips, the traditional primary energy consumption - switching transistors -
	dynamic energy.(along with all the formulae)
	Trends in Cost: (6M)
	Explanation computer designs - costs tend to be less important
	The Impact of Time, Volume, and Commoditization
	The cost of a manufactured computer component decreases over time
	Cost of an Integrated Circuit
	Increasingly competitive computer marketplace where standard parts—disks, Flash
	memory, DRAMs
5	Explain the dependability in integrated circuits (13M) (Apr/May
	2016,Nov/Dec 2018) Answer:Page 33 - John L. Hennessy BTL2
	• Explanation about dependability: (6M) designed and constructed at different
	layers of abstraction.
	descend recursively down
	• Some faults are widespread
	• Utter failure of a module at one level
	 Find ways to build dependable computers
	 Module reliability (4M)massure of the continuous service.
	 Module availability (4N) massure of the service accomplishment
	• Would availability (SW)- measure of the service accomptishment
0	Assume a disk subsystem with the following components and WITIF:
	• 10 disks, each rated at 1,000,000-nour M111F
	• 1 ATA controller, 500,000-hour MTTF
	• 1 power supply, 200,000-hour MTTF
	• 1 fan. 200.000-hour MTTF
	1 ATA cable 1 000 000-bour MTTE
	• 1 ATA cable, 1,000,000-11001 WITTF
	Using the simplifying assumptions that the lifetimes are exponentially distributed and
	that failures are independent, compute the MTTF of the system as a whole (Apr/May
	2017)(13M)
	Answer:Page 43 - John L. Hennessy BTL5
	• Formula (3M)+ Solving (10M)
	 Formula to show what to expect when we can tolerate a failure and still provide
	service
	• To simplify the calculations – assume that the lifetimes of the components
	• 10 simplify the calculations - assume that the information of the component failures
	• MTTE for our redundent resure surelies, mean time with an experiment and the
	• INTER FOR OUR redundant power supplies - mean time until one power supply fails
	aivided by the chance - other will fail before the first one.
	• Unance of a second failure - before repair - small - MITF of the pair is large.
7	List out the types of benchmarking technique and how it is use to sort out performance
---	--
	Answer:Page 36 - John L. Hennessy BTL3
	Benchmarking explanation (2M): measure performance - real applications, such as a
	compiler. Examples include
	• kernels ,(1M) small, key pieces of real applications;
	• toy programs (1M), 100-line programs
	• synthetic benchmarks (1M), fake programs
	Desktop Benchmarks (2M)
	two broad classes: processor-intensive benchmarks and graphics-intensive benchmarks -
	Server Benchmarks (2M)
	Portermoneo Degulta (2M)
	Cuiding principle of reporting performance massurements reproducibility
	Summarizing Performance Results (2M)
	Practical computer design - evaluate myriad design choices - quantitative
	PART C
1	Discuss the various trends in technology, power, energy and cost (Apr/May
	2017,Nov/Dec2019)(15M)
	Answer:Page 17 - John L. Hennessy BTL3
	Trends in Technology (5M):
	 Designed to survive rapid changes in computer technology
	 successful new instruction set architecture may last decades
	• for example, the core of the IBM mainframe has been in use for more than 40 years
	Trends in Power in Integrated Circuits (5M):
	• switching transistors - dynamic power
	Power required per transistor
	Energy and Power within a Microprocessor
	Trends in Cost (5M):
	computer designs
	Increasingly competitive computer marketplace
2	Discuss about the guidelines and principles that are useful in design and evaluate the
	performance of computer systems with example (15M)(Apr/May 2017)
	Answer:Page 36 - John L. Hennessy BTL4
	Definition of response time, execution time and throughput (4M):
	• User of a desktop computer – faster computer- program runs in less time
	Response time
	• Throughput
	Comparison alternative between two computers and detailed explanation
	(11M):
	• The computer user - interested in reducing response timeThe administrator of a large

	data processing center - increasing throughput—the tota
	• 1 amount of work done in a given time
	• The phrase –X is faster than Y
3	Show that the ratio of the geometric means is equal to the geometric mean of the
	performance ratios, and that the reference computer of SPECRatio matters
	not.(15M)(Apr/May 2017)
	Answer:Page 43 - John L. Hennessy BTL4
	Formula (4M):Execution time _y /Execution time _x =n
	$n = Performance_x/Performance_y$
	Solving (9M)
	Answer(2M)
4	Write short notes on energy and power consumption in a
	microprocessor.(15M)(Nov/Dec 2016)
	Answer:Page 11 - John L. Hennessy BTL3
	Dynamic power
	 increasing the number of transistors increases power
	 Leakage current increases in processors with smaller transistor sizes.
	• Power _{static} =Current _{static} x Voltage
	Trends in Power in Integrated Circuits: (8M)
	 switching transistors - dynamic power
	Calculate Power required per transistor
	• Energy and Power within a Microprocessor
	Trends in Cost: (7M)
	• computer designs - costs tend to be less important— specifically supercomputers—
	cost-sensitive designs - growing significance.
	• Disks, Flash memory, DRAMs
	• High Volume

-

	UNIT II INSTRUCTION LEVEL PARALLELISM
ILP conce	pts - Pipelining overview - Compiler Techniques for Exposing ILP - Dynamic Branch
Prediction	– Dynamic Scheduling – Multiple instruction Issue – Hardware Based Speculation – Static
scheduling	- Multi-threading - Limitations of ILP – Case Studies.
	PART A
1	Define the concept of pipelining. (Nov/Dec 2016)BTL2
	Pipelining is an implementation technique whereby multiple instructions are overlapped in
	execution. It takes advantage of parallelism that exists among actions needed to execute an
	instruction.
2	What is a Hazard? Mention the different hazards in pipeline. BTL3
	Hazards are situations that prevent the next instruction in the instruction stream from
	executing during its designated clock cycle. Hazards reduce the overall performance from
	the ideal speedup gained by pipelining. The three classes of hazards are,
	Structural hazard
	Data hazard
	Control hazard
3	List the various dependences. (Apr/May 2016)BTL3
	Data dependence
	Name dependence
	Control dependence
4	What is Instruction Level Parallelism? (or) What is ILP? BTL2
	Pipelining is used to overlap the execution of instructions and improve performance. This
	potential overlap among instructions is called instruction level parallelism (ILP) since
	instruction can be evaluated parallel.
5	Give an example of control dependence. BTL3
	If p1 { s1;}
	If p2 {s2;}
	S1 is control dependence on p1, and s2 is control dependence on p2.
6	Write the concept behind using reservation station. BTL4
	Reservation station fetches and buffers an operand as soon as available, eliminating the need
	to get the operand from a register.
7	Define the idea behind dynamic scheduling. Also write advantages of dynamic
	scheduling. BTL3
	In dynamic scheduling the hardware rearranges the instruction to reduce the stalls while
	maintaining dataflow and exception behaviour.
	Advantages: it enables handling some cases when dependence are unknown at compile
	time it allows code that was compiled with one pipeline in mind and run efficiently on a
0	different pipeline.
8	What are branch target buffers? BILI
	To reduce the branch penalty we need to know from what address to fetch by end of
	instruction retch. A branch prediction cache that stores the predicted address for the next
	Instruction after a branch is called a branch-target buffer or branch target cache.
У	Iviention the Idea bening nardware-based speculation.B1L2
	• It combines three key ideas:

	• Dynamic branch prediction to choose which instruction to execute,
	• Speculation to allow the execution of instructions before control dependence are
	resolved. Dynamic scheduling is used to deal with the scheduling of different
	combinations of basic blocks.
10	What is loop unrolling? BTL1
	A simple scheme for increasing the number of instructions relative to the branch and
	overhead instructions is loop unrolling. Unrolling simply replicates the loop body multiple
	times, adjusting the loop termination code.
11	Give an example for data dependence. (Apr/May 2017)BTL4
	Loop: L.D F0, 0(R1)
	ADD.D F4, F0, F2
	S.D F4, 0(R1)
	DADDUI R1, R1, #-8
	BNE R1, R2, LOOP
12	What is software pipelining? BTL2
	Software pipelining is a technique for reorganizing loops that each iteration in the software
	pipelined code is made from instruction chosen from different iterations of the original loop.
13	What is global code scheduling? BTL1
	Global code scheduling aims to compact code fragment with internal control structure into
	the shortest possible sequence that preserves the data and control dependence. Finding a
	shortest possible sequence is finding the shortest sequence for the critical path.
14	What is poison bit? BTL1
	Poison bits are a set of status bits that are attached to the result registers written by the
	specified instruction when the instruction causes exceptions. The poison bits causes a fault
	then a normal instruction attempts to use the register.
15	What are the disadvantages of supporting speculation in hardware? BTL1
	Its complexity and additional hardware required.
16	What are the limitations of ILP? BTL1
	The hardware model, limitation on the window size and maximum issue count, the effects of
	realistic branch and jump prediction, the effects of finite registers, the effect of imperfect
	alias analysis.
17	Write down the formula to calculate the pipeline CPI.BTL3
	Pipeline CPI= Ideal pipeline CPI + Structural stalls + Data hazards stalls + Control stalls
18	List out the two conditions imposed by control dependencies. BTL3
	The two conditions imposed by control dependencies are:
	• An instruction that is control dependent on a branch cannot be moved before the
	branch so that its execution is no longer controlled by the branch.
	• An instruction that is not control dependent on a branch cannot be moved after
	the branch so that its execution is controlled by the branch.
19	When anti-dependence occurs in name dependence? (Apr/May 2017) BTL3
	An anti-dependence between instruction –II and instruction –jl occurs when instruction —jl
	writes a register or memory location that instruction —ill reads.
20	What is scoreboarding technique? BTL2
	Scoreboarding is a technique for allowing instructions to execute out of order when there are

	sufficient resources and no data dependence.
21	Define speculation.BTL2
	If the branch is taken, the DSUBU instruction will execute and will be useless, but it will
	not affect the program results. This type of code scheduling is called speculation.
22	List the classification of data hazards.BTL3
	Data hazards are classified into three types depending on the order of read and write
	accesses in the instructions
	• Read After Write (RAW)
	• Write After Write (WAW)
	• Write After Read (WAR)
23	Write down the formula to calculate the pipeline CPI.BTL4
	Pipeline CPI= Ideal pipeline CPI + Structural stalls + Data hazards stalls + Control stalls
24	List out the approaches to exploit ILP.BTL3
	The two approaches to exploit ILP are dynamic or hardware intensive approach and static or
	compiler intensive approach.
25	List out the two conditions imposed by control dependencies. BTL3
	The two conditions imposed by control dependencies are:
	• An instruction that is control dependent on a branch cannot be moved before the
	branch so that its execution is no longer controlled by the branch.
	• An instruction that is not control dependent on a branch cannot be moved after the
	branch so that its execution is controlled by the branch.
	PART B
1	Describe the given dependencies (13M)(Nov/Dec 2016)BTL1
	i. Data dependency (5M)
	ii. Control dependency (4M)
	iii. Name dependency(4M)
	Answer: Page 150 - John L. Hennessy
	Data Dependences: (5M)
	Definition: (2M)
	• An instruction j - data dependent - instruction i
	 Instruction i produceresult - used - instruction j
	• Instruction j - data dependent - instruction k
	• Instruction k - data dependent - instruction i.
	Explanation with example: (3M)
	• MIPS code sequence increments -vector values – memory - starting 0(R1)
	• The last element - 8(R2)) - a scalar - register F2.
	Name Dependences: (4M)
	Deminion: (211)
	Iname dependence occur - two instructions
	Same register - memory location
	• No data flow - the instructions associated – name

	Explanation: (2M)
	• Anti-dependence
	• An output dependence
	Control Dependences: (4M)
	Definition: (2M)
	• Determineinstruction ordering.
	Branch instruction.
	Instruction i executed - correct program order
	Explanation: (2M)
	First basic block program
	• Control dependent – branch set
	• Preserve program order
	rieserie program order
2	What is data hazard and explain the different types of data hazards? (13M) (Apr/May
	2016,Nov/Dec 2018) BTL3
	Answer: Page 153 - John L. Hennessy
	Data Hazarda
	Definition: (3M)
	 Dependence - instructions
	 Overlap - pipelining - instructions reorder
	 Change -operand order - access
	Explanation: (5M)
	Preserve instruction order
	• Executed sequentially –determineoriginal source program
	Software -hardware techniques
	• Exploit parallelism - preserve program order
	Affect program outcome
	• Detect - avoid hazards
	Classification: (5M)
	• Data hazards classification - three types - order - read - write accesses.
3	Summarize the concept of loop unrolling and scheduling. (13M) BTL2
	Answer: Page 161 - John L. Hennessy
	Definition: (3M)
	 Simple scheme - increase instructions number
	 Branch relative
	 Overhead instructions - loop unrolling
	 Replicate the loop body multiple times - loop termination code
	Loop unrolling - scheduling (10M):
	• Improve scheduling
	• Eliminates the branch
	• Eliminate the data use stalls

REGULATION :2013

	Use different registers - each iteration
4	Evaluate the ways to overcome data hazards with dynamic scheduling. (13M) BTL5
	Answer: Page 167 - John L. Hennessy
	Need for dynamic scheduling (4M):
	Imprecise exceptions - two possibilities:
	• The pipeline - <i>completed</i> instructions <i>–later</i> program order
	• The pipeline - not yet completed instructions - earlier program order
	Allow out-of-order execution - split the ID pipe stage - five-stage pipeline - two stages:
	1.Issue
	2. Read operands
	Dynamic Scheduling: The Idea with example (9M)
	Eliminate major limitation - simple pipelining techniques
	Use in-order instruction issue -execution
	Instructions - program order issue
	Multiple functional units- lie idle
5	Discuss dynamic scheduling using Tomasulo's approach.(13M)(Apr/May 2017) BTL3
	Answer: Page 170 - John L. Hennessy
	Limitation of provious method: (2M)
	• Use in-order instruction issue
	 Unstructions issued - program order
	 Instruction - stalled nineline
	 No later instructionsproceed
	Dynamic Scheduling definition with example (4M) :
	• Dependence - two closely spaced instructions - pipeline
	 Hazard result- a stall - result
	• For example:
	DIV D F0 F2 F4 ADD D F10 F0 F8 SUB D F12 F8 F14
	Tomasulo's approach explanation with diagram (4M+3M):

	• Duplicating private state – registers - program counter.
	Approaches to multithreading Explanation with diagram: (6M+3M)
	A superscalar with no multithreading support
	A superscalar with coarse-grained multithreading
	• A superscalar with fine-grained multithreading
	A superscalar with simultaneous multithreading
	 Expression to the second state of the second state (registers and memory) Register state - thread context Threads - same process (program) - different programs Threads - same program - share same address space (shared memory model) Processor keeps track -single thread context
	Multitasking
8	Analyze the case study for exploring the impact of Micro-architectural
	A new Page 247 John L. Hennegev
	Answer: Page 247 - John L. Hennessy
	Purpose of the case study (4M):
	• Demonstrate the interaction - hardware - software factors
	• Production - instruction-level parallel execution.
	Concise code
	Gain intuition - hardware - software factors
	• Determine the execution time - particular code type - given system.
	• Explain Itanium -64 - diagram (5M+4M)

	 Potential overlap - instruction execution Pipeline concept - improve system performance Various techniques - increase parallelism amount
	Reduces the data impact - control hazards
	Increase processor ability - exploit parallelism
	There are two approaches to exploiting ILP.
	Static Technique – Software Dependent
	Dynamic Technique – Hardware Dependent
	Basic Pinalina Schoduling and Loop Unrolling with avampla: (8M)
	Keen a pipeline full parallelism
	 Instructionsexploited - find sequences - unrelated instructions
	 Overlapped pipeline.
	 Avoid a pipeline stall
	Execute dependent instruction
	• Separatesource instruction
	• Distance - clock cycles.
3	Compare hardware and software speculation (15M)(Apr/May 2017)BTI /
5	Answer: Page 221 - John L. Hennessy
	Explanation(5M):Hardware-based speculation - three key ideas:
	Dynamic branch prediction
	Speculation - allow instruction execution
	Dynamic scheduling
	Table (10M):
	Dynamic runtime disambiguation
	Control flow
	Exception model
	Code Speculation
	Dynamic scheduling
	Hardware – software
4	Discuss the important limitations to H D (15M) (Apr/May 2017) DTL 1
4	Answer: Page 149 - John L. Hennessy
	Instruction-Level Parallelism (3M)
	• Exploit parallelism - instructions.
	Amount of parallelism -basic block
	• Average dynamic branch frequency - 15% - 25%
	• Three - six instructions execute - a pair of branches.
	Limitations of ILP
	The Hardware Model (4M)

	 An ideal processor - all artificial constraints - ILP removed. Imposed actual data flow, registers or memory.
	• Imposed - actual data now - registers of memory.
	The assumptions - perfect processor:
	• Register renaming (2M) — WAW - WAR hazards
	• Branch prediction (2M)— All conditional branches - predicted exactly.
	• Jump prediction (2M)—All jumps - perfectly predicted.
	• Memory-address alias analysis (2M)—All memory predictions
	ficentory duarees analysis (202) This memory predictions
5	Define multithreading. Explain how ILP is achieved using multithreading with an example (15M)(Nov/Dec 2016)BTL 3
	Answer: Page 223 - John J. Hennessy
	Answer. 1 age 225 - John E. Hennessy
	Definition (4M):
	• Allows multiple threads - share - functional units - single processor
	• Overlapping fashion
	• Exploit thread-level parallelism (TLP)
	• Multiprocessor - multiple independent threads operating - once - parallel.
	• Multithreading share processor core - a set of threads
	• Duplicating only private state - registers - program counter.
	Approaches to multithreading Explanation with diagram: $(4M + 3M)$
	• A superscalar with no multithreading support
	 A superscalar with coarse-grained multithreading
	 A superscalar with fine-grained multithreading
	 A superscalar with simultaneous multithreading
	Achieving ILP using multithreading (4M)
	Instruction stream - state (registers and memory)
	Register state - thread context
	 Threads - part - same process (program) - different programs
	• Threads - same program - share same address space (shared memory model)
	Processor tracks- context - single thread
	• Multitasking

	Unit-III DATA-LEVEL PARALLELISM
Vector arch	itecture – SIMD extensions – Graphics Processing units – Loop level parallelism.
	PART-A
1	What is data level parallelism? BTL1
	Data level parallelism uses vectorization techniques to specify with a single instruction a
	large number of operations to be performed on independent data. A few of these vector
	instructions running concurrently can provide a large operation parallelism for many
	consecutive cycles. Data parallelism is the simultaneous execution on multiple cores of the
	same function across the elements of a dataset.
2	What is vector processor? (Apr/May 2016) BTL1
	A vector processor is an ensemble of hardware resources, including vector registers,
	functional pipelines, processing elements and register counters, for performing vector
	operations. Vector processing occurs when arithmetic or logical operations are applied to
	vectors. The conversion from scalar processing to vector code is called vectorization
3	List advantages of vector processors. BTL3
	• Require lower instruction bandwidth. Reduced by fewer fetches and decodes.
	• Easier addressing of main memory. Load/Store units access memory with known
	patterns.
	• Elimination of memory wastage
	 Simplification of control bazards Loop-related control bazards from the loop are
	eliminated
4	List the disadvantages of vector processors BTI 3
	Disadvantages:
	• Still requires a traditional scalar unit for the non-vector operations
	 Difficult to maintain precise interrupts
	 Compiler or programmer has to vectorizer programs
	 Complet of programmer has to vectorized programs Not very efficient for small vector sizes
5	Point out on name the vector processor models. PTL 4
5	There two primary types of architecture for vector processors:
	Desisten to register model
	• Register-to-register model
	Memory – memory vector processor. Whet are the target of data day and are included in the are? DTL 1
0	What are the types of data dependencies in loops? B1L1
	demendence is of two types. Loop carried dependencies and Not loop carried
7	When anti denor denor accurs in nome denor denor? DTL 2
	An opti dependence occurs in name dependence: B1L2
	An anti-dependence between instruction -1 and instruction -1 occurs when instruction -1
0	Whet is tree height reduction? DTL 1
o	Tree height reduction is on optimization techniques which reduces the number of operations
	ar code length. It increases perallelism of the code
0	What are the tasks in finding the dependence in a program? (Apr/May 2017) PTI 1
9	Finding the dependence in a program are of three tasks:
	- Have good scheduling of code
	 nave good scheduling of code. Determine which here wicht contain
	• Determine which loop might contain parallelism.
	• Eliminate name dependence.

10	What is loop lovel parallelism? RTL 1
10	To increase amount of parallelism evailable among instructions is to evaluat nerallelism
	To increase amount of paramensin avanable among instructions is to exploit paramensin
	among iterations of a loop. This type of parallelism is often called loop level parallelism
11	What is name dependence? BTL1
	Name dependence occurs when two instructions use the same register or memory location
	called a name, but there is no flow of data between the instructions associated with that
	name.
12	Evaluate briefly the processor that is used to ensemble hardware resources BTL 5
12	A vector processor is an ensemble of hardware resources including vector registers
	functional pipelines, processing elements and register counters, for performing vector
	include pipernies, processing elements and register counters, for performing vector
	operations. Vector processing occurs when arithmetic or logical operations are applied to
	vectors. The conversion from scalar processing to vector code is called vectorization.
13	What are the boon of vector processors? BTL2
	• Require lower instruction bandwidth. Reduced by fewer fetches and decodes.
	• Easier addressing of main memory Load/Store units access memory with known
	natterns
	 Elimination of momentum states
	• Elimination of memory wastage.
	• Simplification of control hazards. Loop-related control hazards from the loop are
	eliminated.
14	Define convoy. BTL1
	• It is the set of vector instructions that could potentially execute together.
	• We can estimate performance of a section of code by counting the number of
	convoys.
	• The instructions in a convoy must not contain any structural hazards: if such hazards
	were present the instructions would need to be serialized and initiated in different
	convoys
	• To keep the analysis simple, we assume that a convoy of instructions must complete
-	execution before any other instructions (scalar or vector) can begin execution.
15	What are the limitations of ILP? -BTL2
	The hardware model, limitation on the window size and maximum issue count, the effects of
	realistic branch and jump prediction, the effects of finite registers, the effect of imperfect
	alias analysis.
16	Define vector execution time. BTL1
	The execution time of a sequence of vector operations primarily depends on three factors:
	The length of the operand vectors
	• The length of the operand vectors
	• Structural hazards among the operations
	• The data dependences.
17	What are the disadvantages of supporting speculation in hardware? BTL2
	It has a high complexity and additional hardware are required.
18	What is poison bit? BTL2
10	
	Poison hits are a set of status hits that are attached to the result registers written by the
	ensories on the association when the instruction causes expensions. The poison bits causes a fault
	specifica instruction when the instruction causes exceptions. The poison bits causes a fault

	then a normal instruction attempts to use the register
19	What is software pipelining? BTL1
17	What is solution providing. Diffi
	Software pipelining is a technique for reorganizing loops that each iteration in the software
	pipelined code is made from instruction chosen from different iterations of the original loop.
20	What is global code scheduling? BTL2
	Global code scheduling aims to compact code fragment with internal control structure into
	the shortest possible sequence that preserves the data and control dependence. Finding a
	shortest possible sequence is finding the shortest sequence for the critical path.
21	Mention the idea behind hardware-based speculation. (Apr/May 2017)BTL1
	• It combines three key ideas:
	• Dynamic branch prediction to choose which instruction to execute,
	• Speculation to allow the execution of instructions before control dependence are
	resolved. Dynamic scheduling is used to deal with the scheduling of different
	Combinations of basic blocks.
22	List out the primary components of VMIPS.B1L4
	• Vector registers
	 Vector functional units
	 Vector functional units Vector load/store unit
	• A set of scalar registers
23	What is loop uprolling? BTL 1
25	A simple scheme for increasing the number of instructions relative to the branch and
	overhead instructions is loop unrolling. Unrolling simply replicates the loop body multiple
	times, adjusting the loop termination code.
24	Explain the idea behind dynamic scheduling. Also write advantages of dynamic
	scheduling. BTL4
	In dynamic scheduling the hardware rearranges the instruction to reduce the stalls while
	maintaining dataflow and exception behaviour.
	Advantages: it enables handling some cases when dependence are unknown at compile time
	It allows code that was compiled with one pipeline in mind and run efficiently on a different
25	pipeline. Write the concept behind using reconvertion station? (New/Dec 2017) PTL 2
25	write the concept bennit using reservation station: (Nov/Dec 2017)B1L2
	Reservation station fetches and buffers an operand as soon as available, eliminating the need
	to get the operand from a register.
	PART-B
1	Draw and explain the basic architecture of VMIPS. (Apr/May 2016) (13M) BTL4
	Answer: Page 264 - John L. Hennessy
	History (1M):
	• Cray-1
	Foundation

	• Vector register
	Explanation with example (3M+2M):
	Real vector length
	Vector operation
	Compile time.
	• Different vector lengths
	• Diagram (1M):
	Value of j 0 1 2 3 n/MVL
	Range of I 0 m (m+MVL) (m+2 × MVL) (n-MVL)
	(m-1) $(m-1)$ $(m-1)$ $(m-1)$ $(n-1)+ MVL + 2×MVL + 3×MVL$
	Vector Mask Registers: Handling IF Statements in Vector Loops: (5M)
	Definition (2M):
	• Amdahl's law
	Programspeedup
	Vectorization levels
	• Vectorization events
	Explanation - example (SWI):
	• IF statements
	• Vector mode
	Control dependences
	Sparse matrices
	Conditional execution
3	Explain the SIMD instruction set extensions for multimedia(Nov/Dec 2018)(13M)
	DILJ
	Answer: Page 262 - John L. Hennessy
	Definition: (3M)
	SIMD Multimedia Extensions
	Narrower data types
	• 32-bit processors
	Explanation: (6M)
	8 bits representation
	Three primary colors
	• Transparency.
	Carry chains
	• Table (4M):
	Instruction category Operands
	Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
	Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
	Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit Election point Sixteen 16 bit eight 32 bit four 64 bit or two 128 bit
4	Doint out the measurements of Chambias Dressents - Units (CDUI) (A (A.C. 2017))
4	rount out the programming of Graphics Processing Units (GPU). (Apr/May 2017) (13M) BTI 4
	Angway Daga 288 John I. Hannagay
	Answer: rage 200 - John L. Hennessy CDU Definition: (2M)
	GPU Definition: (2W)

	Parallel floating-point units
	High-performance computing
	• More accessible.
	Explanation: (5M)
	• Potential
	Programming language
	Multimedia applications
	• Conventional C code explanation - example (6M)
5	Describe the NVIDIA GPU Computational Structures.(13M) BTL1
	Answer: Page 291 - John L. Hennessy
	Explanation: (4M)
	Misleading names
	• Twin goals
	• Understandable
	CUDA terminology
	• OpenCL.
	NVIDIA GPUs.
	• Table (9M)
	PART-C
1	Identify and explain the process of detecting and enhancing Loop-level
	Parallelism. (Nov/Dec 2016) (15M) BTL5
	Answer: Page 315 - John L. Hennessy
	Definition (3M)
	Source level analyzation
	Compiler generated
	Explanation (10M)
	Dependences existence determination
	Loop iterations
	Data accesses
	Loop-carried dependence
	Example (2M)
	Finding dependencies
	Eliminating dependent computations
2	Discuss GPU architecture with a neat diagram. (Apr/May 2017) (15M) BTL2
	Answer: Page 291 - John L. Hennessy
	CDU marking (0M).
	GPU working (9M):
	vector architectures
	Data-level parallel problems
	Gather-scatter data transfers
	• Mask registers
	• GPU processors
	Multithreading - single multithreaded SIMD processor

UNIT IV THREAD LEVEL PARALLELISM Symmetric and Distributed Shared Memory Architectures – Performance Issues –Synchronization – Models of Memory Consistency – Case studies: Intel i7 Processor, SMT & CMP Processors. **PART*A** 1 What are multiprocessors? Mention the categories of multiprocessors? BTL3 Multiprocessors are used to increase performance and improve availability. The different categories are SISD(Single Instruction and Single Data stream), SIMD(Single Instruction and Multiple Data stream), MISD(Multiple Instruction and Single data stream) MIMD(Multiple Instruction and Multiple Data stream) 2 Define threads.(Apr/May 2016)BTL1 These are multiple processors executing a single program and sharing the code and most of their address space. When multiple processors share code and data in the way, they are often called threads. 3 What is cache coherence problem? BTL1 Two different processors have two different values for the same location. 4 What are the ways to maintain cache coherence? OR what are the ways to enforce cache coherence? BTL2 Directory based protocol, Snooping based protocol. 5 What are the ways to maintain cache coherence using snooping protocol?((Apr/May 2016)BTL2 Write invalidate protocol, write update or write broadcast protocol. What is write invalidate and write update protocol?BTL1 6 Write invalidate provide exclusive access to caches. These exclusive caches ensure that no other readable or writable copies of an item exist when the write occurs. Write updates protocol updates all cached copies of a data item when that item is written. 7 Illustrate are the disadvantages of using symmetric shared memory.(Nov/Dec 2016)BTL3 Compiler mechanisms are very limited, and create large latency for remote memory access fetching multiple words in a single cache block will increase the cost. 8 Mention the information available in the directory.BTL4 The directory keeps the state of each block that is cached. It keeps track of which caches have copies of the block. 9 What are the states of cache block in directory based approach?BTL2 Shared, Un-cached and Exclusive. What are the uses of having a bit vector? BTL3 10 When a block is shared, the bit vector indicates whether the processor has the copy of the block. When block is in exclusive state, bit vector keep track of the owner of the block. 11 When do we say that a cache block is exclusive? (Apr/May 2017)BTL1 When exactly one processor has the copy of the cache block, and it has written the block, then the processor is called the owner of the block. During this phase the block will be in exclusive state. 12 Explain the types of messages that can be sent between the processors and directories.BTL3 Local Node: node where the requests originates Home Node: Node where memory location and directory entry of the address resides. Remote Note: the copy of the block in the third node called remote node. 13 What is consistency? And what are the models used for consistency? BTL2 Consistency says in what order processor must observe the data writes of another processor. Models used for Consistency: Sequential Consistency Model, Relaxed Consistency Model What is sequential consistency? BTL1 14

Sequential consistency requires that the result of any execution be the same, as if the memory

	accesses executed by each processor were kept in order and the accesses among different processors were interleaved.
15	What is relaxed consistency model? (Apr/May 2016)BTL1 Relaxed consistency model allows reads and writes to be executed out of order. Three sets of
	ordering are: W->R Ordering – Total store ordering W->W Ordering – Partial ordering
	R->W and R->R Ordering – Weak ordering
16	Explain coarse grained and fine grained multithreading. BTL1 Coarse Grained: it switches only on costly stalls (or) event. Thus it is much less likely to slow down the execution of an individual thread.
	Fine Grained: it switches threads between threads on each instruction, causing the execution of
17	multiple threads to be interleaved.
17	what is memory 'B1L2
	Memory is a device used to store the data ad instructions required for any operation.
18	What is bandwidth?BTL2
	The maximum amount of information that can be transferred to or from the memory per unit time is called bandwidth.
19	Define a cache. BTL1
	It's a small fast intermediate memory between the processor and the main memory.
20	List the mapping techniques of cache.BTL3
	Mapping techniques are direct mapping, fully associative and set associative.
21	What is write stall?BTL1
	When the processor must wait for writes to complete during write through, the processor caches is
	said to write stall.
22	Define mapping functions.BTL1
	The correspondence of memory blocks in cache with the memory blocks in the main memory is
	defined as mapping functions.
23	What is address translation?BTL2
20	The conversion of virtual address to physical address is termed as address translation
24	What is temporal locality?BTL 2
24	Recently referenced items are likely to be referenced again in the near future. This is often caused
	by special program constructs such as iterative loops, process stacks, temporary variables or
	subroutines
25	Define spatial legality DTL 1
23	This refers to the tendency for a process to access items whose addresses are near one another
	This refers to the tendency for a process to access items whose addresses are near one another.
1	raki*D Dugtante Summetrie Showed Memory Multingeoggeng and its neuformones (New/Dec 2016)
	(13M) BTL3
	Answer: Page 366 - John L. Hennessy
	Definition (3M)
	• Multicore
	Snooping coherence protocol
	Commercial workload (4M)
	Processor count
	• Cache size
	Block size

• Miss rate	
Performance Measurements(3M)	
• DSS numbers	
Six different queries	
• Resource stalls	
Branch mis-predict	
Memory barrier	
• TLB misses.	
Multiprogramming - OS Workload (3M)	
Multi-programmed workload	
• User activity	
• OS activity	
2 Explain Distributed Shared Memory and how a directory is added to each node to implement	ent
cache coherence.(Apr/May 2017) (13M) BTL2	
Answer: Page 380 - John L. Hennessy	
Definition: (3M)	
• Snooping protocol	
Directory protocol	
Explanation (6M):	
• Shared	
• Oncached	
• Modified	
Diagram (4M):	
Atubicera Atubicera Atubicera	
(processor) (proce	
Directory Directory Directory	
Interconnection network	
Multicore Multicore Multicore processor processor processor (processor)	
+ caches + caches + caches + caches	
3 Analyse the implementation of coherence using locks. (Nov/Dec 2018)(13M) BTL4	
Answer: Page 389 - John L. Hennessy	
Need for locks (4M)	
Atomic operation	
Coherence mechanisms	
• Implement spin locks	
Explanation - example (9M)	
No cache coherence	
• Lock variables	
• Atomic exchange	
lockit: DADDUIR2.R0.#1	
EXCHR2.0(R1) : atomic exchange	
BNF7R2 lockit valready locked	

4	Point out the programmer's view on models of memory consistency. (13M) BTL4					
	Answer: Page 393 - John L. Hennessy					
	Need for memory consistency model: (5M)					
	Sequential consistency model					
	High-performance implementation.					
	• Synchronized.					
	Relaxed Consistency Models: The Basics (4M)					
	Allows reads and writes					
	Synchronization operations					
	Enforce ordering					
	Final Remarks - Consistency Models (4M)					
	• Built support					
	Relaxedconsistency model					
	Standard synchronization libraries					
	Write synchronized programs					
5	Evaluate the characteristics of Intel Nebalem Micro-architecture, (13M) BTL 5					
5	Answer: Page 411 - John J. Hennessy					
	A Table (7M)					
	Clock rate Bracercor Serier Corer 12 cache Bouwer (humical) (CHz) Brice					
	Processor Series Cores L3 cache Power (typical) (GHz) Price Xeon 7500 8 18–24 MB 130 W 2–2.3 \$2837–3692					
	Xeon 5600 4-6 w/wo SMT 12 MB 40-130 W 1.86-3.33 \$440-1663					
	Acon 5405-5300 4 www.ann 6 min 4.3-130 w 1.80-33 4165-559 Xeon 5500 2-4 4-8 MB 80-130 W 1.86-3.3 \$80-1600					
	i7 860-975 4 8 MB 82 W-130 W 2.53-3.33 \$284-999 i7 mobile 720-970 4 6-8 MB 45-55 W 1.6-2.1 \$364-378					
	i5 750-760 4 wo SMT 8 MB 80 W 2.4-2.8 \$196-209					
	15 330-350 2 w/wo SMT 3 MB 35 W 2.1-23					
	Explanation (6M)					
	• ILP					
	Optimizing compilers					
	• Exploit ILP					
	Parallel software					
	Architectures					
	PART*C					
1	Explain about the synchronization techniques used in multiprocessor system. (Apr/May 2017)					
	(15M) BTL3					
	Answer: Page 387 - John L. Hennessy					
	Synchronization: The Basics (5M)					
	Implement synchronization					
	Multiprocessor					
	Hardware primitives					
	Basic synchronization primitives					
	Basic hardware primitives - example (5M)					
	Alternative formulations					
	Hardware primitives					
	Locks					
	Barriers					
	Implementing Locks Using Coherence - example (3M+2M)					
	Spin locks					
	• Low latency					
1						

2	Discuss about the models of memory consistency. (Apr/May 2017) (15M) BTL2
	Answer: Page 393 - John L. Hennessy
	Need for memory consistency model (5M)
	• Viewpoint
	Synchronized
	Shared data
	Relaxed Consistency Models: The Basics (5M)
	Sequentially consistent
	Final Remarks on Consistency Models (5M)
	Release consistency
	Highly multiprocessor specific
	Error prone
3	With a neat diagram, explain the distributed shared memory architecture. (Nov/Dec
	2010)(15MI) B1L2
	Answer: Page 5/8 - John L. Hennessy
	Definition (SIVI)
	Unrelling a mod miss
	 Handning a read miss Clean cache block
	• Crean cache block Exploration (SM)
	• Shared
	• Shared
	• Modified
	Diagram (4M)
	Multicore Multicore Multicore mocessor
	+ caches + caches + caches + caches
	Memory IV Memory IV Memory IV Memory IV
	Directory Directory Directory Directory
	Interconnection network
	Directory Directory Directory Directory
	Multicore Multicore Multicore
	(processor + caches) (processor + caches) (processor + caches) (processor + caches) (processor

UNIT V MEMORY AND I/O Cache Performance – Reducing Cache Miss Penalty and Miss Rate – Reducing Hit Time – Main Memory and Performance – Memory Technology. Types of Storage Devices – Buses – RAID – Reliability, Availability and Dependability – I/O Performance Measures. **PART*A** 1 What is cache miss and cache hit? (Apr/May 2016)BTL1 Cache Miss: When the CPU finds a requested data item in the cache, it is called cache miss. Cache Hit: When the CPU finds a requested data item is available in the cache, it is called cache hit. What is "write through" and "write back cache"? BTL1 2 Write through cache: The information is written to both the block in the cache and to the block in the lower level memory. Write Back Cache: The information is written only to the block in the cache. The modified cache block is written to main memory only when it is replaced. 3 What is Miss Rate and Miss Penalty? BTL2 Miss Rate is the fraction of cache access that results in a miss. • Miss Penalty depends on the number of misses and clock per miss. Write the equation of Average memory access time. BTL3 4 Average memory access time = hit time + miss rate * Miss Penalty What is stripping? BTL1 5 Spreading multiple data over multiple disks is called stripping, which automatically forces accesses to several disks. What is disk mirroring? Write the drawbacks of disk mirroring. BTL1 6 Disks in the configuration are mirrored or copied to another disk. With this arrangement data on the failed disks can be replaced by reading it from the other mirrored disks. Drawback: writing onto the disk is slower since the disks are not synchronized, seek time will be different. It imposes 50% space penalty hence expensive. 7 Mention the factors that measure I/O performance. BTL4 Diversity capacity, response time, throughput, interference with CPU execution. 8 What is transaction time? BTL1 The sum of entry time, response time and think time is called transaction time. 9 State little law. BTL3 Little law relates the average number of tasks in the system. It relates to Average arrival rate of new tasks with the average time to perform a task. 10 What are the steps to design an I/O system? (Apr/May 2017)BTL1 Naïve cost – performance design and evaluation • Availability of naïve design • Response time • Realistic cost performance, design and evaluation Realistic design for availability and its evaluation 11 Give the classification of buses. BTL2

	I/O buses – these buses are lengthy and have any types of devices connected to it. CPU			
	memory buses – They are short and generally of high speed.			
12	What is bus master? BTL1			
	Bus master are devices that can initiate the read or write transaction.			
10	Eg. Processor – processor are always has the bus master ship.			
13	Mention the advantages of using bus master. B1L3			
	transaction			
14	What is split transaction? BTL1			
	The idea behind this is to split the bus into request and replies, so that the bus can be used in			
	the time between request and the reply.			
15	What are the measures of latency in memory technology? BTL2			
	Access Time: Is the time between when a read is required and when the desired word			
	arrives.			
	Cycle Time: Is the minimum time between requests to memory.			
16	What are the techniques to reduce hit time? BTL1			
	The techniques to reduce hit time are:			
	• Small and simple cache: Direct mapped			
	• Avoid address translation during indexing of the cache			
	Pipelined cache access			
	• Trace cache.			
17	List the method to improve the cache performance. (Nov/Dec 2016) BTL3			
	Improving the cache performance following methods are used:			
	a. Reduce the miss rate.			
	b. Reduce the miss penalty.			
	c. Reduce the time to hit in the cache.			
18	What is split transactions? BTL1			
	With multiple masters, bus can offer higher bandwidth by using packets, as opposed to			
	holding the bus for the full transaction. This technique is called split transactions.			
19	What is transfer time? BTL1			
	Transfer time is the time it takes to transfer a block of bits, typically a under the			
	read/write head.			
20	How the conflicts misses are divided?			
	BTL3 Four divisions of conflict misses are:			
	• Eight way: Conflict misses due to going from fully associative to eight way			
	associate.			
	• Four way: Conflict misses due to going from eight way associative to four			
	way associate.			
	• Two way: Conflict misses due to going from four associative to two way			
	associate			
	• One way: Conflict misses due to going from two associative to one way			
	• One way. Conflict misses due to going from two associative to one way			
	associate.			

21	What is see	quence record	ed? BTL2		
	The sequen	ce recorded on	the magnetic	c medics is a se	ctor number, a gap, the information
	for that sect	or including e	rror correctio	n code, a gap, t	he sector number of the next sector
	and so on.	-			
22	Write the f	formula to cal	culate the C	PU time. BTL3	3
	CPU execut	tion time $=$ (C)	PU clock cyc	les + Memory s	stall cycles) x Clock cycle time.
23	What is RA	AID? BTL1	<u> </u>		
	RAID is Re	dundant Array	of Independ	ent Disks. It is	also called as redundant array of
	inexpensive	e disks. It is a v	vay of storing	g the data in dif	ferent places on multiple hard disks.
24	Explain the term availability and dependability. (Apr/May 2016) BTL2			pr/May 2016) BTL2	
	Availability	is a measure	of the service	accomplishme	ent with respect to the alternation
	between the	two states of	accomplishm	ent and interru	ption.
	Dependabil	ity is the quali	ty of delivere	d service such	that reliance can justifiable be
	placed on th	nis service.	•		
25	Differentia	te between w	rite through	cache and sno	opy cache. BTL3
	In write thr	ough cache, it	is easy to fi	nd the recent v	value of a data item since all written
	data are alv	fotobod. In a	e memory, fi	om which the	most recent value of a data item can
	requests for	a line that the	v have	le, each cache	watches the memory bus for any
	requests for	a fine that the	<u>y nave.</u> PAF	RT*B	
1	Which has	the lower mis	s rate: a 16	K B instruction	n cache with a 16 KB data cache or
	a 32 KB u	nified cache?	Use the miss	s rates in the g	given figure belowto help calculate
	the correct	answer, assu	ming 36% o	of the instructi	ions are data transfer instructions.
	Assume a hit takes 1 clock cycle and the miss penalty is 100 clock cycles. A load of				
	store hit takes 1 extra clock cycle on a unified cache if there is only one cache port to				
	satisfy two simultaneous requests. Using the pipelining terminology, the unified cache				
	Assume write-through caches with a write huffer and ignore stalls due to the write				
	buffer. (13M)BTL5				
	Answer: Pa	age :B-16 - Jo	hn L. Henne	essy	
	Size(KB)	Instructi	Data	Unified	
		on Cache	Cache	Cache	
	8	8.16	44.0	63.0	-
	10	3.82	40.9	51.0	-
	5 <u>2</u> 6 <u>4</u>	0.61	36.0	43.3	-
	128	0.30	35.3	36.2	-
	256	0.02	32.6	32.9	
					-
	Formula (3	3M)			
	Average me	emory access t	ime = Hit tim	$he + Miss rate \times$	Miss penalty
	Solving (10	M)			

2	Examine the ways to reduce miss penalty and miss rate.(Apr/May 2016, Nov/dec 2018)(13M)BTL3 Answer: Page :B-22 - John L. Hennessy
	Definition (3M)
	Average memory access time formula
	Present cache optimizations
	Improve cache performance
	• Average memory access time = Hit time + Miss rate × Miss penalty
	Categories with explanation (6M)
	Six cache optimizations
	Reducing the miss rate
	• Reducing the miss penalty
	• Reducing the time - hit cache
	Divisions of conflict misses (4M)
	• Eight-way
	• Four-way
	• Two-way
2	• One-way (direct mapped)
3	Describe cache performance and write down the formula to calculate average memory a_{000000} time (App/Max 2017) (12M) DTL 1
	Answer: Page :06 - John J. Hennessy
	Definition (2M).
	Instruction count
	Evaluate processor performance
	• Indirect performance measures
	Explanation (3M)
	Evaluating memory hierarchy performance
	• Miss rate
	Hardware performance
	Instruction count
	Formula with explanation (2M)
	Miemory hierarchy performance
	• Average memory access time = Fit time + Miss rate \times Miss penalty
	• Average memory access time - processor performance (3M)
	• Miss penalty - out of order execution processors (3M)
4	List out the categories of memory technology and explain them.(13M)BTL3
	Answer: Page :216 - John L. Hennessy
	SRAW Definition (41) SRAM static RAM
	• Bandom access memory $(\mathbf{R} \Delta \mathbf{M})$
	Retains data hits
	Explanation (9M)
	Dynamic RAM (DRAM)

	track t spindle
	sector s
	platter
	rotation Magnetic Tape(4M)
	Magnetically coated plastic strip
	• Store music
	• Backup
	Optical Disc (3M)
	Digital format
	Laser assembly
	Optical media
	• Blu-ray (BD) – Compact Disc (CD) – Digital Versatile Disc (DVD)
3	Describe the various basic cache optimization technique with example. (Apr/May
	2017)(15M) BTL3
	Definition (3M)
	Average memory access time = Hit time + Miss rate × Miss penalty
	Categories - explanation (9M)
	• Reducing the miss rate
	• Reducing the miss penalty
	• Reducing the time – cache Hill Divisions of conflict misses (3M)
	• Fight-way
	• Four-way
	• Two-way
	• One-way (direct mapped)
4	List and explain various I/O performance measures. (Nov/Dec 2016) (15M)BTL2
	Answer: Page :5-42 – I.A.Dhotre
	need of I/O Periormance (51v1)

	No counterparts
	• CPU design
	Unique measures
	• I/O throughput
	• Latency
	Explanation (6M)
	• I/O performance
	• Interference
	• Overhead
	Handling I/O interrupts
	Throughput versus Response Time (6M)
	• Three parts
	Entry time
	• System response time
	• Think time
5	Explain the categories of misses and how will you reduce cache miss rate. (Nov/Dec
	2016)(15M) BTL4
	Answer: Page :5-8 – I.A.Dhotre
	Cache performance Explanation- formula(6M)
	Instruction count
	Evaluate processor performance
	Miss rate
	Instruction count
	• Average memory access time = Hit time + Miss rate × Miss penalty
	Reducing Cache Miss Rate (9M)
	Compiler-controlled prefetch
	Hardware prefetching
	Non-blocking
	Lockup-free
	Re-fetching data
	Indexing the cache

EC6015 RADAR AND NAVIGATIONAL AIDS

LTPC 3003

OBJECTIVES:

- ✓ To apply Doppler principle to radars and hence detect moving targets, cluster, also to understand tracking radars
- ✓ To refresh principles of antennas and propagation as related to radars, also study of transmitters and receivers.
- \checkmark To understand principles of navigation, in addition to approach and landing aids as related to navigation

UNIT I INTRODUCTION TO RADAR EQUATION (9)

Introduction- Basic Radar – The simple form of the Radar Equation- Radar Block Diagram- Radar Frequencies – Applications of Radar – The Origins of Radar - Detection of Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Functions- Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations – Transmitter Power-Pulse Repetition Frequency- Antenna Parameters- System losses – Other Radar Equation Considerations.

UNIT II MTI AND PULSE DOPPLER RADAR (9)

Introduction to Doppler and MTI Radar- Delay –Line Cancellers- Staggered Pulse Repetition Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI from a Moving Platform (AMIT) – Pulse Doppler Radar – Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking – Conical Scan and Sequential Lobing - Limitations to Tracking Accuracy - Low-Angle Tracking – Tracking in Range -Other Tracking Radar Topics -Comparison of Trackers - Automatic Tracking with Surveillance Radars (ADT).

UNIT III DETECTION OF SIGNALS IN NOISE (9)

Matched –Filter Receiver –Detection Criteria – Detectors – Automatic Detector - Integrators - Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves - Atmospheric Refraction -Standard propagation - Nonstandard Propagation - The Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas – Phase Shifters - Frequency-Scan Arrays. **Radar Transmitters and Receivers** - Introduction –Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron - Crossed Field Amplifiers - Other RF Power Sources – Other aspects of Radar Transmitter - The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

UNIT IV RADIO DIRECTION AND RANGES (9)

Introduction - Four methods of Navigation - The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direction Finders – The Commutated Aerial Direction

JIT-JEPPIAAR/ECE/Mr.yokesh /IVth Yr/SEM 07/EC6015 RADAR AND NAVIGATIONAL AIDS/UNIT 1 -5/QB+Keys/Ver 2.0

REGULATION 2013

Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range (VOR) - VOR Receiving Equipment - Range and Accuracy of VOR – Recent Developments.

Hyperbolic Systems of Navigation (Loran and Decca) - Loran-A - Loran-A Equipment - Range and precision of Standard Loran - Loran-C - The Decca Navigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

UNIT V SATELLITE NAVIGATION SYSTEM (9)

Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment - Instrument Landing System -Ground Controlled Approach System - Microwave Landing System(MLS) The Doppler Effect - Beam Configurations -Doppler Frequency Equations - Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation System -Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Principles of Operation -Navigation Over the Earth – Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped-Down Systems - Accuracy of Inertial Navigation Systems-The Transit System - Navstar Global Positioning System (GPS)

TOTAL: 45 PERIODS

OUTCOMES: Upon completion of the course, students will be able to:

- ✓ Explain principles of navigation, in addition to approach and landing aids as related to navigation
- ✓ Derive and discuss the Range equation and the nature of detection.
- ✓ Describe about the navigation systems using the satellite.

TEXTBOOKS:

- 1. Merrill I. Skolnik," Introduction to Radar Systems", 3rd Edition Tata Mc Graw-Hill 2003.
- 2. N.S.Nagaraja, "Elements of Electronic Navigation Systems", 2nd Edition, TMH, 2000.

REFERENCES:

- 1. Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004
- 2. J.C Toomay, " Principles of Radar", 2nd Edition PHI, 2004

Year/Semester: IV/07

Subject Name: Radar & Navigational Aids

Subject Handler: Mr.V.Yokesh

UNIT I - INTRODUCTION TO RADAR EQUATION

Introduction- Basic Radar – The simple form of the Radar Equation- Radar Block Diagram- Radar Frequencies – Applications of Radar – The Origins of Radar - Detection of Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Functions- Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations-Transmitter Power-Pulse Repetition Frequency- Antenna Parameters- System losses – Other Radar Equation Considerations.

PART * A

Q.No.	Questions
1.	What is radar? List a few applications of radar. (BTL – 1) RADAR means Radio Detection And Ranging. Radar is an electromagnetic system for the detection and location of objects. It operates by transmitting a particular type of waveform and detects the nature of the echo signal
	 The major areas of radar application are described below Air traffic control Ship safety Bemotely sensing
	 Kenotery sensing Law enforcement Military
2	Define range to target. (BTL - 1)

JIT-JEPPIAAR/ECE/Mr.yokesh /IVth Yr/SEM 07/EC6015 RADAR AND NAVIGATIONAL AIDS/UNIT 1 -5/QB+Keys/Ver 2.0
	The range to the target is given by
	$R = \frac{cT_R}{2}$
	where
	T_R = round-trip time. It is the time it takes for the radar signal to travel to the target and back.
	$c = \text{speed of light} = 3 \times 10^8 m/s$
	A radar signal takes 100 µs to travel towards and back. Find the range to the target. (BTL - 3)
	The range to the target is given by
	$R = \frac{CI_R}{2}$
	where
3	$c = \text{speed of light} = 3 \times 10^8 \ m/s$
	Round-trip time, $T_R = 100 \mu s$
	So the range to the target is
	$cT_{\rm p} = 3 \times 10^8 \times 100 \times 10^{-6}$
	$R = \frac{c_{IR}}{2} = \frac{3 \times 10^{\circ} \times 10^{\circ} \times 10^{\circ}}{2} R = 15,000 = 15 \text{ k}$
	Define second time around ashees (DTL 1)
	Define second-time-around echoes. (BTL - 1)
4	• Echoes that arrive after transmission of the next pulse are called <i>second-time-around echoes</i> .
	• Echoes that arrive after pulse repetition period are called <i>second-time-around echoes</i> .
	Define maximum unambiguous time. (BTL - 1)
	The range beyond which the target appears as second-time-around echo is called maximum
	unambiguous range
	cT_p c
	$R_{un} = \frac{1}{2} = \frac{1}{2f_p}$
5	where
	T_p = Pulse Repetition Period
	f_p = Pulse Repetition frequency, <i>prf</i>
	$c = \text{speed of light} = 3 \times 10^8 m/s$
	The maximum distance at which the return trip to a target is completed before the next pulse is sent

	ATION 2013 ACADEMIC YEAR 2019–
	The three distinct regions of scattering behavior for the RCS of target.
	 Rayleigh region: When the wavelength is large compared to the objects dimension, scattering is said to be in the <i>Rayleigh region</i>. Optical region: When the wavelength is small compared to the objects dimension, scattering is said to be in the <i>optical region</i> Mie or resonance region: In <i>resonance region</i>, the radar wavelength is comparable to the
	objects dimension.
10	Define noise figure. (BTL - 1) The noise figure F_n of a receiver is defined by the equation $F_n = \frac{\text{noise out of practical receiver}}{\text{noise out ideal receiver at std temp } T_0} = \frac{N_0}{kT_0B_nG_n}$ where N_0 = noise output from receiver G_n = available gain
11	 Define false alarm and missed detection. (BTL - 1) False alarm: If the threshold level is set too low, noise might exceed it and be mistaken for a target. This is called a <i>false alarm</i>. Missed detection: If the threshold is set too high, weak echo signal may not exceed the threshold and will not be detected. This is called <i>missed detection</i>.
12	Define probability of false alarm and probability of detection. (BTL - 1) <i>Probability of false alarm</i> The probability that noise will cross the threshold and be called a target when only noise is present The probability of a false alarm is $P_{fa} = exp\left(-\frac{V_T^2}{2\Psi_0}\right)$ where V_T is threshold voltage Ψ_0 is the mean square value of the noise voltage. <i>Probability of detection</i>

REGUL	ATION 2013 ACADEMIC YEAR 2019–20
	Define integration. What are the types of integration? (BTL - 1)
	• The process of summing all the radar echo pulses for the purpose of improving detection is
	called <i>integration</i> .
	• The main purpose of Pulse Integration in radar is to improve signal-to-noise ratio.
13	Types of integration
	There are two types of integrations
	1. Predetection, or coherent integration
	2. Postdetection, or noncoherent integration
	What is integration efficiency of post detection integration? (BTL - 1)
	The integration efficiency for postdetection integration is defined as
	The integration efficiency for postdetection integration is defined as (S/N) .
	$E_i(n) = \frac{(S/N)_1}{n(S/N)}$
14	$n(3/N)_n$
	where $n = number of nulses integrated$
	II = Intilder of pulses integrated
	$(S/N)_1 = \text{single pulse } SNR$
	$(S/N)_n = SNR$ per pulse
	What is integration improvement factor? (BTL - 1)
	The improvement in the signal-to-noise ratio when n pulses are integrated postdetection is called
	the <i>integration improvement factor</i> . The integration improvement factor is given by
15	$I_{i}(n) = nE_{i}(n)$
	where
	$F_{n}(n)$ - integration efficiency for postdetection integration
	$L_i(n)$ = integration efficiency for postdetection integration
	Write the radar range equation in terms of average power and also represent the same for
	total energy of n pulses. (BTL - 2)
	$P_{i} G_{i} A_{i} \sigma n F_{i}(n)$
16	$R_{max}^4 = \frac{\Gamma_{av} \sigma \Gamma_e \sigma \sigma \Gamma_i(n)}{(A\pi)^2 kT F (B\pi)(S/N) f}$
	$(+n) \kappa I_0 I_n (Dt) (3/N)_1 J_p$
	$E_p GA_e \sigma n E_i(n)$ $E_T GA_e \sigma E_i(n)$
	$R_{max}^{i} = \frac{1}{(4\pi)^{2}kT_{o}F_{n}(B\tau)(S/I)_{1}} = \frac{1}{(4\pi)^{2}kT_{o}F_{n}(B\tau)(S/N)_{1}}$
	Define Dules Densitien Engenensieg (DTL 1)
	Denne Fuise Repetition Frequencies. (B1L - 1)
17	The pulse repetition frequencies (prf) are often determined by the maximum unambiguous range
	beyond which targets are not expected
	bejond which diffets die not expected.
1	

<u>REGUL</u>	ATION 2013 ACADEMIC YEAR 2019–2
	List out the Antenna Parameters. (BTL - 1)
18	 Antenna Gain Effective Area and Beam width
	Revisit Time
	Beam Shape
	Cosecant – squared Antenna Pattern
	Define Antenna Gain. (BTL - 1)
	The antenna gain $G(\theta, \phi)$ is a measure of the power per unit solid angle radiated in a particular
10	direction by a directive antenna compared to the power per unit solid angle which would have
19	radiated by an omnidirectional antenna with 100 percent efficiency. The gain of an antenna is
	$G(\theta, \phi) = \frac{power \ radiated \ per \ unit \ solid \ angle \ at \ an \ azimuth \ \theta \ and \ an \ elevation \ \phi}{nower \ accented \ by \ the \ antenna \ from \ the \ transmitter \ ((4\pi))}$
	power accepted by the untenna from the transmitter (4n)
	What are the different types of radar antenna patterns? (BTL - 1)
20	Pencil Beam
20	• Fan Beam
	Stacked Beam
	• Shaped Beam
	What are the various system losses that are available radar? (BTL - 1)
	Microwave Plumbing Losses
21	Transmission Line Loss
	Duplexer Loss
	Antenna Losses
	• Beam – shape Loss
	Scanning Loss
	 Radome Phased Array Loss
	Signal Processing Losses
	Limiting Loss
	Straddling Loss

	Sampling Loss
	Collapsing Loss
	Operator Loss
	Mention some of the applications of Radar. (BTL - 3)
22	 Military Remote Sensing Air Traffic Control (ATC) Law Enforcement and Highway Safety Ship Safety Space Aircraft safety and Navigation
1.	Derive the simple form of radar range equation. (7M) (BTL - 2) Answer: Page No. 3 & 4 - Merrill LSkolnik The radar equation relates the range of radar to the characteristics of the transmitter, receiver, antenna, target, and environment. The radar equation determines the maximum range at which any radar can detect target. This equation can be used as an important tool in designing radar system. $R_{max} = \left[\frac{P_t G A_e \sigma}{(4\pi)^2 S_{min}}\right]^{1/4} - (7M)$ where $P_t = \text{Transmitter Power (Watts)}$ $G = \text{Maximum gain of the antenna (no unit)}$ $A_e = \text{Effective area of the antenna (m^2)}$ $\sigma = \text{Radar cross-section of target (m^2)}$ $S_{min} = \text{Minimum detectable signal}$
	With neat block diagram explain the operation of pulse radar. (10M) (BTL - 1)
2.	Answer: Page No. 5 & 6 - Merrill I.Skolnik
	Pulse Radar – 2M

Block Diagram of a Conventional pulse radar with a super heterodyne receiver -8MDerive the expression for range of radar in terms of noise figure and minimum detectable **SNR** (*SNR*)_{*min*}. (13M) (BTL - 2) Answer: Page No. 16 - Merrill I.Skolnik 3. Noise Figure $F_n = \frac{S_{in}/N_{in}}{S_{out}/N_{out}} - 8M$ $R_{max}^4 = \frac{P_t G A_e \sigma}{(4\pi)^2 k T_o B F_n (S/N)_{min}} - 5M$ Radar operates at 10GHZ and peak power of 500KW. Its minimum receivable power is 0.1 pW. Its antenna has effective (capture) area of 5sqm and radar cross section of target is **20sqm. Find maximum range of radar.** (13M) (BTL - 4) Answer: Page No. 16 - Merrill I.Skolnik Frequency, f = 10 GHz, $\lambda = c/f = \frac{3 \times 10^8}{10 \times 10^9} = 0.03 \text{ m}$ Transmitter Power, $P_t = 500 \text{ kW}$ Effective area of the antenna, $A_e = 5 m^2$ Radar cross-section of target, $\sigma = 20 m^2$ Minimum detectable signal, $S_{min} = 0.1 \text{ pW} = 0.1 \times 10^{-12} \text{W}$ 4. Maximum gain of the antenna is $G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi \times 5}{0.03^2} = 69813.17$ $R_{max} = \left[\frac{P_t G A_e \sigma}{(4\pi)^2 S_{min}}\right]^{1/4} - 2M$ $R_{max} = 685 \text{ Km}.$ Radar operates at 10GHZ and peak power of 500KW. The receiver of the radar has noise 5. figure 6dB and IF bandwidth of the receiver is 3MHz. The antenna has effective (capture)

area of 0.5sqm and radar cross section of target is 20sqm. Find maximum range of radar. (13M) (BTL - 4) Answer: Page No. 33 in Merrill I.Skolnik $R_{max}^{4} = \frac{P_t G A_e \sigma}{(4\pi)^2 k T_o B F_n(S/N)_{min}} - 2M$ Answer – Derive the expression for probability of false alarm in terms of false alarm time. Derive the expression for probability of detection. (13M) (BTL - 2) Answer: Page No. 23 - 28 - Merrill I.Skolnik **Probability of False Alarm** The receiver noise at the input of to the IF amplifier is described by the Gaussian probability density function with mean value of zero, or $p(v) = \frac{1}{\sqrt{2\pi\Psi_0}} exp\left(-\frac{v^2}{2\Psi_0}\right)$ When Gaussian noise is passed through the IF amplifier, the probability density function of the envelope R is given by a form of the Rayleigh pdf: 6. $p(R) = \frac{R}{\Psi_0} exp\left(-\frac{R^2}{2\Psi_0}\right)$ Derive: Probability of False Alarm $P_{fa} = exp\left(\frac{-V_T^2}{2\omega_r}\right) - 8M$ **Probability of Detection** Echo signal of amplitude A - along with noise at the input to the IF filter. Output of the envelope detector probability-density function given by $p_s(R) = \frac{R}{\Psi_0} exp\left(-\frac{R^2 + A^2}{2\Psi_0}\right) I_0\left(\frac{RA}{\Psi_0}\right)$ Derive: Probability of Detection $P_d = \int_{V_T}^{1} p_s(R) dR - 5M$ Define integration? Why integration of radar pulses is necessary? Explain the types of 7. integration. Give the expression for integration efficiency for post integration. Define

iula	ATION 2013 ACADEMIC YEAR 2019–20
	integration improvement factor and integration loss. Express the range equation in terms of integration efficiency. (13M) (BTL - 1)
	Answer: Page No. 29 – 33 - Merrill I.Skolnik
	Definition for integration – 2M
	Process of summing all the radar echo pulses - improving detection is called <i>integration</i> . Necessities for integration $-2M$
	Improve signal-to-noise ratio. Types of integration – 2M
	 Predetection integration or coherent integration Integration before the detector. Predetection integration - phase of the echo signal to be known and preserved. n pulses - same SNR - perfectly integrated - ideal lossless predetection integrator - the integrated SNR would be n times the SNR of a single pulse. Post detection integration or noncoherent integration Integration after the detector. Phase information is destroyed - postdetection integration does not preserve RF phase. If n pulses - integrated using postdetection integrator, the integrated - less than n times the SNR of a single pulse. This loss - due to the nonlinear action of the second detector.
	Integration improvement Factor – 2M
	Improvement in the signal-to-noise ratio when n pulses are integrated postdetection. The integration improvement factor is given by
	$I_i(n) = nE_i(n)$
	Radar Equation when n pulses are integrated – 5M
	$R_{max}^{4} = \frac{P_t G A_e \sigma}{(4\pi)^2 k T_o B F_n (S/N)_n}$
	What is radar cross section of target? Explain it in detail. (7M) (BTL - 1)
0	Answer: Page No. 33 – 35 - Merrill I. Skolnik
0.	Define Radar Cross section of target – 2M
	Radar cross section of a target - (fictional) area intercepting that amount of power - scattered equally in all directions - produces an echo at the radar equal to that from the target.

	Multiple – time – around echoes that give rise to ambiguities in range. – 5M
	Discuss in detail about the various antenna parameters. (13M) (BTL - 1)
	Answer: Page No. 54 – 56 - Merrill I.Skolnik
	• Antonno Goin 2M
1	 Antenna Gan – 2W Effective erres and Beem width 2M
	• Effective area and Beam width – 5M
	• Revisit time $-2M$
	• Beam Snape – 3M
	• Cosecant squared Antenna Pattern – 3M
	PART * C
	Describe briefly the behavior of the radar cross section of a rain drop and a large aircraft
	with respect to its dependence on a (a) frequency and (b) viewing aspect. (15M) (BTL - 3)
	Answer: Page No. 33 – 40 - Merrill I.Skolnik
	Radar cross section of a target – 2M
	Radar cross section of a target - (fictional) area intercepting that amount of power - when scattered equally in all directions - produces an echo at the radar equal to that from the target. Classification of targets - 3M
1	 Simple Targets Complex Targets
	Simple targets (Rain drop) – 5M
	The sphere, cylinder, flat plate, corner reflectors rod and cone are examples of simple target.
	Complex targets (Aircraft) – 5M
	Radar cross section of targets - aircraft, missiles, ships, ground vehicles, buildings, and terrain can vary considerably depending - viewing aspect and frequency.
	Describe the chief characteristic of the radar echo from a target when its cross section is in the
	(a) Rayleigh Region, (b) resonance region and (c) Optical region.
2	Answer: Page No. 33 & 34 - Merrill I.Skolnik
	Rayleigh Region – 5M
	Wavelength - large compared to the objects dimension. Radar cross section in Rayleigh region is

EGULA	ACADEMIC YEAR 2019– 2
	proportional to f^4 - determined by the volume of the scatterer
	Resonance Region – 5M
	Radar wavelength - comparable to the objects dimension.
	Optical Region – 5M
	Wavelength - small compared to the objects dimension. Radar cross section - determined by the shape of the object.
	Explain in detail about various system losses. (13M) (BTL - 1)
	Answer: Page No. 56 – 60 - Merrill I. Skolnik
	Microwave Plumbing Losses – 4M
	Transmission Line Loss
	• Duplexer Loss
	Antenna Losses – 3M
2	• Beam – shape Loss
3	Scanning Loss
	Radome Phased Array Loss
	Signal Dragossing Losses 2M
	Signal Processing Losses – 5M
	Limiting Loss
	• Straddling Loss
	 Sampling Loss Collapsing Loss
	Operator Loss 2M

UNIT II - MTI AND PULSE DOPPLER RADAR

Introduction to Doppler and MTI Radar- Delay –Line Cancellers- Staggered Pulse Repetition Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI from a Moving Platform (AMIT) – Pulse Doppler Radar – Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking –Conical Scan and Sequential Lobing - Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking in Range - Other Tracking Radar Topics -Comparison of Trackers - Automatic Tracking with Surveillance Radars (ADT).

PART * A	
Q.No.	Questions
	What is CW Radar? What are its uses and drawback? (BTL - 1)
	The CW radar transmits continuous, electromagnetic waves and receives reflected echo signals from the
	objects. The CW radar uses Doppler frequency shift to detect moving target. So it is called CW Doppler
1.	radar.
	The CW Doppler radar is used to find
	 azimuth angle and elevation angle
	 Velocity of the target.
	• The CW Doppler radar cannot measure range.
2	Draw the block diagram of CW Radar. (BTL - 1)
	Block diagram of a simple CW radar is shown below

	$f_{t} = f_{d}$
	State of the second sec
3	 What is MTI Radar? (BTL - 1) Radar that has prf low enough to avoid range ambiguities is called an MTI radar. MTI radar has low prf It has no range ambiguities. It has Doppler ambiguities.
4	 Define Pulse Doppler radar. (BTL - 1) Radar that increases its prf high enough to avoid the problem of blind speed is called a Pulse Doppler Radar. Pulse Doppler radar has high prf. It has no Doppler ambiguities. It has range ambiguities Pulse Doppler radar uses Doppler frequency shift to detect the moving targets.
5	Draw the block diagram of MTI Radar. (BTL - 2)

	Input $T = \frac{1}{f_p}$ -1 $T = \frac{1}{f_p}$ -1 $T = \frac{1}{f_p}$ -1 $T = \frac{1}{f_p}$ -1 $T = \frac{1}{f_p}$ $T $
	Three-pulse canceler
	Input Delay line $T = V_{f_p}$ Delay line $T = V_{f_p}$ Delay line $T = V_{f_p}$
	What is staggered PRF? (BTL - 1)
	The pulse repetition frequency might be switched
10	Scan-to-scan
12	 Dwel-to-dwel
	Pulse-to-pulse
	When the <i>prf</i> is switched pulse to pulse, it is known as a staggered prf. In staggered prf, the period
	of the pulse is alternated on every other pulse.
	What is use of employing different PRFs in design of MTI Doppler filters? (BTL - 1)
	The use of more than one pulse repetition frequency offers additional flexibility in the design of
13	MTI Doppler filters.
	 It reduces the effect of the blind speeds.
	• It also allows a sharper low-frequency cutoff in the frequency response than might be
	obtained with a cascade of single-delay-line cancellers.
	What is Doppler filter bank? Give its advantages? (BTL - 1)
	A Doppler filter bank is a set of contiguous filter for detecting target.
	Advantages
	A filter bank has advantage over the single filter.
14	1. Multiple moving targets can be separated from one another in a filter bank. When the clutter
	and target echo signal appear in different Doppler filters, the clutter echo will not interfere
	with the detection of the desired moving target.
	2. A measure of the target's radial velocity can be obtained.
	3. The narrowband Doppler filters rejects more noise than the MTI delay-line canceler and

	provide coherent integration.
	What is moving target Detector (MTD)? (BTL - 1)
15	The moving target Detector (MTD) ia an example of an MTI processing system that takes
	advantage of the various capabilities offered by digital techniques to produce improved detection of
	moving target in clutter.
	What are the types of tracking radar systems? (BTL - 1)
	There are 4 types of radar that can provide the tracks of target.
10	• Single-target tracker (STT)
10	Automatic detection and track (ADT)
	Phased array radar tracking
	• Track while scan (TWS)
	Define Mono Pulse Tracker. (BTL - 1)
	A monopluse tracker is defined as one in which information concerning the angular location of a
17	target is obtained by comparison of signals received in two or more simultaneous beam. A
	measurement of angle may be made on the basis of a single pulse; hence the name monopulse.
	what are the methods by which monopulse angle measurement can be made? (B1L - 1)
18	There are two methods by which a monopulse angle measurement can be made.
	1. Amplitude-comparison monopulse
	2. Phase comparison monopulse
	What is Amplitude-comparison monopulse and Phase-comparison monopulse? (BTL - 1)
19	Amplitude-comparison monopulse method compares the amplitude of the signals simultaneously
	received in multiple squinted beams to determine the angle.
	In Phase-comparison monopulse, two antenna beams are used to obtain an angle measurement in
	one coordinate. The two beams look in the same direction and cover the same region of space.
	What is Low angle tracking? (BTL - 1)
20	Tracking a target at low elevation angles is called low angle tracking. Radar that tracks at low
	elevation angle illuminates the target via two paths. One is the direct path. The other is reflection

	PART * B
	Draw and explain simple CW Radar, Pulse Doppler radar, and MTI radar. (13M) (BTL - 2)
	Answer: Page: 70 – 74 - Merrill I. Skolnik
	Block diagram of CW radar – 4M
1.	CW radar transmits - continuous electromagnetic waves - receives reflected echo signals from to objects. CW radar - Doppler frequency shift to detect moving target. Block Diagram of Pul Doppler Radar - 4M
	A radar - increases its prf high enough - avoid the problem of blind speed is called a Pulse Doppl radar
	Block Diagram of MTI radar – 5M
	A radar - <i>prf</i> low enough - avoid range ambiguities is called an MTI radar .
	Explain in detail about Delay line canceller. (13M) (BTL - 1)
	Answer: Page: 106 – 110 - Merrill I.Skolnik
	Delay Line canceller – 2M
	Delay-line canceler - example of a time-domain filter - rejects stationary clutter at zero frequency.
	Frequency response of single delay line canceller – 3M
2	The frequency response of the single delay-line canceler is given by
Ζ.	$H(f) = 2 \sin\bigl(\pi f_d T_p\bigr)$
	Blind Speeds – Definition – 2M
	The radial velocity of the target at which the MTI response is zero. Blind speeds - target speeds where the target - not be detected - there will be uncanceled clutter
	residue. Methods to reduce Blind Speeds – 2M
	There are four methods for reducing the effects of blind encoder

3.

4

- 1. Operate the radar at long wavelengths
- 2. Operate the radar with high prf.
- 3. Operate the radar with more than one prf.
- 4. Operate the radar with more than one RF frequency

Clutter Attenuation – 2M

The clutter attenuation is a useful measure of the performance of an MTI radar in canceling clutter.

MTI Improvement Factor – 2M

The signal-to-clutter ratio - output of the clutter filter divided by the signal-to-clutter ratio - input of the clutter filter, averaged uniformly over all target velocities of interest.

MTI improvent factor =
$$I_f = \frac{(signal/clutter)_{out}}{(signal/clutter)_{in}}\Big|_{f_d} = \frac{C_{in}}{C_{out}} \times \frac{S_{out}}{S_{in}}\Big|_{f_d}$$

$= CA \times average gain$

Write short notes on Staggered Pulse repetition frequencies. (8M) (BTL - 1)

```
Answer: Page: 114 – 117 - Merrill I. Skolnik
```

Frequency Response of a single delay – line canceller with two different prfs – 5M

The use of more than one pulse repetition frequency offers additional flexibility in the design of MTI doppler filters.

- Reduces the effect of the blind speeds.
- Allows a sharper low-frequency cutoff frequency response obtained with a cascade of single-delay-line cancellers.
- Frequency Response of the filter 3M

Write short notes on Doppler Filter Banks (7M) (BTL - 1)

Answer: Page: 117 – 119 - Merrill I. Skolnik

Need for Doppler Filter Bank – 2M

Doppler filter bank - set of contiguous filter for detecting target.

REGUL	ATION 2013 ACADEMIC YEAR 2019– 20
	Advantages of Filter Bank – 2M
	 Multiple moving targets - separated from one another in a filter bank. When the clutter and target echo signal appear in different Doppler filters, the clutter echo will not interfere with the detection of the desired moving target. A measure of the target's radial velocity can be obtained. The narrowband Doppler filters rejects more noise than the MTI delay-line canceler - provide coherent integration. Frequency response of the N filters of the filter bank – 3M
	The magnitude of the frequency response function is
	$ H_k(f) = \left \sum_{i=1}^N e^{-j2\pi(i-1)[fT - k/N]} \right $
	Describe in detail about the block diagram of a digital MTI Doppler signal processor and explain how blind speed in an MTI radar. (13M) (BTL - 2)
	Answer: Page: 119 – 121 - Merrill I.Skolnik
	Block Diagram of Digital MTI Doppler Signal Processor. – 6M
	Advantages offered by digital MTI processing – 2M
5.	 Compensation for "blind phase" - causes a loss due to the difference in phase between the echo signal and the MTI reference signal. This is achieved by use of I and Q processing. Greater dynamic range can be obtained. There is no problem in making the delay times in the digital memory synchronous with the radar's prf
	 Digital processors - obtained with many different filter characteristics. Digital processors can be made reprogrammed.
	 Digital MTI is more stable - reliable than MTI. Blind phases L and O channels - 5M
	Explain in detail about Moving Target Detector (13M) (BTL - 2)
6.	Answer: Page: 7 – 9 - Merrill I.Skolnik
	Original MTD – 3M
1	

LOOL	
	Coherent Processing Interval – 3M
	Filter Bank – 3M
	Clutter Map – 2M
	Adaptive Thresholds – 2M
	Discuss in detail about MTI from a Moving Platform. (13M) (BTL - 1)
	Answer: Page: 140 – 142 - Merrill I.Skolnik
7	Compensation for Clutter Doppler Shift (TACCAR) – 3M
7.	Compensation for Clutter Doppler Spread (DPCA) – 3M
	Compensation for Antenna Scan Modulation – 3M
	Space – time Adaptive processing (STAP) – 2M
	Explain in detail about Pulse Doppler Radar. (7M) (BTL - 1)
	Answer: Page: 139 - 140 - Merrill I.Skolnik
	Pulse Doppler Radar – Definition – 2M
8.	Different prf Doppler radar – 5M
	 High – prf Pulse Doppler radar
	 Medium – prf Pulse Doppler Radar
	• $Low - prf$
	What is more rules tracking? Discuss in detail how the applitudes of signals simultaneously.
	volations in multiple squinted beams are compared to determine the angle (12M) (PTL 2)
	received in multiple squarted beams are compared to determine the angle. (15W) (BTE - 2)
9.	Answer: Page: 160 - 166 - Merrill I.Skolnik
	Monopulse tracker – 2M
	Radar in which information concerning the angular location of a target- obtained by comparison of signals received in two or more simultaneous beam.

<u>L00L</u>	The full the
	Amplitude – comparison Monopulse – 6M
	 Block Diagram
	 Hybrid Junction
	 Monopulse in two angle coordinates
	Automatic Gain Control
	Phase – comparison Monopulse – 5M
	In Phase-comparison monopulse, two antenna beams are used - obtain an angle measurement in
	one coordinate. The two beams look in the same direction - cover the same region of space. For the
	two beams - look in the same direction, two antennas - used in phase-comparison monopulse.
	With neat diagrams explain the operation of sequential lobing and conical scan. (13M)
	(BTL - 2) Answer: Page: 153 - 158 - Merrill I.Skolnik
	Sequential Lobing – 7M
	One way of obtaining the direction and the magnitude of the angular error in one coordinate is by
10	alternately switching the antenna beam between two positions. This is called lobe switching ,
10.	sequential switching, or sequential lobing.
	Conical Scan – 6M
	Radar in which the squinted beam - continuously rotated to obtain angle measurements in two
	coordinates for tracking the target. The conical scan antenna is also known as con-scan .
	 Block Diagram Automatic Gain Control
	what does a medium – pri pulse Doppler radar do better than a high – pri pulse Doppler
1	radar: what does a high – pri radar do better than a medium – pri pulse Doppler radar. $(15M)$ (PTI 2)
1	(13141) (D1L - 3) Answer: Page: 114 115 Merrill I Skolnik
	Allower. 1 age. 114 - 115 - Wiellill Lokullik
	Pulse Doppler radar – 2M

	Prf in Doppler Radars – 3M
	Comparison of Medium and High prf pulse Doppler radar – 5M
	Comparison of High and Medium prf pulse Doppler radar – 5M
	Compare the amplitude - comparison monopulse tracker and the conical scan tracker with
	respect to accuracy at long, medium and short ranges; complexity; the number of pulses
	usually used for an angle measurement; type of application where each might be preferred.
2	(15M) (BTL - 3)
Ζ	Answer: Page: 153 – 158 & 160 – 166 - Merrill I.Skolnik
	Comparison of amplitude – comparison monopulse tracker and conical scan – 7M
	Pulses used for angle measurement – 4M
	Applications – 4M
	Write short notes on Low angle Tracking. (7M) (BTL - 1)
	Answer: Page No. 172 - 176 - Merrill I.Skolnik
3	Low – angle tracking illustrating the surface – reflected path and the targets image below the surface – $3M$
	Regions identified according to elevation angle – 4M
	 Side lobe Region
	 Main – beam region
	 Horizon region

UNIT III - DETECTION OF SIGNALS IN NOISE

Matched –Filter Receiver –Detection Criteria – Detectors –-Automatic Detector - Integrators - Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves -Atmospheric Refraction -Standard propagation - Nonstandard Propagation - The Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas – Phase Shifters - Frequency-Scan Arrays.\

Radar Transmitters and Receivers - Introduction –Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron - Crossed Field Amplifiers - Other RF Power Sources – Other aspects of Radar Transmitter.- The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

	PART * A
Q.No.	Questions
	What is Matched Filter? (BTL - 1)
1.	Maximizing the output peak-signal-to-noise (power) ratio of radar maximizes the detectability of a
	target. A linear network that does this is called a matched filter.
2	What is correlation receiver? (BTL - 1)
_	The output of a matched filter is the cross-correlation between the received signal and the

	LOOL	
		transmitted signal. So it is possible to implement the matched filter as a cross correlation process.
		This is known as correlation receiver
		What is Neyman – Pearson Observer? What is likelihood ratio? (BTL - 1)
		Neyman – Pearson Observer
		• Neyman – Pearson Observer is the usual procedure for establishing the decision
		threshold at the output of the radar receiver.
		In Neyman-Pearson observer, the probability of a Type I error (false alarm) is fixed, and
		the probability of Type II error (missed detection) is minimized.
	3	
		Likelihood ratio
		Likelihood ratio is defined as the ratio two probability density functions, with and without signal
		present.
		$L_r(v) = \frac{p_{sn}}{v}$
		p_{sn} = probability density function for signal-plus-noise
		p_n = probability density function for noise alone
		What is detector? What are the types of detector? (BTL - 1)
		The detector is portion of the radar receiver that extracts the modulation from the carrier in order to
		decide whether the signal is present or not.
		Types of detector
	4	
		• Optimum envelope detector
		Logarithmic detector
		• I,Q detector
		Coherent detector
		What is integrator? What are the various types of integrators used in radar system? (BTL - 1)
		Integrator sums all the radar echo signals (pulses) for the purpose of improving detection.
	5	
		Types of integrators
		 ✓ Moving window integrator
- 1		

	 ✓ Binary integrator
	✓ Batch integrator
	✓ Feedback integrator
6	What is CFAR receiver? (BTL - 2) Constant False Alarm rate Receiver is an electronic device which maintains the false alarm constant by automatically raising the threshold level to keep the clutter echoes and external poise from overloading the
	automatic tracker with unnecessary information
	What is refraction? (BTL - 1)
7	Refraction is bending of electromagnetic waves. Refraction of radar waves in atmosphere is due to the
	variation of velocity of propagation with altitude
	Define Refractive Index. (BTL - 1)
	Index of refraction (refractive index) is a measure of the velocity of propagation.
8	
	$indescription = \frac{velocity of propagation in free space}{velocity of propagation in free space}$
	velocity of propagation in specific medium
	What are the techniques to measure refractivity? (BTL - 1)
	Techniques to measure refraction are
	✓ Radiosonde
9	V Heliconter probes
	 Hencopter probes
	Small rocket probes
	✓ Refractometer
	What is Electronically Steered Phase Array Antenna? List its advantages. (BTL - 1)
	Phase array is a directive antenna made up of a number of individual antennas, or radiating
	elements.
10	It has the advantage of steering the beam electronically by changing the phase of the current at each
	radiating element.
	Advantages
	✓ Ranid beam-steering

REGU	LATION 2013 ACADEMIC YEAR 2019– 20
	✓ Large peak and large average power
	✓ Multiple-target detection
	\checkmark A convenient means to employ solid-state transmitters
	✓ Lower radar cross section
	What is phase shifter? (BTL - 1)
11	The beam of linear array can be steered in angle by changing the phase of the current at each
	element. This is achieved by phase shifter. Phase shifters are also called Phasor.
	What are the types of Phase Shifters (BTL - 1)
	Types of phase shifters
	1. Diode phase shifters
	✓ Digitally switched lines
12	✓ Hybrid coupled
12	 ✓ Loaded-line ✓ Varactor phase shifters
	2. Ferrite phase shifters
	✓ Reggia-Spencer phase shifter
	✓ Latching ferrite shifter
	✓ Twin-ferrite latching phase shifter
	✓ Dual-mode ferrite phase shifter
	What is Klystron? (BTL - 1)
13	The klystron is a RF power source. It is an example of linear-beam-tube. It is basically a vacuum
15	tube which operates on the concept of velocity modulation of electrons. It has high gain and good
	efficiency. It is capable of high peak power and high average power.
	What is Traveling-wave-tube? (BTL - 1)
14	Traveling wave tube is a linear-beam-tube, with cathode, RF circuit, and collector separated from
	one another. The chief advantage of TWT is that it has wide bandwidth.
	What is magnetyon? (PTI 1)
15	what is magnetron: (D1L - 1)
13	Magnetron is high-power RF power source. It is a power oscillator. It is a crossed-field device in
	that its electric field and magnetic field are perpendicular to one another. The compact size and

	efficient operation of magnetron allowed radar to be small enough to be used in military aircraft,
	and submarines.
	What are the advantages of Solid state RF Power sources? (BTL - 1)
	The advantages of Solid state RF Power sources are
	 Individual solid-state devices have long MTBF (mean time between failures)
16	 Maintenance is relatively easy with the modular construction of solid state.
	 Very wide bandwidths can be obtained.
	 No cathode heater is required
	What are Duplexer and Receiver Protectors? (BTL - 1)
	Duplexer
	• Pulse radar can time share a single antenna between the transmitter and receiver by
	employing a fast-acting switching device called a duplexer .
	• On transmission the duplexer must protect the receiver from damage, and on reception it
17	must channel the echo signal to the receiver and not to the transmitter. For high-power
	applications, duplexer is a gas-discharge device called TR (Transmit-Receive) switch.
	Receiver Protectors
	In addition to duplexer, a receiver may require diode or ferrite limiters to limit the amount of
	leakage that gets by the TR switch. These limiters are called receiver protectors. It provides
	protection from the high-power radiation of other radar that enters the radar antenna.
	PART * B
	What is matched filter? Derive the expression for its frequency response, impulse response and output. (13M) (BTL - 2)
1.	Answer: Page: 369 – 375 - Merrill I.Skolnik
	Definition – 2M
	Matched Filter Frequency Response – 2M
1	

	Matched Filter Impulse Response – 2M
	Derivation of Matched – filter Frequency Response – 4M
	Output Signal from Matched Filter – 3M
	Write short notes on detection criteria. (7M) (BTL - 1)
	Answer: Page: 376 - 382 - Merrill I.Skolnik
	Neyman Pearson Observer – 2M
2.	Likelihood – Ratio Receiver – 1M
	Inverse Probability Receiver – 2M
	Sequential Observer & Sequential Detection – 2M
	Explain in detail about various types of detectors. (13M) (BTL - 2)
	Answer: Page: 382 - 386 - Merrill I.Skolnik
	Optimum Envelope Detector Law – 4M
3.	Logarithmic Detector – 3M
	I, Q Detector – 4M
	Coherent Detector – 2M
	What is integrator? Explain the various types of integrators used in radar system. (13M)
	(B1L - 1)
	Answer: Page: 390 - Merrill I.Skolnik
4.	Moving Window Integrator – 4M
	Binary Integration – 3M
	Batch integrator – 3M
	Feedback Integrator – 2M
	Explain about CFAR Receiver. (8M) (BTL - 1)
5.	Answer: Page No. 392 – 395 in Merrill I.Skolnik
1	

	Constant False Alarm Rate (CFAR) receiver maintains a constant false-alarm rate by adaptively changing the threshold.
	Cell Averaging CFAR – 3M
	CFAR Loss – 2M
	Clutter Edges – 3M
	Briefly list the various parts of Signal Management that occur throughout the radar system.
	(13M) (BTL - 1)
6	Answer: Page: - Merrill I.Skolnik
0.	Component parts of Radar Signal Management – 6M
	Resources for Signal Management – 5M
	Constraints – 2M
	Explain in detail about Reflector Antennas. (13M) (BTL - 1)
	Answer: Page - 235 – 240 - Merrill I.Skolnik
7	Paraboloid – 3M
/.	Offset – fed Reflector – 3M
	Cassegrain Antenna – 3M
	Parabolic Reflector – 4M
	Explain in detail about Electronically Steered Phase Array Antennas (8M) (BTL - 1)
	Answer: Page: 278 – 283 - Merrill I.Skolnik
8.	Electronically Steered Phase Array – Introduction – 3M
	Radiation Pattern of Phased Arrays – 5M
	Explain in detail about Phase Shifters. (8M) (BTL - 1)
9.	Answer: Page: 286 – 296 - Merrill I.Skolnik
	Key Points: About Phase Shifters – 3M

REGUL	ATION 2013 ACADEMIC YEAR 2019–20
	Types of Phase Shifters – 5M
	(i) Diode Phase Shifters
	(ii) Ferrite Phase Shifters
	(iii) Other Phase Shifters
	Explain in detail about klystron, Traveling wave tube, and magnetron. (13M) (BTL - 1)
	Answer: Page: 192, 200 & 206 - Merrill I.Skolnik
10.	Klystron – 5M
	Travelling wave tube – 4M
	Magnetron – 4M
	PART * C
1	 b) a when block diagram of a correlation receiver. Explain why the correlation receiver can be considered equivalent to the matched filter receiver in detection performance. Under what conditions, if any, might one choose to implement a correlation receiver rather than a matched filter receiver? (15M) (BTL - 3) Answer: Page:369 – 375 - Merrill I.Skolnik Block diagram of a correlation receiver – 5M Correlation receiver can be considered equivalent to the matched filter receiver in detection performance – 5M Implement a correlation receiver rather than a matched filter receiver – 5M
2	How does the performance of a radar operator making detection decisions by viewing the e- raw video output of a radar display compare to the performance of an automatic detector? (15M) (BTL - 3) Answer: Page: 388 - 391 in Merrill I.Skolnik Need for Automatic Detectors – 2M Classification of Automatic detectors – 13M
3	Explain in detail about Linear Beam Power Tubes. (13M) (BTL - 1) Answer: Page: 192, 200 & 206 - Merrill I. Skolnik

REGULATION 2013

502111101(2010			
	Klystron – 7M		
	Travelling Wave Tubes – 6M		

UNIT IV - RADIO DIRECTION AND RANGES

Introduction - Four methods of Navigation - The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direction Finders – The Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range (VOR) - VOR Receiving Equipment - Range and Accuracy of VOR – Recent Developments.

Hyperbolic Systems of Navigation (Loran and Decca) - Loran-A - Loran-A Equipment - Range and precision of Standard Loran - Loran-C - The Decca Navigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

PART * A		
Q.No.	Questions	
1.	Define Navigation. (BTL - 1)	
	Navigation is the art of directing the movements of craft from one point to another along a desired path.	
2	Define electronic navigational aids. (BTL - 1)	
	Navigational systems which employ electronics in some way for directing the movements of craft from one	
	point to another along a desired path is called electronic navigation system.	
	What are the four methods of navigation? (BTL - 1)	
	1. Navigation by pilotage	
3	2. Celestial or astronomical navigation	
	3. Navigation by dead –reckoning	
	4. Radio navigation	
4	What is astronomical navigation? (BTL - 1)	
	Astronomical or Celestial navigation is accomplished by measuring the angular position of celestial bodies.	
5	What is navigation by dead reckoning? (BTL - 1)	

REGULA	ATION 2013 ACADEMIC YEAR 2019–20
	The position of the craft at any instant of time is calculated from the previously determined position, the
	speed of its motion with respect to earth along with the direction of its motion and the time elapsed.
	What is the important source of antenna effect? How the antenna effect is minimized?
6	(BTL - 1)
	The important source is the asymmetry of the loop antenna with respect to the ground.
	To minimize the antenna effect, the centre of the loop is earthed and its output is thereby balanced.
	What is Direction Finder? Mention the types of Direction Finder. (BTL - 1)
	(i) Manual Direction Finder
	Loop DF
	Aural Null DF
7	• Goniometer
	Adcock DE
	(ii) Automatic Direction Finder
	The radio compass
	• The radio compass
	A VHF phase comparison automatic direction finders
	Give the disadvantage of loop direction finder? (BTL - 1)
7	1. The loop is small enough to be rotated easily. This results in small signal pickups.
	2. To facilitate manual operation, the loop is located near the receiver.
	What are the errors arising in direction finders? (BTL - 2)
	1. Errors due to abnormal polarization of the incoming wave
8	2. Errors due to abnormal propagation
	3. Site errors
	4. Instrumental errors
9	Define mountain effect? (BTL - 1)
	In air borne direction finders, mountainous terrain may cause errors when there is simultaneous reception of
	signal from the transmitter by a direct path and by reflection from the mountain side. This is called mountain
	effect.
10	What is the need of Adcock direction finders? (BTL - 1)
	The Adcock direction finders are designed to eliminate polarization errors by dispensing with the horizontal
	members.

REGUL	ATION 2013 ACADEMIC YEAR 2019– 2
	What are the types of automatic direction finders? (BTL - 1)
11	1. The radio compass
	2. A VHF phase comparison automatic direction finders
	What are the two types of radio ranges in use? (BTL - 1)
12	1. Low frequency four course radio range
	2. VHF Omni directional radio range
	What are the sources of errors in VOR system? (BTL - 1)
13	1 Ground station and sizeroft againment
	2. Site imperularities
	2. She integuianties
	A Polarization
	 4. For a light of the system of
14	Denne hyperbolic system of havigation: (BTL - 1)
	Hyperbolic systems are based on the measurement of the difference in the time of arrival of electromagnetic
	waves from two transmitters to the receiver in the craft.
	what are the different hyperbolic havigational systems? (B1L - 1)
15	Different hyperbolic navigational systems are
15	• LORAN
	DECCA
	• OMEGA.
	Define LORAN? What is the operating frequency of LORAN-C? (BTL - 1)
	 LORAN is Long Range Navigational Aid.
1.6	 LORAN is a pulse system.
16	• The ground station transmits a train of pulses with fixed time relation between them and at the
	receiver. These pulses are identified and the delay between them is measured on a cathode ray
	oscilloscope.
	 LORAN-C operates in the band 90-110 KHZ.
	Define DECCA navigation system? (BTL - 1)
17	In Decca system, the measurement of the time difference in the reception of signals from two stations is
	achieved by measuring the phase difference between the signals of the two stations.
REGUL	ATION 2013 ACADEMIC YEAR 2019–2
-------	---
	What are the advantages of OMEGA system? (BTL - 1)
18	1. At low frequency in the 10KHZ range, the coverage is increased
	2. Loss of power at this frequency is low.
	PART * B
	Explain the four methods of navigation in detail? (13M) (BTL - 1)
	Answer: Page: 2 – 5 - N S Nagaraja
	1. Navigation by pilotage – 4M
	The navigator fixes his position on a map by observing the known visible landmarks.
	2. Celestial or astronomical navigation – 3M
	Accomplished - measuring the angular position of celestial bodies. The navigator measures the
	elevation of the celestial bodies with a sextant and notes the precise time at which the measurement
1.	is made with a chronometer.
	3. Navigation by dead –reckoning – 3M
	The position of the craft at any instant of time is calculated from the previously determined position, the
	speed of its motion w.r.t earth along with the direction of its motion and the time elapsed.
	Dead – Reckoning (DR) stands for 'deduced calculation'
	4. Radio navigation – 3M
	This method is based on the use of electromagnetic waves to find the position of the craft.
	What is Direction Finder? Derive an expression for resultant valtage for a lean antenna along
	with the procedure for Direction Finding. (13M) (BTL - 2)
2.	Answer: Page: 6 - 10 - N S Nagaraja
	Direction Finder $-2M$
	Loop Antenna
	• Its Setting – 3M
	Voltages are induced in the vertical members of the loop, but not in its horizontal members as the
	wave is vertically polarized.

	• Phasor Diagram – 3M
	The resultant voltage around the loop is thus
	$e_1 - e_2 = 2a\varepsilon\cos\left(\omega t - \frac{\pi}{\lambda}b\cos\theta\right) - \cos\left(\omega t + \frac{\pi}{\lambda}b\cos\theta\right)$
	$= \sqrt{2} a\varepsilon 2 \sin\left(\frac{\pi}{\lambda} b \cos\theta\right) \sin \omega t$
	• Polar Diagram – 3M
	The output amplitude is proportional to $\cos \theta$. The polar diagram of the loop antenna is, therefore a figure –
	of – eight.
	• Polar Diagrams of combined vertical antenna and loop antenna – 2M
	Write short notes on Aural Null Direction Finders & Goniometer (8M) (BTL - 2)
	Answer: Page: 12 – 13 - NS Nagaraja
	Input circuit of Aural Null Direction Finder – 4M
	The input circuit - manually operated loop direction-finder. This circuit illustrate one method by which
3.	the voltage required for sense finding - obtained an introduced in to the loop circuit.
	Sketch of Goniometer – 4M
	It uses two fixed loops, mutually perpendicular - combining their outputs in a 'goniometer'. The loops,
	being fixed - as large as practicable - goniometer can be placed along with the receiver in any convenient
	location.
	Explain the errors arising in direction finders? (13M) (BTL - 2)
	Answer: Page: 14 – 19 - N S Nagaraja
	1. Polarization Error – 3M
4.	2. Errors due to abnormal propagation – 4M
	3. Site errors – 4M
	4. Instrumental errors – 2M
5.	Explain in detail about Adcock Directional Finder and its advantages over loop antenna (8M)
	(BTL - 2)

	Answer: Page: 19 – 20 - N S Nagaraja
	Adcock Direction Finders – 8M
	Polarization errors arise owing to the voltage picked up - horizontal members of the loop.
	The Adcock antenna - designed to eliminate polarization error - dispensing with the horizontal
	members.
	What are advantages of Automatic Direction Finders and explain any one type in detail. (7M)
	(BTL - 1)
	Answer: Page No. 21 – 29 - N S Nagaraja
6.	Advantages of Automatic Direction Finders - 2M
	Manually operated direction finders - simple in construction - needs an operator always - aircrafts
	this is not possible. Disadvantage - speed of operation at very high speed - cause errors in direction
	finding.
	Radio Compass (Or) VHF Phase comparison Automatic Direction – Finder – 5M
	Explain the basic principle of VOR along with its Block diagram (13M) (BTL - 2)
	Answer: Page No. 35 – 40 - N S Nagaraja
	Basic Principle – 2M
	Range transmitter radiates two patterns - distinguishable by different modulations - one of which is Omni-
	directional - caries the modulation of a reference 30 Hz sinusoid - second pattern is figure-of-eight one, and
7.	therefore, the combination gives rise to a rotating cardioid at the receiving point, the rotating cardioid, after
	demodulation, gives a 30 Hz signal of variable phase, while the Omni- directional signal gives a 30 Hz signal
	of fixed reference phase.
	Block diagram of VOR ground Equipment – 6M
	Modulation Eliminator Circuit 5M
	Modulation Emminator Circuit – 5W
8.	Explain in detail about VOR Receiving Equipment (7M) (BTL - 2)
	Answer: Page: 40 - 42 - N S Nagaraja

	Instrumentation part of VOR receiver – 7M
	The air-borne equipment - utilize the VOR facility consists of a broad band Omni-directional antenna, a
	multichannel amplitude modulated receiver which can be tuned over the required band, and an
	instrumentation unit - processes the receiver output to obtain the course indication.
	Explain in detail about LORAN - A Navigational system. (8M) (BTL - 2)
	Answer: Page: 48 – 51 - N S Nagaraja
0	The sequence of transmission and reception of LORAN – A – 4M
2.	LORAN A operates in higher MF band around 2MHz.
	LORAN A Display – 3M
	LORAN A Equipment – 1M
	Write short notes on LORAN C. (6M) (BTL - 2)
	Answer: Page No. 53 – 54 in N S Nagaraja
10.	About LORAN – C – 2M
	Loran – C operates in the band 90 -110 kHz.
	LORAN C Pulses – 4M
	Write short notes on OMEGA system (7M) (BTL - 1)
	Answer: Page: 62 – 63 - N S Nagaraja
12.	About OMEGA System – 3M
	Transmission format of omega stations – 4M
	PART * C
	Show that the voltage indices in the loop when it is derived on the basis of the rate of change
1	of magnetic flux linking the loop is the same as the given equation. (15M) (BTL - 3)
	Answer: Page: 6 – 10 - N S Nagaraja
	I oon Antenna = AM
	Deriving the resultant values around the loop 11M
	Deriving the resultant voltage around the $100p - 11M$

	Explain in details about Decca Navigation Systems and its Receivers. (15M) (BTL - 3)
	Answer: Page: 54 – 61 - N S Nagaraja
2	Decca Navigation System – 6M
	Decca Chain – 4M
	Decca receivers – 5M
	Explain in detail about Decca system. (13M) (BTL - 1)
	Answer: Page: 54 – 59 - N S Nagaraja
	Decca Chain (Normal Transmission and Lane Identification) – 7M
3	Operates in LF band (between 70 and 120 kHz) - employs unmodulated continuous waves. The measurement
	of the time difference - reception of signals from two stations - fixes the position on a hyperbola, is
	accomplished - measuring the phase difference between the signals of the two stations, the radiations of
	which are phase – locked, instead of the time interval between the pulses, as in Loran.
	Decca receiver – 6M

UNIT V - SATELLITE NAVIGATION SYSTEM

Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment - Instrument Landing System - Ground Controlled Approach System - Microwave Landing System(MLS) The Doppler Effect -Beam Configurations -Doppler Frequency Equations - Track Stabilization - Doppler Spectrum -Components of the Doppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Principles of Operation - Navigation Over the Earth – Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped-Down Systems - Accuracy of Inertial Navigation Systems-The Transit System - Navstar Global Positioning System (GPS)

PART * A	
Q.No.	Questions
	Give the Secondary Radar systems? BTL – 1
1.	1. DME (Distance Measuring Equipment)
	2. TACAN (Tactical Air Navigation)

REGULATION 2013 ACADEMIC YEAR 20	
2	Define TACAN? BTL – 1 TACAN provides both range and bearing information with the same radiation.
	What are the types of landing aids? BTL – 1
3	1. Instrument landing system
5	2. Microwave Landing system
	3. Ground controlled approach.
	What is meant by Localizer? BTL – 2
4	The localizer operates in the VHF band (108-110 MHZ) and consists of a transmitter with an antenna system.
	The radiation of which has two lobes, one with a predominant modulation of 90 Hz and other with 150 Hz.
	What are the types of Radar present in the Ground controlled approach systems? BTL – 1
5	1. Surveillance radar element
	2. Precision approach radar
	What are the disadvantages of ILS? BTL – 1
6	1. Provides a single approach path along the extended centre line of the runway.
	2. It is site sensitive and subject to distortion and bending of the approach path due to site irregularities.
7	What are the basic elements of a MLS system? BTL - 1
	1. Azimuth beam equipment
	2. Elevation beam equipment

	3. Distance measuring equipment
	What is meant by Doppler navigation? BTL - 1
8	It employs the Doppler Effect to determine the velocity of the craft in a frame of coordinates fixed with
	respect to the aircraft.
	Define Frequency trackers? BTL - 1
9	The frequency tracker locates the centre of the noise like Doppler spectrum and gives the output the pure
	signal of this frequency.
	Define inertial navigation? BTL - 1
10	Inertial navigation is a system of dead reckoning navigation in which the instruments in the craft determines
	its accelerations and by successive integration, obtain its velocity and displacement.
	What are the features of Navigation over earth? BTL - 1
11	1. The system of coordinated should be fixed with reference to earth.
	2. The coordinate system most convenient for use is latitude and longitude.
	3. Avery large gravitational fields is present at the surface of the earth.
	What are the components of inertial navigation systems? BTL - 1
12	1. Accelerometers
12	2. Gyros and stabilized platforms
	Define DECTRA? BTL - 1
12	DECTRA is a Decca tracking and ranging. This is a long range hyperbolic navigational system working at a
15	frequency of about 70 KHz. The system is designed to provide navigation information over a long route,
	particularly along the sea.
	Define CONSOL 2 PTL 1
14	Define CONSOL: BIL - 1
	11 is a rotating beacon operating in the LF/MF band which employs a system of three antennas producing a
	multi lobed pattern which is switched to produce a number of equi signals as in the radio range.
15	Define CONSOLAN? BTL - 1
_	CONSOLAN is same as CONSOL except that a two antenna system is used instead of three antennas.

REGULATION 2013

16	What are Marker Beacons? BTL - 1
	These are Radio beacons which are intended to mark some salient points.
17	Define SHORAN? BTL - 1
	Short Navigation System is a secondary radar system in which fix is obtained by the craft, which carriers the

REGULATION 2013

	interrogator, by simultaneously interrogating two ground beacons.
18	What is meant by Radio Sextant? BTL - 1
	This is a Sextant operating on the radio frequency emission of heavenly bodies, like a radio telescope.
	What are the disadvantages of low frequency four course radio ranges? BTL - 1
	1. Limited number of courses (four)
19	2. Poor signal/noise ratio
	3. Fatigue caused by listening to the tones
	4. Difficulty of identifying the course
	What is meant by Doppler tolerant waveform? BTL - 1
20	A Doppler tolerant waveform is one whose signal to noise ration out of its matched filter is independent of
	the Doppler frequency shift. Such waveforms are called as Doppler invariant
	Define conduction Dedeug DET 1
	Denne synthetic Aperture Radar? B1L - 1
21	SAR produces a high-resolution image of a scene of the earth's surface in both range and cross rage. It can
	produce images of scenes at long range and in adverse weather that are not possible with infrared or optical
	sensors.
	What are the target recognition applications? BTL - 2
	1. Military combat identification
22	2. Ballistic missile target discrimination
	3. Meteorological observation
	4. Battlefield surveillance
	PART * B

	Mention the types of Secondary Radar Systems. Briefly explain about any one secondary
	radar systems in detail. (13M) BTL - 2
	Answer: Page: 65 – 75 - N S Nagaraja
	Introduction about DME (3M)
1.	Operation of DME
	• DME Transmissions (4M)
	• Air – borne DME Interrogator (4M)
	• DME Beacon (2M)
	(OR)

	Introduction about TACAN (6M)
	TACAN Equipment (7M)
	Explain the Instrument Landing systems? (13M) BTL - 1
	Answer: Page: No. 78 – 86 - N S Nagaraja
	• Localizer (3M)
2	• Glide slope system (3M)
2.	• Receiving equipment (3M)
	• Course sharpness and width (2M)
	• Marker beacon (2M)
	Explain in detail about Microwave Landing System. (13M) BTL - 1
	Answer: Page: 90 – 96 - N S Nagaraja
2	• Basic elements of the Microwave Landing System (5M)
3.	• Beam Scanning Technique in MLS (4M)
	• Antenna system for MLS (4M)
	Explain in detail about Ground – Controlled Approach System (13M) BTL - 2
	Answer: Page: 87 – 90 in N S Nagaraja
4.	• Surveillance Radar Element (6M)
	• Precision Approach Radar (7M)
	Discuss the Deppler payigation with a post block diagram (SM) PTI 1
	Answer: Dage: 08 104 N.S. Nagareia
	Answei. Fage. $36 - 104 - N S Nagaraja$
5.	• Doppler Effect (2M)
	• Doppler frequency equations (3M)
	• Block diagram and explanation (3M)

REGULA	ATION 2013 ACADEMIC YEAR 2019–20
6.	Discuss in detail about the components of the Doppler Navigation System.(13M) BTL - 1
	 Answer: Page: 107 – 114 - N S Nagaraja Block diagram of Doppler Radar Navigation System (4M)
	• Doppler Radar Equipment (2M)
	Continuous Wave Doppler Radar (2M)
	Frequency – Modulated Continuous – Wave Doppler Radar (2M)
	• Frequency Trackers (3M)
7.	Explain the concept of inertial navigation systems? (13M) BTL - 1
	Answer: Page:118 – 121 - N S Nagaraja
	Principles of Operation (2M)
	Block diagram of Inertial Navigation System (5M)
	• Accelerometer (3M)
	• Gyros and Stabilized Platforms (3M)
8.	Discuss in detail about the Components of Inertial Navigation System (7M) BTL - 2
	Answer: Page: 121 – 128 - N S Nagaraja
	• Accelerometer (4M)
	• Gyros and Stabilized Platforms (3M)

Discuss the Satellite Navigational systems in detail? (9M) BTL - 2 Answer: Page: 133 – 137 - N S Nagaraja Transit System (2M) • Doppler Profiles of Satellites (2M) 9. Doppler Counts (2M) Loci of the receivers position on the earth's surface (2M) Bending of rays in ionosphere and troposphere (1M) •

R	ACADEMIC YEAR 2018 – 2019
	Explain the operation of cavity magnetron and discuss the importance of performance chart
10.	and Ricke Diagram (13M) BTL - 2
	Answer: Page: 130 - N S Nagaraja
	• Magnetron construction (5M)
	• Explanation (3M)
	• Pi –mode (2M)
	• Ricke diagram (3M)
	PART * C
1	Discuss in detail about Navstar Global Positioning System (13M) BTL - 2
	Answer: Page: - 137 – 149 - N S Nagaraja
	• Basic Principles of Operation (3M)
	• Signal Structure (3M)
	• Data Message (3M)
	• Velocity Determination (3M)
	Accuracy of Position Determination (3M)
	Discuss in detail about the earth Coordinate Mechanism. (15M) BTL - 2
2	Answer: Page: 128 – 132 in N S Nagaraja
	Four – axis stable platform
	(5M)
	Earth Coordinate System (5M)
	Mechanism of navigation in the latitude and longitude system of coordinates (5M)