

QUESTION BANK

II YEAR CSE-03RD SEMESTER

Academic year: 2019-2020

INSTITUTION VISION

Jeppiaar Institute of Technology aspires to provide technical education in futuristic technologies with the perspective of innovative, industrial and social application for the betterment of humanity.

INSTITUTION MISSION

- To produce competent and disciplinedhigh quality professionals with the practical skills necessary to excel as innovative professionals and entrepreneurs for the benefit of the society.
- To improve the quality of education through excellence in teaching and learning, research, leadership and by promoting the principles of scientific analysis, and creative thinking.
- To provide excellent infrastructure, serene and stimulating environment that is most conducive to learning
- To strive for productive partnership between the Industry and the Institute for research and development in the emerging fields and creating opportunities for employability
- To serve the global community by instilling ethics, values and life skills among the students needed to enrich their lives.

Department Vision

To produce Engineers with visionary knowledge in the field of Computer Science and Engineering through scientific and practical education in stance of inventive, modern and communal purpose for the improvement of society.

Department Mission

M1: Devise students for technical and operational excellence, upgrade them as competentengineers and entrepreneurs for country's development.

M2: Develop the standard for higher studies and perpetual learning through creative and critical thinking for the effective use of emerging technologies with a supportive infrastructure.

M3: Involve in a constructive, team oriented environment and transfer knowledge to balance the industry-institute interaction.

M4: Enrich students with professional integrity and ethical standards that will make them deal social challenges successfully in their life.

Program Educational Objectives (PEOs)

PEO 1: To support students with substantial knowledge for developing and resolving mathematical, scientific and engineering problems.

PEO 2: To provide students with adequate training and opportunities to work as a collaborator

with informative and administrative qualities.

PEO 3: To motivate students for extensive learning to prepare them for graduate studies, R&D

and competitive exams.

PEO 4: To cater students with industrial exposure in an endeavour to succeed in the emerging cutting edge technologies.

PEO 5: To shape students with principled values and to follow the code of ethics in social and professional life.

Program Specific Outcomes (PSOs)

PSO 1: Students are able to analyse, design, implement and test any software with the programming and testing skills they have acquired.

PSO 2: Students are able to design and develop algorithms for real time problems, scientific and business applications through analytical, logical and problems solving skills.

PSO 3: Students are able to provide security solution for network components and data storage and management which will enable them to work efficiently in the industry.

BLOOM'S TAXONOMY

Definition:

- > A theory to identify cognitive levels (Levels of thinking)
- > Represents the full range of cognitive functions.

Objectives:

- To classify educational learning objectives into levels of complexity and specificity. The classification covers the learning objectives in cognitive, affective and sensory domains.
- > To structure curriculum learning objectives, assessments and activities.

Levels in Bloom's Taxonomy:

- **BTL 1 Remember** The learner is able to recall, restate and remember learned information.
- BTL 2 Understand The learner grasps the meaning of information by interpreting and translating what has been learned.
- BTL 3 Apply The learner makes use of information in a context similar to the one in which it was learned.
- BTL 4 Analyze The learner breaks learned information into its parts to best understand that information.
- BTL 5 Evaluate The learner makes decisions based on in-depth reflection, criticism and assessment.
- BTL 6 Create The learner creates new ideas and information using what has been previously learned.

TABLE OF CONTENT

	MA8351- Discrete Mathematics	
Unit No.	Торіс	Page No.
	Syllabus	1.1
Ι	Logics and Proofs	1.3
II	Combinatorics	1.14
III	Graphs	1.25
IV	Algebraic Structures	1.36
V	Lattices and Boolean Algebra	1.46
	CS8351- Digital Principles And System Design	
	Syllabus	2.1
Ι	Boolean Algebra And Logic Gates	2.3
II	Combinational Logic	2.11
III	Synchronous Sequential Logic	2.19
IV	Asynchronous Sequential Logic	2.30
V	Memory And Programmable Logic	2.38
	CS8391- Data Structures	
	Syllabus	3.1
Ι	Linear Data Structures – List	3.3
II	Linear Data Structures – Stacks, Queues	3.10
III	Non Linear Data Structures – Trees	3.19
IV	Non Linear Data Structures - Graphs	3.27
V	Searching, Sorting And Hashing Techniques	3.36
	CS8392- Object Oriented Programming	
	Syllabus	4.1
Ι	Introduction To OOP And Java Fundamentals	4.3
II	Inheritance And Interfaces	4.7
III	Exception Handling and I/O	4.12
IV	Multithreading And Generic Programming	4.16
V	Event Driven Programming	4.20
	EC8395-Communication Engineering	1
	Syllabus	5.1
Ι	Analog Modulation	5.2
II	Pulse Modulation	5.12
III	Digital Modulation And Transmission	5.24
IV	Information Theory And Coding	5.32
V	Spread Spectrum And Multiple Access	5.41

MA8353	DISCRETE MATHEMATICS	L	Т	Р	С
		4	0	0	4

OBJECTIVES:

- The primary objective of this course is to provide mathematical background and sufficient • experience on various topics of discrete mathematics like logic and proofs, combinatorics, graphs, algebraic structures, lattices and Boolean algebra.
- This course will extend student's Logical and Mathematical maturity and ability to deal with • abstraction and to introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.

UNIT I **LOGICANDPROOFS**

Propositional logic - Propositional equivalences - Predicates and quantifiers - Nested quantifiers - Rules of inference - Introduction to proofs - Proof methods and strategy.

UNIT II COMBINATORICS

Mathematical induction - Strong induction and well ordering - The basics of counting - The pigeonhole principle – Permutations and combinations – Recurrence relations – Solving linear recurrence relations – Generating functions – Inclusion and exclusion principle and its applications

UNIT III GRAPHS

Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism - Connectivity - Euler and Hamilton paths.

UNIT IV ALGEBRAIC STRUCTURES

Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal subgroup and cosets – Lagrange's theorem – Definitions and examples of Rings and Fields.

UNIT V LATTICES AND BOOLEAN ALGEBRA

Partial ordering – Posets – Lattices as Posets – Properties of lattices - Lattices as algebraic systems – Sub lattices - Direct product and homomorphism - Some special lattices - Boolean algebra.

TOTAL PERIODS: 60OUTCOMES:

After completing this course, students should demonstrate competency in the following topics:

- Use logical notation to define and reason about fundamental mathematical concepts such as sets, relations, functions, and integers.
- Evaluate elementary mathematical arguments and identify fallacious reasoning (not just • fallacious conclusions).
- Synthesize induction hypotheses and simple induction proofs. •
- Prove elementary properties of modular arithmetic and explain their applications in Computer • Science, for example, in cryptography and hashing algorithms.
- Apply graph theory models of data structures and state machines to solve problems of • connectivity and constraint satisfaction, for example, scheduling.
- Apply the method of invariants and well-founded ordering to prove correctness and termination • of processes and state machines.

12

12

12

12

12

- Derive closed-form and asymptotic expressions from series and recurrences for growth rates of processes.
- Calculate numbers of possible outcomes of elementary combinatorial processes such as permutations and combinations.
- Concepts and properties of the algebraic structures such as groups, rings and fields and lattices and Boolean Algebra

TEXTBOOKS:

- 1. Rosen, K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2011.
- 2. Tremblay, J.P. and Manohar.R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011.

REFERENCES:

1. Grimaldi, R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2007.

2. Lipschutz, S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.

3. Koshy, T. "Discrete Mathematics with Applications", Elsevier Publications, 2006.

MA8353 – Discrete Mathematics

UNIT I –LOGICS AND PROOFS

Study of Propositional logic – Propositional equivalences - Predicates and quantifiers – Nested quantifiers – Rules of inference - Introduction to proofs – Proof methods and strategy.

PART A

Q.No.	Questions
1.	Define Proposition. (BTL1) A proposition or a statement is a declarative sentence or assertion that is either true or false, but not both. Example :"6>7" (false) is a proposition "The sun sets in the east" (true) is a proposition
2	Define tautology and contradiction.(BTL1) A statement formula which is always true irrespective of the truth values of the individual variables is called a tautology. Example: $p \lor \neg p$ is a tautology.A statement formula which is always false is called contradiction or absurdity. Example: $p \land \neg p$ is a contradiction.
3	Define atomic and compound statements.(BTL1) A proposition or statement is atomic if it cannot be broken into simple propositions. A proposition obtained by combining two or more propositions by means of logical connectives is called a compound proposition or statement.
4	 Write the symbolic representation for "Students can access the internet from the campus only if they are computer science students or only if they are not fresher's". (BTL3) P: Students can access the internet from the campus Q: They are computer science students

	R: They are not fresher's					
	The symbolic representation is $P \rightarrow (Q \lor \neg R)$					
	Give the converse, contra positive, and inverse of the statement "If there is rain , then I buy an umbrella". Also give its symbolic representation. (BTL3)					
	Let p: There is rain					
	q: I buy an umbrella					
	The given statement is $p \rightarrow q$					
5	CONTRAPOSITIVE: $\neg q \rightarrow \neg p$					
5	" If I do not buy an umbrella then there is no rain"					
	$\mathbf{CONVERSE}: \stackrel{q \to p}{\longrightarrow}$					
	"If I buy an umbrella then there is rain"					
	INVERSE: $\neg p \rightarrow \neg q$					
	"If there is no rain then I do not buy an umbrella".					
	Write down the converse, contra positive and inverse of the conditional statement "The home team wins whenever it is raining". (BTL3)					
	Let p: It is raining					
	q: Home team wins					
	The given statement is $p \rightarrow q$					
6	CONTRAPOSITIVE : $\neg q \rightarrow \neg p$					
Ū	"If the home team does not win, then it is not raining"					
	CONVERSE : $q \rightarrow p$					
	"If it is raining then the home team wins"					
	INVERSE: $\neg p \rightarrow \neg q$					
	"If it is not raining then the home team does not win"					

	When do) you s	say that	two con	npou	nd propos	sition	s are equivalen	t? (BTL2)	
7	Two propositions P and Q are equivalent iff $P \leftrightarrow Q$ is a tautology. It is denoted by the symbol $P \Leftrightarrow Q$										
	Find the	truth	value o	f $p \rightarrow -$	<i>q</i> . ((BTL2)					
	_										
		P		Q			$\neg q$		$p \rightarrow \neg q$		
8		Г		Т			F		F		
		Γ		F			Т		Т		
		F		Т			F		T		
		F		F			Т		T		
	Construe	ct a tr	uth tabl	e for the	e com	ipound pi	ropos	sition $(p \rightarrow q)$ -	$\rightarrow (q \rightarrow p)$	BTL3	
	Р	Ç	2	$p \rightarrow q$	<i>q</i>	$\rightarrow p$	(<i>p</i> -	$\rightarrow q) \rightarrow (q \rightarrow p)$			
9	Т	Т		Т	Т		Т				
	Т	F	7	F	Т		Т				
	F	Т		Т	F		F				
	F	F		Т	Т		Т				
	Construe	ct a tr	uth tabl	e for the	e com	pound p	ropos	ition $(p \rightarrow q) \leftarrow$	$\rightarrow (\neg p \rightarrow \neg$	$(\mathbf{BTL3})$	
			, , , , , , , , , , , , , , , , , , ,			1		Γ			
		P q	$\neg p$	$\neg q p$	$\rightarrow q$	$(\neg p \rightarrow)$	$\neg q)$	$(p \rightarrow q) \leftrightarrow (\neg$	$p \rightarrow \neg q)$		
10		ΓΤ		F T		Т		Т			
		ΓF		ΓF		Т		F			
		F T		F T		F		F			
		FF		Γ		Т		T			
11	Using tru	uth ta	ble, sho	w that tl	ie pr	oposition	$p \lor \cdot$	$\neg(p \land q)$ is a tai	utology. (l	3TL3)	
	[]	P Q	$p \wedge q$	$\neg(p \land$	<i>q</i>)	$p \lor \neg (p)$	(q)				

		T	т	T	F	Т				
			Т	Т	_			_		
	,	Т	F	F	Т	Т				
		F	Т	F	Т	Т				
	•	F	F	F	Т	Т				
	Show th	at ((<i>P</i> -	$\rightarrow (Q -$	$\rightarrow R)) \rightarrow$	$((P \to Q)$	$\rightarrow (P \rightarrow P)$	R) is a tauto	ology.(BTL3)	
	Ţ		7	D (
	_	$\frac{\text{P}}{P}$	$\frac{S=(1)}{O}$	$P \rightarrow ($	$Q \to R)$	$\frac{\rightarrow ((P \rightarrow P))}{P \rightarrow Q}$	$Q) \to (P - P)$	$ \rightarrow R $	$R) (P \to Q) \to (P \to Q)$	$\rightarrow R$) S
			V T			$\frac{T \rightarrow Q}{T}$		$\frac{T \rightarrow (Q \rightarrow T)}{T}$	$\begin{array}{c c} T \end{array} \rightarrow \begin{array}{c} T \end{array} \rightarrow \begin{array}{c} T \end{array} \rightarrow \begin{array}{c} T \end{array} $	- T
			Т	F I		Т	F	F	F	Т
12			F	T		F	Т	T	Т	Т
	,	Т	F	F	Г	F	F	Т	Т	Т
		F	Т	Τ	Г	Т	Т	Т	Т	Т
		F	Т	F 1	F	Т	Т	Т	Т	Т
		F	F	T	Г	Т	T	Т	Т	Т
		F	F	F	Г	Т	Т	Т	Т	Т
	S	ince	e al	l the e	ntries in t	the resulting	ng column	is true, the g	given proposition is a	tautology.
	Give the	e tru	ıth	value	of $T \leftrightarrow$	$T \wedge F$ (B)				
						(
13		$ \\ $	>1 / ~↔	∧ <i>г</i> • <i>F</i>						
		$\Rightarrow I$	7	$\wedge F$ $\rightarrow F$						
	Ţ									
	Show th	at ((<i>p</i> -	$\rightarrow q) \land$	$(r \rightarrow q)$	and $(p \vee$	$r) \rightarrow q$ ar	e logically e	quivalent. (BTL 5)	
			*					<u> </u>	• • • • • • • • • • • • • • • • • • • •	
1 4	,	_						1		T
14		Р		q	R	$p \rightarrow q$	$r \rightarrow q$	$p \lor r$	$(p \to q) \land (r \to q)$	$(p \lor r) \rightarrow q$
						T	Т	т	Т	
	,	Т		Т	Т	Т	1	Т	Т	Т

	1										
	Т	F	Т	F	F	Т	F		F		
	Т	F	F	F	Т	Т	F		F		
	F	Т	Т	Т	Т	Т	Т		Т		
	F	Т	F	Т	Т	F	Т		Т		
	F	F	Т	Т	F	Т	F		F		
	F	F	F	Т	Т	F	Т		Т		
					give two s ically equi						
	Using truth t	able sho	ow that	$p \lor (p \land q)$	$p(\mathbf{BT}) \equiv p(\mathbf{BT})$	L5)					
	Р			Q		$p \wedge q$		$p \lor (p)$	$(p \wedge q)$		
	Т			Т		Т		Т			
	Т			F		F		Т	Т		
15	F			Т		F	2	F			
	F			F		F		F			
			es of p a	nd $p \lor (p$	$(\land q)$ are s	ame. There	efore the sta	tements are	logically		
	equiva That i		$(\land q) \equiv p$	2.)					
		1									
	Express A	→ <i>B</i> in te	rms of t	he connec	tives { ^,-	¬}. (BTL)	1)				
16	The bicon	ditional	law is A	$\leftrightarrow B \Leftrightarrow$	$(A \wedge B) \lor ($	$\neg A \land \neg B$					
	Without usin	g truth	table sh	ow that	$p \rightarrow (q \rightarrow$	$p) \Leftrightarrow \neg p -$	$\rightarrow (p \rightarrow \neg q)$. (BTL3)			
	L.H.S ⇔	$p \rightarrow (q$	$\rightarrow p)$								
	$\begin{array}{c} \text{L.H.S} \Leftrightarrow \\ \Leftrightarrow \neg_{i} \end{array}$	$p \vee (q - q)$	→ <i>p</i>)		Impli	cation law					
		$p \vee (\neg q)$	∨ <i>p</i>)		Impl	ication law	7				
17	$\Leftrightarrow \neg p \lor (p \lor$	$(\neg q)$		со	ommutative	e law					
	-	$p \lor \neg p) \lor$	-		Asso	ciative an	d commutat	tive			
	_	$\vee (\neg p \vee$	-			ciative law					
		$p \rightarrow (\neg p)$				ication law		notion law			
		$p \rightarrow (p)$	$\rightarrow \neg q)$		Impl	ication and	l double neg	gation law			

	\Leftrightarrow R.H.S
18	Define rule of universal specification . (BTL1) Universal specification or instantiation is the rule of inference which says that we conclude P(C) is true for a particular element C of the discourse if $\forall x P(x)$ is true. Give the symbolic form of "some men are giants" (BTL4) P(x) : x is a man Q(x) : x is a gaint Symbolic form: $\forall x (P(x) \rightarrow Q(x))$
20	What are the negations of the statements $\forall x(x^2 > x)$ and $\exists x(x^2 = 2)$? (BTL3) Let $P(x) : (x^2 > x)$ $\neg P(x) : (x^2 \le x)$ Given: $\forall x(x^2 > x)$ Its negation is $\neg [\forall x(x^2 > x)] \Leftrightarrow \exists x(x^2 \le x)$ Let $P(x) : (x^2 = 2)$ $\neg P(x) : (x^2 \ne 2)$ Given: $\exists x(x^2 = 2)$ Its negation is $\forall x \neg (x^2 = 2) \Leftrightarrow \forall x(x^2 \ne 2)$
21.	Write the negation of the statement $(\exists x)(\forall y)p(x, y)$.(BTL2)Given: $(\exists x)(\forall y)p(x, y)$ Its negation is $\neg [(\exists x)(\forall y)p(x, y)] \Leftrightarrow (\forall x)(\exists y)p(x, y)$.
22.	Given P={2,3,4,5}, state the truth value of the statement $(\exists x \in P)(x+3=10)$. (BTL1) The maximum value in P is 6 (6+3=9)

	There is no such 'x' in P such that x+3=10
	Therefore the truth value of the statement is FALSE
	Find the truth value of $\forall x (x^2 \ge x)$ if the universe of discourse consists of all real numbers and
	what is its truth value if the universe of discourse consists of all integers? (BTL4)
23.	Given : $\begin{cases} x^2 \ge x \\ \Leftrightarrow x^2 - x = x(x-1) \ge 0 \end{cases}$ Consequently $(x^2 \ge x)$ if and only if $x \le 0$ or $x \ge 1$ The inequality is false for all real numbers x with $0 < x < 1$ (For example if $x=1/2$ then $x^2 = 1/4$ which is less than x) Therefore $\forall x (x^2 \ge x)$ is false if the universe of discourse consists of all real numbers. However if the universe of discourse consists of the integers, There are no integers x with $0 < x < 1$ Therefore $\forall x (x^2 \ge x)$ is true if the universe of discourse consists of all integers
24.	Let $P(x)$ denote the statement $x \le 4$. Write the truth values of $P(2)$ and $P(6)$. (BTL2) $P(x) : x \le 4$. When $x=2$, $P(2): 2 \le 4$, which is true When $x=6$, $P(6): 6 \le 4$, which is false
	Give an indirect proof of the theorem " If 3n+2 is odd, then n is odd". (BTL2)
25.	To Prove: $3n+2$ is odd \rightarrow n is odd In indirect method, assume that the conclusion is false and come to a contradiction. That is assume that n is even. Let n=2k, where k is any integer. Then $3n+2 = 3(2k) + 2 = 6k+2 = 2(3k+1)$ Therefore $3n+2$ is even, which contradicts the hypothesis $3n+2$ is odd. Hence the assumption is wrong. Therefore n is odd and hence the given implication is true.
	PART * B
1	Show that $((p \lor q) \land \neg (\neg p \land (\neg q \lor \neg r))) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$ is a tautology. (Nov 2013, Apr 2015, Apr2017). (BTL5) (8 Marks) (Refer Balaji Pg. 1.49)
	Keypoints:
	• $(\neg p \land \neg q) \lor (\neg p \land \neg r) \Leftrightarrow \neg ((p \lor q) \land (p \lor r))$ (3marks) JIT-JEPPIAAR/CSE/IT/Dr.S.SURESH /IIYr/SEM 03/MA8351/DISCRETE MATHEMATICS/UNIT 1-5/QB+Keys/Ver2.0

	
	 (¬p∧(¬q∨¬r)⇔(p∨q)∧(p∨r) (3marks) Get the answer as T (2marks)
	Show that $(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow r$ without using truth table. (Nov2016, Apr 2018) . (BTL5) (8 Marks)
	(Refer Balaji Pg. 1.44)
	Keypoints:
2	• $(\neg p \land (\neg q \land r)) \Leftrightarrow \neg (p \lor q) \land r (2 \text{ marks})$
	• $(q \wedge r) \lor (p \wedge r) \Leftrightarrow (p \lor q) \land r$ (2marks)
	• $T \lor r$ (2marks)
	• Get the answer as r (2marks)
	Prove the conditional statement $[(P \rightarrow Q) \land (Q \rightarrow R)] \rightarrow (P \rightarrow R)$ is a tautology using logical
	equivalences. (Nov 2017). (BTL5) (8 Marks)
	(Refer Balaji Pg. 1.49)
3	Keypoints:
	• $[(P \to Q) \land (Q \to R)] \Leftrightarrow (P \to R)(3 \text{marks})$
	• $P \lor \neg p \Leftrightarrow T$ (3marks)
	• Get the answer as T (2marks)
	Show that $R \lor S$ is a valid conclusion from the premises
	$C \lor D, C \lor D \to \neg H, \neg H \to (A \land \neg B), (A \land \neg B) \to (R \lor S) $ (BTL5) (8 Marks)
	(Refer SKD, Pg.1.69)
4	Keypoints:
	• $C \lor D \rightarrow H$ (2marks)
	• $C \lor D \rightarrow H$ (2marks) • $C \lor D \rightarrow (A \land \neg B)$ (2marks)
	• $C \lor D \to (R \lor S)$ (2marks)
	• Get the answer as $R \vee S$ (2marks)
	Show that the premises $P \rightarrow Q, Q \rightarrow R, R \rightarrow S, S \rightarrow \neg R$ and $P \land S$ are inconsistent. (Nov2015).
	(BTL5) (8 Marks)
5	(Refer SKD Pg. 1.81)
	Keypoints:
	• $P \rightarrow R$ (2marks) • $P \rightarrow C$ (2marks)
	• $R \rightarrow \neg S$ (2marks)

	Using CP rule show that $, \neg P \lor Q, \neg Q \lor R, R \lor S \Rightarrow P \to S$. (Apr 2018) (BTL5) (8 Marks)
	(Refer Classwork)
	Keypoints:
6	• $\neg P \lor Q \Leftrightarrow P \to Q \text{ (2marks)}$
	• S is the additional premise (2 marks)
	• $\neg Q \lor R \Leftrightarrow Q \to R$ (2marks)
	• Get the answer as S (2marks)
	Obtain the PDNF AND PCNF of $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ by using equivalences. (Apr2017,
	May2016,, Nov2015). (BTL4) (8 Marks)
	(Refer Balaji Pg. 1.83)
7	Keypoints:
,	• $(\neg P \rightarrow R) \land (Q \leftrightarrow P) \Leftrightarrow (P \lor R) \land [(\neg Q \lor P) \land (\neg P \lor Q)]$ (2marks)
	• $[(P \lor R) \lor F] \land [(\neg Q \lor P) \lor F] \land [(\neg P \lor Q) \lor F]$ (2marks)
	• $(P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R)$ (2marks)
	• $\neg(\neg S)$ to obtain PCNF (2marks)
	Obtain the PDNF AND PCNF of $(P \land Q) \lor (\neg P \land R)$. (Nov2016) (BTL4) (8 Marks)
	(Refer SKD Pg, 1.45)
	Keypoints:
8	• $((P \land Q) \lor \neg P) \land ((P \land Q) \lor R)$ (2marks) • $(Q \lor \neg P \lor F) \land (P \lor R \lor F) \land (Q \lor R \lor F)$ (2marks)
	• $(Q \lor \neg P \lor F) \land (P \lor R \lor F) \land (Q \lor R \lor F)$ (2marks)
	• $(\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (P \lor Q \lor R) \land (P \lor \neg Q \lor R)$ (2marks)
	• $\neg(\neg S)$ to obtain PDNF (2marks)
	Show that the hypothesis " It is not sunny this afternoon and it is colder than yesterday", " w
9	will go swimming only if its sunny", "If we donot go swimming then we will take a canoe trip" and "if we take a canoe trip, then we will be home by sunset" lead to the conclusion "we will
	be home by sunset". (Nov 2013) (BTL4) (8 Marks)

	Keypoints:
	 Denote the statements from the given sentences (1mark) ¬P ∧ ¬Q, R → P, ¬R → S, S → T ⇒ T (2marks) ¬P, R → P ⇒ ¬R (2marks) ¬R, ¬R → S ⇒ S (2marks) Answer is T. (1mark) Show that the following premises imply the following conclusion "It rained" "If it does not rain or if there is no traffic dislocation, then the sports day will be held and the cultural programme will go on"; "If the sports day is held, then the trophy will be awarded" and "The trophy was not awarded". (May2016) (BTL4) (8 Marks)
10	(Refer Classwork) (Refer Classwork) Merry Denote the statements from the given sentences (1mark) • $(\neg P \lor \neg Q) \rightarrow (R \land S), R \rightarrow T, \neg T \Rightarrow P$ (2marks) • Use rules of inferences to the necessary premises(4marks) • $\neg R, \neg R \rightarrow P \Rightarrow P$. (1mark)
11	Show that $R \to S$ is logically derived from the premises $P \to (Q \to S)$, $\neg R \lor P$ and Q. (Apr2017, Nov2015, May2016) (BTL3) (8 Marks) Keypoints: • R is an additional premise(2marks) • $R, \neg R \lor P \Rightarrow P$ (2marks) • $P, P \to (Q \to S) \Rightarrow Q \to S$ (3marks) • Get the answer as S(1mark)
12	Show that $(p \rightarrow q) \land (r \rightarrow s), (q \rightarrow t) \land (s \rightarrow u), \neg (t \land u), (p \rightarrow r) \Rightarrow \neg p$. (Apr 2015)(BTL3) (8 Marks) Keypoints: • $(p \rightarrow q), (q \rightarrow m) \Rightarrow p \rightarrow m$ (2marks) • $(p \rightarrow r), (r \rightarrow n) \Rightarrow p \rightarrow n$ (4marks) • Get the answer as $\neg p$ (2marks)
13	Show that $\exists x(P(x) \land Q(x)) \Rightarrow \exists x P(x) \land \exists x Q(x)$. (Nov 2013)(BTL3) (8 Marks)

	(Refer Balaji Pg. 1.146)
	Keypoints:
	• $p(y) \wedge Q(y)$ (2marks)
	• $\exists x P(x)$ (2marks)
	• $\exists x Q(x)$ (2marks)
	• $\exists x P(x) \land \exists x Q(x) (2 \text{ marks})$
	Show that $\forall x(P(x) \lor Q(x)) \Rightarrow \forall x P(x) \lor \exists x Q(x)$. (Apr 2015, Apr2018) (BTL3) (8 Marks) (Refer Balaji Pg. 1.147)
	Keypoints:
14	• Using indirect method Assume $\neg(\forall x P(x) \lor \exists x Q(x))$ (2marks)
	• $\neg (P(y) \land Q(y))$ (4marks)
	• Answer F (2marks)
	Show that $\forall x(P(x) \rightarrow Q(x)) \land (Q(x) \rightarrow R(x)) \Rightarrow \forall x(P(x) \rightarrow Q(x))$. (Nov2016) (BTL3) (8 Marks)
15	(Refer Balaji Pg.1.145) Keypoints: • $P(y) \rightarrow Q(y)$ (2marks)
	• $P(y) \rightarrow R(y)$ (4marks) • $\forall x (P(x) \rightarrow Q(x))$ (2marks)
	Use rules of inferences to obtain the conclusion of the following arguments: "one student in this class knows how to write a program in JAVA" and "Everyone who knows how to write programs in JAVA can get high paying job" imply the conclusion "someone in this class can get a high paying job". (Nov2015, Apr 2017) (BTL4) (8 Marks)
16	Keypoints:
10	• $\exists x (P(x) \land Q(x)), \forall x (Q(x) \to R(x)) \Longrightarrow \exists x (P(x) \land R(x)) (2 \text{marks})$
	• $P(a) \land Q(a) Q(a) \rightarrow R(a)$ (2marks)
	• $P(a) \wedge Q(a)$ (3marks)
	• $\exists x (P(x) \land R(x)) (1 \text{ mark})$
17	Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction. (Nov 2013, May2016) (8 Marks)

(Refer SKD Pg. 1.78) (BTL5)

Keypoints:

• Use indirect method, Assume $\sqrt{2}$ is irrational (2marks)

•
$$\sqrt{2} = \frac{p}{q}$$
 (2marks)

- q = 2k (2marks)
- a contradiction that $\sqrt{2}$ is rational (4m)

UNIT II -COMBINATORICS

Mathematical induction – Strong induction and well ordering – The basics of counting – The pigeonhole principle – Permutations and combinations – Recurrence relations – Solving linear recurrence relations – Generating functions – Inclusion and exclusion principle and its applications

PART A

Q.No.	Questions
	State the first Principle of mathematical induction. (BTL1)
	Let P(n) be a proposition corresponding to positive integers n.
1.	(i) If $P(n_0)$ is true for some integer n_0
	(ii) If $P(k)$ is true for an arbitrary integer k ((>n ₀) then $P(k+1)$ is true
	Then P(n) is true, for all $n \ge n_0$.
	State the Principle of strong induction. (BTL1)
	Let D(n) have proposition componenting to positive integer n
	Let P(n) be a proposition corresponding to positive integer n.
2	(i) If $P(n_0)$ is true for some integer n_0 and
	(ii) If the proposition is true for all integers up to $k(>n_0)$ then $P(k+1)$ is true
	Then P(n) is true, for all $n \ge n_0$.
	Use mathematical induction to show that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$. (BTL5)
3	Basic step: To prove P(1) is true
	1(1 + 1)
	L.H.S = 1
	L.H.S = R.H.S

	Hence P(1) is true.
	Inductive step: Let us assume that P(k) is true for any positive integer k(>1) k(k+1)
	(i.e.) $P(k) = 1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$
	Step 3: To prove P(k+1) is true $(k+1)(k+2)$
	(i.e.) $P(k+1) = 1+2+3+\dots+(k+1) = \frac{(k+1)(k+2)}{2}$
	L.H.S = $1+2+3++k+(k+1)$
	$= \frac{k(k+1)}{2} + (k+1)$
	$= \frac{(k+1)(k+2)}{2}$
	2 P(k+1) is true when P(k) is true.
	Therefore by first principle of mathematical induction $P(n)$ is true for all $n \ge 1$.
	State the Pigeonhole principle. (BTL1)
4	If n+1 pigeons are assigned to n pigeonholes, then there must be a pigeonhole containing atleast two pigeons.
	What is well ordering principle. (BTL1)
5	The well ordering principle states that every non-empty set of non-negative integers has a smallest element.
	How many bit strings are there of length seven? (BTL4)
6	Each position can be filled up with two choices 0's or 1's.
	Therefore number of different bit strings of length $7 = 2^7 = 128$.
	What is the number of arrangements of all the six letters in the word PEPPER? (BTL5)
-	There are 6 letters in the word PEPPER, of which 3-P's, 2-E's are identical
7	Therefore number of arrangements $= \frac{6!}{6!} = 60$
	Therefore number of arrangements = $\frac{6!}{3! \times 2!} = 60$
	How many different words are there in the word MATHEMATICS. (BTL5)
	There are 11 letters in the word MATHEMATICS of which
8	2-M's, 2-A's, 2-T's are identical.
	Therefore number of different permutations = $\frac{11!}{2! \times 2! \times 2!} = 4989600.$

	How many different words are there in the word ENGINEERING? (BTL5)
9	There are 11 letters in the word ENGINEERING of which 3-E's, 3-N's,2-I's, 2-G's are identical
	Therefore number of different words = $\frac{11!}{3! \times 3! \times 2! \times 2!} = 277200.$
	In how many ways can the letters of the word MISSISSIPPI be arranged? (BTL5)
	There are 11 letters in the word MISSISSIPPI of which 4-I's,
10	4-S's, 2-P's are identical
	Therefore number of arrangements $=\frac{11!}{4!\times4!\times2!}=34650.$
	How many permutations of {a,b,c,d,e,f,g) end with 'a'? (BTL3)
	Here repeats are not allowed
11	The last position must be an 'a'
	So we have only 6 items in place.
	Therefore $6P_6 = 720$ permutations.
	Find the recurrence relation of the equation $S(n) = a^n$, $n \ge 1$. (BTL3)
	Given: $S(n)=a^n$,
12	$S(n-1)=a^{n-1}=a^n.a^{-1}$
	$= S(n)a^{-1}$ $aS(n-1) = S(n)$
	The recurrence relation is $S(n) - a S(n-1) = 0$.
	Write the particular solution of the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2} + 3^n$
	(BTL5)
13	The homogeneous equation is $a_n - 6a_{n-1} + 9a_{n-2} = 0$
	Let $a_n = r^n$,
	$r^n - 6r^{n-1} + 9r^{n-2} = 0$
	$r^{n-2}(r^2 - 6r + 9) = 0$
	The characteristic equation is $r^2 - 6r + 9 = 0$

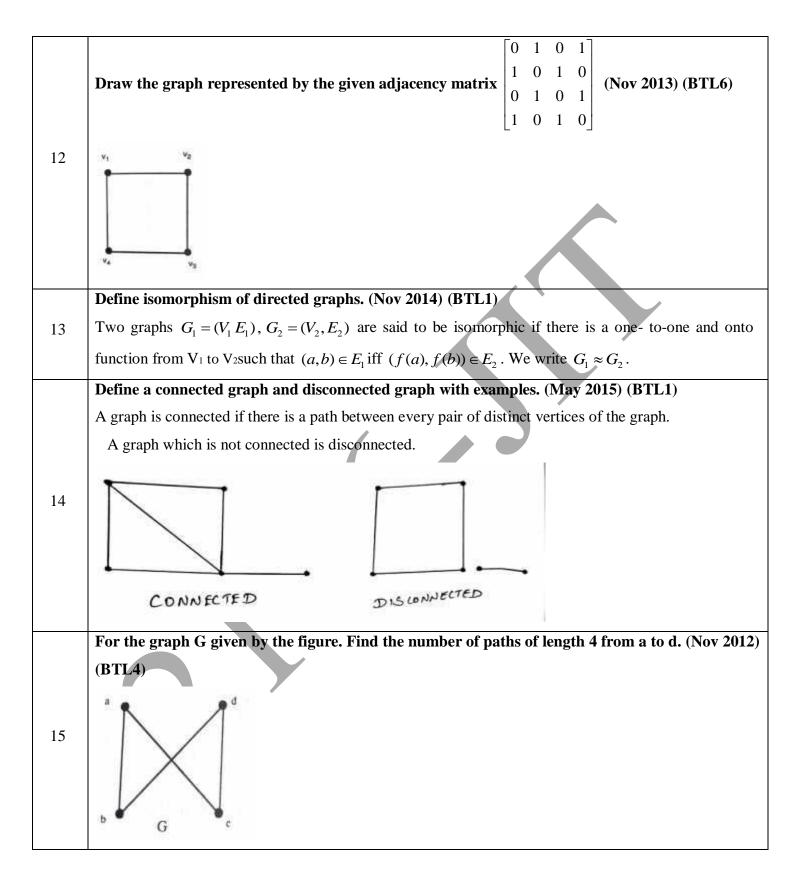
JIT-JEPPIAAR/CSE/IT/Dr.S.SURESH /IIYr/SEM 03/MA8351/DISCRETE MATHEMATICS/UNIT 1-5/QB+Keys/Ver2.0

	r=3,3
	$a_n^{(h)} = (An+B)3^n$
	$f(n) = 3^n$ and 3 is a double root of the characteristic equation
	Therefore the particular solution is $a_n = Cn^2 3^n$.
	Solve $a_k = 3a_{k-1}, k \ge 1$ with $a_0 = 2$. (BTL5)
	Given : $a_k - 3a_{k-1} = 0$
	Let $a_n = r^n$
	$r^n - 3r^{n-1} = 0$
	$r^{n-1}(r-3) = 0$
14	The characteristic equation is r-3=0
14	Therefore $a_n = A3^n$ (1)
	Given: $a_0 = 2$
	Sub n=0 in (1)
	$a_0 = A3^0 \Longrightarrow A=2$
	Therefore the solution is $a_n = 2(3^n)$.
	Therefore the solution is $u_{ij} = 2(5)$.
	Find the recurrence relation for the equation $y_n = A(3)^n + B(-4)^n$.
	(BTL5)
	(BTL5)
	(BTL5) Given : $y_n = A(3)^n + B(-4)^n$.
	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$
15	(BTL5) Given : $y_n = A(3)^n + B(-4)^n$.
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$ $\begin{vmatrix} y_n & 1 & -1 \\ y_{n+1} & 3 & -4 = 0 \\ y_{n+2} & 9 & 16 \end{vmatrix}$
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$ $\begin{vmatrix} y_n & 1 & -1 \\ y_{n+1} & 3 & -4 = 0 \\ y_{n+2} & 9 & 16 \end{vmatrix}$ $y_n (48 + 36) - 1(16y_{n+1} + 4y_{n+2}) + 1(9y_{n+1} - 3y_{n+2}) = 0$
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$ $\begin{vmatrix} y_n & 1 & 1 \\ y_{n+1} & 3 & -4 \\ y_{n+2} & 9 & 16 \end{vmatrix}$ $y_n(48 + 36) - 1(16y_{n+1} + 4y_{n+2}) + 1(9y_{n+1} - 3y_{n+2}) = 0$ $84y_n - 7y_{n+1} - 7y_{n+2} = 0$
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$ $\begin{vmatrix} y_n & 1 & 1 \\ y_{n+1} & 3 & -4 \\ y_{n+2} & 9 & 16 \end{vmatrix}$ $y_n (48 + 36) - 1(16y_{n+1} + 4y_{n+2}) + 1(9y_{n+1} - 3y_{n+2}) = 0$ $84y_n - 7y_{n+1} - 7y_{n+2} = 0$ $\Rightarrow 12y_n - y_{n+1} - y_{n+2} = 0$
15	(BTL5) Given : $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$ $\begin{vmatrix} y_n & 1 & -1 \\ y_{n+1} & 3 & -4 = 0 \\ y_{n+2} & 9 & 16 \end{vmatrix}$ $y_n(48+36) - 1(16y_{n+1} + 4y_{n+2}) + 1(9y_{n+1} - 3y_{n+2}) = 0$ $84y_n - 7y_{n+1} - 7y_{n+2} = 0$ $\Rightarrow 12y_n - y_{n+1} - y_{n+2} = 0$ Solve the recurrence relation $y(k) - 8y(k-1) + 16y(k-2) = 0, k \ge 2$ where $y(2) = 16$, $y(3) = 80$.
15	(BTL5) Given: $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$ $\begin{vmatrix} y_n & 1 & -1 \\ y_{n+2} & 9 & 16 \end{vmatrix}$ $y_n (48 + 36) - 1(16y_{n+1} + 4y_{n+2}) + 1(9y_{n+1} - 3y_{n+2}) = 0$ $84y_n - 7y_{n+1} - 7y_{n+2} = 0$ $\Rightarrow 12y_n - y_{n+1} - y_{n+2} = 0$ Solve the recurrence relation $y(k) - 8y(k-1) + 16y(k-2) = 0, k \ge 2$ where $y(2) = 16$, $y(3) = 80$. (BTL5)
	(BTL5) Given : $y_n = A(3)^n + B(-4)^n$. $y_{n+1} = A(3)^{n+1} + B(-4)^{n+1} = 3A(3)^n - 4B(-4)^n$ $y_{n+2} = A(3)^{n+2} + B(-4)^{n+2} = 9A(3)^n + 16B(-4)^n$ $\begin{vmatrix} y_n & 1 & -1 \\ y_{n+1} & 3 & -4 = 0 \\ y_{n+2} & 9 & 16 \end{vmatrix}$ $y_n(48+36) - 1(16y_{n+1} + 4y_{n+2}) + 1(9y_{n+1} - 3y_{n+2}) = 0$ $84y_n - 7y_{n+1} - 7y_{n+2} = 0$ $\Rightarrow 12y_n - y_{n+1} - y_{n+2} = 0$ Solve the recurrence relation $y(k) - 8y(k-1) + 16y(k-2) = 0, k \ge 2$ where $y(2) = 16$, $y(3) = 80$.

$r^n - 8r^{n-1} + 16r^{n-2} = 0$
$r^{n-2}(r^2 - 8r + 16) = 0$
The characteristic equation is $r^2 - 8r + 16 = 0$
The roots are $r = 4,4$
Therefore $y_k = (Ak + B)4^k$ (1)
Given: y(2)=16, y(3)=80
$y_2 = (A2 + B)4^2$
Put k=2, $16=32A+16B$
2A + B = 1(2)
$y_3 = (A3 + B)3^2$
Put k=3, $80=27A+9B$
$3A + B = \frac{5}{4}$ (3)
Solving (2) and (3), $A = \frac{1}{4}, B = \frac{1}{2}$
(1) Implies $y_k = (\frac{k}{4} + \frac{1}{2})4^k$
Write the generating function for the sequence $1, a, a^2 a^3$, (BTL1)
The generating function for the sequence $1, a, a^2 a^3$, is the infinite series
17 $G(x)=1+ax+a^2x^2+a^3x^3+$
$=\frac{1}{1-ax} if ax < 1$
Find the closed form generating function of the sequence 2,-2,2,-2, (BTL3)
$\Gamma(u) = \sum_{n=1}^{\infty} \sigma_n u^n$
$G(x) = \sum_{n=0}^{\infty} a_n x^n$
$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$
Generating function $=2 + (-2) x + (2)x^2 + (-2)x^3 + \dots$
$= 2[1 - x + x^2 - x^3 + \dots]$
$= 2(1-x)^{-1} = \frac{2}{1+x}$
What is the maximum number of students required in a mathematics class to be sure that at least
19 six will receive the same grade, if there are five possible grades A,B,C,D and F? (Nov 2012)

ti	The minimum number of students wanted to ensure that atleast six students receive the same grade is he smaller integer N such that $\frac{N}{5} = 6$. The smallest such integer is N=5(5)+1 =26
,	The smallest such integer is $N=5(5)+1=26$
I	
-	f you have only 25 students, it is possible for there to be five students who have received each grade so
tl	hat no six students have received the same grade.
ŗ	Therefore 26 is the minimum number of students needed to ensure that atleast six students will receive
t	he same grade.
ŀ	How many ways are there to select five players from a 10 member tennis team to make a trip to a
20 n	natch at another school? (BTL3)
Ν	Number of ways to select five players form 10 members $=10C_2 = 252$
I	f seven colours are used to paint 50 bicycles, then show that atleast 8 bicycles will be the same
с	colour.(BTL3)
21	Number of Pigeon = m = Number of bicycles=50
21	Number of Holes=n= Number of colours =7
	By Generalised pigeon hole principle, we get $\left[\frac{m-1}{n}\right] + 1 = \left[\frac{50-1}{7}\right] + 1 = 8$
F	Find the recurrence relation of the Fibonacci sequence. (BTL1)
	The Fibonacci sequence is 0,1,1,2,3,5,8,13,
22	(i.e.) $F_n = F_{n-1} + F_{n-2}$ $n \ge 2$
Г	The recurrence relation is $F_n - F_{n-1} - F_{n-2} = 0$ $n \ge 2$ with initial conditions $F_0 = 0$ and $F_1 = 1$.
Ι	Define Permutation and combination. (BTL1)
A	A permutation is an arrangement of a given collection of objects in a definite order taking some of the
O	objects or all at a time
23 T	The number of r-permutations is denoted by nP_r and is defined as $nP_r = \frac{n!}{(n-r)!}$
A	A combination is a selection of objects from a given collection of objects taking some or all at a time.
Г	The order of selection is immaterial.
,	The number of r-combinations from n things is denoted by nC_r $C(n,r)$ and is defined as $nC_r = \frac{nP_r}{r!}$.
24 F	Find the number of solutions of the equation $x_1 + x_2 + x_3 = 100$, if x_1 , x_2 , x_3 are non-negative

	integers. (BTL5)
	Given: The numbers are non-negative
	So the set of numbers are $\{0,1,2,3,\}$
	Therefore the number of solutions = coefficient of x^{100} in $(x^0 + x^1 + x^2 +)$
	= coefficient of x^{100} in $(1 + x^1 + x^2 +)$
	= coefficient of x^{100} in $(1-x)^{-3}$
	$=^{(3+100-1)}C_{100} = {}^{102}C_2$
	=5151
	Compute the number of 13 card hands that can be dealt from a deck of 52 cards?(Nov 2007)
25	(BTL3)
	The number of 13 card hands that can be dealt from a 52 cards is $52C_{13} = 635013559600$
	Part-B
	Prove by mathematical induction $6^{n+2} + 7^{2n+1}$ is divisible by 43. (Nov 2013) (BTL5) (8 Marks)
	(Refer SKD Pg. 2.19)
	Keypoints:
1	• Prove for P(1) (i.e.,) 559 is divisible by 43 (2marks)
	• Assume P(k) is true (i.e., $6^{k+2} + 7^{2k+1}$ (2marks)
	• Prove P(k+1) is true (i.e.,) $6^{k+3} + 7^{2k+3}$ (4marks)
	Prove by Mathematical induction $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$. (May 2015) (BTL5)
	6
	(8 Marks)
	(Refer Balaji Pg. 2.2)
2	Keypoints:
	• Prove for P(1) (i.e.,) 1 is divisible by 1 (2marks)
	• Assume P(k) is true (i.e.,) $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$ (2marks)
	• Prove P(k+1) is true (i.e.,) $\frac{(k+1)(k+2)(2k+3)}{6}$ (4marks)
3	Using Mathematical induction , show that $\sum_{r=0}^{n} 3^{r} = \frac{3^{n+1}-1}{2}$ (May 2017, May 2016) (BTL5) (8Marks)
	(Refer Classwork)

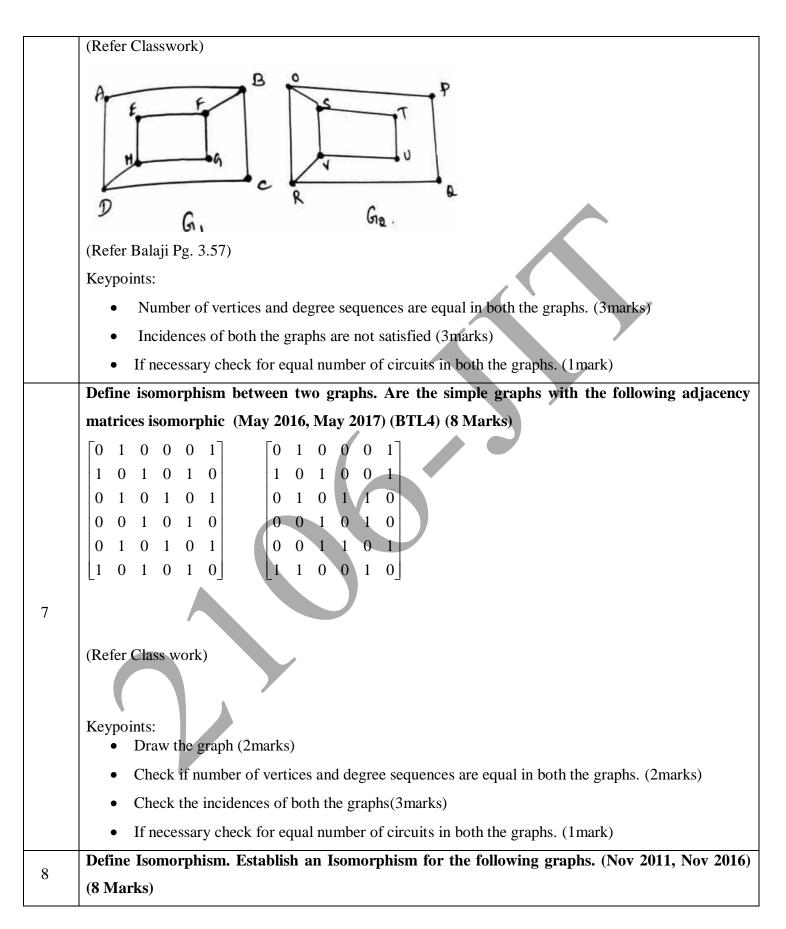

	Keypoints:
	 Prove for P(1) (i.e.,) 1 is divisible by 1 (2marks)
	• Assume P(k) is true (i.e.,) $\sum_{r=0}^{k} 3^r = \frac{3^{k+1}-1}{2}$ (2marks)
	• Prove P(k+1) is true (i.e.,) $\frac{3^{k+2}-1}{2}$ (4marks)
	Using induction principle, prove that $n^3 + 2n$ is divisible by 3. (Nov 2015) (BTL5) (8 Marks)
	(Refer SKD Pg. 2.41)
	Keypoints:
4	• Prove for P(1) (i.e.,) 3 is divisible by 3 (2marks)
	• Assume P(k) is true (i.e.,) $k^3 + 2k = 3x$ (2marks)
	• Prove P(k+1) is true(i.e.,) $3(k^2 + k + x + 1)$ is divisible by 3(4marks)
	Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$, $n \ge 2$, using principle of mathematical induction. (Nov
	2016) (BTL5) (8 Marks)
	(Refer SKD Pg. 2.42)
	Keypoints:
5	• Prove for P(2) (i.e.,) $1 + \frac{\sqrt{2}}{2} \ge \sqrt{2}$ is true (2marks)
	• Assume P(k) is true $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k}$, (2marks)
	• Prove P(k+1) is true (4marks)
	A factory makes custom sports car at an increasing rate. In the first month one car is made, in
	the second month two cars are made and so on, with n cars made in the nth month.
	(1) Set up recurrence relation for the number of cars produce in the first n months by this
	factory
6	(2) How many cars are produced in the first year? (Nov 2013) (BTL4)(8 Marks)
	Keypoints:
	• Form the recurrence relation as $P_n = P_{n-1} + n, n \ge 1$ $P_0 = 0_{\text{(3marks)}}$
	• Find the number of cars in 12 months using the formula $\frac{n(n+1)}{2}$ (5marks)
L	JIT-JEPPIAAR/CSE/IT/Dr.S.SURESH /IIYr/SEM 03/MA8351/DISCRETE MATHEMATICS/UNIT 1-5/QB+Keys/Ver2.0

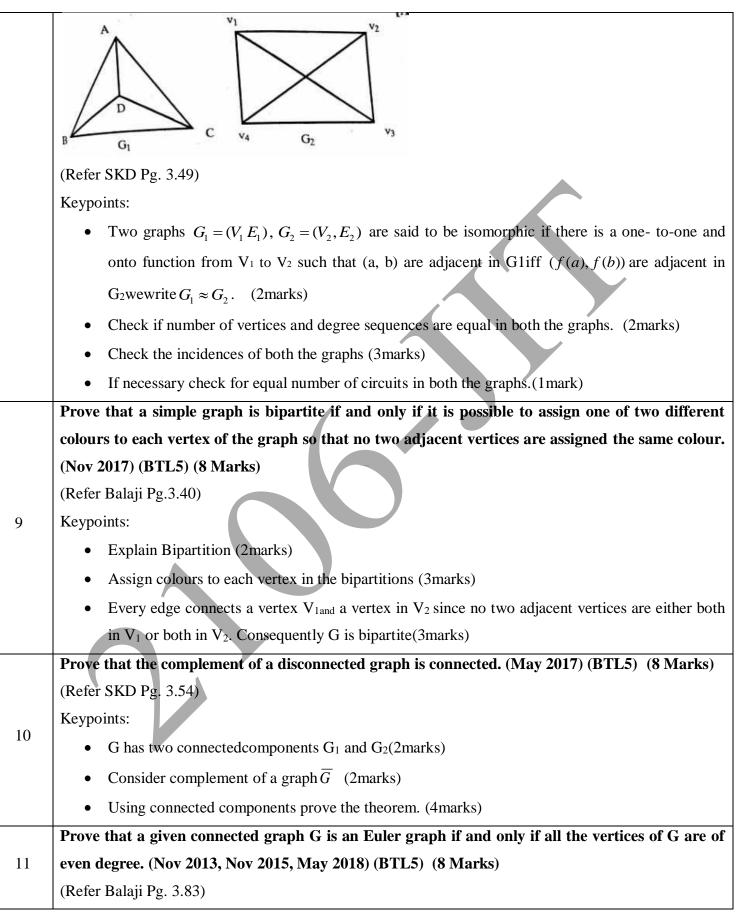
	Use the method of Generating functions to solve the recurrence relation $a_n = 3a_{n-1} + 2, n \ge 1$, given
7	that $a_0 = 1$ (May 2015) (BTL5) (8 Marks)
	(Refer Balaji Pg. 2.85)
	Keypoints:
	• $a_n x^n = 3a_{n-1}x^{n-1} + 2x^n$ (1 mark)
	$a_{n}x^{n} = 3a_{n-1}x^{n-1} + 2x^{n} $ (1 mark) $\sum a_{n}x^{n} = \sum 3a_{n-1}x^{n-1} + \sum 2x^{n} $ (1 mark)
	• $G(x) = \frac{1+x}{(1-x)(1-3x)}$ (1mark)
	• A=-1, B=2 (4mark)
	• $a_n = \text{coeff of } x^n \text{ in } G(x) (1 \text{ mark})$
	Solve the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ with $a_0 = 5, a_1 = -9, a_2 = 15$. (Nov 2014)
	(BTL5) (8 Marks)
	(Refer Balaji Pg. 2.74)
8	Keypoints:
0	• Put $a_n = r^n(1 \text{ mark})$
	• $r = -1, -1, -1$ (2marks)
	• $a_n = A(-1)^n + Bn(-1)^n + Cn^2(-1)^n$ (3marks)
	• A=1, B= 0.5, C=0.5 (2marks)
	Find the solution to the recurrence relation $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ with $a_0 = 2, a_1 = 5, a_2 = 15$.
	(Nov 2014) (BTL5) (8 Marks)
	(Refer SKD Pg. 2.134)
9	Keypoints:
	• Put $a_n = r^n (1 mark)$
	• $r = 1,2,3$ (2marks)
	• $a_n = A + B2^n + C3^n$ (3marks)
	• A=1, B=-1, C=2 (2marks)
	Solve using Generating function $S(n+1) - 2S(n) = 4^n$; , S(0)=1, $n \ge 0$
10	(May 2016) (BTL5) (8 Marks)
10	(Refer SKD Pg. 2.158)
	Keypoints:

	and 7. (May 2015, Nov 2016, May 2016, May 2018) (BTL4) (8 Marks)
	(Refer SKD Pg. 2.94)
	Keypoints:
	• Use the formula $\frac{n}{P_1P_2}$ where P ₁ and P ₂ are distinct primes (2marks)
	• Substitute the values in $ A \cup B \cup C \cup D $ (4marks)
	• Number of integers that are not divisible by 2,3,5 and 7 is got by $\overline{ A \cup B \cup C \cup D }$ (2marks)
	Find the Generating function of Fibonacci sequence. (Nov 2013) (BTL5) (8 Marks)
	(Refer Balaji Pg. 2.91)
	Keypoints:
	• The Fibonacci sequence is 0,1,1,2,3,5,8, (1mark)
14	• $G(x) = \sum_{k=0}^{\infty} f_k x^k$ (1mark)
	• $G(x) = \frac{x}{1 - x - x^2}$ (2mark)
	• $A = \frac{1 + \sqrt{5}}{2}, B = \frac{1 - \sqrt{5}}{2}$ (2marks)
	• $a_n = \text{coeff of } x^n \text{ in } G(x) (2 \text{mark})$
	A total 1232 students have taken a course in Spanish, 879 have taken a course in French and 114
	have taken a course in Russian. Further 103 have taken a course in both Spanish and French, 23
	have taken a course in both Spanish and Russian and 14 have taken courses in both French and
	Russian. If 2092 students have atleast one of Spanish, French and Russian, how many students
15	have taken a course in all 3 consequences? (Nov 2013, Nov 2017) (BTL4) (8 Marks)
15	(Refer Balaji Pg. 2.97)
	Keypoints:
	• Draw the venn diagram using the given data (4marks)
	Substitute the necessary values in
	$ A \cup B \cup C = A + B + C - A \cap B - B \cap C - A \cap C + A \cap B \cap C $ (4marks)
	There are 6 men and 5 women in a room. Find the number of ways 4 persons can be drawn from
16	the room if (1) they can be male or female (2) two must be men and two women (3) they must all
	be of the same sex.
L	JIT-JEPPIAAR/CSE/IT/Dr.S.SURESH /IIYr/SEM 03/MA8351/DISCRETE MATHEMATICS/UNIT 1-5/QB+Keys/Ver2.0

	(Nov 2015, May 2016, May 2017) (BTL4) (8 Marks)
	Keypoints:
	• ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ (2marks)
	• (i) Answer =330ways (2marks)
	• Answer = 150 (2marks)
	• Answer = 20 (2marks)
	If H_n denote Harmonic numbers, then prove that $H_{2^n} \ge 1 + \frac{n}{2}$. (Nov 2017) (BTL5) (8 Marks)
	(Refer Balaji Pg. 2.10) Keypoints:
17	• Prove for $P(1)$ (i.e.,) $H_1=1(2marks)$
	• Assume P(k) is true (i.e.,) $H_{2^k} \ge 1 + \frac{k}{2}$ (2marks)
	• Prove P(k+1) is true(i.e.,) $H_{2^{k+1}} \ge 1 + \frac{k+1}{2}$ (4marks)
	Using induction principle, prove that $n^3 - n$ is divisible by 3. (May 2018) (BTL5) (8 Marks) (Refer Balaji Pg. 2.12) Keypoints:
19	• Prove for P(1) (i.e.,) 0 is divisible by 3 (2marks)
	• Assume P(k) is true (i.e.,) $k^3 - k$ is divisible by 3(2marks)
	• Prove P(k+1) is true (i.e.,) $(k+1)^3 - (k+1)$ (2marks)
	UNIT III –Graphs
	Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of
	graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.
	PART A
Q.No.	Questions
1.	Define a simple graph. (BTL1)
1.	A graph $G=(V,E)$ without loops and without parallel edges is called a simple graph.
2	Define Degree of a vertex. (BTL1)

	Therefore number of edges $= 25$
7	Show that there does not exist a graph with 5 vertices with degrees 1,3,4,2,3 respectively. (May
	2018) (BTL3)
	Sum of the degree of all the vertices = $1+3+4+2+3$
	= 13
	Which is an odd number
	Hence no with the even degree.
8	Define a Regular graph. Can a complete graph be a regular graph? (Apr 2006, Nov 2012) (BTL1)
	A simple graph is called regular if every vertex of the graph has the same degree. If every vertex in a
	regular graph has a degree k, the graph is k-regular
	Any complete graph is regular, but the converse is not true.
9	Define Pseudographs (Apr 2011) (BTL1)
,	A graph in which loops and parallel edges are not allowed is called pseudo graphs.
	Let G be a graph with 10 vertices. If 4 vertices have degree 4 and 6 vertices has degree 5, them
	find the number of edges of G? (Nov 2015) (BTL3)
	Let e be the number of edges of the graph
	Given:4 vertices have degree 4
	6 vertices have degree 5
10	By Handshaking theorem, $\sum_{i=1}^{n} \deg(v_i) = 2e$
	4(4) + 6(5) = 2e
	46 = 2e
	e = 23
	Therefore number of edges $= 23$
11	Draw the complete bipartite graph $K_{2,3}$ and $K_{3,3}$.




	The adjacency matrix of G is $\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$
	Since 'a' is the first vertex and 'd' is the 4 th vertex, the number of paths of length 4 from a to d is
	$(1,4)$ th element A_4 .
	$A_{4} = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix}$ Therefore number of paths of length 4 from a to d is 8.
	Give an example of self-complementary graph. (Apr 2017, May 2016) (BTL3)
	A graph G is said to be self-complimentary if G and G^c are isomorphic.
	Example
16	us us us vs vs vs
	Number of vertices, edges and degree sequences of C_5 and C_5^c are equal.
	Let $f: V_1 \to V_2$ $\therefore f(u_1) = v_1, f(u_2) = v_4, f(u_3) = v_2, f(u_4) = v_5, f(u_5) = v_3$
	Clearly f is 1-1 and onto which preserves adjacency
	$\therefore C_5 \text{ and } C_5^e$ are isomorphic graphs.
	Define Euler path and Euler circuit . (BTL1)
17	A path of a graph G is called an Euler path if it contains each edge of the graph exactly once.
	An Euler circuit in a graph G is a simple circuit that includes every edge of G exactly once with
	same starting and ending vertex.
18	Define Hamiltonian path and Hamilton circuit. (May 2018) (BTL1)
	A path of a graph G is called a Hamilton path if it contains each vertex of G exactly once.
	A Hamiltonian cycle in a graph G is a simple circuit that includes each vertex of G exactly once
	except the starting and the ending vertex.

	Give an example of a graph which is Eulerian but not Hamiltonian. (Apr 2015, Nov 2017)
	(BTL3)
19	e_1 e_2 v_3 e_3 v_4 e_7 e_7 v_5 v_5 v_5
	All the vertices are of even degree
	: Eulerian Cycle is possible
	$\therefore v_1 - v_3 - v_4 - v_5 - v_3 - v_2 - v_1$
	No edges are repeated and cover all the edges.
	But no Hamiltonian, because Hamiltonian circuit is not possible
	The vertices are repeated, so it is not Hamiltonian.
	Define strongly connected and weakly connected graph. (Nov 2010) (BTL1)
20	A directed graph G is said to be strongly connected if there is a path u to v and from v to u for any pair
	of vertices u and v in G.
	A directed graph is said to be weakly connected if there is a path between any two vertices of the
	underlying undirected graph((i.e.) without considering directions)
	Define complete bipartite graph. (BTL1)
21	Let G=(V,E) be a bipartite graph with bipartition (V_1, V_2) . If there is an edge of G connecting every
	vertex in V_1 and in V_2 then G is called a complete bipartite graph.
	What should be the degree of each vertex of a graph G if it has Hamiltonian? (BTL4)
22	Let G be a simple graph with n vertices where $n \ge 3$. If deg $(v) \ge n/2$ for each vertex v, then G is
	Hamiltonian.
	Define cut vertex and cut edge. (BTL1)
	A cut vertex of a connected graph G is a vertex whose removal increase the number of components. If
23	v is a cut vertex of the connected graph G, then G-v is disconnected
	A cut edge or bridge of a graph is an edge whose removal increase the number of components. If e is
	an edge of a connected graph G, then G-e is disconnected.
24	Define path and cycle. (BTL1)
	A path in a graph G is a finite alternating sequence of vertices and edges beginning and ending with

vertices.
If the initial and final vertices of a path are the same then the path is called a cycle or circuit.
Draw the graph represented by the given adjacency matrix and $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (Nov 2016) (BTL6)
Part-B
Prove that the number of vertices of odd degree in any group is even. (May 2015, Nov 2015, May 2016, May 2017) (BTL5)(8 Marks) (Refer Balaji Pg. 3.21) Keypoints: • $\sum_{i=1}^{n} d(v_i) + \sum_{j=1}^{m} d(v_j) = 2e$ (2marks) • Use Handshaking theorem, $\sum d(v) = 2e$ (4marks) • $\sum_{i=1}^{k} d(v_i) = evennumber$ (2marks)
State and Prove Handshaking theorem. Hence prove that for any simple graph G with n vertices,the number of edges of G is less than or equal to $\frac{n(n-1)}{2}$. (Nov 2016, May 2018) (BTL5)(8Marks)(Refer Balaji Pg. 3.20, 3.24)Keypoints:• Prove Handshaking theorem $\sum d(v) = 2e$ (3marks)• To prove the second part, Use handshaking theorem (2marks)

	• $e = \frac{n(n-1)}{2}$ (1mark)
	Prove that a simple graph with n vertices and k components cannot have more than
	$\frac{(n-k)(n-k+1)}{2}$ edges. (Nov 2013, Nov 2015, May 2015, Nov 2017) (BTL5) (8 Marks)
	(Refer Balaji Pg. 3.70)
	Keypoints:
3	• Consider a simple graph (2marks)
	Consider components with k vertices (2marks)
	• $ E(G) \le \sum_{i=1}^{k} \frac{n_i(n_i-1)}{2}$ (2marks)
	• $ E(G) \leq \frac{(n-k)(n-k+1)}{2}$
	Show that a simple graph G with n vertices is connected if it has more than $\frac{(n-1)(n-2)}{2}$ edges.
	(Nov 2014) (BTL5) (8 Marks)
	(Refer Balaji Pg. 3.76)
4	Keypoints:
	• Proof by contradiction (i.e) Assume G has components (2marks)
	• Using previous theorem, $ E(G) \le \frac{(n-k)(n-k+1)}{2}$ (2marks)
	• $ E(G) > \frac{(n-1)(n-2)}{2}$ (4marks)
	Show that isomorphic of simple graphs is an equivalence relation. (Nov 2014) (8 Marks)
	(Refer Balaji Pg. 3.61)
	Keypoints:
5	• Reflexive: G is isomorphic to itself by the identity (3marks)
	• Symmetric : f^{-1} is a 1-1 correspondence from H to G that preserves adjacency and non-
	adjacency(3marks)
	• Transitive: If G is isomorphic to H and H is isomorphic to K, then there is a 1-1 correspondence f and a from G to H and from H to $K(2marka)$
	correspondence f and g from G to H and from H to K(2marks)
6	Examine whether the following pair of graphs are isomorphic or not. Justify your answer. (My 2015, Nov 2015) (BTL4) (8 Marks)
	2013, 1107 2013) (D1124) (0 171a1K3)

	Keypoints:
	• Consider an Euler graph, then it has an Euler circuit (1mark)
	• Consider an Euler circuit (1mark)
	• Using definition of Euler circuit and prove that all the vertices are of even degree (2marks)
	• Conversely assume all the vertices are of even degree(2marks)
	• Construct an Euler circuit and prove if the graph is Euler. (2marks)
	If G is self complimentary graph, then prove that G has $n \equiv 0 \text{ or } 1 \pmod{4}$ vertices. (May 2016)
	(BTL5) (8 Marks)
	(Refer SKD Pg. 3.25)
	Keypoints:
12	• $ V(G) = V(\overline{G}) , E(G) = E(\overline{G}) $ (1mark)
	• $ E(K_p) = C_2$ (2marks)
	• $ E(G) = \frac{p(p-1)}{2}$ (2marks)
	• $P=4n \text{ or } p-1=4n . (3marks)$
	If G is connected simple graph with n vertices with $n \ge 3$, such that the degree of every vertex in
	G is at least $n/2$, then prove that G has Hamilton cycle. (May 2017, May 2016) (BTL5)(8 Marks)
	(Refer Classwork)
	Keypoints:
13	Consider G cannot be complete (1mark)
	• Check if it is Hamiltonian if an edge is added (2marks)
	• Split the vertices (2marks)
	• Prove that the contradiction is false. ((3marks)
	Give an example of a graph which is
	(1) Eulerian but not Hamiltonian
	(2) Hamiltonian but not Eulerian
14	(3) Hamiltonian and Eulerian
14	(4) Neither Hamiltonian nor Eulerian (Nov 2016) (BTL3)(8 Marks)
	(Refer Balaji Pg. 3.99)
	Keypoints:
	• (1)Give suitable examples and explain it (2marks)

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	 (Refer SKD Pg. 3.48) Keypoints: Use definition of bipartition, G₁ is not a bipartite graph (2 marks) G₂ is bipartite graph, since we can split the vertices into two groups and are not adjacent(3marks) G₃ is bipartite graph, since we can split the vertices into two groups and are not adjacent(3marks)
	UNIT IV – ALGEBRAIC STRUCTURES
	Algebraic systems - Semi groups and monoids - Groups - Subgroups - Homomorphism's - Normal
	subgroup and cosets – Lagrange's theorem – Definitions and examples of Rings and Fields.
	PART A
Q.No.	Questions
	 Define Group. (BTL1) A non-empty set G with a binary operation * defined on it is called a group if it satisfies the following: (1) Closure: Let a,b∈G then a*b∈G, ∀a,b∈G (2) Associative: Let a,b,c∈G then a*(b*c)=(a*b)*c∈G
1.	 (3) Identity: There exists an element e∈G such that a*e=e*a=a, ∀a∈G where 'e' is the identity element. (4) Inverse: For each a∈G there exists an element a⁻¹ such that a*a⁻¹=a⁻¹*a=e, where a⁻¹ is the identity element.
	Define abelian group. (BTL1)
	Define abenan group. (DTLT)
2	If a group (G,*) satisfies $a^*b=b^*a \forall a, b \in G$, then G is abelian group
2	

(1) Closure: Let $a, b \in G$ then $a^*b \in G, \forall a, b \in G$ (2) Associative: Let $a, b, c \in G$ then $a^*(b^*c) = (a^*b)^*c \in G$ then the set with binary operation is called a semi group. Example :'N' the set of all natural numbers is a group under addition. Define monoid with an example (Nov 2014) (BTL1) A non-empty set 'M' with a binary operation * satisfying (1) Closure: Let $a, b \in G$ then $a^*b \in G, \forall a, b \in G$ (2) Associative: Let $a, b, c \in G$ then $a^*(b^*c) = (a^*b)^*c \in G$ (3) Identity: There exists an element $e \in G$ such that $a^*e = e^*a = a, \forall a \in G$ where 'e' is identity element. Then the set with binary operation is called a monoid. Example: 'Z' set of all integers is a monoid under multiplication. Let Z be the group of integers with the binary operation * defined by $a^*b=a+b-2$, $\forall a, b \in$ Find the identity element of the group $\langle Z, * \rangle$. (Apr 2017)(BTL3) Let e be the identity element Then $a^*e = e^*a = a$ Now, $a^*e = a$ $a^+e^-2 = a$ $e^-2 = 0$ e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5) Given: (G,*) is a group		
then the set with binary operation is called a semi group. Example :'N' the set of all natural numbers is a group under addition. Define monoid with an example (Nov 2014) (BTL1) A non-empty set 'M' with a binary operation * satisfying (1) Closure: Let $a, b \in G$ then $a^*b \in G, \forall a, b \in G$ (2) Associative: Let $a, b, c \in G$ then $a^*(b^*c) = (a^*b)^*c \in G$ (3) Identity: There exists an element $e \in G$ such that $a^*c = e^*a = a, \forall a \in G$ where 'c' is identity element. Then the set with binary operation is called a monoid. Example: 'Z' set of all integers is a monoid under multiplication. Let Z be the group of integers with the binary operation * defined by $a^*b=a+b-2$, $\forall a, b \in G$ Find the identity element of the group $\langle Z, * \rangle$. (Apr 2017)(BTL3) Let e be the identity element Then $a^*e = e^*a = a$ Now, $a^*e = a$ $a^+e-2 = a$ $e^-2 = 0$ e^-2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
Example : 'N' the set of all natural numbers is a group under addition.Define monoid with an example (Nov 2014) (BTL1)A non-empty set 'M' with a binary operation * satisfying (1) Closure: Let $a, b \in G$ then $a * b \in G, \forall a, b \in G$ (2) Associative: Let $a, b, c \in G$ then $a * (b * c) = (a * b) * c \in G$ (3) Identity: There exists an element $e \in G$ such that $a * e = e * a = a, \forall a \in G$ where 'e' is identity element.Then the set with binary operation is called a monoid.Example: 'Z' set of all integers is a monoid under multiplication.Let Z be the group of integers with the binary operation * defined by $a*b=a+b-2$, $\forall a, b \in Find$ the identity elementThen $a * e = e * a = a$ 5Now, $a * e = a$ $a+e-2 = a$ $e-2 = 0$ $e=2$ 2 is the identity element.Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
Define monoid with an example (Nov 2014) (BTL1)A non-empty set 'M' with a binary operation * satisfying(1) Closure: Let $a, b \in G$ then $a*b \in G, \forall a, b \in G$ (2) Associative: Let $a, b, c \in G$ then $a*(b*c)=(a*b)*c \in G$ (3) Identity: There exists an element $e \in G$ such that $a*e=e*a=a, \forall a \in G$ where 'e' isidentity element.Then the set with binary operation is called a monoid.Example: 'Z' set of all integers is a monoid under multiplication.Let Z be the group of integers with the binary operation * defined by $a*b=a+b-2$, $\forall a, b \in Find$ the identity element of the group $\langle Z, * \rangle$. (Apr 2017)(BTL3)Let e be the identity elementThen $a*e=e*a=a$ Now, $a*e=a$ $a+e-2=a$ $e-2=0$ $e=2$ 2 is the identity element.Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
 A non-empty set 'M' with a binary operation * satisfying Closure: Let a,b∈G then a*b∈G, ∀a,b∈G Associative: Let a,b,c∈G then a*(b*c)=(a*b)*c∈G Identity: There exists an element e∈G such that a*e=e*a=a, ∀a∈G where 'e' is identity element. Then the set with binary operation is called a monoid. Example: 'Z' set of all integers is a monoid under multiplication. Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, ∀a,b∈ Find the identity element of the group ⟨Z,*⟩. (Apr 2017)(BTL3) Let e be the identity element Then a*e = e*a = a Now, a*e = a a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
 (1) Closure: Let a,b∈G then a*b∈G, ∀a,b∈G (2) Associative: Let a,b,c∈G then a*(b*c)=(a*b)*c∈G (3) Identity: There exists an element e∈G such that a*e=e*a=a, ∀a∈G where 'e' is identity element. Then the set with binary operation is called a monoid. Example: 'Z' set of all integers is a monoid under multiplication. Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, ∀a,b∈ Find the identity element of the group ⟨Z,*⟩. (Apr 2017)(BTL3) Let e be the identity element Then a*e=e*a=a Now, a*e=a a+e-2 = a e-2 = 0 e=2 2 is the identity element. 		
 4 (2) Associative: Let a,b,c∈G then a*(b*c)=(a*b)*c∈G (3) Identity: There exists an element e∈G such that a*e=e*a=a, ∀a∈G where 'e' is identity element. Then the set with binary operation is called a monoid. Example: 'Z' set of all integers is a monoid under multiplication. Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, ∀a,b ∈ Find the identity element of the group ⟨Z,*⟩. (Apr 2017)(BTL3) Let e be the identity element Then a*e=e*a=a Now, a*e=a a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
 4 (3) Identity: There exists an element e∈G such that a*e=e*a=a, ∀a∈G where 'e' is identity element. Then the set with binary operation is called a monoid. Example: 'Z' set of all integers is a monoid under multiplication. Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, ∀a,b ∈ Find the identity element of the group ⟨Z,*⟩. (Apr 2017)(BTL3) Let e be the identity element Then a*e=e*a=a Now, a*e=a a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5) 		
identity element.Then the set with binary operation is called a monoid.Example: 'Z' set of all integers is a monoid under multiplication.Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, $\forall a, b \in \mathbf{Find}$ the identity element of the group $\langle Z, * \rangle$. (Apr 2017)(BTL3)Let e be the identity elementThen $a*e = e*a = a$ Now, $a*e = a$ $a+e-2 = a$ $e-2 = 0$ $e=2$ 2 is the identity element.Prove that identity element of a group is unique. (Nov 2015) (BTL5)		4
Then the set with binary operation is called a monoid.Example: 'Z' set of all integers is a monoid under multiplication.Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, $\forall a, b \in$ Find the identity element of the group $\langle Z, * \rangle$. (Apr 2017)(BTL3)Let e be the identity elementThen $a * e = e * a = a$ Now, $a * e = a$ $a+e-2 = a$ $e-2 = 0$ $e=2$ 2 is the identity element.Prove that identity element of a group is unique. (Nov 2015) (BTL5)	G where 'e' is the	
 Example: 'Z' set of all integers is a monoid under multiplication. Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, ∀a, b ∈ Find the identity element of the group ⟨Z,*⟩. (Apr 2017)(BTL3) Let e be the identity element Then a*e = e*a = a Now, a*e = a a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5) 		
Let Z be the group of integers with the binary operation * defined by a*b=a+b-2, $\forall a, b \in C$ Find the identity element of the group $\langle Z, * \rangle$. (Apr 2017)(BTL3) Let e be the identity element Then $a * e = e * a = a$ Now, $a * e = a$ $a+e-2 = a$ $e-2 = 0$ $e=2$ 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		,
Find the identity element of the group $\langle Z, * \rangle$. (Apr 2017)(BTL3) Let e be the identity element Then $a * e = e * a = a$ Now, $a * e = a$ a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
Let e be the identity element Then $a^*e = e^*a = a$ Now, $a^*e = a$ a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)	$= \mathbf{a} + \mathbf{b} - 2, \ \forall a, b \in \mathbb{Z}.$]
Let e be the identity element Then $a^*e = e^*a = a$ Now, $a^*e = a$ a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		-
Then $a * e = e * a = a$ 5Now, $a * e = a$ $a+e-2 = a$ $e-2 = 0$ $e=2$ 2 is the identity element.Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
5 Now, $a * e = a$ $a+e-2 = a$ $e-2 = 0$ $e=2$ 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
a+e-2 = a e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		5
e-2 = 0 e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
e=2 2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
2 is the identity element. Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
Prove that identity element of a group is unique. (Nov 2015) (BTL5)		
To Prove: identity element is unique		
Let e_1 and e_2 be two identity elements of G.		
6 Suppose e_1 is the identity element		6
$e_1 * e_2 = e_2 * e_1 = e_2$ (1)		
Suppose e_2 is the identity element		
$e_2 * e_1 = e_1 * e_2 = e_1$ (2)		

	Therefore identity element is unique
	Prove that inverse element of a group is unique. (BTL5)
	Given: (G,*) is a group
	To Prove: identity element is unique
	Let $a \in G$ and e is the identity element
	Let a_1^{-1} and a_2^{-1} be two inverse elements
	$a_1^{-1} a = a^* a_1^{-1} = e$ (1)
	$a_2^{-1} * a = a * a_2^{-1} = e$ (2)
7	To Prove: $a_1^{-1} = a_2^{-1}$
	L.H.S = $a_1^{-1} = a_1^{-1} * e$
	$= a_1^{-1} * (a^* a_2^{-1})$ (by (2))
	$= (a_1^{-1} * a) * a_2^{-1}$ (by associative)
	$= e * a_2^{-1}$ (by (1))
	$= a_2^{-1}$
	Therefore inverse element is unique.
	For any group G, if $a^2 = e$, $\forall a \in G$ then G is abelian. (BTL2)
	Given: $a^2 = e, \forall a \in G$
	To Prove: G is abelian
0	$\begin{vmatrix} a^{-1} * a^2 = a^{-1} * e \\ (a^{-1} * a) * a = a^{-1} * e \end{vmatrix}$
8	$(a^{-1}*a)*a=a^{-1}*e$
	$e^*a = a^{-1}$ $a = a^{-1}, \forall a \in G$
	(i.e.) Every element has its own inverse
	Therefore G is abelian
	Prove that in a group idempotent law is true for the identity element. (Apr 2018) (BTL5)
	Given: (G,*) is a group
9	Assume that $a \in G$ is an idempotent element
	Then, $a * a = a$

	$a=a^*e$
	$=a^{*}(a^{*}a^{-1})$
	Now, $=(a^*a)^*a^{-1}$
	$=a^*a^{-1}$
	= e
	Therefore a=e
	Therefore the only idempotent element in a group is its identity element.
	State Lagrange's theorem (May 2008, Nov 2015) (BTL1)
10	The order of a group H of a finite group G divides the order of the group.
	(i.e) O(H) divides O(G)
	Find the left cosets of {[0],[3]} in the group $(Z_6,+_6)$ (May 2016, May 2017) (BTL3)
	Let $Z_6 = \{[0], [1], [2], [3], [4], [5]\}$ be a group
	$H = \{[0], [3]\}$ be subgroup
	The left cosets are,
	$[0] +H = \{0+h / h \in H\} = \{[0]+[0], [0]+[3]\} = \{[0], [3]\} = H$
	$[1] +H = \{1+h / h \in H\} = \{[1]+[0], [1]+[3]\} = \{[1], [4]\}$
11	$[2] +H = \{2+h / h \in H\} = \{[2]+[0], [2]+[3]\} = \{[2], [5]\}$
	$[3] +H = \{3+h/h \in H\} = \{[3]+[0], [3]+[3]\} = \{[3], [0]\} = H$
	$[4] +H = \{4+h / h \in H\} = \{[4]+[0], [4]+[3]\} = \{[4], [1]\}$
	$[5] +H = \{5+h / h \in H\} = \{[5]+[0], [5]+[3]\} = \{[5], [2]\}$
	Therefore, $H = [0] + H = [3] + H$, $[1] + H = [4] + H$, $[2] + H = [5] + H$ are the distinct left cosets of H in
	$(Z_6,+_6)$
	Find the idempotent elements of G= {1,I,-1,-i} under the multiplication operation. (BTL3)
12	We know that the identity element is the only idempotent element of a group.
	Here 1 is the identity element.
	Therefore 1 is the only idempotent element.
	Define Normal subgroup . (BTL1)
13	A group (H,*) of (G,*) is called normal subgroup of G if $aH = Ha$, $a \in G$
	Prove or disprove "Every subgroup of an abelian group is normal". (BTL5)
14	(Nov 13)
	Given: (G,*) is abelian. H is a subgroup of G
L	

	To Prove: H is normal
	Let $(G,*)$ be an abelian group and $(H,*)$ be a subgroup of G.
	Let $a \in G$ be any element, then
	$aH = \{a *h / h \in H\}$
	$=$ {h * a / h \in H} (since G is abelian)
	Ha, for all $a \in G$
	Therefore H is a normal subgroup of G
	Prove that every cyclic group is abelian. (May 2016) (BTL5)
	Given: G is cyclic group
	To Prove: G is abeliana
	Let $G = \{a^n / n \in Z\}$
	Let $x, y \in G$ be any two elements
	Then $x = a^m$, $y = a^k$ for some integers m and k
15	$\mathbf{x} * \mathbf{y} = a^m * a^k = a^{m+k}$
	$=a^{k+m}$
	$= a^{k} * a^{m}$
	= y * x
	Therefore $x^*y = y^*x$, for all $x, y \in G$
	Therefore G is abelian.
	Define Group homomorphism with an example. (Nov 2014) (BTL1)
	Let (G, *) and (G', •) be two groups. A mapping $f: G \to G'$ is called a group homomorphism
16	if for all $a, b \in G$, $f(a*b) = f(a) \bullet f(b)$.
	Example: Consider the group (R, +) and (R^*, \bullet) where $R^* = R - \{0\}$. Let $f : R \to R^*$ be defined
	by $f(a) = 2^a \forall a \in R$. Then f is a homomorphism.
	Define Kernal of a homomorphism in a group. (Nov 2017) (BTL1)
17	Let (G, *) and (G', \bullet) be groups with e' as the identity element of G' . Let $f: G \to G'$ be a
	homomorphism. The ker $f = \{a \in G / f(a) = e'\}$
	Define Rings. (BTL1)
18	A non-empty set R with two binary operations denoted by '+' and '.' is called a ring if
	(1) $(\mathbf{R},+)$ is an abelian group with 0 as identity

	(2) (R,.) is a semigroup
	(3) The operation '.'is distributive over '+'
	(i.e.) $a_{\bullet}(b+c) = a_{\bullet}b + a_{\bullet}c$
	and $(b+c) \cdot a = b \cdot a + c \cdot a$, for all $a, b, c \in \mathbb{R}$
	Define a field in an algebraic system. (Apr 2015) (BTL1)
19	A commutative ring $(R,+, .)$ with identity in which every non-zero element has a multiplicative inverse
17	is called a field.
• •	Give an example of a ring which is not a field. (Nov 2013) (BTL3)
20	(Z,+, .) is a ring but not a field because integers does not contain its multiplicative inverse.
	If (R,+, .) is a ring then prove that a.0=0, $\forall a \in R$ and 0 is the identity element in R under addition.
	(Nov 2017) (BTL2)
	Given: (R,+,) is a ring
	To Prove: $a.0 = 0, \forall a \in R$
21	a.0=a.(0+0)
	If $a \in R$ then $a = a.0 + a.0$
	$\Rightarrow a.0+0 = a.0+a.0$
	$\Rightarrow 0 = a.0$
	Similarly $0.a = (0+0).a = 0.a + 0.a$
	0.a = 0
	Prove that if G is abelian, then $\forall a, b \in G, (a * b)^2 = a^2 * b^2$. (May 2011,
22	Nov 2010, May 2013)(BTL5)
	Given: G is abelian
	To Prove: $(a*b)^2 = a^2*b^2$
	L.H.S = $(a*b)^2 = (a*b) * (a*b)$
	= a * ((b*a) *b) (since associativity)
	= a * ((a*b) * b) (since abelian)
	= a * (a * (b*b)) (since associavity)
	= (a*a) * (b*b)
	$= a^{2} * b^{2}$ Cive an example of somi group but not a monoid (PTI 3)
23	Give an example of semi group but not a monoid. (BTL3) The set of all positive integers over addition form a semi-group but it is not a monoid because identity.
	The set of all positive integers over addition form a semi group but it is not a monoid because identity

	axiom is not satisfied.
	If 'a' is a generator of a cyclic group G, then show that 'a ⁻¹ ' is also a generator of G. (BTL4)
	Given: 'a' is a generator of G
	To prove: a ⁻¹ is also a generator
24	Let $G = \langle a \rangle$ be a cyclic group generated by 'a'
	If $x \in G$, then $x=a^n$ for some $n \in Z$
	$\therefore x = a^n = (a^{-1})^{-n}, (-n \in Z)$
	\therefore a ⁻¹ is also a generator of G.
	Give an example to show that union of two subgroups need not be a subgroup. (BTL3)
	We know that (Z,+) is a group
25	Let $H_1=2z$ and $H_2=3z$
	\therefore (H ₁ ,+) and (H ₂ ,+) are subgroups of Z
	Now $2 \in H_1$ and $3 \in H_2$, $\therefore 2, 3 \in H_1 \cup H_2$
	But $2,3 \in H_1 \cup H_2$
	$\therefore 5 \notin H_1 and 5 \notin H_2$
	So $H_1 \cup H_2$ is not a subgroup of G
	Part-B
	Show that M ₂ , the set of all 2x2 non-singualar matrices over R is a group under usual matrix
	multiplication. Is it abelian? (Apr 2015) (BTL5) (8 Marks)
1	(Refer SKD pg.4.38)
	Keypoints:
	• Assume a 2x2 matrix (1mark)
	• closure $ AB = A B $ (1mark)
	• Associative A(BC)=(AB)C (2mark)
	• Identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (2mark)
	• Inverse $A^{-1} = \frac{1}{ A } a dj A$ (1mark)
	• Commutative is not satisfied. (1mark)
2	Show that $(Q^+, *)$ is an abelian group where * is defined by $a * b = \frac{ab}{2}, \forall a, b \in Q^+$. (Nov 2016, Apr

	2018) (BTL5)(8 Marks)
	(Refer SKD Pg.4.17)
	Keypoints:
	• Closure $a * b \in G$ (1mark)
	• Associative $a^*(b^*c) = (a^*b)^*c$ (2marks)
	• Identity e=2 (2marks)
	• Inverse $\frac{4}{a}$ (2marks)
	• Commutative a*b =b*a (1mark)
	Prove that $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ forms an abelian group under matrix
	multiplication. (Nov 2015) (BTL5) (8 Marks)
	(Refer SKD Pg. 4.15)
3	Keypoints:
5	• Closure : all the elements of G are closed under multiplication (1 mark)
	• Associative : Matrix multiplication is always associative (2marks)
	• Identity: I is the identity element (1mark)
	• Inverse : Inverse of I is I, Inverse of A is A, Inverse of B is B, inverse of C is C(2marks)
	• Prove commutative.(2marks)
	Prove that every cyclic group is an abelian group. (Nov 2013) (BTL5)(8 Marks)
4	(Refer Balaji Pg. 4.54)
	Keypoints:
	• Consider a cyclic group generated by a. (2marks)
	• Take $x = a^n y = a^m$ (2marks)
	• prove its abelian : x*y = y*x (4marks)
	Prove that intersection of any two subgroups of a group (G,*) is again a subgroup of (G,*). (May
	2013,Nov 2013, Nov 2015) (BTL5)(8 Marks)
F	(Refer Balaji Pg. 4.56)
5	Keypoints:
	• Consider two subgroups H ₁ and H ₂ with same elements in both the groups. (2marks)
	• $a^*b^{-1} \in H$, $a^*b^{-1} \in k$ (2marks)

	• $a * b^{-1} \in H \cap K$ (4marks)
	Show that union of two subgroups of a group G is a subgroup of G iff one is contained in the
	other. (Apr 2015, Nov 2014) (BTL5)(8 Marks)
	(Refer Balaji 4.56)
6	Keypoints:
	• Consider union of two subgroups (2marks)
	Prove by contrary (3marks)
	• Prove the converse by considering $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$ (3marks)
	State and Prove Lagrange's theorem for groups. Is the converse true? (May 2015, May 2016,
	Nov 2016, May 2018, May 2017)(BTL5) (16 Marks)
	(Refer Balaji 4.68)
	Keypoints:
	• Prove the theorem "Let $(H, *)$ be a subgroup of $(G, *)$. Then the set of all left cosets of H in G
7	form a partition of G. That is every element of G belongs to only one left coset of H in G".
	(4marks)
	• Prove the theorem "There is a 1-1 correspondence between any two left coset of H in
	G".(4marks)
	• Using the above two theorems prove order of H divides order of G (4marks)
	• Check if the converse is true. (4marks)
	If S=NxN, the set of ordered pairs of positive integers with the operation * defined by
8	(a,b)*(c,d)=(ad+bc,bd) and if $f:(S,*)\to(Q,+)$ is defined by $f(a,b)=\frac{a}{b}$, show that f is a
	b
	semigroup homomorphism. (May 2008, Nov 2014) (BTL5)(8 Marks)
	(Refer SKD Pg.4.109) Keypoints:
	• Check closure : $a * b \in G$ (3marks)
	 Associative a*(b*c)=(a*b)*c (3marks) Clock for a for
	• Check $f(x*y) = f(x) + f(y)$ (2marks)
	Show that a semigroup with more than one idempotent element cannot be a group. Give an
9	example of a semigroup which is not a group. (Nov 2014) (BTL5)(8 Marks)
	(Refer Balaji 4.17)
	Keypoints:

	Consider two idempotent elements a*a=a, b*b=b(2marks)
	• Prove by contradiction (4marks)
	• Give an example (2marks)
	Prove that every subgroup of a cyclic group is cyclic. (May 2016, May 2017) (BTL5)(8 Marks)
	(Refer SKD Pg.4.56)
10	Keypoints:
10	Consider a cyclic group generated by a. (2marks)
	Consider a subgroup H of G (2marks)
	• Prove that H is a cyclic group generated by a^m , $x=(a^m)^q$ (4marks)
	In any group $\langle G, * \rangle$ show that $(a * b)^{-1} = b^{-1} * a^{-1}, \forall a, b \in G$. (May 2016) (BTL5)(8 Marks)
	(Refer Balaji Pg. 4.35)
11	Keypoints:
11	• Consider two elements in the group G (2marks)
	• Its inverse also exists in G (2marks)
	• $(a*b)*(b^{-1}*a^{-1})=(b^{-1}*a^{-1})*(a*b)=e(4 \text{ marks})$
	Prove that kernel of a group homomorphism is a normal subgroup of the group. (May2017, May
12	2016, May 2018) (BTL5)(8 Marks)
	(Refer Balaji Pg.4.69)
	Keypoints:
	• Consider a kernel of the homomorphism (1mark)
	• Consider two elements in kerf (2marks)
	• Prove that kerf is a subgroup of G (i.e.,) $x^* y^{-1} \in Kerf$ (3marks)
	• Prove that kerf is normal (i.e.,) $f^*x^*f^{-1} \in Kerf$ (2marks)
	Prove that intersection of two normal subgroups of a group G is again a normal subgroup of G.
	(Nov 2016, Apr 2018) (BTL5)(8 Marks)
	(Refer Balaji Pg. 4.71)
13	(Refer Balaji Pg. 4.71) Keypoints:
13	
13	Keypoints:
13	 Keypoints: Consider two normal subgroups N₁ and N₂(2marks)

	$(M_{2}, 2012)$ (DTI 5) (0 M_{2}, 1)
	State and prove Cayley's theorem. (May 2013) (BTL5) (8 Marks) (Refer Balaji Pg. 4.59)
	Keypoints:
	 "Every finite group of order n is isomorphic to a permutation group of order n" (2marks)
14	• Define a mapping $f: G \to G$ (1mark)
14	• Find 1-1 $f_a(x)=f_a(y) \Rightarrow x=y$ (1 mark)
	• onto if $y \in G$, $y = f_a(a^{-1} * y)$ (1 mark)
	• Consider a set G', prove that it's a group (2marks)
	• Prove G is isomorphic to G'. (1mark)
	Let $f: (G,*) \to (G',\bullet)$ be a group homomorphism then prove that
	(1) $[f(a)]^{-1} = f(a^{-1}), \forall a \in G$
	(2) $f(e)$ is an identity of G' , when e is an identity element of G. (Nov 2015) (BTL1)(8 Marks)
15	(Refer SKD Pg. 4.80)
	Keypoints:
	• (i) $f(a).f(e)=f(a).e'$ (4marks)
	• (ii) $f(a^{-1} * a) = f(e) \Longrightarrow f(a^{-1}) \cdot f(a) = e'$ (4marks)
	State and prove fundamental theorem on group homomorphism of groups. (May 2011, Nov 2013)
	(8 Marks)
	(Refer Balaji Pg. 4.70)
	Keypoints:
16	• "Let (G,*) and (G',•) be two groups. Let $f: G \to G'$ be a homomorphism of groups with
10	kernel K. Then G/K is isomorphic to $f(G) \subseteq G'(2marks)$
	Consider a mapping (1mark)
	• Prove that it is well defined : If ak=bk then f(a)= f(b) (1mark)
	• 1-1 and onto (2marks)
	• Prove that it is a homomorphism : $\phi(ak \oplus bk) = \phi(ak) \bullet \phi(bk)$ (2marks)
17	Prove that $Z_4 = \{0,1,2,3\}$ is a commutative ring with respect to the binary operation $+_4$ and $x_{4.}$ (Nov
	2015). (BTL5) (8 Marks)
	Keypoints:
	• Check if Z ₄ is an abelian group over + (2marks)

	• Check if Z ₄ is a semigroup over x (2marks)
	• Prove that x is distributive over + (2marks)
	• Check if Z ₄ is commutative (2marks)
	UNIT V –LATTICES AND BOOLEAN ALGEBRA
	Partial ordering – Posets – Lattices as posets – Properties of lattices - Lattices as algebraic systems –
	Sub lattices – Direct product and homomorphism – Some special lattices – Boolean algebra.
Q.No.	PART-A
	Define Partial order relation and give an example . (BTL1)
1.	A relation R on A is called partial order relation if R is reflexive, antisymmetric and transitive
	Example: set of positive integers
	Define a lattice. Give suitable example. (Nov 2014, Nov 2015, Nov 2016) (BTL1)
	A lattice is a poset (L, \leq) in which every pair of elements $a, b \in L$ has a greatest lower bound and least
	upper bound.
2	Example: (Z^+, \leq) where \leq denotes divisibility is a lattice.
	The poset N with the usual \leq is a lattice if $a, b \in N$ then $a \lor b = Max\{a, b\}$ and
	$a \wedge b = Min\{a, b\}$
	Define distributive lattice. (BTL1)
3	A lattice (L, \land, \lor) is said to be distributive if \land and \lor satisfies the following conditions, $\forall a, b, c \in L$
5	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$
	$a \land (b \lor c) = (a \land b) \lor (a \land c)$
	State modular lattice. (BTL1)
4	A lattice (L, \wedge, \vee) is said to be modular lattice if it satisfies the following condition
	If $a \leq c$ then $a \vee (b \wedge c) = (a \vee b) \wedge c$, $\forall a, b, c \in L$
	Define Complete lattice. (BTL1)
_	A lattice (L, \wedge, \vee) is said to be complete if every non-empty subset has a least upper bound and
5	greatest lower bound
	Example: Every finite lattice L is complete
	Define bounded lattice. (BTL1)
6	A lattice (L, \wedge, \vee) is said to be bounded if it has a greatest element 1 and a least element 0. (i.e.)
	$0 \le a \le 1, \forall a \in L$

	Define complemented lattice. (BTL1)
7	A bounded lattice $(L, \land, \lor, 0, 1)$ is said to be complemented, if every element of L has atleast one
	complement.
	Define lattice homomorphism. (Apr 2015) (BTL1)
	Let $(L, *, \oplus)$ and (M, \wedge, \vee) be two lattices. A mapping $f: L \to M$ is called a lattice homomorphism from
8	the lattice $(L, *, \oplus)$ to the lattice (M, \wedge, \vee) if $f(a * b) = f(a) \wedge f(b)$ and $f(a \oplus b) = f(a) \vee f(b)$.
	State modular inequality in lattices. (Nov 2017) (BTL1)
9	If (L, \wedge, \vee) is a lattice, then $a \le c \Leftrightarrow a \lor (b \land c) = (a \lor b) \land c, \forall a, b, c \in L$.
	Draw the Hasse diagram of (X, \leq) where X={2,4,5,10,12,20,25} and the relation \leq be such
	that $x \le y$ if x divides y. (Nov 2013)(BTL4)
	Hasse Diagram:
10	120
	10 25
	4
	2 5
	Let A={1,2,5,10} with the relation divide. Draw the Hasse diagram. (Nov 2015) (BTL4)
	Q
11	2 5
	N N
	Define Boolean algebra. (Nov 2007, May 2010) (BTL1)
	A boolean algebra is a complemented distributive lattice.
12	A non-empty set B together with two binary operations '+' , '.' on B , a unary operation on B $\ '$
	called complementation and two distinct elements 0 and 1 is called a Boolean algebra if the
	following axioms are satisfied for all $a, b, c \in B$.
	Commutative Law: a+b = b+a and a.b=b.a

	Associative Law: $a + (b + c) = (a + b) + c$ and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
	Distributive Law: $a + (b \cdot c) = (a + b) \cdot (a + c)$ and
	$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
	Identity Law: There exists $0,1 \in B$ such that $a + 0 = a$ and $a \cdot 1 = a$
	Complement Law: For each $a \in B$ there exists an element $a' \in B$ such that $a+a'=1$ and $a.a'=0$
	The Boolean algebra is usually denoted as 6-tuple $(B, +, ., ', 0, 1)$.
	State the De Morgan's law in a Boolean algebra. (Nov 2016)
13	(i) (a+b)'=a'.b'
	$(ii)(a.b)' = a' + b' \forall a, b \in B$
	Show that Absorbtion laws are valid in a Boolean algebra. (May 2016, May 2017) (BTL5)
	The absorbtion laws are
	(i) $\mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a}$ (ii) $\mathbf{a} + \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \forall a, b \in B$
	(i) L.H.S=a. $(a + b) = (a + 0) . (a + b)$ (by identity law)
	= a + (0 . b) (by distributive law)
	= a + (b . 0) (by commutative law)
	= a + 0 (by boundedness law)
14	= a (by identity law)
	=R.H.S
	(ii) $L.H.S = a + (a \cdot b) = (a \cdot 1) + (a \cdot b)$ (by identity law)
	= a. (1 + b) (by distributive law)
	$= a \cdot (b+1)$ (by commutative law)
	$= a \cdot 1$ (by bounded law)
	= a (by identity law)
	=R.H.S
	Prove the Boolean identity $a.b+a.b'=a$ (May 2015) (BTL5)
	L.H.S = $a.b+a.b'=a.(b+b')$ (by distributive law)
15	=a.1 (b+b'=1)
10	= a
	= R.H.S
16	Is there a Boolean algebra with 5 elements? Jsutify your answer. (Nov 2013) (BTL4)

	Since each Boolean algebra must have 2 ⁿ elements for some integer n.
	Here $5 \neq 2^n$ for some integer n
	Hence there is no Boolean algebra having 5 elements.
	Let X={1,2,3,4,5} and R be a relation defined as $\langle x, y \rangle \in R$ if and only if x-y is divisible by 3. Find
	the elements of the relation R. (Apr2016, May 2017) (BTL3)
17	Given: X={1,2,3,4,5}
	The relation R is defined as x-y divisible by 3.
	$\therefore R\left\{\!\langle 1,4\rangle,\langle 2,5\rangle,\langle 3,6\rangle\right\}$
	Does Boolean algebra contain 6 elements? Justify. (Nov 2015) (BTL1)
18	Since each Boolean algebra must have 2 ⁿ elements for some integer n.
10	Here $6 = 2^n$ for some integer n
	Hence there is Boolean algebra having 6 elements.
19	Define sublattice . (BTL1)
	Let (L, \wedge, \vee) be a lattice and $S \subseteq L$, be a subset of L, then (S, \wedge, \vee) is a sublattice of (L, \wedge, \vee) if S is
	closed under the operation \land and \lor .
	Show that a chain of three or four elements is not complemented. (BTL4)
	Let (L, \wedge, \vee) be a given chain
	We know that, in a chain any two elements are comparable.
	Let 0,x,1 be any three elements of (L, \land, \lor) with 0 is the least element and 1 is the greatest element
20	We have $0 \le x \le 1$
	Now $0 \land x = 0$ and $0 \lor x = x$
	$1 \land x = x$ and $1 \lor x = 1$
	In both cases, x does not have any complement.
	Hence any chain with 3 or more elements is not complemented.
	In a Boolean algebra, show that $ab'+a'b=0$ if $a=b$. (BTL4)
	Let $(B, +, ., ', 0, 1)$ be a Boolean algebra
21	Let $a, b \in B$ be any two elements
	ab'+a'b=aa'+a'a
	Let $a=b$ then $=0+0$ =0

	Let A={a,b,c} and P(A) is a Poset, Draw a Hasse diagram of $(P(A), \subseteq)$. (BTL2)
	Given: $A = \{a,b,c\}$
	P(A) is the set of all subsets of A
	$P(A) = \{ \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \}$
	Since empty set is a subset of every set in P(A), ϕ is the least of P(A)
	Similarly $A = \{a, b, c\}$ contains all elements of $P(A)$. Therefore A is the greatest element in $P(A)$
	Therefore A is the greatest element in P(A) Hence every pair of elements of P(A) has L.U.B and G.L.B.
22	Therefore $(P(A), \subseteq)$ is a lattice.
	Therefore $(T(A), \subseteq)$ is a fattice.
	{a.b,c}
	[a,c]
	Show that every distributive lattice is modular. Is the converse true? Justify. (BTL4)
	Let (L, \wedge, \vee) be the given distributive lattice
	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$ holds good for all $a, b, c \in L$ (1)
	Now if $a \le c$ then $a \lor c = c$ (2)
23	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$
23	From (1) $=(a \lor b) \land c \qquad (by(2))$
	Therefore every distributive lattice is modular
	But the converse is not true.
	(i.e.) Every modular lattice need not be distributive.
	For example diamond lattice M ₅ is modular but not distributive.
	Is a chain a modular lattice? Justify. (BTL5)
24	Since any chain is a distributive lattice
	By theorem, Every distributive lattice is modular
	Hence every chain is a modular lattice.
25	In any Boolean algebra show that if $a = 0$ <i>then</i> $ab' + a'b = b$ (BTL5)

	Let $(B, +, ., ', 0, 1)$ be a Boolean algebra
	Let $a, b \in B$ be any two elements
	If a=0 then $ab' + a'b = 0 + a'b$
	=0+1. <i>b</i>
	=0+b
	PART-B
	Prove that every chain is a distributive lattice. (Nov2013, Apr2015, May2016, Apr2017, Nov2017,
	Nov 2016) (BTL5)(8 Marks)
	(Refer Balaji Pg. 5.22)
	Keypoints:
1	• Consider a chain with two elements (2marks)
	• Consider two cases $a \le b$ and $b \le a$ (3marks)
	• Prove that GLB and LUB exists which proves that a chain is a lattice(3marks)
	• Prove that a chain is distributive: $\begin{aligned} a \lor (b \land c) = (a \lor b) \land (a \lor c) \\ a \land (b \lor c) = (a \land b) \lor (a \land c) \end{aligned}$
	State and prove De Morgan's law in a complemented distributed lattice. (Apr2015) (BTL5)
	(Refer Balaji 5.27)
	Keypoints:
	• $(a+b)' = a'.b'$ (2marks)
2	• Prove that : $\frac{(a \wedge b) \wedge (a' \vee b') = 0}{(a \wedge b) \vee (a' \vee b') = 1}$ (2marks)
	• $(a.b) = a' + b'$ (2marks)
	• $(a.b)' = a' + b'$ (2marks) • Prove that : $(a \lor b) \land (a' \land b') = 0$ $(a \lor b) \lor (a' \land b') = 1$ (2marks)
	$(a \lor b) \lor (a' \land b') = 1$
	In a distributive complemented lattice , show that the following are equivalent
	(i) $a \le b$ (ii) $a \land \overline{b} = 0$ (iii) $\overline{a} \lor b = 1$ (iv) $\overline{b} \le \overline{a}$. (May2016, May2017 Nov 2017) (BTL5)(8
3	Marks)
	(Refer Balaji 5.25)
	Keypoints:

	_
	• $a \le b \Rightarrow a \land \overline{b} = 0$ (2marks)
	• $a \wedge \overline{b} = 0 \implies \overline{a} \vee b = 1_{(2 \text{marks})}$
	• $\overline{a} \lor b = 1 \Longrightarrow \overline{b} \le \overline{a}_{(2 \text{ marks})}$
	• $\overline{b} \le \overline{a} \implies a \le b_{(2 \text{marks})}$
	Show that every ordered lattice (L,\leq) satisfies the following properties of the algebraic lattice , (i)
	idempotent (ii) commutative (iii) Associative
	(iii) Absorption. (Apr 2017)(BTL5) (8 Marks)
	(Refer Balaji 5.13)
4	Keypoints:
	• To prove idempotent : $a \lor a = a \& a \land a = a$ (2marks)
	• Prove associative: $a \lor (b \lor c) = (a \lor b) \lor c \& a \land (b \land c) = (a \land b) \land c$ (3marks)
	• Prove absorption : $a \lor (a \land b) = a \& a \land (a \lor b) = a$ (3marks)
	Show that (N,\leq) is a partially ordered set, where N is the set of all positive integers and \leq is a
	relation defined by $m \subseteq n$ iff n-m is a non-negative integer. (Apr 2018) (BTL5) (8 Marks)
	(Refer SKD Pg. 5.9)
5	Keypoints:
	• Prove the \leq is reflexive: $\forall x \in N, xRx$ (2marks)
	• Antisymmetric : xRy , $yRx \Rightarrow x = y$ (3marks)
	• Transitive: $xRy \& yRz \Rightarrow xRz$ (3marks)
	In a complemented distributive lattice, prove that complement of each element is unique. (Nov
	2015, Apr 2018) (BTL5) (8 Marks)
	(Refer Balaji Pg. 5.32)
	Keypoints:
6	• Consider a distributive lattice $(L, \lor, \land, 0, 1)$, then $a \land x = 0, a \lor x = 1$, if x is a compliment of 'a'.
	similarly for y(2marks)
	• Prove : $x = x \lor y$ (2marks)
	• Prove : $y = x \lor y$ (4marks)
7	Show that every chain is modular. (May 2016) (BTL5) (8 Marks)
/	(Refer SKD Pg.5.52)
L	

	Keypoints:
	• Prove every chain is a distributive lattice(Check problem 1) (4marks)
	• Prove every distributive lattice is modular: If $a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$ (4marks)
	Let (L,\leq) be a lattice, in which * and \oplus denote the operation of meet and join respectively. For
	any $a, b \in L, a \le b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$. (Nov 2017)(8 Marks)
	(Refer Balaji Pg. 5.14) (BTL4)
8	Keypoints:
	• Prove $a \le b \Leftrightarrow a \ast b = a$ (3marks)
	• Prove $a * b = a \Leftrightarrow a \oplus b = b_{(3 \text{ marks})}$
	• Prove $a \oplus b = b \Leftrightarrow a \le b_{(2 \text{ marks})}$
	Let (L, \land, \lor, \leq) be a distributive lattice and $a, b \in L$ if $a \land b = a \land c$ and $a \lor b = a \lor c$ then show that
	b=c. (Apr 2018) (BTL5) (8 Marks)
0	(Refer Balaji Pg. 5.23)
9	Keypoints:
	• $a \lor (b \land c) = c$ (4marks)
	• $a \wedge (b \vee c) = b$ (4marks)
	Prove that the diamond lattice is distributive or not. (Nov 2015) (BTL5) (8 Marks)
	(Refer Balaji Pg. 5.24)
	Keypoints:
	• Draw the diamond lattice (2marks)
10	• Consider case (i) as (0,b,a) get the answer as 0 (1mark)
10	• Consider case (ii) as (0,1,a) get the answer as a (1mark)
	• Consider case (iii) as (0,a,1) get the answer as a (1mark)
	• Consider case (iv) as (a,0,1) get the answer as a (1mark)
	• Consider case (v) as (a,b,1) get the answer as 1 (1mark)
	• Conclude with the following cases (1mark)
	Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ with a relation $x \le y$ iff x divides y. Find
11	(i) All lower bounds of 10 and 15
	(ii) All G.L.B of 10 and 15
	(iii) All upper bounds of 10 and 15

	(iv) All L.U.B of 10 and 15
	(v) Hasse diagram of D ₃₀ (Nov2015, Apr 2018) (BTL5) (8 Marks)
	Keypoints:
	• Draw the hasse diagram (4marks)
	• Find the GLB and LUB (4marks)
	Show that in a lattice if $a \le b \le c$ then
	(1) $a \oplus b = b^*c$ (or) $a \lor b = b \land c$
	(2) $(a^*b) \oplus (b^*c) = b = (a \oplus b)^* (a \oplus c)$
12	(or) $(a \wedge b) \lor (b \wedge c) = b = (a \lor b) \land (a \lor c)$. (Nov 2013) (BTL5) (8 Marks)
12	(Refer Balaji Pg. 5.18)
	Keypoints:
	• Using $a \le b \le c$ prove (1) (4marks)
	• Using necessary laws prove (2), $(a^*b) \oplus (b^*c) = b = (a \oplus b)^* (a \oplus c)$ (4marks)
	If S_n is the set of all divisors of the positive integers n and D is the relation of division, prove that
	$\{S_{30}, D\}$ is a lattice. Find also all the sublattices of
	{S ₃₀ , D} that contains six or more elements. (Apr 2015) (BTL5) (8 Marks)
13	(Refer Balaji Pg. 5.30)
15	Keypoints:
	• Draw the Hasse diagram (3marks)
	• Find GLB and LUB (2marks)
	• Find all the sublattices that contain 6 or more elements(3marks)
	Show that the De Morgan's law holds in a Boolean algebra. (Nov 2014, May 2016) (BTL5)
	(8 Marks)
	(Refer Balaji Pg. 5.39)
	Keypoints:
14	• $(a+b)' = a'.b'$ (2marks)
	• Prove: $\frac{(a+b) + (a'.b') = 1}{(a+b).(a'.b') = 0}$ (2marks)
	• $(a.b)' = a' + b'$ (2marks)
	• Prove: $\frac{(a.b) + (a'+b') = 1}{(a.b).(a'+b') = 0}$ (2marks)

	In any Boolean algebra show that $(a+b')(b+c')(c+a')=(a'+b)(b'+c)(c'+a)$. (Nov 2013)
	(BTL5) (8 Marks)
	(Refer Balaji Pg. 5.50)
15	Keypoints:
	• Consider LHS = $(a+b')(b+c')(c+a')$ (4marks)
	• prove the RHS = $(a'+b)(b'+c)(c'+a)$ (4marks)
	If P(S) is the power set of a non-empty set S, prove that $\{P(S), \cup, \cap, /, \phi, S\}$ is a Boolean algebra.
	(Nov 2015) (BTL2) (8 Marks)
16	(Refer Balaji Pg. 5.41)
10	Keypoints:
	• Consider elements from P(A) (2marks)
	• prove that the given set is a Boolean algebra (6marks)
	If $a, b \in S = \{1, 2, 3, 6\}$ and $a+b = LCM(a,b)$, $a*b = GCD(a,b)$ and $a' = \frac{6}{a}$, show that $(B, +, ., ', 1, 6)$ is a
	Boolean algebra. (BTL3) (8 Marks)
17	Keypoints:
	• Prove Commutative, Associative, (3marks)
	• Distributive, Identity (3marks)
	• Complement. (2marks)

CS8351 DIGITAL PRINCIPLES & SYSTEM DESIGN L T P C

3 00 3

OBJECTIVES:

- To design digital circuits using simplified Boolean functions
- To analyze and design combinational circuits
- To analyze and design synchronous and asynchronous sequential circuits
- To understand Programmable Logic Devices
- To write HDL code for combinational and sequential circuits

UNIT I BOOLEAN ALGEBRA AND LOGIC GATES

Number Systems - Arithmetic Operations - Binary Codes- Boolean Algebra and Logic GatesTheorems and Properties of Boolean Algebra - Boolean Functions - Canonical and Standard Forms - Simplification of Boolean Functions using Karnaugh Map - Logic Gates – NAND and NOR Implementations.

UNIT II COMBINATIONAL LOGIC

Combinational Circuits – Analysis and Design Procedures - Binary Adder-Subtractor - Decimal Adder - Binary Multiplier - Magnitude Comparator - Decoders – Encoders – Multiplexers - Introduction to HDL – HDL Models of Combinational circuits.

UNIT III SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits - Storage Elements: Latches , Flip-Flops - Analysis of Clocked Sequential Circuits - State Reduction and Assignment - Design Procedure - Registers and Counters - HDL Models of Sequential Circuits.

UNIT IV ASYNCHRONOUS SEQUENTIAL LOGIC 12

Analysis and Design of Asynchronous Sequential Circuits – Reduction of State and Flow Tables – Race-free State Assignment – Hazards.

UNIT V MEMORY AND PROGRAMMABLE LOGIC

RAM – Memory Decoding – Error Detection and Correction - ROM - Programmable Logic Array – Programmable Array Logic – Sequential Programmable Devices.

TOTAL: 60 PERIODS

OUTCOMES:

On Completion of the course, the students should be able to:

- Simplify Boolean functions using KMap
- Design and Analyze Combinational and Sequential Circuits
- Implement designs using Programmable Logic Devices
- Write HDL code for combinational and Sequential Circuits.

TEXT BOOK:

JIT-JEPPIAAR/ECE/Mr.D.JOSHUA JEYASEKAR/II Yr/SEM 03 /CS8351/DPSD/UNIT 1-5/QB+Keys/Ver2.

12

12

12

12

1. M. Morris R. Mano, Michael D. Ciletti, "Digital Design: With an Introduction to the

Verilog HDL, VHDL, and SystemVerilog", 6th Edition, Pearson Education, 2017.

REFERENCES:

- 1. G. K. Kharate, Digital Electronics, Oxford University Press, 2010
- 2. John F. Wakerly, Digital Design Principles and Practices, Fifth Edition, Pearson Education, 2017.
- 3. Charles H. Roth Jr, Larry L. Kinney, Fundamentals of Logic Design, Sixth Edition, CENGAGE Learning, 2013
- 4. Donald D. Givone, Digital Principles and Designl, Tata Mc Graw Hill, 2003.

Subject Code:CS8351 Subject Name: DPSD

Year/Semester: II /03 Subject Handler: D.Joshua Jeyasekar

UNIT I - BOOLEAN ALGEBRA AND LOGIC GATES

Number Systems - Arithmetic Operations - Binary Codes- Boolean Algebra and Logic Gates - Theorems and Properties of Boolean Algebra - Boolean Functions - Canonical and Standard Forms - Simplification of Boolean Functions using Karnaugh Map - Logic Gates – NAND and NOR Implementations.

	PART * A
Q.No.	Questions
1.	What is meant by weighted and non – weighted coding? (BTL 1) Weighted Codes: In Weighted Codes, each digit position of the number represents a specific weight. For example, in decimal code, if number is 567 then weight of 5 is 100, weight of 6 is 10 and weight of 7 is one. In weighted binary codes each digit has a weight 8,4, 2 or 1. Non – Weighted Codes: Non – weighted codes are not assigned with any weight to each digit position within the number is not assigned fixed value. Excess – 3 and gray codes are non – weighted codes.
2	 What are the different ways to represent a negative number? (BTL 1) 1. 1's complement representation 2. 2's complement representation
3	What is the advantage of gray code over the binary number sequence? (BTL 1) In Gray code there is only one bit change over the binary number sequence.
4	Perform subtraction using 1's complement $(11010)_2 - (10000)_2$. (BTL 2) 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 + 0 1 1 1 + 0 1 1 1 + 0 1 1 1 + - - 1 - Add end-around carry - - -
5	What are error detecting codes? (BTL - 1) The data along with the extra bits/bits forms the code. C odes which allow only error detection are called error detecting codes.
6	Perform 9's and 10's complement subtraction between 18 and -24. (BTL 2)

	Find 9's complement of 24 9's complement of $24 = 99 - 24 = 75$					
	Add 18 and 9's complement of 24					
	1 1 1 Carry					
	0 0 1 1 0 0 0 (18) BCD					
	+ 0 1 1 1 0 1 0 1 (75) BCD					
	1 0 0 0 1 1 0 1					
	+ 0 1 1 0 1101 > 9 so add 6					
	1 0 1 1 1 Final carry is 0, so result is negative and it is in 9's					
	0 0 0 0 1 1 0 complement form					
	Convert the (153.513) ₁₀ to octal (BTL 5) (Apr/May 2015)					
7	Divide by 8 the value before decimal point.					
7	Multiply by 8 the value after decimal point.					
	(231.4065) ₈					
	Find the octal equivalent of hexadecimal number AB.CD (BTL 5)					
8	Convert the given value to its binary equivalent.					
	Convert the binary value to octal.					
	$(231.4065)_8$					
	Represent the decimal numbers -200 and 200 using 2's complement binary form (BTL 5)					
	+200 = 01100100					
9	- 200 = 1 0 0 1 1 0 1 1 1 1's complement					
-	- 200 = 1 0 0 1 1 0 1 1 1 1's complement + Add 1					
	1 0 0 1 1 1 0 0 0 2's complement					
	Perform the following code conversions (BTL 2)					
10	$(1010.10)_{16} \Rightarrow (?)_2 \Rightarrow (?)_8 \Rightarrow (?)_{10}$					
	$(10000001)_2 \Rightarrow (10020.02)_8 \Rightarrow (4112.0625)_{10}$					
	Subtract 11001 from 01101 using 2's complement. (BTL 2) Find the 1s complement of 11001					
11	Find the 1s complement of 11001. Add it with 01101.					
	Add if with 01101. 1100					
	Convert (2.B2) ₁₆ to binary and octal numbers. (BTL 2)					
	2 · B 2 Hexadecimal					
12						
	$0 0 0 0 1 0 \cdot 1 0 1 1 0 0 1 0 0$ Binary					
	0 2 · 5 4 4 Octal					
	State the two absorption properties of Boolean Algebra. (BTL 1)					
13	1. A+AB=A					
2. A(A+B)=A						
14	State the Associative Law of Boolean Algebra. (BTL 1)					

	Law 1 (The Associative Law of Addition)				
	Law 1 (The Associative Law of Addition)				
	In the ORing of the several variables, the result is the same regardless of the grouping of the				
	variables. For three variables, A ORed with B OR C is the same as A OR B Ored with C.				
	i.e., $A + (B + C) = (A + B) + C$				
	State the Associative Law of Multiplication. (BTL 1)				
	Law 2 (The Associative Law of Multiplication)				
15	It makes no difference in what order the variables are grouped when ANDing several variables.				
	For three variables, A AND B ANDed with C is the same as A ANDed with B and C.				
i.e.,(AB)C = A(BC)					
	Explain the principle of duality with the help of example. (BTL 1)				
	The duality theorem states that, starting with a Boolean relation, you can derive another Boolean				
	relation by,				
16	1. Changing each OR sign to an AND sign				
	2. Changing each AND sign to an OR sign				
	3. Complementing any 0 to 1 appearing in the expression				
	Ex: $A+0 = A$. Using duality theorem, we can say that, $A.1=A$				
	State and prove the consensus theorem in Boolean Algebra. (BTL 1)				
17	In Simplification of Boolean expression, an expression of the form AB+A'C+BC the term BC is				
17	redundant and can be eliminated to form the equivalent expression AB+A'C. The theorem used				
	for this simplification is known as consensus theorem.				
	Explain the De Morgan's theorem in Boolean Algebra. (BTL 1) (Apr/May 2015)				
18	$\overline{(A+B)} = \overline{A}.\overline{B}$				
	$(\overline{A},\overline{B}) = \overline{A} + \overline{B}$				
	Name the two canonical forms for Boolean Algebra. (BTL 1)				
19	1. Standard SOP and				
	2. Standard POS forms.				
	Express $F = BC' + AC$ in a canonical SOP form. (BTL 3)				
20	$\mathbf{F} = \mathbf{BC'} + \mathbf{AC}$				
20	= (A+A')BC'+AC(B+B')				
	= ABC' + A'BC' + ABC + AB'C				
	Simplify the following Boolean expression to a minimum number of literals. (BTL 3)				
	a) $(X+Y)(X+Y')$				
	= XX + XY' + XY + 0 = X + X(Y' + Y)				
	= X + X = X				
21	b) XY+X'Z+YZ				
21	= XY(Z+Z')+X'Z(Y+Y')+YZ(X+X')				
	= XYZ + XYZ + X'YZ + X'Y'Z + XYZ + X'YZ				
	= XYZ + XYZ' + X'YZ + X'Y'Z				
	= XY(Z+Z')+X'Z(Y+Y')				
	=XY+X'Z				
	Simplify the following Boolean expression. (BTL 3)				
	ab'c'+ab'c+abc				
	= ab'c'+ac(b'+b)				
22	= ab'c'+ac				
	$= \mathbf{a}(\mathbf{b}^{*}\mathbf{c}^{*}+\mathbf{c})$				
	$= \mathbf{a}(\mathbf{b}^{\prime}+\mathbf{c})$				
	= ab'+ac				
23	What code is used to label the row headings and column heading of K – map? Why? (BTL				
L					

	1) 1. Gray Code is used to label the rows and columns of K. Man			
	 Gray Code is used to label the rows and columns of K – Map. In case of Gray code, only one variable changes between two consecutive numbers. This 			
	2. In case of Gray code, only one variable changes between two consecutive numbers. This is useful in grouping pair good on estate in K. Many and thus eliminating variables in			
	is useful in grouping pair, quad, or octets in K – Maps and thus eliminating variables in the final supposed reasons and columns of K – Map			
	the final expression. Hence gray code is used to label the rows and columns of $K - Map$.			
24	What are Prime Implicants? (BTL 1)			
	All the implicants of a function determined using a Karnaugh Map is called Prime Implicants.			
	What are the basic digital logic gates? (BTL 1)			
25	The three basic logic gates are			
25	1. AND gate			
	2. OR gate			
	3. NOT gate			
	PART * B			
	Simplify the following Boolean function using 4 variable map. (10M) (BTL 5)			
	$F(w,x,y,z) = \Sigma$ (2,3,10,11,12,13,14,15) (Nov/Dec 2014)			
	Answer: Page :2-38 A.P.Godse			
	Determining & Grouping(5M)			
	Check for minterms			
1	Determine 4 – variable k- map an essential.			
	Write minterms, literals within, row wise, column wise on the k-map.			
	Group 1's cells.			
	Identify the Boolean Expression (5M)			
	Group cells from higher order to lower order.			
	Avoid redundant groups.			
	Write final expression in sop form.			
	Draw a NAND logic diagram that implements the complements of the following function.			
	(8M) (BTL 3) E(A D C D) - E (0.1.2.2.4.8.0.12) (N - (D - 2014)			
	$F(A,B,C,D) = \Sigma (0,1,2,3,4,8,9,12) \text{ (Nov/Dec 2014)}$			
	Answer: Page 2-83, A.P.Godse model problem			
	Determining & Grouping (3M) Check for maxterms			
	Determine 4 – variable k- map an essential. Write the maxterms, literals within, row wise, column wise on the k-map.			
2	Group the 0's cells.			
	Identify the Boolean Expression (2M)			
	Group cells from higher order to lower order.			
	Avoid redundant groups.			
	Write final expression in POS.			
	Implementation using NAND gates. (3M)			
	STEP 1: Implement expression using basic logic gates.			
	STEP 2: Introduce NOT, Invert OR, NAND logic gates.			
	STEP 3: change all gates to NAND logic gates.			
	Using QM method simplify the Boolean expression(13M) (BTL 3)			
	$f(v,w,x,y,z) = \Sigma (0,1,4,5,16,17,21,25,29)$			
	Answer: Page 2-57, A.P.Godse			
3	List minterms in binary form (2M)			
1				
	Arrange minterms according to categories of 1's (2M) Compare each binary number with every term in the next higher category (3M)			

[
	List prime implicants (3M)			
	Select minimum number of prime implicants - must cover all minterms (3M)			
Π M(0,1,4,11,13,15) + Π d(5,7,8) and verify the result using K-map method. (13M				
	2014)			
	(BTL 3)			
	Answer: Page 2-46, A.P.Godse			
	Determining & Grouping(6M)			
	Check for maxterms			
4	Determine 4 – variable k- map an essential.			
	Write maxterms, literals within, row wise, column wise on the k-map.			
	Group 0's cells.			
	Identify the Boolean Expression (7M)			
	Group cells from the higher order to lower order.			
	Avoid redundant groups.			
	Write final expression in POS.			
	$f(A,B,C,D) = \Sigma m(1,3,4,5,9,10,11) + \Sigma d(6,8)$ and realize using NAND gates. (13M) (BTL 5)			
5	Answer: Page No. 2-83, A.P.Godse			
5	See question no 3 in part $- c$.			
	$F(A,B,C,D) = \Sigma m (0,1,3,4,5,7,10,13,14,15)$ and realize using NAND gates. (13M) (BTL 5)			
6	Answer: Page 2-83 A.P.Godse			
Ũ	See question no 3 in part $- c$.			
	Simplify the following Boolean expression $\mathbf{F} = \mathbf{x}^2\mathbf{y}^2\mathbf{z}^2 + \mathbf{x}^2\mathbf{z}^2 + \mathbf{x}\mathbf{y}\mathbf{z}^2$. (13M) (BTL 3)			
	(Apr/May 2015)(Nov/Dec 2018)			
	Answer: Page 2-48, A.P.Godse			
	Determining (5M)			
	Compare given expression with sum of minterms form.			
	Write standard sop canonical form.			
	Grouping (4M)			
7	Check for minterms			
/	Determine 3 – variable k- map an essential.			
	Write minterms, literals within, row wise, column wise on the k-map.			
	Group 1's cells.			
	Identify the Boolean Expression (4M)			
	Group cells from higher order to lower order.			
	Avoid redundant groups. Write final expression in SOP.			
	Using K-map simplifies the following expressions and implements using basic gates.(13M)			
	(BTL 3)			
8	1. $F = \Sigma$ (1,3,4,6) 2. $F = \Sigma$ (1,3,7,11,15) + 1(0,2,5)			
	2. $F = \Sigma (1,3,7,11,15) + d(0,2,5)$			
	Answer: Page 2-85 A.P.Godse			
	See question no 3 in part $-c$.			
	Simplify using K-map to obtain a minimum POS expression. (7M)(BTL 3)			
	(A'+B'+C+D)(A+B'+C+D)(A+B+C+D')(A+B+C'+D') (A'+B+C'+D')(A+B+C'+D)			
	Answer: Page 2-44, A.P.Godse			
9	Determining (5M)			
	Compare given expression with product of maxterms form.			
	Write standard pos canonical form.			
	Grouping (4M)			
	JIT-JEPPIAAR/ECE/Mr.D.JOSHUA JEYASEKAR/II Yr/SEM 03 /CS8351/DPSD/UNIT 1-5/QB+Keys/Ver2.			

	Check for maxterms			
	Determine 4 – variable k- map an essential. Write maxterms literals within, row wise, column wise on the k-map.			
	Group 0's cells.			
	Identify the Boolean Expression (4M)			
	Group cells from higher order to lower order.			
	Avoid redundant groups.			
	Write final expression in POS.			
	Find a Min SOP for $f = b'c'd + bcd + acd' + a'b'c + a'bc'd(7M)$ (BTL 3) (Apr/May			
	2015)(Nov/Dec 2018)			
	Answer: Page 2-34,2-44, A.P.Godse			
	Determining (3M)			
	Check given expression for all literals.			
10	Literal A missing in first, second variable.			
	Literal B missing in third variable.			
	Literal D missing in fourth variable.			
	Converting (4M)			
	Multiply $(A + A')$, $(B + B')$, $(D + D')$ with respective variable.			
	Write standard canonical form.			
	Convert the following function into product of Max terms canonical form simplify and			
	implement the same using NAND and NOR.(13M) (BTL 3)			
	F(A, B, C) = (A+B')(B+C)(A+C'). (Apr/May 2015)			
	Answer: Page 2- 44, A.P.Godse.			
	Conversion (1M)			
	Convert given expression to standard canonical form.			
	Determining & Grouping(4M)			
	Check for maxterms			
	Determine 4 – variable k- map an essential.			
11	Write maxterms, literals within, row wise, column wise on the k-map.			
	Group 0's cells.			
	Identify the Boolean Expression (4M)			
	Group cells from higher order to lower order.			
	Avoid redundant groups.			
	Write final expression in POS.			
	Implementation using NAND & NOR gates. (4M)			
	STEP 1: Implement expression using basic logic gates.			
	STEP 2: Introduce NOT, Invert OR, NAND logic gates.			
	STEP 3: change all gates to NAND & NOR logic gates.			
	PART* C			
	Simplify the following Boolean function using Tabulation method. (15M)(BTL 5)			
	$F(w,x,y,z) = \Sigma (2,3,10,11,12,13,14,15)$			
	Answer page 2-55, Godse, DPSD notes.			
	Tabulate (8M)			
1	Convert given minterms to corresponding binary values. Arrange all minterm values starting from minimum to maximum terms.			
	Arrange terms according to number of 1's from minimum to maximum.			
	Check values bit by bit for grouping.			
	Primitive table (4M)			
	Write terms on left side in corresponding rows.			
J	IT-JEPPIAAR/ECE/Mr.D.JOSHUA JEYASEKAR/II Yr/SEM 03 /CS8351/DPSD/UNIT 1-5/QB+Keys/Ver2.			

	Write minterm values in corresponding columns.			
	Check for prime implicants and essential prime implicants.			
Function's expression. (3M)				
	Write final expression in sum of products term.			
	Avoid repeated terms.			
	i). Implement $Y = (A+C) (A+D') (A+B+C')$ using NOR gates only (15M) (BTL 3)			
	ii) Find a network of AND and OR gate to realize $f(a,b,c,d) = \Sigma m (1,5,6,10,13,14)$			
	Answer page :2-85, 2-74, Godse.			
	i)Implementation using NOR gates. (5M)			
	STEP 1: Implement expression using basic logic gates.			
	STEP 2: Introduce NOT, Invert AND, NOR logic gates.			
	STEP 3: change all gates to NOR logic gates.			
2	ii)Determining & Grouping(5M)			
2	Check for minterms			
	Determine 4 – variable k- map an essential.			
	Write minterms, literals within, row wise, column wise on the k-map.			
	Group 1's cells.			
	Identify the Boolean Expression (5M)			
	Group cells from higher order to lower order.			
	Avoid redundant groups.			
	Write final expression in SOP.			
	Simplify the Boolean function $F(A,B,C,D) = \Sigma m (1,3,5,7,11,12,14,15) + \Sigma d (0,2,5)$ using K			
	map and implement the same using universal logic gates.(15M) (BTL 5)			
	Answer page :2-83, Godse.			
	Determining & Grouping (5M)			
	Check for minterms			
	Determine 4 – variable k- map an essential.			
	Write minterms, literals within, row wise, column wise on k-map.			
2	Group 1's cells.			
3	Identify the Boolean Expression (5M)			
	Group cells from higher order to lower order.			
	Avoid redundant groups.			
	Write final expression in SOP.			
	Implementation using NAND gates. (5M)			
	STEP 1: Implement expression using basic logic gates.			
	STEP 2: Introduce NOT, Invert OR, NAND logic gates.			
	STEP 3: change all gates to NAND logic gates.			
L				

UNIT II - COMBINATIONAL LOGIC

Combinational Circuits – Analysis and Design Procedures - Binary Adder-Subtractor - Decimal Adder -Binary Multiplier - Magnitude Comparator - Decoders – Encoders – Multiplexers - Introduction to HDL – HDL Models of Combinational circuits.

	PART * A				
Q.No.	Q	uestions			
1.	Define Combinational Logic Circuits (May - June 16) (BTL 1) When logic gates are connected together to produce a specified output for certain combinations of input variables, with no storage involved, the resulting circuit combinational logic.				
	Distinguish between combinational logic an Combinational logic circuit	d sequential logic.(BTL 1) Sequential logic circuit			
2	It consists of input signal, gates and output signals	It consists of a combinational circuit to which memory elements are connected to form a feedback path.			
	The outputs at any instant of time are entirely dependent upon the inputs present at that time.	The outputs dependent not only on the present input variable but they also depend upon the past value of the input variable.			
	Combinational circuits are faster in speed	Sequential circuits are slower than the combinational circuits.			
	Combinational circuits are easy to design	Sequential circuits are comparatively harder to design			
	Example: Parallel adder, Code converter, Decoder	Example: Serial Adder, Counter, shift register			
3	Define Half Adder and Full Adder .(BTL1) The logic circuit that performs the addition of two bits is a half adder. The circuitthat performs the addition of three bits is a full adder.				
4	 The addition of three bits is a full adder. Define Half Subtractor and Full Subtractor. (BTL 1) The logic circuit that performs the subtraction of two bits is a half adder. The circuitthat performs the subtraction of three bits is a full adder. 				
5	What do you mean by carry propagation delay? (BTL 1) In parallel adders, sum and carry outputs at any stage cannot be produced until the input carry occurs. This time delay in the addition process is called carry propagation delay.				
6	Suggest a solution to overcome the limitation on the speed of an adder. (BTL 1) It is possible to increase the speed of adder by eliminating the inter – stage carry delay. This method utilizes logic gates to look at the lower – order bits of the augend and addend to see if a higher – order carry is to be generated.				
7	 Mention any two uses of HDL. (BTL1) When this HDL code is passed through initial synthesis tool, a lower – level description of the circuit is generated as an output. With this process, a set of logic expressions which describes the logic functions required 				

	to realize the circuit is produced.					
	• The logic expressions produced by the synthesis tool are not likely to be in an optimal					
	form.					
-	What do you mean by encoder? (BTL1)					
8		the inverse operation of a decoder. Encoder has 2 ¹ while inputs to activate analysis of a decoder.				
	input lines and n output lines. Encoder has enable inputs to activate encoded outputs.What is decoder? (BTL1)					
9		logic circuit that converts coded inputs into coded				
	outputs where the input and output codes are different. In a binary decoder $n - inputs$ produce 2^n					
	outputs. What is data selector? Or What is multipl	exer? Or Why is MUX is called as data detector?				
	(BTL1)	exer: Or why is wox is called as data detector.				
10		cts one of several analog or digital input signals and				
		A multiplexer of $2n$ inputs has n select lines, which				
	are used to select which input line to send to					
11	Mention the difference between MUX and Multiplexer is a data selector, Demultiplexer					
	Give an application each for a multiplexer					
	1. It can be used to realize a Boolean function					
	2. It can be used in communication systems e	e.g., time division multiplexing.				
12	3. Data routing					
	4. Logic function generator					
	5. Control sequencer					
	6. Parallel-to-serial converterDistinguish between a decoder and a Demu	ultiplayor (BTI 2)				
	Distinguish between a decoder and a Demo	Demux				
	Decoder	Demux				
	A decoder accepts a set of binary inputs	A Demultiplexer is a circuit that receives				
13	and activates only the output that	information on a single line and transmits				
15	corresponds to that input number.	this information on one of many output lines				
	Decoder with enable input is used as	Data Distributor				
	Demultiplexer.					
	What is a priority encoder? (BTL1)					
14	A priority encoder is an encoder circuit that includes the priority function. In priority encoder, if 2					
	or more inputs are equal to 1 at the same time, the input having the highest priority will take					
	precedence. Distinguish between deceder and Encoder (DTL 2)					
	Distinguish between decoder and Encoder	$(\mathbf{R}^{T})^{T}$				
	Distinguish between decoder and Encoder					
	Distinguish between decoder and Encoder Decoder	.(BTL2) Encoder				
15	Decoder	Encoder				
15	Decoder In decoder one of the output lines is	Encoder In encoder, the output lines generate the				
15	Decoder In decoder one of the output lines is activated corresponding to the binary	Encoder In encoder, the output lines generate the				

	producing 2 ⁿ possible outputs.	outputs.				
	producing 2 possible outputs.	outputs.				
	The input code generally has a fewer bits	The input code generally has a more bits than				
	than the output code.	the output code.				
	Ç .	at can be used for describing a module.(BTL 1)				
16	• Gate – level Modeling					
	Dataflow modeling					
	Behavioral modeling					
17	What is gate level modeling? (BTL 1)	cente en estes to model the system				
	In gate level modeling, Verilog uses compor	I modeling and dataflow modeling? (BTL1)				
		cuit signals flow from the inputs to the outputs. There				
		ow describing the circuit in terms of operations on				
18	signals and flow of signals in the circuit.	w describing the cricuit in terms of operations on				
		ectly describe the behavior or the functionality of a				
	circuit.					
	Implement the Boolean function $F = \sum m(1)$	1,2,3,7) using 3:8 decoder. (BTL 2)				
10	Answer: Page: 3 – 46 & 3 – 47 A.P.Gods					
19	Connect function variables as input to the de	ecoder.				
	Logically OR the outputs correspond to pres	ent minterms to obtain the output.				
	How addition and subtraction are done in	a parallel adder/subtractor? (BTL 2)				
20	If mode $M = 0$, then addition is performed.					
	If mode $M = 1$, then subtraction is performed					
	Mention some applications of Decoders. (I	BTL 1)				
21	1. Code converters					
	2. Address decoding					
	3. BCD to 7-segment decoder How many 4:1 mux are needed to design 1	(6.1 muy? (DTI 2)				
22						
	Five 4:1 mux are needed to design 16:1 mux.					
	What will be the maximum number of outputs for a decoder with a 6 bit data word? (BTL 1)					
23	$2^{6} = 64.$					
	64 outputs for a decoder.					
	What is a magnitude comparator? (BTL 1)					
24	It is a special combinational circuit designed primarily to compare the relative magnitude of two					
	binary numbers.					
	Mention the applications of Demultiplexer? (1	BTL 1)				
25	1. Used as a decoder.					
	2. As a data distributor.	norm to r				
	3. In time division multiplexing as data sep					
		PART * B				
	Verilog HDL Code in structural description o	$\mathbf{a} 1 \mathbf{u} \mathbf{u} - \mathbf{a} \mathbf{u} \mathbf{u} \mathbf{e} \mathbf{r} . (1 5 \mathbf{v} 1) (\mathbf{D} 1 \mathbf{L} 5)$				
	Answer: Page 3 – 108 A.P.Godse Module full adder (A B Cin Sum Cout): (2)	A)				
1	Module full_adder (A,B,Cin,Sum,Cout); (2M)					
	Input A,B,Cin; Output Sum,Cout; (2M)					
	Wire s0,c0,c1;					

	$\mathbf{E}_{\mathbf{M}}$
	Full adder (4M)
	HA H1 (A,B,S0,C0); HA H2 (S0 G in Sec. C1):
	HA H2 (S0,Cin,Sum,C1);
	Or (Cout,C0,C1);
	Endmodule
	Module HA (A,B,S,C); (5M)
	Input (A,B);
	Output (S,C);
	Xor(S,A,B);
	And (C,A,B);
	Endmodule
	Implement the following boolean function with 8:1mux. F = $\sum m(0,2,6,10,11,12,13)$ +
2	d(3,8,14) (Apr/May 2015)
-	Answer: page 3-65, Godse.
	Refer Que 9 in part B.
	Design half subtractor and full subtractor circuit and implement using NAND gates. (13M)
	(Nov – Dec 2015) (BTL 4)
	Answer: page 3-12 to 3-14, Godse.
	• Half Subtractor (2M)
2	• Truth table for Half Subtractor (1M)
3	• K – Map Simplification (2M)
	• Full Subtractor (2M)
	• Truth table for Full Subtractor (2M)
	• K – Map Simplification (1M)
	• Implementation using NAND gates. (3M)
	Elaborate Hardware Description Language. (13M) (BTL 2)
	Answer: page 3-88, Godse.
	Specify desired behavior of circuit. (2M)
	Synthesize the circuit. (2M)
4	Implement the circuit (1M)
	Test the circuit (1M)
	HDL - Computer Aided Design tools to design such systems. (1M)
	2 main applications – synthesis, simulation (1M)
	Boolean expressions, logic diagrams, digital circuits represented using HDL. (2M)
	Draw and explain the block diagram of 4 – bit parallel adder/subtractor. (8M) (BTL 2)
	Refer pg.no 3-16, Godse.
	4 – bit parallel adder/subtractor (8M)
_	Determine input, output.
5	Consider 4 adder blocks - implementing 4-bit parallel adder.
	Set cin to be 0 or 1.
	If $cin = 0$, addition
	If cin = 1, subtraction
	Construct the 4 – bit adder with look ahead carry adder. (8M) (April – May 2015) (BTL 5)
	Refer pg.no 3-17 to 3-20, Godse.
	Full adder circuit (3M)
6	Determine the input, output.
	Construct the full adder circuit.
	Logic Diagram - look ahead carry generator (3M)
	Construct look ahead carry generator by determining the Gi, Pi.
L	JIT-JEPPIAAR/ECE/Mr.D.JOSHUA JEYASEKAR/II Yr/SEM 03 /CS8351/DPSD/UNIT 1-5/QB+Keys/Ver2.

	4 – bit parallel adder with look ahead carry generator (2M)
	Construct 4 bit adder with A,B, Cin, output S, CO.
	Realize $F(w, x, y, z) = IIIM(1, 4, 6, 7, 8, 9, 10, 11, 15)$ using MUX. (13M) (BTL 4)
7	Answer: page 3-65, Godse.
	Express Boolean functions in maxterm form.(3M)
	Convert into standard SOP form. (4M)
	Implement using Implementation table.(3M)
	Implementation using 8:1 mux.(3M)
	With a suitable block diagram explain the operation of BCD adder.(8M) (BTL 1)
	Refer pg.no 3-22, Godse.
	Determine the inputs A0,A1,A2,A3 and B0,B1,B2,B3. (2M)
8	Determine 2 4-bit binary adder.(1M)
	Output would be S0,S1,S2,S3. (2M)
	If sum greater than 9 then add 6. (1M)
	Construct K-map for carry.(2M)
	Realize $F(w, x, y, z) = \sum (1, 4, 6, 7, 8, 9, 10, 11, 15)$ using 4 to 1 MUX and 8:1 Mux. (13M
	(BTL 4) (Nov/Dec 2014)
0	Answer: page 3-65, Godse.
9	Express Boolean functions in minterm form.(3M)
	Convert into standard SOP form. (4M)
	Implement using Implementation table.(3M)
	Implementation using 4:1 mux.(3M)
	Implement the following boolean function using 8 to 1 Multiplexer F(A, B, C, D) A'BD' + $A'CD + A'C'D$. Also implement the function using 1(to 1 Multiplexer (12))
	A'BD'+ACD+B'CD+A'C'D. Also implement the function using 16 to 1 Multiplexer. (13M
	(May – June 2014) (BTL 4) Answer: page 3-65, Godse.
10	Express Boolean functions in minterm form.(3M)
	Convert into standard SOP form. (4M)
	Implement using Implementation table.(3M)
	Implementation using 8:1 mux.(3M)
	PART* C
	Design full adder with inputs x, y, z and two outputs S and C. The circuits performs x+y+z
	z is the input carry, C is the output carry and S is the Sum. (15M) (May – June 2010)
	(BTL4)
	i. using only Nor Gates
	ii. using two half adders
	Answer: page 3-11, Godse.
	Full Adder using NOR gate implementation (8M)
1	Determine the inputs, outputs.
	Realize using logic gates.
	Convert to nor, invert, gates.
	Complete the design - completely converting to Nor gates.
	Full Adder design using two half adders (7M)
	Determine the inputs, outputs.
	Realize using logic gates for half adder.
	Implement 1:16 Demultiplexer using 1:4 Demultiplexer and explain decoder (15M) (BTL 4
2	(Nov/Dec 2018)
2	Answer page. 3-61, Godse.
	Determine the inputs for multiplexers- 16 inputs. (3M)
	JIT-JEPPIAAR/ECE/Mr.D.JOSHUA JEYASEKAR/II Yr/SEM 03 /CS8351/DPSD/UNIT 1-5/QB+Keys/Ver2.

	Four 4:1 multiplexers required.(3M)	
	Four outputs again multiplexed.(1M)	
	Connect select lines (S1, S0) of 4 mux in parallel.(3M)	
	Connect most significant select lines (S3,S2) to mux 5. (2M)	
	Connect the outputs Y0,Y1,Y2,Y3 to mux 5.(1M)	
	Decoder circuit diagram (2M)	
	Design a 4 – bit Magnitude comparator using Gates and write a Verilog code. (15M) (Nov – Dec	
	2014) (BTL 2).	
	Answer: page 3-84, 3-86, 3-109, Godse.	
	• Truth Table. (4M)	
	• If A=B then output A=B is 1.	
3	• If A>B then output A>B is 1.	
	• If A <b 1.<="" a<b="" is="" output="" th="" then="">	
	• Otherwise 0.	
	• K – Map Simplification for A=B, A <b, a="">B. (5M)</b,>	
	• Logic Diagram (6M)	
	• Implement the given expression using basic gates, universal gates.	
L		

UNIT III - SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits - Storage Elements: Latches, Flip-Flops - Analysis of Clocked Sequential Circuits -State Reduction and Assignment - Design Procedure - Registers and Counters - HDL Models of Sequential Circuits.

	PART	* A				
Q.No.	o. Questions					
	Differentiate between Latch and Flip – Flop. (BTL 1)					
	LATCHES	FLIP – FLOP				
	A simple latch is the basis for flip flop building	Flip – Flop is built by connecting some additional components around a latch				
1.	Latch level triggered either positive level or negative level triggered.	Flip – Flop is pulse or clock – edge triggered either positive edge or negative edge triggered.				
	The latch output responds to inputs, until active level is maintained at the enable input.	Flip – Flop responds to inouts only at the specified (positive or negative) edges of clock pulse				
	Define Flip flop.(BTL 1)					
2		op maintains its output state either at 1 or 0 until				
	directed by an input signal to change its state.					
3	Give the excitation table for JK Flip – Flop.(BTL 1) 1. _0_0 transition: This can happen when J=0 and K=1 or K=0. 2. _0_1 transition: This can happen either when J=1 and K=0 or when J=K=1. 3. _1_0 transition: This can happen either when J=0 and K=1 or when J=K=1.					
	4 1_1 transition: This can happen w	hen $K=0$ and $J=0$ or $J=1$.				
4	Define Shift Registers . (BTL 1) The binary information in a register can be moved from stage to stage within the register or into or out of the register upon application of clock pulses. This type of bit movement or shifting is essential for certain arithmetic and logic operations used in microprocessors. This gives rise to group of registers called Shift Register.					
	What are the different types of Shift Registers?(BTL 1)					
5	 Serial In Serial Out Shift Register Serial In Parallel Out Shift Register Parallel In Serial Out Shift Register Parallel In Parallel out Shift Register 					
	Define universal Shift Registers. (BTL 1)					
6	8	load capabilities is referred to as Universal Shift				
	Define a sequential logic circuit. Give an exam	mple.(BTL 1)				
	In sequential circuits the output variables depet they also depend up on the past history of these	endent not only on the present input variables but input variables.				
	Differentiate between combinational and seq	=				
8	<u>Combinational Circuits</u> Memory unit is not required					

	Parallel adder is a combinational Circuit
	Sequential circuits
	Memory unity is required
	Serial adder is a sequential circuit
	What is the operation of RS flip – flop? (BTL1)
	When R input is low and S input is high the Q output of flip-flop is set.
9	When R input is high and S input is low the Q output of flip-flop is reset.
)	When both the inputs R and S are low the output does not change.
	When both the inputs R and S are high the output does not enange.
	What is the operation of JK flip – flop?(BTL1)
	When K input is low and J input is high the Q output of flip-flop is set.
	When K input is high and J input is low the Q output of flip-flop is reset.
10	When both the inputs K and J are low the output does not change
	When both the inputs K and J are high it is possible to set or reset the flip-flop (ie) the output
	toggle on the next positive clock edge.
	What is the operation of D flip – flop?(BTL1)
11	In D flip-flop during the occurrence of clock pulse if $D=1$, the output Q is set and if $D=0$, the
11	output is reset.
	What is the operation of T flip – flop?(BTL1)
	T flip-flop is also known as Toggle flip-flop.
12	When T=0 there is no change in the output.
	When $T=0$ there is no enalge in the output. When $T=1$ the output switch to the complement state (ie) the output toggles.
	What is a master – slave flip – flop?(BTL1) (Apr/May 2015)
13	A master-slave flip-flop consists of two flip-flops where one circuit serves as a master and the
15	other as a slave.
	Define race around condition.(BTL1)
	In JK flip-flop output is fed back to the input. Therefore change in the output results change in the
14	input. Due to this in the positive half of the clock pulse if both J and K are high then output
	toggles continuously. This condition is called race around condition".
	Define synchronous sequential circuit.(BTL1)
15	In synchronous sequential circuits, signals can affect the memory elements only at discrete instant
15	of time.
	Define State.(BTL1)
16	The information stored in the memory elements at any given time defines the state at that time of
10	the corresponding sequential circuit.
	What do you mean by present state?(BTL1)
17	The information stored in the memory elements at any given time defines the present state of the
± /	sequential circuit.
	What do you mean by next state?(BTL1)
18	The present state and the external inputs determine the outputs and the next state of the sequential
10	circuit.
	Define State Table.(BTL1)
19	For the design of Sequential counters we have to relate present states and next states. The table
17	which represents the relationship between present states and next states. The table.
	Explain about state reduction or Why is state reduction necessary?(BTL1)
	State reduction is technique that reduces the number of states in the sequential circuit by keeping
20	only one state for two or more redundant/equivalent states. This reduces the number of required
	flip - flops and logic gates, reducing the cost of the final circuit. Two states are said to be
	1 mp - 100 mps and $100 gates$, reducing the cost of the must circuit. Two states are said to be

	redundant or equivalent, if every pos	sible set of inputs generate exactly sa	ame output and same		
	next state.				
	What is lockout? How it is avoided?(BTL1) (Nov/Dec 2014)				
		unused state is again some unused stat			
21		never to arrive at a used state. Such a	condition is called a		
21	lockout condition.				
		be provided with an additional logic	circuitry which will		
	force the counter from an unused state	to the next state as initial state.			
	What is Mealy Machine? (BTL1)				
22		cuit depends on both the present state	of flip – flops and on		
	the inputs, the sequential circuit is refe	erred to as Meary Model.			
23	What is Moore Machine? (BTL1)	rcuit depends only on the present sta	to of flip flops the		
23	sequential circuit is referred to as Moo		te of htp – hops the		
	Compare Moore and Mealy models.				
	MOORE MODEL	MEALEY MODEL			
	Its output is a function of present	Its output is a function of present			
	state only.	state as well as present input.			
		I I I I			
24	Input changes does not affect the	Input changes may affect the ouput			
	output	of the circuit.			
	Moore model requires more	It requires less number of states for			
	number of states for implementing	implementing same function.			
	same function.				
	Define state assignment. (BTL1)				
25	The state assignment is a one step in t	the design of sequential circuits which	assign binary values		
23	to the states in such a way that it reduces the cost of the combinational circuit that drives the flip –				
	flops.				
		PART * B			
	Explain in detail the operation of a 4 – bit BCD counter. (13M) (BTL2) (Nov/Dec 2014)				
	(Apr/May 2015) (Nov/Dec 2018)				
	Answer: Page 7-16 Godse.				
1	Determinating number of flip flops. (3M)				
	 Choosing the flip flop type. (3M) Write the truth table. (3M) 				
	 Derive the reset logic by K – map. (2M) 				
	 Derive the reset togic by R - map. (214) Logic diagram. (2M) 				
	Explain the operation of 4 – bit Johnson counter. (13M) (BTL2) (Nov/Dec 2018)				
	Answer: Page 6-17 Godse.				
2	 Determination of flip flop. (3M) 				
2	 Connect to a common clock. (3M) 				
		at of last flip flop to first flip flop. (4M)		
	> After 8 states the same sequence is repeated. (3M)				
3	Explain the operation of Universal shift registers. (7m) (BTL2)				
	Answer: Page 6-10 Godse.				

> 2 c	lip flops & 4 mu common selection	n inputs s1 & s0					
	ode control with	<u> </u>	· · · ·				
-	Design a Synchronous sequential circuit using JK for the given state diagram. (13m) (BTL- (Nov/Dec 2014)						
	(m)						
	0/1 001 1/1						
\sim							
1/1	010 0/0 11	(011)					
		1/0/					
	100 0/0	110 0/1					
	1/0						
	Page 5-20 Godse						
	Excitation table K – Map Simpl	. ,					
	Logic Diagram						
\checkmark	Derive Circuit (Output and flip	 flops consider 	ing unused stat	es (2M)		
	Logic Diagram	· · ·	Flin Flor fo	n the state to	ble given below		
				n the state ta	able given below u		
Present	n number of flip – flops. (13m) (E Next state		Output				
atata			N 0	X = 1	_		
state		$\mathbf{v} = \mathbf{i}$					
state	$\mathbf{X} = 0$	X = 1	$\mathbf{X} = 0$	$\Lambda = 1$			
A	X = 0 A	X = 1 B	X = 0	$\mathbf{X} = \mathbf{I}$			
Α	Α	В	0	0			
A B	A C	B D	0	0			
A B C	A C A	B D D	0 0 0 0 0	0			
A B C D	A C A E	B D D F	0 0 0 0	0 0 0 1			
A B C D E	A C A E A	B D D F F	0 0 0 0 0 0	0 0 0 1 1			
A B C D E F	A C A E A G	B D D F F F F	0 0 0 0 0 0 0	0 0 0 1 1 1 1			
A B C D E F G	A C A E A G	B D D F F F F F	0 0 0 0 0 0 0	0 0 0 1 1 1 1			
ABCDEFGAnswer: \mathbb{I} > Mit	A C A E A G A Page 5-20 Godse inimized state tab	B D D F F F F F $e.$ $ble - 4m$	0 0 0 0 0 0 0	0 0 0 1 1 1 1			
ABCDEFGAnswer: \mathbb{I} > Mi> K	A C A E A G A Page 5-20 Godse inimized state tab – Map Simplifica	BDDFFFFe. $ole - 4m$ ation - 6m	0 0 0 0 0 0 0	0 0 0 1 1 1 1			
ABCDEFGAnswer: \mathbb{I} > Mi> K> Lc	A C A E A G A Page 5-20 Godse inimized state tab – Map Simplifica ogic Diagram – 31	BDDFFFFe. $ole - 4m$ ation - 6mm	0 0 0 0 0 0 0 0	0 0 1 1 1 1 1 1	ving connections: (
ABCDEFGAnswer: \mathbb{I} > Mi> K> Lc	A C A E A G A Page 5-20 Godse inimized state tab – Map Simplifica ogic Diagram – 31	BDDFFFFe. $ole - 4m$ ation - 6mm	0 0 0 0 0 0 0 0	0 0 1 1 1 1 1 1	ving connections: (

	$J_D = Q_A Q_B Q_C \text{ and } K_D = Q_A$				
	Determine the modulus n of the counter and the output waveforms of the same.				
	Answer: Page 5-23 Godse.				
	➢ Next state map for JK Flip − Flop (2M)				
	Transition table (3M)				
	Output Waveform's (2M)				
	A sequential circuit with 2D FFs A and B and input X and output Y is specified by the				
	following next state and output equations. (13M) (BTL4) (Apr/May 2015)				
	$\mathbf{A}(\mathbf{t+1}) = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{X}$				
	$\mathbf{B}(\mathbf{t+1}) = \mathbf{A'X}$				
	Y = (A+B)X'				
7	i) Draw the logic diagram				
/	ii) Derive the state tableiii) Derive the state diagram				
	iii) Derive the state diagram Answer: Page 5-13 Godse.				
	 Logic Diagram (3M) 				
	 State table (3M) 				
	 Francisco (SNI) Transition Table (3M) 				
	 State Diagram (4M) 				
	Convert D Flip – flop to T Flip – Flop. (7m) (BTL3)				
	Answer: Page 4-33 Godse.				
8	Excitation table (3M)				
	\rightarrow K – Map simplification (2M)				
	Logic Diagram (2M)				
	How will you convert a D Flip – flop into JK Flip – Flop? (7M) (BTL1)				
	Answer: Page 4-37 Godse.				
9	Excitation table (3M)				
	➤ K – Map simplification (2M)				
	Logic Diagram (2M)				
	Design a 3 bit synchronous counter using T flip flop. (13M) (BTL 4)				
	Answer: Page 7-36, Godse.				
10	Determine the flip flops. (3M)				
	Determine the excitation table. (4M)				
	K map simplification. (3M)				
	Logic diagram (3M)				
	PART* C				
	Explain the working of 4 – bit synchronous binary up counter. (15M) (BTL2)				
	Answer: Page 7-19 Godse.				
1	Determine the flip flops. (3M)				
	Determine the excitation table. (4M)				
	K map simplification. (4M)				
	 Logic diagram (4M) Design and explain the working of an up down ripple counter (15M) (PTI 4) 				
	Design and explain the working of an up – down ripple counter. (15M) (BTL4) Answer: Page 7-16 Godse.				
	 Determinating number of flip flops. (3M) 				
2	 Choosing the flip flop type. (3M) 				
	 Write the truth table. (4M) 				
	 Derive the reset logic by K – map. (3M) 				
L	· Donve me reser togre by K map. (3141)				

	 Logic diagram. (2M)
	Design a synchronous 3 bit up/down counter using T flip flop. (13M) (BTL4)
	Answer: Page 7-19 Godse.
2	Determine the flip flops. (3M)
5	\blacktriangleright Determine the excitation table. (4M)
	➤ K map simplification. (4M)
	Logic diagram (4M)

UNIT IV - ASYNCHRONOUS SEQUENTIAL LOGIC

Analysis and Design of Asynchronous Sequential Circuits – Reduction of State and Flow Tables – Racefree State Assignment – Hazards.

	PART * A
Q.No.	Questions
1.	What is an Asynchronous sequential circuit?(BTL1)
	The Sequential circuits in which change in input signals can affect memory element at any instant
	of time are called asynchronous sequential circuits.
	How does the operation an asynchronous input differ from that of a synchronous input 2(DTL 1) (App(May 2015)
	input?(BTL1) (Apr/May 2015) InSynchronous sequential circuit, memory elements are clocked flip – flops. Hence input signals
2	can affect the memory elements only at discrete instants of time.
4	In asynchronous sequential circuits, the memory elements are either unclocked flip – flops or
	time delay elements. Therefore asynchronous sequential circuits change in input signals can affect
	the memory at any instant of time.
	What are the types of asynchronous circuits?(BTL1)
3	Fundamental Mode Circuits
C	Pulse Mode Circuits
	What is a fundamental mode asynchronous sequential circuit?(BTL1)
	It assumes that:
4	• The input variables change only when the circuit is stable.
•	 Only one input variable can change at a given time
	 Inputs are levels and not pulses.
	What is pulse mode circuit?(BTL1)
	It assumes that
_	• Input variables are pulses instead of levels
5	• The width of the pulse is long enough for the circuit to respond to the input
	• The pulse width must not be so long that it is still present after the new state is reached.
	• Pulses should not occur simultaneously on two or more input lines.
	Define secondary variable and excitation variables.(BTL1)
6	The present state and next state variables in asynchronous sequential circuit are called secondary
	variables and excitation variables respectively.
	Define flow table in asynchronous sequential circuit.(BTL1)
7	Inasynchronous sequential circuit state table is known as flow table because of the behavior of the
7	asynchronous sequential circuit. The stage changes occur in independent of a clock, based on the
	logic propagation delay, and cause the states to flow from one to another.
	Define primitive flow table. (BTL1)
8	It is defines as a flow table which has exactly one stable state for each row in the table. The
	design process begins with the construction of primitive flow table.
	Define Merger graph.(BTL1)
9	The merger graph is defines as follows. It contains the same number of vertices as the state table
,	contains states. A line drawn between the two state vertices indicates each compatible state pair.
	It two states are incompatible no connecting line is drawn.
	What is a cycle? Or When does a cycle occur?(BTL1)
10	A cycle occurs when anasynchronous sequential circuit makes a transition through a series of
	unstable states. The cycle does not contain a stable state, the circuit will go from one unstable

	state to another, until the inputs are changed.
	What are races?(BTL1)
11	When two or more binary state variable change their value in response to a change in input variable, race condition occurs in an asynchronous sequential circuit. In case of unequal delays, a
	race condition may cause the state variables to change in an unpredictable manner.
12	Define non critical race. (BTL1) If the final stable state that the circuit reaches does not depend on the order in which the state variable changes, the race condition is not harmful and it is called a non-critical race.
13	Define critical race. (BTL1) (Apr/May 2015) If the final stable statedepends on the order in which the state variable changes, the race condition is harmful and it is called a critical race.
14	What are the significant of state assignment?(BTL1) Synchronous circuits: State assignments are made with the objective of circuit reduction Asynchronous Circuits: Objective is to avoid critical races
	What are the different techniques used in state assignments?(BTL1)
15	There are two techniques used in state assignments. They areShared row state assignment
	One hot state assignment
16	What are Hazards?(BTL1) The unwanted switching transients that may appear at the output of a circuit are called hazards.
17	Name the types of Hazards.(BTL1) There are two types of hazards. They are • Static Hazard
	Dynamic Hazard What is static Hazard?(BTL1)
18	Static Hazard exits if a signal is supposed to remain at particular logic value when an input variable changes its value, but instead the signal undergoes a momentary change in its required value.
	What are static – 0 and static – 1 hazard?(BTL1)
19	In a combinational circuit, if output goes momentarily 0 when it should remain a 1, the hazard is known as static -1 hazard. On the other hand, if output goes momentarily 1 when it should remain a 0, the hazard known as static -0 hazard.
20	Explain dynamic hazard. (BTL1) The hazard in which output changes three or more times when it should change from 1 to 0 or from 0 to 1 is called dynamic hazard.
21	What is the cause of essential hazard?(BTL1) An essential hazard is caused by unequal delays along two or more paths that originate from the same input. Such hazards can be eliminated by adjusting the amount of delays in the affected
	path. What are the basic building blocks of an algorithmic state machine chart? (PTI 1)
22	 What are the basic building blocks of an algorithmic state machine chart? (BTL1) State Box Decision Box Conditional Box
	• Conditional Box Define state assignment. (BTL1)
23	The state assignment is a one step in the design of sequential circuits which assign binary values to the states in such a way that it reduces the cost of the combinational circuit that drives the flip – flops.

24	Compare the ASM chart with a conventional flow chart. (BTL2) The ASM chart resembles a conventional flow chart, but is interpreted somewhat differently. A conventional flow chart describes the sequence of procedural steps and decision path for an algorithm without for their time relationship. An ASM chart describes the sequence of events as well as the timing relationship between the states of a sequential controller and the events that occur while going from one state to the next.					
25	 Explain about state reduction or Why is state reduction necessary? (BTL2) State reduction is technique that reduces the number of states in the sequential circuit by keeping only one state for two or more redundant/equivalent states. This reduces the number of required flip – flops and logic gates, reducing the cost of the final circuit. Two states are said to be redundant or equivalent, if every possible set of inputs generate exactly same output and same next state. 					
	PART * B					
1	Illustrate the Types of Asynchronous Sequential Circuits.(7M) (BTL2) Answer: page: 9-2 Godse • Fundamental Mode Circuits (3M) • Only one input change • Inputs levels not pulses • Delay lines as memory elements • Pulse Mode Circuits (4M) • Inputs pulses not levels • Pulse width long • Either complemented or uncomplemented					
2	An asynchronous sequential circuit is described by the following excitation and output function.(13M) (Nov/Dec 14) (BTL4) $Y = X_1X_2 + (X_1 + X_2)Y, Z = Y$ i) Draw the logic diagram of the circuit ii) Derive the transition table and output map iii) Describe the behavior of the circuit Answer: page: 9-6 Godse • Logic Diagram (3M) • State table (4M) • Transition Table (3M) • Output Map (3M)					
3	An asynchronous sequential circuit has two internal states and one output. The excitation and output function describing the circuit are as follows. (13M) (BTL 4) $Y_1 = x_1x_2 + x_1y_2 + x_2y_1$ $Y_2 = x_2 + x_1y_1y_2 + x_1y_1$ $Z = x_2 + y_1$ Answer: page: 9-7 Godse • Logic Diagram (3M) • State table (4M) • Transition Table (3M) • Output Map (3M)					
4	Design an asynchronous sequential circuit with two inputs X and Y and with one output Z. Whenever Y is 1, input X is transferred to Z. When Y is 0, the output does not change in X. (13M) (June 16) (BTL4)					

 wer: page: 9-21 Godse Draw the state Diagram (3M) Derive the Primitive Flow Table (3M) Realization of circuit using logic elements (2M) Realization of circuit using SR latch (2M) gn a two - input (x1, x2), two - output (z1, z2) fundamental - mode circuit that has the owing specifications. When x1x2 =00, z1z2=00.The output 10 will be produced following occurrence of the input sequence 00 - 01 - 11. The output will remain at 10 until the tr eturns to 00 at which it becomes 00. An output of 01 will be produced following the ipt of the input sequence 00 - 10 - 11. And once again, the output will remain at 01 until input occurs, which returns the output to 00. (13M) (BTL4) wer: page: 9-27 Godse Draw the state Diagram (3M) Derive the Primitive Flow Table (3M) State Assignment (3M) K - Map Simplification (2M) Logic Diagram (2M)
 Derive the Primitive Flow Table (3M) State Assignment (3M) Realization of circuit using logic elements (2M) Realization of circuit using SR latch (2M) gn a two - input (x1, x2), two - output (z1, z2) fundamental - mode circuit that has the owing specifications. When x1x2 =00, z1z2=00.The output 10 will be produced following occurrence of the input sequence 00 - 01 - 11. The output will remain at 10 until the treturns to 00 at which it becomes 00. An output of 01 will be produced following the ipt of the input sequence 00 - 10 - 11. And once again, the output will remain at 01 until input occurs, which returns the output to 00. (13M) (BTL4) wer: page: 9-27 Godse Draw the state Diagram (3M) Derive the Primitive Flow Table (3M) State Assignment (3M) K - Map Simplification (2M) Logic Diagram (2M)
 State Assignment (3M) Realization of circuit using logic elements (2M) Realization of circuit using SR latch (2M) gn a two – input (x1, x2), two – output (z1, z2) fundamental – mode circuit that has the owing specifications. When x1x2 =00, z1z2=00.The output 10 will be produced following occurrence of the input sequence 00 – 01 – 11. The output will remain at 10 until the treturns to 00 at which it becomes 00. An output of 01 will be produced following the ipt of the input sequence 00 – 10 – 11. And once again, the output will remain at 01 until input occurs, which returns the output to 00. (13M) (BTL4) wer: page: 9-27 Godse Draw the state Diagram (3M) Derive the Primitive Flow Table (3M) State Assignment (3M) K – Map Simplification (2M) Logic Diagram (2M)
 Realization of circuit using logic elements (2M) Realization of circuit using SR latch (2M) gn a two – input (x1, x2), two – output (z1, z2) fundamental – mode circuit that has the owing specifications. When x1x2 =00, z1z2=00. The output 10 will be produced following occurrence of the input sequence 00 – 01 – 11. The output will remain at 10 until the it returns to 00 at which it becomes 00. An output of 01 will be produced following the ipt of the input sequence 00 – 10 – 11. And once again, the output will remain at 01 until input occurs, which returns the output to 00. (13M) (BTL4) wer: page: 9-27 Godse Draw the state Diagram (3M) Derive the Primitive Flow Table (3M) State Assignment (3M) K – Map Simplification (2M) Logic Diagram (2M)
 Realization of circuit using SR latch (2M) Ign a two – input (x1, x2), two – output (z1, z2) fundamental – mode circuit that has the owing specifications. When x1x2 =00, z1z2=00. The output 10 will be produced following occurrence of the input sequence 00 – 01 – 11. The output will remain at 10 until the it returns to 00 at which it becomes 00. An output of 01 will be produced following the ipt of the input sequence 00 – 10 – 11. And once again, the output will remain at 01 until input occurs, which returns the output to 00. (13M) (BTL4) Wer: page: 9-27 Godse Draw the state Diagram (3M) Derive the Primitive Flow Table (3M) State Assignment (3M) Logic Diagram (2M)
gn a two - input (x1, x2), two - output (z1, z2) fundamental - mode circuit that has the owing specifications. When x1x2 =00, z1z2=00.The output 10 will be produced following occurrence of the input sequence 00 - 01 - 11. The output will remain at 10 until the at returns to 00 at which it becomes 00. An output of 01 will be produced following the ipt of the input sequence 00 - 10 - 11. And once again, the output will remain at 01 until input occurs, which returns the output to 00. (13M) (BTL4) wer: page: 9-27 GodseDraw the state Diagram(3M)Derive the Primitive Flow Table(3M)State Assignment(3M)Logic Diagram(2M)
wing specifications. When x1x2 =00, z1z2=00. The output 10 will be produced following occurrence of the input sequence 00 - 01 - 11. The output will remain at 10 until the at returns to 00 at which it becomes 00. An output of 01 will be produced following the ipt of the input sequence 00 - 10 - 11. And once again, the output will remain at 01 until input occurs, which returns the output to 00. (13M) (BTL4) wer: page: 9-27 Godse• Draw the state Diagram(3M)• Derive the Primitive Flow Table(3M)• State Assignment(3M)• Logic Diagram(2M)
wer: page: 9-31 Godse
 Draw the state Diagram (2M) Derive the Primitive Flow Table (1M)
State Assignment(1M)K – Map Simplification(2M)
Logic Diagram (1M)
ign a asynchronous D – type latch with two inputs G and D and output Q. Assume
lamental mode of operation. (13M) (BTL4)
wer: page: 9-35 Godse
Draw the state Diagram (3M)
Derive the Primitive Flow Table (3M)
• State Assignment (3M)
K - Map Simplification (2M)
Logic Diagram (2M)
at is a hazard? Explain the different types of hazards. What is an essential hazard? Pruss in detail how hazards can be eliminated. (13M) (BTL1) (Apr/May 2015)(Nov/Dec
B)Answer: page: 9-40 Godse
Hazard – Definition (2M)
Types of Hazards (3M)
• Static 0 hazard
• Static 1 hazard
 Dynamic hazard
Essential Hazard (3M)
Hazard elimination (5M)
 Designing a hazard free circuit
e the hazard – free realization for the Boolean function.
B, C, D) = $\sum m (0, 2, 6, 7, 8, 10, 12) (8M) (BTL4) (Apr/May 2015)$
wer: page: 9-40 Godse

	 K – Map Simplification (4M) Logic Diagram (4M)
	PART* C
	Find a static and dynamic hazard free realization for the following function using i) NANI gates ii) NOR gates $F(a, b, c, d) = \sum m(1, 5, 7, 14, 15)$. (15M) (BTL4) (Nov/Dec 2018)
	Answer: page: 9-44 Godse
	• Circuit realization using NOR gates (7M)
	• Determination of K map
	Grouping of minterms
	Implementation of logic gates
1	Conversion using invert gate
	Conversion to NOR universal gate
	Circuit Realization gates using NAND gates (8M)
	Determination of K map
	Grouping of minterms
	Implementation of logic gates
	Conversion using invert gate
	Conversion to NAND universal gate
	Write the analysis procedure for an asynchronous fundamental sequential circuit wit
	example. (15M) (BTL4)
	Answer: page: 9-4 Godse
2	• Determination of next secondary state (3M)
-	• Determination of output equations (3M)
	• Construct state table (3M)
	• Construct transition table (3M)
	• Construct output map (3M)
	Write the design procedure for an asynchronous fundamental sequential circuit wit
	example. (15M) (BTL4)
2	Answer: page: 9-11 Godse Construction of primitive flow table (4M)
3	 Reduction of primitive flow table (4M) Reduction of primitive flow table (4M)
	• State assignment (4M)
	\checkmark Diate assignment (41V1)
	• Realization of primitive flow table (3M)

UNIT V – MEMORY DEVICES AND DIGITAL INTEGRATED CIRCUITS

Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM - Programmable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using PLA, PAL.

	PART* A
Q.No.	Questions
1	Define Memory Cell. Give an example. BTL1
	Memories are made up of registers. Each register consists of storage elements each of which
2	stores one bit of data. Such a storage element us called Memory Cell. Define Memory Location. BTL1
2	Memories are made up of registers. Each register in the memory is one storage location also called memory location. Each memory location is identified by an address.
3	What is volatile memory? Give example. BTL1(Nov/Dec 2014)
	The memory which cannot hold data when power is turned off is known as volatile memory. The Static RAM is a volatile memory.
4	Name the types of ROM.BTL1
	• PROM
	EPROMEEPROM
5	
-	Define Address and Word.BTL1
	In ROM, each bit combination of the input variable is called an address. Each bit combination that comes out of the output lines is called a word.
6	Explain ROM. BTL1 A read only memory (ROM) is a device that includes both the decoder and the OR gates within a ringle IC mechanism. It explains a final a local sector of the sector o
	single IC package. It consists of n input lines and m output lines. Each bit combination of the input variables is called an address. Each bit combination that comes out of the output lines is called a word. The number of distinct addresses possible with n input variables is 2n.
7	Define PROM. BTL1
	PROM (Programmable Read Only Memory)
	It allows user to store data or program. PROMs use the fuses with material like nichrome and
	polycrystalline. The user can blow these fuses by passing around 20 to 50 mA of current for the
	period 5 to 20 µs. The blowing of fuses is called programming of ROM. The PROMs are one time programmable. Once programmed, the information is stored permanent.
8	What is mask – programmable?BTL1
Ũ	With a mask programmable PLA, the user must submit a PLA program table to the manufacturer.
9	Define PLD.BTL1
	Programmable Logic Devices consist of a large array of AND gates and OR gates that can be
	programmed to achieve specific logic functions.
10	Give the classification of PLDs. BTL1
	Programmable Read Only Memory (PROM)
	Programmable Logic Array (PLA)
	 Programmable Array Logic (PAL) Generic Array Logic (GAL)
	Generic Array Logic (GAL) IT-IEPPIAAR/ECE/Mr D IOSHIJA IEYASEKAR/II Yr/SEM 03 /CS8351/DPSD/UNIT 1-5/OB+Keys/Ver?

11	What is PLA?BTL1					
	PLA stands for Programmable Logic Array, w	hich is LSI component. In PLA both AND and	OR			
	gates have fuses at the inputs, therefore in PL	A both AND and OR gates are programmable.	The			
		its to output inverters so that final output car				
	programmed as either AND – OR or AND – O	1				
12	What is the advantage of PLA over PAL?B	FL1(Nov/Dec 2014)				
	• Both AND and OR gates are programm					
	• AND array can be programmed to get of					
	 AND array can be programmed to get desired minterms Any Boolean functions in SOP can be implemented using PLA. 					
13						
	· ·	ertain disadvantages of PLA, such as longer del	lavs			
	1	using two programmable arrays and more cir	•			
	complexity.					
14		red?BTL1				
		prevent loading by the large number of AND	gate			
	inputs to which available output can be connec					
15	How is individual location in a EEPROM pr					
		ivating the particular row and column it is poss	ible			
	that individual can be programmed or erased.					
16	What is write cycle time?BTL1					
	It is the minimum time for which an address	must be held stable on the address bus, in w	rite			
	cycle.					
17	What is memory cycle?BTL1					
	In read/write memory the operation that allows	s data to be retrieved (Read) and Stored (writter	ı) is			
			/			
	called the memory cycle.		/			
18	called the memory cycle. Compare and contrast static RAM and dyna		, 			
18	Compare and contrast static RAM and dyna	amic RAM.BTL2	,			
18			, 			
18	Compare and contrast static RAM and dyna Static RAM	amic RAM.BTL2 Dynamic RAM				
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per	amic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as				
18	Compare and contrast static RAM and dyna Static RAM	amic RAM.BTL2 Dynamic RAM	,			
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area.	amic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area.	,			
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster	amic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as	,			
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area.	amic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area.	,			
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories.	Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs.				
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip –	Dynamic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge				
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories.	Dynamic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET	,			
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip –	Dynamic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge				
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip – flops. Each flip flop stores one bit.	Dynamic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and capacitor for each cell.				
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip –	Dynamic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET				
18	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip – flops. Each flip flop stores one bit.	Dynamic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and capacitor for each cell.				
	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip – flops. Each flip flop stores one bit. Cost is more. What is access time of a memory?BTL2	Dynamic RAM.BTL2 Dynamic RAM Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and capacitor for each cell.				
	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip – flops. Each flip flop stores one bit. Cost is more. What is access time of a memory?BTL2	Dynamic RAM. Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and capacitor for each cell. Cost is less.				
	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip – flops. Each flip flop stores one bit. Cost is more. What is access time of a memory?BTL2 It is the maximum specified time within whice	Dynamic RAM. Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and capacitor for each cell. Cost is less.				
19	Compare and contrast static RAM and dyna Static RAM Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip – flops. Each flip flop stores one bit. Cost is more. What is access time of a memory?BTL2 It is the maximum specified time within whic address is applied. What is a combinational PLD? BTL1	Dynamic RAM. Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and capacitor for each cell. Cost is less.	r an			
19	Compare and contrast static RAM and dyna Static RAM contains less memory cells per unit area. It has less access time hence faster memories. Static RAM consists of number of flip – flops. Each flip flop stores one bit. Cost is more. What is access time of a memory?BTL2 It is the maximum specified time within whicaddress is applied. What is a combinational PLD? BTL1 PROM is a combinational programmable log	Dynamic RAM. Dynamic RAM contains more cells as compared to static RAM per unit area. Its access time is greater than static RAMs. Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and capacitor for each cell. Cost is less. ch a valid new data is put on the data bus after	r an			

21	1 Determine the number of address lines for 512 bytes of memory and for a 2kB memory. BTL1							
	$2^9 = 512.9$ address lines required for 512 bytes of memory $2^{11} = 2kB.11$ address lines required for 2kB memory What are CPL Do? PTL 1							
22								
22								
	CPLD is a collection of multiple PLDs and interconnection structure on a single chip. In CP							
23	along with individual PLDs the interconnection structure is also programmable. What is FPGA? BTL1							
25	In Field Programmable Gate Arrays (FPGA), the word field refers to the ability of gate arrays to							
	be programmed for a specific function by the user instead of by the manufacturer of the device							
	and the word array indicated a series of columns and rows of gates that can be programmed by							
	the end user.							
24								
21	It is the look – up table, used in FPGAs which is a memory device that can be programmed to							
	perform the logic functions.							
25	How the interconnections between logic blocks are done? BTL1							
20	FPGAs use either SRAM or antifuse methods. Antifuse normally open and shorted when							
	programmed. SRAM method is transistor controlled by the state of on – chip SRAM Cell.							
	PART* B							
1	Write a descriptive note on memories.(7M) BTL1							
	Answer Page: 5.1-5.9 - D.Ed winDhas							
	Random Access Memory – Description (1M)							
	Steps required for Read and Write Operations (2M)							
	Timing Waveforms (2M)							
	Memory Classification (2M)							
2	Give the classification of semiconductor memories. (7M) BTL2 (Nov/Dec 2014)							
	Answer Page:5.2-5.9 - D.EdwinDhas							
	Non Volatile Memory (3M)							
	ROMRead/Write Memory (NVRAM)							
	Mask – programmable ROM EPROM							
	Programmable ROM EEPROM							
	Flash							
	Volatile Memory (4M)							
	Read/Write Memory (RWM)							
	Random Access Non – random Access							
	SRAM FIFO							
3	DRAM LIFO							
3	Explain in detail about the types and internal diagram of Random Access Memories (RAM). (7M) BTL2 (Apr/May 2015)							
	Answer Page: 5.6-5.9 - D.Ed winDhas							
	Static RAM (SRAM) (4M)							
	• Logic Diagram							
	Block Diagram							
	Dynamic RAM (DRAM) (2M)							
	Comparison (1M)							
4								
'	Answer Page: 5.1-5.6 - D.Ed winDhas							
	Masked ROM (2M)							
L								

	PROM (1M)
	EPROM (2M)
	EEPROM (2M)
5	Using ROM realize the following expressions. (7M) BTL4
5	$F_1(a, b, c) = \sum m(0, 1, 3, 5, 7)$
	$F_{2} = \sum m(1, 2, 5, 6)$
	Answer Page: 5.43-5.44 - D.EdwinDhas
	• Block Diagram (2M)
	• ROM truth Table (3M)
	• Logic Diagram (2M)
6	Design a combinational circuit using ROM. The circuit accepts 3 – bit number and
	generates an output binary number equal to square of input number. (7M) BTL4
	Answer Page: 5.45-5.46 - D.EdwinDhas
	• Block Diagram (2M)
	• ROM truth Table (3M)
	• Logic Diagram (2M)
7	Designing a switching circuit that converts a 4 – bit binary code into a 4 – bit gray code
	using ROM array. (7M) BTL4
	Answer Page: 5.45-5.46 - D.EdwinDhas
	• ROM truth Table (3M)
	• Implementation (4M)
8	A combinational circuit is defined by the functions:
	$F_1 = \sum m(3,5,7)$
	$F_2 = \sum m(4, 5, 7)$ Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs. (7M) BTL4
	Answer Page 5 20-5 21 - D EdwinDhas
	Answer Page: 5.20-5.21 - D.EdwinDhas • Simplify the Boolean functions using K – Map (2M)
	• Simplify the Boolean functions using K – Map (2M)
	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M)
9	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M)
9	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M) Draw a PLA circuit to implement the logic functions
9	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3
9	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M) Draw a PLA circuit to implement the logic functions
9	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas
9	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas Simplify the Boolean functions using K – Map (3M)
	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas Simplify the Boolean functions using K – Map (3M) Implementation (4M)
	 Simplify the Boolean functions using K – Map (2M) Write PLA Program table (2M) Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas Simplify the Boolean functions using K – Map (3M) Implementation (4M) Implement the following multiboolean function using 3*4*2 PLA and PLD.
	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using 3*4*2 PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3
	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using $3*4*2$ PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3 Answer Page:5.26-5.27 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M)
	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using 3*4*2 PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3 Answer Page:5.26-5.27 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M)
10	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using $3*4*2$ PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3 Answer Page:5.26-5.27 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M)
10	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using 3*4*2 PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3 Answer Page:5.26-5.27 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implement ation (4M) Design a BCD to Excess – 3 code converter and implement using suitable PLA. (13M) BTL4
10	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using $3*4*2$ PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3 Answer Page:5.26-5.27 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Design a BCD to Excess – 3 code converter and implement using suitable PLA. (13M) BTL4 Answer Page:5.30-5.32 - D.EdwinDhas
10	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using $3*4*2$ PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3 Answer Page:5.26-5.27 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Design a BCD to Excess – 3 code converter and implement using suitable PLA. (13M) BTL4 Answer Page:5.30-5.32 - D.EdwinDhas • Truth table of BCD to Excess – 3 Converter (3M)
10	• Simplify the Boolean functions using K – Map (2M) • Write PLA Program table (2M) • Implementation (3M) Draw a PLA circuit to implement the logic functions A'BC+AB'C+AC' and A'B'C'+BC (7M) BTL3 Answer Page:5.27-5.28 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Implement the following multiboolean function using $3*4*2$ PLA and PLD. $f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) and f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$ (7M) BTL3 Answer Page:5.26-5.27 - D.EdwinDhas • Simplify the Boolean functions using K – Map (3M) • Implementation (4M) Design a BCD to Excess – 3 code converter and implement using suitable PLA. (13M) BTL4 Answer Page:5.30-5.32 - D.EdwinDhas • Truth table of BCD to Excess – 3 Converter (3M) • Simplify the Boolean functions using K – Map (3M)

	(Nov/Dec 2014)
	Answer Page: 5.51- D.EdwinDhas
	• Truth table of BCD to Excess – 3 Converter (4M)
	• Simplify the Boolean functions using K – Map (4M)
	• Implementation (5M)
13	0 <i>1</i>
	$F_1(A, B, C) = \sum (3, 5, 6, 7)$
	$F_2(A, B, C) = \sum (0, 2, 4, 7)$
	Implement the circuit with a PLA having three inputs, four product terms and two outputs.
	(13M) BTL4 (Apr/May 2015)
	Answer Page:5.45-5.49 - D.EdwinDhas
	• Simplify the Boolean functions using K – Map (6M)
	• Implementation (7M)
14	Implement the Boolean function with a PLA.
	$F_1(A, B, C) = \sum (0, 1, 2, 4)$
	$F_2(A, B, C) = \sum_{i=1}^{n} (0, 5, 6, 7)$
	$F_3(A, B, C) = \sum (0, 3, 5, 7)$ (10M)
	BTL4(Nov/Dec 2018)
	Answer Page: 5.43-5.45 - D.EdwinDhas
	• Simplify the Boolean functions using K – Map (4M)
	 Implementation (10)
15	· · · ·
15	$Z_1 = ab'd'e + a'b'c'd'e' + bc + de$
	$Z_2 = a'c'e$
	$Z_3 = bc + de + c'd'e' + bd$
	$Z_4 = a'c'e + ce \text{ Using a } 5*8*4 \text{ PLA} $ (7M) BTL4
	Answer Page:5.45-5.49 - D.EdwinDhas
	• Implementation (7M)
	• Plot the PLA table.
	• Write the product term.
	• Write 1 in respective inputs.
	• Write 1 in respective outputs.
	PART* C
1	Write short notes on sequential programmable devices & FPGA. (15M) BTL1 (Apr/May
1	2015)
	Answer Page: 5.51-5.54 - D.EdwinDhas
	Basic Architecture of FPGA (4M)
	An LUT programmed to produce the SOP function (3M)
	Basic block in an FPGA (4M)
	A simplified typical FPGA logic element (4M)
2	
2	Generate the following Boolean functions with a PAL with 4 inputs and 4 outputs $Y_3 = A'BC'D' + A'BCD' + ABC'D$
	$Y_2 = A'BCD' + A'BCD + ABCD$
	$Y_1 = A'BC' + A'BC + AB'C + ABC'$
	$Y_0 = ABCD \tag{15M} BTL4$
	Answer Page:5.40-5.43 - D.EdwinDhas
	• Simplify the Boolean functions using K – Map (6M)

	• Imple	mentati	on			(7M)		
3	Implement	the	following	Boolean	functions	using	PAL.	w(A, B, C, D) =
	$\sum m(0, 2, 6, 7, 8, 9, 12, 13)$							
	$\overline{x}(A, B, C, D)$	$= \sum m$	(0, 2, 6, 7, 8, 9	9, 12, 13, 14)			
	y(A, B, C, D)	$=\overline{\Sigma}m$	(2, 3, 8, 9, 10)	, 12, 13)				
	z(A, B, C, D)	$=\overline{\Sigma}m$	(1 , 3 , 4 , 6 , 9 , 1	12, 14)(Nov	- Dec 2015)	(Nov/Dec	2018) (15	M) BTL4
	Answer Page	e:5.40-5	5.43 - D.Edwi	nDhas				
	Simpl	ify the l	Boolean funct	ions using K	L – Map	(3M)		
	Array	Logic f	for PAL			(3M)		
	PAL I	Program	n table			(3M)		
	• Imple	mentati	on			(3M)		

CS8391

DATA STRUCTURES

L T P C 3003

OBJECTIVES:

- To understand and apply the algorithm analysis techniques.
- To critically analyze the efficiency of alternative algorithmic solutions for the same problem
- To understand different algorithm design techniques.
- To understand the limitations of Algorithmic power.

UNIT I LINEAR DATA STRUCTURES – LIST

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list implementation — singly linked lists- circularly linked lists- doubly-linked lists – applications of lists –Polynomial Manipulation – All operations (Insertion, Deletion, Merge, Traversal).

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES

Stack ADT – Operations - Applications - Evaluating arithmetic expressions- Conversion of Infix to postfix expression - Queue ADT – Operations - Circular Queue – Priority Queue – de Queue – applications of queues.

UNIT III NON LINEAR DATA STRUCTURES – TREES

Tree ADT – tree traversals - Binary Tree ADT – expression trees – applications of trees – binary search tree ADT –Threaded Binary Trees- AVL Trees – B-Tree - B+ Tree - Heap – Applications of heap.

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS

Definition – Representation of Graph – Types of graph - Breadth-first traversal - Depth-first traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler circuits – Applications of graphs.

UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES

Searching- Linear Search - Binary Search. Sorting - Bubble sort - Selection sort - Insertion sort - Shell sort - Radix sort. Hashing- Hash Functions - Separate Chaining - Open Addressing - Rehashing - Extendible Hashing.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Implement abstract data types for linear data structures.
- Apply the different linear and non-linear data structures to problem solutions.
- Critically analyze the various sorting algorithms.

JIT-JEPPIAAR/CSE/Ms.S.SUDHA MERCY/IIYr/SEM 03 /CS8391/DATA STRUCTURES/UNIT 1-5/QB+Keys/Ver1.0 3.1

9

9

9

O

TEXT BOOKS:

- 1. Mark Allen Weiss, -Data Structures and Algorithm Analysis in Cl, 2nd Edition, Pearson Education, 1997.
- 2. Reema Thareja, -Data Structures Using Cl, Second Edition, Oxford University Press, 2011

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, -Introduction to Algorithms", Second Edition, Mcgraw Hill, 2002.
- 2. Aho, Hopcroft and Ullman, -Data Structures and Algorithmsl, Pearson Education, 1983.
- 3. Stephen G. Kochan, -Programming in Cl, 3rd edition, Pearson Education.
- 4. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, -Fundamentals of Data Structures in Cl, Second Edition, University Press, 2008

Subject Code: CS8391

Subject Name – Data Structures

Subject Handler: S. Sudha Mercy

Sem / Year: III/Second Year

implem	UNIT I -INTRODUCTION t Data Types (ADTs) – List ADT – array-based implementation – linked list entation—singly linked lists- circularly linked lists- doubly-linked lists – ions of lists –Polynomial Manipulation – All operations (Insertion, Deletion, Merge, al).
Q.NO	PART* A
1.	Define: data structure. BTL1 A data structure is a way of storing and organizing data in the memory for
	efficient usage. The way information is organized in the memory of a computer
2.	Give few examples for data structures. BTL1
	Arrays, stacks, queue, list, tree, graph, set, map, table and deque.
3.	What are the different types of data structures? BTL1
	i) Primitive
	ii) Composite
	iii) Abstract
4.	What are primitive data types? BTL1
	The basic building blocks for all data structures are called primitive data types.
	(e.g) int, float, char, double, Boolean
5.	What are composite data types? BTL1
	Composite data types are composed of more than one primitive data type.
	(e.g) array, structure, union
6.	What is meant by an abstract data type?(April/May 2017) BTL1
	An ADT is a mathematical model for a certain class of data structures that have similar
	behavior. (e.g) list, stack, queue
7.	How data structures can be categorized based on data access? BTL1
	Linear – list, stack, queue
	Non-linear- heap, tree, graph
8.	State the difference between linear and non-linear data structures. (Nov/Dec 2018)
	BTL2
	The main difference between linear and nonlinear data structures lie in the way
	they organize data elements.
	In linear data structures, data elements are organized sequentially and therefore they are
	easy to implement in the computer's memory.
	In nonlinear data structures, a data element can be attached to several other data
	elements to represent specific relationships that exist among them. Due to this it might
	be difficult to be implemented in computer's linear memory.
9.	List a few real-time applications of data structures. BTL1

-							
	Undo and redo feature - stack						
	Decision making - graph						
	• Printer (printing jobs) – queue						
	Directory structure- trees						
	Communication networks- graphs						
10.	Define List. BTL1						
	The general form of the list is a_1 , a_2 , a_3 a_n . The size of the list is 'n'. Any						
	element in the list at the position i is defined to be at a_i , a_{i+1} the successor of a_i , and a_{i-1}						
	is the predecessor of a_i . a_1 doesn't have predecessor and a_n doesn't have successor.						
11.	What are the various operations done on List ADT?(April/May 2016) BTL1						
	The operations done under List ADT are Print list, Insert, Delete, FindPrevious,						
	Find k th , Find, MakeEmpty, IsLast and IsEmpty.						
12	What are the different ways to implement list? BTL1						
	Array implementation of list						
	• Linked list implementation of list						
	• Cursor implementation of list						
13	Arrays are not used to implement lists. Why? BTL2						
15	Requires that the list size to be known in advance						
	 Running time for insertions and deletions is slow 						
14	What are the advantages in the array implementation of list?(April/May2017)						
14	BTL1						
	• Print list operation can be carried out at linear time						
	 Finding Kth element takes a constant time 						
15	What are the disadvantages in the array implementation of list? BTL1						
15	The running time for insertions and deletions is so slow and the list size must						
	be known in advance.						
16	Define node. BTL1						
10	A node consists of two fields namely an information field called INFO and a						
	pointer field called LINK. The INFO field is used to store the data and the LINK field						
	is used to store the address of the next field						
	info link						
17	What is a linked list? BTL1						
17	Linked list is series of nodes, which are not necessarily adjacent in memory.						
	Each node contains a data element and a pointer to the next node.						
	\rightarrow info link \rightarrow info link \rightarrow info link \rightarrow info NULL						
18	What is a doubly linked list? BTL1						
-	In a doubly linked list, along with the data field there will be two pointers one						
	pointing the next node(flink) and the other pointing the previous node(blink).						
	Null info flink blink info flink blink Info Null						

19	Define circularly linked list. (April/May 2017) BTL1
	In a singly circular linked list the last node's link points to the first node of the
	list.
	inf link inf link inf link inf link
20	
20	Define double circularly linked list? BTL1
	In a circular doubly linked list the last node's forward link points to the first ode of the list, and the first node's back link points to the last node of the list.
	or the list, and the first node s back link points to the last node of the list.
	blink info flink blink info flink blink Info flink
21	Mention the disadvantages of circular list. BTL2
	The disadvantage of using circular list is
	• It is possible to get into an infinite loop.
	• It is not possible to detect the end of the list.
- 22	
22	What are the advantages of doubly linked list over singly linked list?(April/May 2019) BTL1
	The doubly linked list has two pointer fields. One field is previous link field
	and another is next link field. Because of these two pointer fields we can access any
	node efficiently whereas in singly linked list only one pointer field is there which store
	forward pointer.
23	Why is the linked list used for polynomial arithmetic? BTL1
23	We can have separate coefficient and exponent fields for representing each tern
	of polynomial. Hence there is no limit for exponent. We can have any number as an
	exponent.
24	What is the advantage of linked list over arrays? (NOV/DEC 2018) BTL1
<u>~</u> T	The linked list makes use of the dynamic memory allocation. Hence the user can
	allocate or de allocate the memory as per his requirements. On the other hand, the array
	makes use of the static memory location. Hence there are chances of wastage of the
	memory or shortage of memory for allocation.
25	What is the basic purpose of header of the linked list? BTL1
25	The header node is the very first node of the linked list. Sometimes a dummy
	value such - 999 is stored in the data field of header node. This node is useful for getting

	the starting address of the linked list.
26	State the advantage of an ADT? (NOV/DEC 2018) BTL2
	Change: the implementation of the ADT can be changed without making changes in
	the client program that uses the ADT.
	Understandability: ADT specifies what is to be done and does not specify
	the implementation details. Hence code becomes easy to understand due to
	ADT.
	Reusability: the ADT can be reused by some program in future
27	State the properties of LIST abstract data type with suitable example. BTL2
	Various properties of LIST abstract data type are
	• It is linear data structure in which the elements are arranged adjacent to each
	other.
	• It allows to store single variable polynomial.
	• If the LIST is implemented using dynamic memory, then it is called linked
	list. Example of LIST are- stacks, queues, linked list.
28	What is static linked list? State any two applications of it. BTL1
	• The linked list structure which can be represented using arrays is called static
	linked list.
	 It is easy to implement, hence for creation of small databases, it is useful.
	• The searching of any record is efficient, hence the applications in which the
	record need to be searched quickly, the static linked list are used.

	PART B
1	Derive an ADT to perform insertion and deletion in a singly linked list.(13) (Nov 10) (NOV/DEC 2018) BTL2 Answer Pg no:171-175 in Reema Theraja
	Definition of Linked List(2M)
	• Linked List can be defined as collection of objects called nodes that are randomly stored in the memory.
	• A node contains two fields i.e. data stored at that particular address and the pointer which contains the address of the next node in the memory.
	Insertion(6M)
	The insertion into a singly linked list can be performed at different positions. Based on the position of the new node being inserted, the insertion is categorized into the following categories. A node can be added in three ways
	• At the front of the linked list
	• After a given node
	• At the end of the linked list.
	Deletion(5M)
	To delete a node from linked list, do following steps.
	• Find previous node of the node to be deleted
	• Change the next of previous node.
	• Free memory for the node to be deleted.
•	Explain the steps involved to reverse the linked list. (13M) BTL3
	Answer Pg no:171-175 in Reema Theraja
	Steps involved to reverse the elements in the linked list(7M)
	• Count the number of nodes in the linked list.
	• Declare an array with the number of nodes as its size.
	• Start storing the value of nodes of the linked list from the end of the array i.e.
	reverse manner.
	• Print k values from starting of the array.
	Algorithm(6M)
	// Structure of a node
	struct Node {
	int data;
	Node* next;
	};
	// Function to get a new node
	Node* getNode(int data){
	// allocate space PIAAR/CSE/Ms.S.SUDHA MERCY/IIYr/SEM 03 /CS8391/DATA STRUCTURES/UNIT 1-5/QB+Keys/Ver1.0

```
Node* newNode = new Node;
  // put in data
  newNode->data = data;
  newNode->next = NULL;
  return newNode:
// Function to print the last k nodes
// of linked list in reverse order
void printLastKRev(Node* head,
            int& count, int k) {
  struct Node* cur = head;
  while(cur != NULL){
    count++;
    cur = cur->next;
  }
  int arr[count], temp = count;
  cur = head;
  while(cur != NULL){
    arr[--temp] = cur->data;
    cur = cur->next;
  }
  for(int i = 0; i < k; i++)
    cout << arr[i] << " ";
//
// Driver code
int main()
  // Create list: 1->2->3->4->5
  Node* head = getNode(1);
  head->next = getNode(2);
  head->next->next = getNode(3);
  head->next->next->next = getNode(4);
  head->next->next->next=getNode(5);
  head->next->next->next->next->next=getNode(10);
  int k = 4, count = 0;
  // print the last k nodes
  printLastKRev(head, count, k);
  return 0;
```

	1
	Example:
	-
	Input : list: $1 - 2 - 3 - 4 - 5$, $K = 2$
	Output : 5 4 3 2 1
3.	Write an algorithm for inserting and deleting an element from Circular linked list. (13M)(NOV/DEC 2018) BTL2
	Answer Pg no:187-195 Reema Theraja
	Definition(2M) In a singly linked list, for accessing any node of linked list, we start traversing from the first node. If we are at any node in the middle of the list, then it is not possible to access nodes that precede the given node. This problem can be solved by slightly altering the structure of singly linked list.
	Insertion(6M) A node can be added in three ways:
	Insertion in an empty list
	Insertion at the beginning of the list
	• Insertion at the end of the list
	Insertion in between the nodes
	Algorithm for Inserting an element from circularly linked list: Insertion in an empty List:
	Initially when the list is empty. <i>last</i> pointer will be NULL.
	Insertion at the beginning of the list:
	To Insert a node at the beginning of the list, follow these step:
	Step 1:Create a node. sav T.
	Step 2:Make T -> next = last -> next. Step 3:last -> next = T
	Insertion at the end of the list:
	To Insert a node at the end of the list, follow these step:
	Step 1: Create a node, sav T.
	Step 2: Make T \rightarrow next = last \rightarrow next; Step 3: last \rightarrow next = T.
	Step 5: $1ast = 7$
	Insertion in between the nodes:
	To Insert a node at the end of the list, follow these step:
	Step 1: Create a node, say T. Step 2: Search the node after which T need to be insert, say that node be P.
	Step 3: Make $T \rightarrow next = P \rightarrow next;$
	Step 4: $P \rightarrow next = T$.
	Algorithm for deleting an element from circularly linked list(5M)
	Case 1: List is empty.
	• If the list is empty we will simply return.
	Case 2 : List is not empty
	• If the list is not empty then we define two pointers curr and prev and initialize the
	pointer curr with the head node.
	• Traverse the list using curr to find the node to be deleted and before moving curr to
	next node, everytime set prev = curr.
	• If the node is found, check if it is the only node in the list. If yes, set head = NULL
	and free(curr).
	• If the list has more than one node, check if it is the first node of the list. Condition

After prev reaches the last node, set head = head -> next and prev -> next = head. Delete curr. If curr is not first node, we check if it is the last node in the list. Condition to check this is (curr \rightarrow next == head). • If curr is the last node. Set prev \rightarrow next = head and delete the node curr by free(curr). If the node to be deleted is neither the first node nor the last node, then set prev -> $next = temp \rightarrow next$ and delete curr. Explain the algorithm for the reverse operations on doubly linked list. (13M) 4. (April/May 2019)(Nov 09) Answer Pg no:180-187 Reema Theraja Explanation(5M) swap prev and next pointers for all nodes, change prev of the head (or start) and change the head pointer in the end. Algorithm for reversing doubly linked list:(8M) /* Function to reverse a Doubly Linked List */ void reverse(struct Node **head_ref) struct Node *temp = NULL; struct Node *current = *head ref; /* swap next and prev for all nodes of doubly linked list */ while (current != NULL) temp = current->prev; current->prev = current->next; current->next = temp; current = current->prev; } /* Before changing head, check for the cases like empty list and list with only one node */ if(temp != NULL) *head_ref = temp->prev; /* UTILITY FUNCTIONS */ /* Function to insert a node at the beginging of the Doubly Linked List */ void push(struct Node** head_ref, int new_data) /* allocate node */ struct Node* new node = (struct Node*) malloc(sizeof(struct Node)); /* put in the data */ new_node->data = new_data;

```
/* since we are adding at the begining,
   prev is always NULL */
  new_node->prev = NULL;
  /* link the old list off the new node */
  new_node->next = (*head_ref);
  /* change prev of head node to new node */
  if((*head_ref) != NULL)
   (*head_ref)->prev = new_node ;
  /* move the head to point to the new node */
  (*head ref) = new node;
* Function to print nodes in a given doubly linked list
 This function is same as printList() of singly linked lsit */
void printList(struct Node *node)
 while(node!=NULL)
 printf("%d ", node->data);
 node = node->next;
 }
/* Drier program to test above functions*/
int main()
 /* Start with the empty list */
 struct Node* head = NULL;
 /* Let us create a sorted linked list to test the functions
 Created linked list will be 10->8->4->2 */
 push(&head, 2);
 push(&head, 4);
 push(&head, 8);
 push(&head, 10);
 printf("\n Original Linked list ");
 printList(head);
 /* Reverse doubly linked list */
 reverse(&head);
 printf("\n Reversed Linked list ");
 printList(head);
 getchar();
```

```
PART C
1
    Explain with algorithms to perform the insertion and deletion in doubly linked list
     (13M)(May 10) BTL2
     Answer Pg no:180-187 Reema Theraja
    Definition(2M)
    A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer,
    together with next pointer and data which are there in singly linked list.
    Insertion(6M)
    A node can be added in four way:
           At the front of the DLL
            After a given node.
            At the end of the DLL
            Before a given node.
     Add a node at the front:
    void push(struct Node** head_ref, int new_data)
       /* 1. allocate node */
       struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
       /* 2. put in the data */
       new node->data = new data;
       /* 3. Make next of new node as head and previous as NULL */
       new node->next = (*head ref);
       new_node->prev = NULL;
       /* 4. change prev of head node to new node */
       if ((*head_ref) != NULL)
         (*head_ref)->prev = new_node;
       /* 5. move the head to point to the new node */
      (*head ref) = new node;
     Add a node after a given node
     void insertAfter(struct Node* prev node, int new data)
       /*1. check if the given prev node is NULL */
       if (prev_node == NULL) {
         printf("the given previous node cannot be NULL");
         return:
       }
       /* 2. allocate new node */
       struct Node* new node = (struct Node*)malloc(sizeof(struct Node));
```

/* 3. put in the data */ new node->data = new data; /* 4. Make next of new node as next of prev_node */ new_node->next = prev_node->next; /* 5. Make the next of prev_node as new_node */ prev_node->next = new_node; /* 6. Make prev_node as previous of new_node */ new_node->prev = prev_node; /* 7. Change previous of new_node's next node */ if (new node->next != NULL) new_node->next->prev = new_node; Add a node at the end void append(struct Node** head_ref, int new_data) /* 1. allocate node */ struct Node* new_node = (struct Node*)malloc(sizeof(struct Node)); struct Node* last = *head_ref; /* used in step 5*/ /* 2. put in the data */ new_node->data = new_data; /* 3. This new node is going to be the last node, so make next of it as NULL*/ new_node->next = NULL; /* 4. If the Linked List is empty, then make the new node as head */ if (*head_ref == NULL) { new_node->prev = NULL; *head_ref = new_node; return; } /* 5. Else traverse till the last node */ while (last->next != NULL) last = last->next; /* 6. Change the next of last node */last->next = new_node; /* 7. Make last node as previous of new node */ new_node->prev = last;

return: Add a node before a given node: Check if the next node is NULL or not. If it's NULL, return from the function because any new node can not be added before a NULL Allocate memory for the new node, let it be called new_node Set new_node->data = new_data Set the previous pointer of this new_node as the previous node of the next_node, new_node->prev = next_node->prev Set the previous pointer of the next node as the new node, next node->prev = new_node Set the next pointer of this new node as the next node, new node->next = next node; • If the previous node of the new_node is not NULL, then set the next pointer of this previous node as new_node, new_node->prev->next = new_node Else, if the prev of new_node is NULL, it will be the new head node. So, make • (*head ref) = new node. Algorithm for deleting an element from the node(5M) Let the node to be deleted is del. If node to be deleted is head node, then change the head pointer to next current head Set next of previous to del, if previous to del exists. Set prev of next to del, if next to del exists.

2. Explain with an algorithm to perform the polynomial manipulation using linked list representation(13M) (NOV/DEC 2018) BTL2 Answer Pg no:211-215 Reema Theraja **Definition**(2M) A polynomial p(x) is the expression in variable x which is in the form $(ax^n + bx^{n-1} + ... +$ (x+k), where a, b, c ..., k fall in the category of real numbers and 'n' is non negative integer, which is called the degree of polynomial. A polynomial can be thought of as an ordered list of non zero terms. Each non zero term is a two-tuple which holds two pieces of information: The exponent part The coefficient part Algorithm AddTwoPolynomials(11M) struct DoublyLinkedList{ Element *element: DoublyLinkedList *left; DoublyLinkedList *right; } while DLL1 != NULL and DLL2 != NULL do DoubleyLinkedList *dll = new DoublyLInkedList // C++ syntax dll ->right = NULL dll->element = new Element dll->element->coefficient = DLL1->element->coefficient + DLL2->element->coefficient dll->element->exponent = DLL1->element->exponent addAtTail(DLL3, dll) // This will add DoublyLinkedList(dll) at the tail of DLL3 and adjust point as well DLL1 = DLL1->right DLL2 = DLL2 ->right End return DLL3

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES

Stack ADT – Operations - Applications - Evaluating Arithmetic Expressions-Conversion of Infix to postfix expression - Queue ADT – Operations - Circular Queue – Priority Queue - dequeue – applications of queues.

	PART A
1	Define Stack. BTL1
	A Stack is an ordered list in which all insertions (Push operation) and deletion (Pop
	operation) are made at one end, called the top. The topmost element is pointed by top. The
	top is initialized to -1 when the stack is created that is when the stack is empty. In a stack
	S = (a1,an), a1 is the bottom most element and element ai is on top of element ai-1.
	Stack is also referred as Last In First Out (LIFO) list.
2	What are the various Operations performed on the Stack? BTL1
	The various operations that are performed on the stack are
	• CREATE(S) – Creates S as an empty stack.
	• PUSH(S,X) – Adds the element X to the top of the stack.
	• POP(S) – Deletes the top most elements from the stack.
	• TOP(S) – returns the value of top element from the stack.
	• ISEMTPTY(S) – returns true if Stack is empty else false.
	• ISFULL(S) - returns true if Stack is full else false.
3	How do you test for an empty stack? BTL1
	The condition for testing an empty stack is top $=-1$, where top is the pointer pointing to
	the topmost element of the stack, in the array implementation of stack. In linked list
	implementation of stack the condition for an empty stack is the header node link field is
	NULL.
4	Name two applications of stack. (NOV/DEC 2018) BTL2
	Nested and Recursive functions can be implemented using stack. Conversion of Infix to
	Postfix expression can be implemented using stack. Evaluation of Postfix expression can
	be implemented using stack.
5	Define a suffix expression. BTL2
	The notation used to write the operator at the end of the operands is called suffix notation.
	Suffix notation format : operand operand operator Example: ab+, where a & b are
	operands and '+' is addition operator.
6	What do you meant by fully parenthesized expression? Give eg. BTL1
	A pair of parentheses has the same parenthetical level as that of the operator to
	which it corresponds. Such an expression is called fully parenthesized expression. Ex:
7	(a+((b*c)+(d*e)))
7	Write the postfix form for the expression -A+B-C+D? BTL1
	A-B+C-D+
	What are the postfix and prefix forms of the expression?(April/May 2019) BTL1
8	A+B*(C-D)/(P-R)
	Postfix form: ABCD-*PR-/+

	Prefix form: +A/*B-CD-PR
9	Mention the usage of stack in recursive algorithm implementation. BTL2
	In recursive algorithms, stack data structures is used to store the return address when a
	recursive call is encountered and also to store the values of all the parameters essential to
	the current state of the function.
10	Define Queues.BTL1
	A Queue is an ordered list in which all insertions take place at one end called the rear,
	while all deletions take place at the other end called the front. Rear is initialized to -1 and
	front is initialized to 0. Queue is also referred as First In First Out (FIFO) list.
11	What are the various operations performed on the Queue? (April/May 2018) BTL1
	• The various operations performed on the queue are
	• CREATE(Q) – Creates Q as an empty Queue.
	• Enqueue(Q,X) – Adds the element X to the Queue.
	• Dequeue(Q) – Deletes a element from the Queue.
	• ISEMTPTY(Q) – returns true if Queue is empty else false.
	• ISFULL(Q) - returns true if Queue is full else false.
12	
	What are the various types of queue? (May 2008) BTL1 The following are the types of queue:
	Linear Queue
	Double ended queue
	Circular queue
	Priority queue
13	How do you test for an empty Queue? BTL2
	The condition for testing an empty queue is rear=front-1. In linked list implementation of
	queue the condition for an empty queue is the header node link field is NULL.
14	Write down the function to insert an element into a queue, in which the queue is
	implemented as an array. (May 10) BTL1
	Q – Queue
	X – element to added to the queue Q
	IsFull(Q) – Checks and true if Queue Q is full
	Q->Size - Number of elements in the queue Q
	Q->Rear – Points to last element of the queue Q
	Q->Array – array used to store queue elements
	void enqueue (int X, Queue Q) {
	if(IsFull(Q))
	Error ("Full queue");
	else {
	Q->Size++;
	Q->Rear = Q ->Rear+1;
	Q->Array[Q->Rear]=X;
	}}

15	Define Deque. BTL1
	Deque stands for Double ended queue. It is a linear list in which insertions and deletion
	are made from either end of the queue structure
16	Define Circular Queue.(Nov/Dec 2017)BTL1
	Another representation of a queue, which prevents an excessive use of memory by
	arranging elements/ nodes $Q_1, Q_2, \dots Q_n$ in a circular fashion. That is, it is the queue,
	which wraps around upon reaching the end of the queue
15	$\mathbf{D}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}} + \mathbf{D}_{\mathbf{r}} + \mathbf{D}_{\mathbf{r}} = 2019$ (M = 2004) $\mathbf{D}_{\mathbf{r}} = 2004$
17	Define Priority queue. (Nov/Dec 2018) (May 2006) BTL2 Priority queue is a collection of elements, each containing a key referred as the priority
	for that element can be inserted in any order (i.e., of alternating priority), but are
	arranged in order of their priority value in the queue. The elements are deleted from the
	queue in the order of their priority (i.e., the elements with the highest priority is deleted
	first). The elements with the same priority are given equal importance and processed
	accordingly.
18	Write any four applications of Queue. (Nov 2008) BTL2
	The following are the areas in which queues are applicable
	Batch processing in an operating systemMultiprogramming platform systems
	 Queuing theory
	 Printer server routines
	 Scheduling algorithms like disk scheduling , CPU scheduling
	Scheduling algorithms like disk scheduling; er e scheduling
19	State the difference between queues and linked lists. BTL2
	The difference between queues and linked lists is that insertions and deletions may
	occur anywhere in the linked list, but in queues insertions can be made only in the rear
	end and deletions can be made only in the front end.
20	State different ways of representing expressions. BTL2
	The different ways of representing expressions are
	Infix Notation
	Prefix Notation
	Postfix Notation
	PART B
1	Explain the algorithm for Push and Pop operations on Stack using Linked list.
	(13M)(April/May 2019) BTL2 Answer Pg no:224-225 Reema Theraja
	Implement a stack using singly linked list:
	A stack can be easily implemented through the linked list. In stack Implementation, a
	stack contains a top pointer. which is "head" of the stack where pushing and popping
	items happens at the head of the list. first node have null in link field and second node link have first node address in link field and so on and last node address in "top" pointer.
	Stack Operations:
	1. Push() : Insert the element into linked list nothing but which is the top node of
	U 1

```
2. Pop(): Return top element from the Stack and move the top pointer to the second
     node of linked list or Stack.
#include <stdio.h>
#include <stdlib.h>
// Declare linked list node
struct Node {
  int data;
  struct Node* link;
};
struct Node* top;
// Utility function to add an element data in the stack
// insert at the beginning
void push(int data)
{
  // create new node temp and allocate memory
  struct Node* temp;
  temp = (struct Node*)malloc(sizeof(struct Node));
  // check if stack (heap) is full. Then inserting an element would
  // lead to stack overflow
  if (!temp) {
     printf("\nHeap Overflow");
     exit(1);
  }
  // initialize data into temp data field
  temp->data = data;
  // put top pointer reference into temp link
  temp->link = top;
  // make temp as top of Stack
  top = temp;
}
// Utility function to check if the stack is empty or not
int isEmpty()
{
  return top == NULL;
}
// Utility function to return top element in a stack
int peek()
{
  // check for empty stack
```

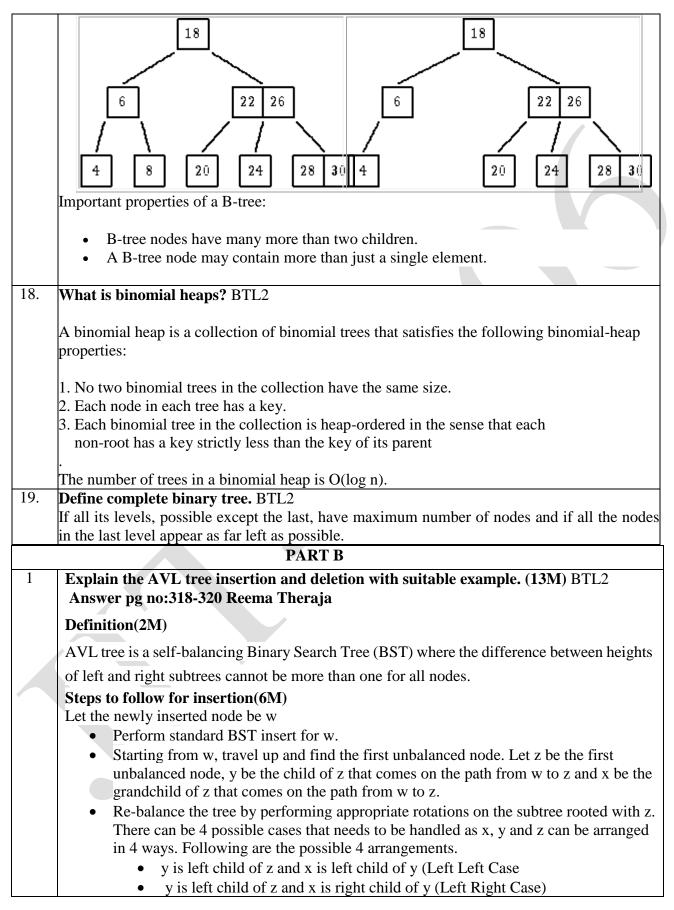
```
if (!isEmpty(top))
     return top->data;
  else
     exit(EXIT_FAILURE);
}
// Utility function to pop top element from the stack
void pop()
{
  struct Node* temp;
  // check for stack underflow
  if (top == NULL) {
    printf("\nStack Underflow");
    exit(1);
  }
  else {
    // top assign into temp
    temp = top;
    // assign second node to top
    top = top->link;
    // destroy connection between first and second
    temp->link = NULL;
    // release memory of top node
    free(temp);
  }
}
void display() // remove at the beginning
  struct Node* temp;
  // check for stack underflow
  if (top == NULL) {
    printf("\nStack Underflow");
     exit(1);
  }
  else {
     temp = top;
     while (temp != NULL) {
       // print node data
       printf("%d->", temp->data);
```

```
// assign temp link to temp
             temp = temp->link;
           }
        }
      }
      // main function
      int main(void)
      {
        // push the elements of stack
        push(11);
        push(22);
        push(33);
        push(44);
        // display stack elements
        display();
        // print top elementof stack
        printf("\nTop element is %d\n", peek());
        // delete top elements of stack
        pop();
        pop();
        // display stack element
      display();
        // print top elementof stack
        printf("\nTop element is %d\n", peek());
        return 0;
      Explain linear linked implementation of Stack and Queue(13M) BTL2
2
      Answer Pg no:224-230 Reema Theraja
      Explanation(6M)
      In a Queue data structure, we maintain two pointers, front and rear. The front points the
      first item of queue and rear points to last item.
      enQueue() This operation adds a new node after rear and moves rear to the next node.
      deQueue() This operation removes the front node and moves front to the next node.
      Algorithm(7M)
      void enQueue(Queue *q, int k)
      {
        // Create a new LL node
        QNode *temp = newNode(k);
        // If queue is empty, then
        // new node is front and rear both
```

	if (q->rear == NULL)
	q->front = q ->rear = temp;
	return;
	}
	// Add the new node at
	// the end of queue and change rear
	q->rear->next = temp;
	q->rear = temp;
	// Function to remove
	// a key from given queue q
	QNode *deQueue(Queue *q)
	{
	// If queue is empty, return NULL.
	if (q->front == NULL)
	return NULL;
	// Store previous front and
	// move front one node ahead
	QNode *temp = q->front;
	q->front = q ->front->next;
	// If front becomes NULL, then
	// change rear also as NULL
	if (q->front == NULL)
	q->rear = NULL;
	return temp;
	}
3	Explain the algorithm for converting infix expression to postfix expression in
	detail.(13M) (Nov/Dec 2018)(April/May 2019) BTL2
	Answer Pg no:232-237 Reema Theraja
	Explanation(5M)
	Infix expression: The expression of the form a op b. When an operator is in-between
	every pair of operands.
	Postfix expression: The expression of the form a b op. When an operator is followed
	for every pair of operands.
	Algorithm(8M)
	Step1: Scan the infix expression from left to right.
	Step 2: If the scanned character is an operand, output it.
	Step 3: Else,
	Step 3.1: If the precedence of the scanned operator is greater than the precedence of
	the operator in the stack (or the stack is empty or the stack contains a '('), push it.
	Step 3.2: Else, Pop all the operators from the stack which are greater than or equal to
	in precedence than that of the scanned operator. After doing that Push the scanned
	AAR/CSE/Ms.S.SUDHA MERCY/IIYr/SEM 03 /CS8391/DATA STRUCTURES/UNIT 1-5/QB+Keys/Ver1.0

	operator to the stack. (If you encounter parenthesis while popping then stop there and push the scanned operator in the stack.)
	Step 4: If the scanned character is an '(', push it to the stack.
	Step 5: If the scanned character is an ')', pop the stack and and output it until a '(' is
	encountered, and discard both the parenthesis.
	Step 6: Repeat steps 2-6 until infix expression is scanned.
	Step 7: Print the output
	Step 8: Pop and output from the stack until it is not empty.
4	Explain in detail about priority queue ADT. (13M) BTL2
	Answer Pg no:257-259 Reema Theraja
	Explanation(5M)
	 Priority Queue is an extension of queue with following properties. Every item has a priority associated with it.
	 An element with high priority is dequeued before an element with low
	priority.
	• If two elements have the same priority, they are served according to their
	order in the queue.
	Operations(8M)
	A typical priority queue supports following operations.
	insert(item, priority): Inserts an item with given priority.
	getHighestPriority(): Returns the highest priority item.
	deleteHighestPriority(): Removes the highest priority item.
	How to implement priority queue? Using Array: A simple implementation is to use array of following structure. struct item {
	int item;
	int priority;
	1 A A A A A A A A A A A A A A A A A A A
	insert() operation can be implemented by adding an item at end of array in O(1) time.
	getHighestPriority() operation can be implemented by linearly searching the highest priority item in array. This operation takes O(n) time.
	deleteHighestPriority() operation can be implemented by first linearly searching an item, then removing the item by moving all subsequent items one position back.
5.	What is a DeQueue? Explain its operation. (13M) BTL2
	Answer pg no:264-268 Reema Theraja Definition(2M)
	Deque or Double Ended Queue is a generalized version of Queue data structure that
	allows insert and delete at both ends.

r	
	Operations on Deque(11M)
	Mainly the following four basic operations are performed on queue:
	insetFront(): Adds an item at the front of Deque.
	insertRear(): Adds an item at the rear of Deque.
	deleteFront(): Deletes an item from front of Deque.
	deleteRear(): Deletes an item from rear of Deque.
	In addition to above operations, following operations are also supported
	getFront(): Gets the front item from queue.
	getRear(): Gets the last item from queue.
	isEmpty (): Checks whether Deque is empty or not.
	isFull (): Checks whether Deque is full or not.
	PART C
	Explain the array implementation of queue ADT in detail.(13M) BTL2
1	Answer pg no:252-256 Reema Theraja
	To implement a queue using array, create an array arr of size <i>n</i> and take two
	variables front and rear both of which will be initialized to 0 which means the queue is
	currently empty. Element rear is the index upto which the elements are stored in the
	array and front is the index of the first element of the array. Now, some of the
	implementation of queue operations are as follows:
	• Enqueue: Addition of an element to the queue. Adding an element will be
	performed after checking whether the queue is full or not. If rear < n which
	indicates that the array is not full then store the element at arr[rear] and
	increment rear by I but if rear == n then it is said to be an Overflow condition
	as the array is full.
	• Dequeue: Removal of an element from the queue. An element can only be
	deleted when there is at least an element to delete i.e. rear > 0 . Now, element
	at arr[front] can be deleted but all the remaining elements have to shifted to the
	left by one position in order for the dequeue operation to delete the second
	element from the left on another dequeue operation.
	• Front: Get the front element from the queue i.e. arr[front] if queue is not
	empty.
	• Display: Print all element of the queue. If the queue is non-empty, traverse and
	print all the elements from index front to rear.
	Explain the addition and deletion operations performed on a circular queue
2	in detail.(13M)(Nov/Dec 2018) (April/May 2019) BTL2
	Answer pg no:260-265 Reema Theraja
	Defintion(2M)
	Circular Queue is a linear data structure in which the operations are performed based
	on FIFO (First In First Out) principle and the last position is connected back to the first
	position to make a circle. It is also called 'Ring Buffer'.
	Operations on Circular Queue(11M)
	• Front: Get the front item from queue.
	• Rear: Get the last item from queue.
T-IFPPIA	AR/CSE/Ms.S.SUDHA MERCY/IIYr/SEM 03 /CS8391/DATA STRUCTURES/UNIT 1-5/QB+Keys/Ver1.0

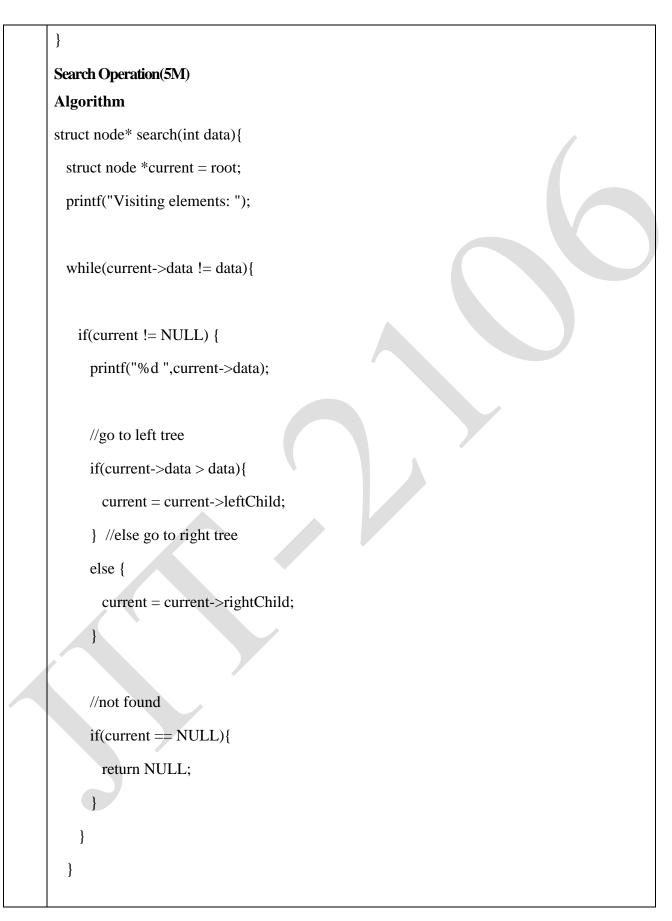

• enQueue (value) This function is used to insert an element into the circular queue.
In a circular queue, the new element is always inserted at Rear position. Steps:
1. Check whether queue is Full – Check ((rear == SIZE-1 && front == 0) \parallel
(rear == front-1)).
 2. If it is full then display Queue is full. If queue is not full then, check if (rear == SIZE - 1 && front != 0) if it is true then set rear=0 and insert element.
• deQueue () This function is used to delete an element from the circular queue. In a circular queue, the element is always deleted from front position.
Steps:
1. Check whether queue is Empty means check (front==-1).
2. If it is empty then display Queue is empty. If queue is not empty then step 3
3. Check if (front==rear) if it is true then set front=rear= -1 else check if (front==rize 1) if it is true then set front=0 and return the element
(front==size-1), if it is true then set front=0 and return the element.

UNIT III NON LINEAR DATA STRUCTURES – TREES

Tree ADT – tree traversals - Binary Tree ADT – expression trees – applications of trees – binary search tree ADT –Threaded Binary Trees- AVL Trees – B-Tree - B+ Tree - Heap – Applications of heap.

	PART A
1	Define tree. BTL1
	Trees are non-liner data structure, which is used to store data items in a shorted sequence. It
	represents any hierarchical relationship between any data Item. It is a collection of nodes,
	which has a distinguish node called the root and zero or more non-empty sub trees T1,
	T2,Tk. each of which are connected by a directed edge from the root.
2	Define Height of tree(May/June 2014). BTL1
	The height of n is the length of the longest path from root to a leaf. Thus all leaves have height
	zero. The height of a tree is equal to a height of a root.
3	What are the drawbacks of dynamic programming? BTL1
	• Time and space requirements are high, since storage is needed for all level.
	Optimality should be checked at all levels.
4	Define Depth of tree. (April/May 2018) BTL1
	For any node n, the depth of n is the length of the unique path from the root to node n. Thus
~	for a root the depth is always zero.
5	What is the length of the path in a tree? BTL1
	The length of the path is the number of edges on the path. In a tree there is exactly one path
(form the root to each node.
6	Define sibling (May/June 2012). BTL2
 Nodes with the same parent are called siblings. 7 Define binary tree BTL1 	
/	Define binary tree BTL1
	A Binary tree is a finite set of data items which is either empty or consists of a single item
8	called root and two disjoin binary trees called left sub tree max degree of any node is two. What are the two methods of binary tree implementation? BTL1
0	Binary tree is used in data processing.
	a. File index schemes
	b. Hierarchical database management system
9	List out few of the Application of tree data-structure?(April/May 2018) BTL2
	The manipulation of Arithmetic expression
	• The manipulation of Artuinette expression
	Used for Searching Operation
	• Used to implement the file system of several popular operating systems
	Symbol Table construction
	Syntax analysis
10	Define expression tree. BTL1
	Expression tree is also a binary tree in which the leafs terminal nodes or operands and non-
	terminal intermediate nodes are operators used for traversal.

Define tree traversal and mention the type of traversals BTL1
Visiting of each and every node in the tree exactly is called as tree traversal.
Three types of tree traversal
Inorder traversal
Preoder traversal
Postorder traversal.
Define in -order traversal BTL1
In-order traversal entails the following steps;
a. Traverse the left subtree
b. Visit the root node
c. Traverse the right subtree
Define threaded binary tree. (April/May 2018) BTL2
A binary tree is threaded by making all right child pointers that would normally be null point
to the inorder successor of the node, and all left child pointers that would normally be null
point to the inorder predecessor of the node.
What are the types of threaded binary tree? BTL1
Right-in threaded binary tree
Left-in threaded binary tree
• Fully-in threaded binary tree
Define Binary Search Tree. (April/May 2017) BTL1
Binary search tree is a binary tree in which for every node X in the tree, the values of all the
keys in its left subtree are smaller than the key value in X and the values of all the keys in its
right subtree are larger than the key value in X.
What is AVL Tree? (Nov/Dec 2016)BTL1
AVL stands for Adelson-Velskii and Landis. An AVL tree is a binary search tree which has
the following properties:
1. The sub-trees of every node differ in height by at most one.
2. Every sub-tree is an AVL tree.
Search time is O(logn). Addition and deletion operations also take O(logn) time.
What is 'B' Tree?. (April/May 2015)BTL1
A B-tree is a tree data structure that keeps data sorted and allows searches, insertions, and
deletions in logarithmic amortized time. Unlike self-balancing binary search trees, it is
optimized for systems that read and write large blocks of data. It is most commonly used in
database and file systems.
-


	Left-Right Rotation(4M)	
	A left-right rotation is a combination of left rotation followed by right rotation.	
	Right-Left Rotation(4M)	
	The second type of double rotation is Right-Left Rotation. It is a combination of right rotation followed by left rotation.	
3	Explain about B-Tree with suitable example(13M) (Nov/Dec 2018) BTL2 Answer pg no:325-330 Reema Theraja Definition(2M) B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of order m can have at most m-1 keys and m children. Operations(11M)	
	Insertion	
Insertions are done at the leaf node level. The following algorithm needs to be followe order to insert an item into B Tree.		
	• Traverse the B Tree in order to find the appropriate leaf node at which the node can be inserted.	
	• If the leaf node contain less than m-1 keys then insert the element in the increasing order.	
	• Else, if the leaf node contains m-1 keys, then follow the following steps.	
	• Insert the new element in the increasing order of elements.	
	• Split the node into the two nodes at the median.	
	• Push the median element upto its parent node.	
	• If the parent node also contain m-1 number of keys, then split it too by following the same steps.	
	Deletion	
	Deletion is also performed at the leaf nodes. The node which is to be deleted can either be leaf node or an internal node. Following algorithm needs to be followed in order to delet node from a B tree.	
	• Locate the leaf node.	
	• If there are more than m/2 keys in the leaf node then delete the desired key from the node.	
	• If the leaf node doesn't contain m/2 keys then complete the keys by taking the element from eight or left sibling.	

	If the left sibling contains more than m/2 elements then push its largest element up to its parent and move the intervening element down to the node where the key is deleted. If the right sibling contains more than m/2 elements then push its smallest element up to the parent and move intervening element down to the node where the key is deleted.
• If neith	element up to the parent and move intervening element down to the node where the key is deleted.
	her of the sibling contain more than $m/2$ elements then create a new leaf node
by join	ing two leaf nodes and the intervening element of the parent node.
• If pare too.	nt is left with less than m/2 nodes then, apply the above process on the parent
4 Explain the following in detail: 1.Binomial heaps(6M) 2. Fibonacci heaps(7M) BTL1	
1.Binomial H	ean(2M)
A Binomia by taking t	al Tree of order 0 has 1 node. A Binomial Tree of order k can be constructed two binomial trees of order k-1 and making one as leftmost child or other. al Tree of order k has following properties.
	exactly 2^k nodes.
	depth as k.
	are exactly ${}^{k}C_{i}$ nodes at depth i for $i = 0, 1,, k$.
• The ro	ot has degree k and children of root are themselves Binomial Trees with order 2, 0 from left to right.
	f Binomial Heap(4M)
The main operation in Binomial Heap is union(), all other operations mainly u operation. The union() operation is to combine two Binomial Heaps into one. discuss other operations, we will discuss union later.	
	H, k): Inserts a key 'k' to Binomial Heap 'H'. This operation first creates a ial Heap with single key 'k', then calls union on H and the new Binomial
getMin Trees a can be extract minim	n(H): A simple way to getMin() is to traverse the list of root of Binomial and return the minimum key. This implementation requires O(Logn) time. It optimized to O(1) by maintaining a pointer to minimum key root. Min(H): This operation also uses union(). We first call getMin() to find the um key Binomial Tree, then we remove the node and create a new Binomial
union(O(Log	by connecting all subtrees of the removed minimum node. Finally, we call) on H and the newly created Binomial Heap. This operation requires n) time.
	H): Like Binary Heap, delete operation first reduces the key to minus infinite, alls extractMin().
decrea decrea the par	seKey(H): decreaseKey() is also similar to Binary Heap. We compare the ses key with it parent and if parent's key is more, we swap keys and recur for rent. We stop when we either reach a node whose parent has a smaller key or the root node. Time complexity of decreaseKey() is O(Logn).

	 2.Fibonacci heaps(2M) Fibonacci Heap is a collection of trees with min-heap or max-heap property. In Fibonacci Heap, trees can can have any shape even all trees can be single nodes Insertion(3M) Create a new node 'x'. Check whether heap H is empty or not. If H is empty then: 		
	 Make x as the only node in the root list. Set H(min) pointer to x. Else: Insert x into root list and update H(min). Union(2M) Union of two Fibonacci heaps H1 and H2 can be accomplished as follows: Unoin root lists of Fibonacci heaps H1 and H2 and make a single Fibonacci heap H. If H1(min) < H2(min) then: 		
	 H(min) = H1(min). Else: H(min) = H2(min). 		
PART C			
	Explain the tree traversal techniques with an example. (13M) BTL2		
1	Answer pg no:287-289 Reema Theraja Traversal is a process to visit all the nodes of a tree and may print their values too.		
	There are three ways which we use to traverse a tree –		
	• In-order Traversal		
	Pre-order Traversal		
	Post-order Traversal		
	In-order Traversal(4M)		
	Algorithm Until all nodes are traversed – Step 1 – Recursively traverse left subtree. Step 2 – Visit root node. Step 3 – Recursively traverse right subtree.		
	Pre-order Traversal(4M)		
	Algorithm Until all nodes are traversed – Step 1 – Visit root node. Step 2 – Recursively traverse left subtree. Step 3 – Recursively traverse right subtree.		

	Post-order Traversal(5M)
	Algorithm Until all nodes are traversed – Step 1 – Recursively traverse left subtree. Step 2 – Recursively traverse right subtree. Step 3 – Visit root node.
2	Explain insertion and search of an element into a binary search tree(13M) Answer Nov/Dec 2018 Reema Theraja BTL2 pg no:298-303 Definition(2M)
	 A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties – The left sub-tree of a node has a key less than or equal to its parent node's key. The right sub-tree of a node has a key greater than to its parent node's key.
	Insert Operation(6M)
	Algorithm
	<pre>void insert(int data) { struct node *tempNode = (struct node*) malloc(sizeof(struct node));</pre>
	struct node *current; struct node *parent;
	tempNode->data = data;
	tempNode->leftChild = NULL;
	tempNode->rightChild = NULL;
	//if tree is empty
	$if(root == NULL) $ {
	root = tempNode;
	} else {
	current = root;

```
parent = NULL;
 while(1) {
   parent = current;
   //go to left of the tree
   if(data < parent->data) {
     current = current->leftChild;
     //insert to the left
     if(current == NULL) {
      parent->leftChild = tempNode;
       return;
     }
   } //go to right of the tree
   else {
     current = current->rightChild;
     //insert to the right
     if(current == NULL) {
       parent->rightChild = tempNode;
       return;
}
```


	binary tree.(13M) BTL2
	Answer pg no:311-315 Reema Theraja Threaded Binary Tree(2M)
	The idea of threaded binary trees is to make inorder traversal faster and do it without stack and without recursion. A binary tree is made threaded by making all right child pointers that would normally be NULL point to the inorder successor of the node here are two types of threaded binary trees. Single Threaded: Where a NULL right pointers is made to point to the inorder successor (i successor exists)
	Double Threaded: Where both left and right NULL pointers are made to point to inorder predecessor and inorder successor respectively. The predecessor threads are useful for reverse inorder traversal and postorder traversal.
	The threads are also useful for fast accessing ancestors of a node.
	Algorithm to do inorder traversal in a threaded binary tree (11M) void inOrder(struct Node *root)
	<pre>{ struct Node *cur = leftmost(root); </pre>
	while (cur != NULL)
	printf("%d ", cur->data);
	// If this node is a thread node, then go to
	// inorder successor if (our > rightThread)
	if (cur->rightThread) cur = cur->right;
	else // Else go to the leftmost child in right subtree
	cur = leftmost(cur->right);
	}

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS

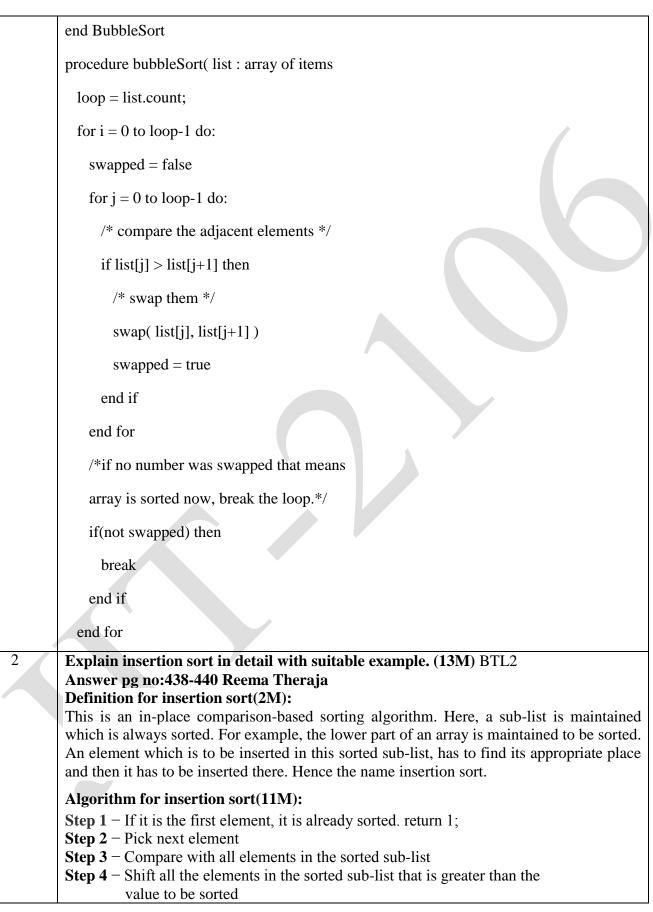
Definition – Representation of Graph – Types of graph - Breadth-first traversal - Depth-first traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler circuits – Applications of graphs.

1 Write the definition of weighted graphBTL1 A graph in which weights are assigned to every edge is called a weighted graph. 2 Define Graph BTL1 A graph G consist of a nonempty set V which is a set of nodes of the graph, a set E which is the set of edges of the graph, and a mapping from the set of edges E to set of pairs of elements of V. It can also be represented as G=(V, E). 3 Define adjacency matrix is an n x natrix A whose elements aij are given by aij = 1 if (vi, vj) Exists =0 otherwise 4 Define adjacent nodes BTL1 An ytwo nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x□E is associated with a pair of nodes (u, v) where u, v □V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL2 A graph in which every edge is directed is called a directed graph. 6 What is a loop?BTL2 A graph in which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which connects to itself, is called a loop or sling. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph. BarL1 A praph in which weights are assigned to every edge is the outdegree of the node v. 00 10 Define indegree and out degree of a graph (April/May 2018) BTL2 <t< th=""><th></th><th>PART A</th></t<>		PART A
 2 Define Graph BTL1 A graph G consist of a nonempty set V which is a set of nodes of the graph, a set E which is the set of edges of the graph, and a mapping from the set of edges E to set of pairs of elements of V. It can also be represented as G=(V, E). 3 Define adjacency matrix (April/May 2016) BTL1 The adjacency matrix is an n x n matrix A whose elements aij are given by aij = 1 if (vi, vj) Exists = 0 otherwise 4 Define adjacent nodes BTL1	1	Write the definition of weighted graphBTL1
 2 Define Graph BTL1 A graph G consist of a nonempty set V which is a set of nodes of the graph, a set E which is the set of edges of the graph, and a mapping from the set of edges E to set of pairs of elements of V. It can also be represented as G=(V, E). 3 Define adjacency matrix (April/May 2016) BTL1 The adjacency matrix is an n x n matrix A whose elements aij are given by aij = 1 if (vi, vj) Exists = 0 otherwise 4 Define adjacent nodes BTL1		A graph in which weights are assigned to every edge is called a weighted graph.
 which is the set of edges of the graph, and a mapping from the set of edges E to set of pairs of elements of V. It can also be represented as G=(V, E). 3 Define adjacency matrix (April/May 2016) BTL1 The adjacency matrix is an n x n matrix A whose elements aij are given by aij = 1 if (vi, vj) Exists =0 otherwise 4 Define adjacent nodes BTL1 Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x□E is associated with a pair of nodes (u,v) where u, v □ V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is a nudirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 A graph in which connects to itself, is called a loop or sling. 8 What is a graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 14 What is meant by strongly connected and exekly connected in a graph? BTL1 	2	Define Graph BTL1
of elements of V. It can also be represented as G=(V, E). 3 Define adjacency matrix (April/May 2016) BTL1 The adjacency matrix is an n x n matrix A whose elements aij are given by aij = 1 if (vi, vj) Exists =0 otherwise 4 Define adjacent nodes BTL1 Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x⊔E is associated with a pair of nodes (u, v) where u, v ∪ V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is a nundirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a eycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1		A graph G consist of a nonempty set V which is a set of nodes of the graph, a set E
 3 Define adjacency matrix (April/May 2016) BTL1 The adjacency matrix is an n x n matrix A whose elements aij are given by aij = 1 if (vi, vj) Exists =0 otherwise 4 Define adjacent nodes BTL1 Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x□E is associated with a pair of nodes (u,v) where u, v □ V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is an undirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 A graph in which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. 11 Mat is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. 12 What is a eycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 		
The adjacency matrix is an n x n matrix A whose elements aij are given by aij = 1 if (vi, vj) Exists =0 otherwise 4 Define adjacent nodes BTL1 Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x□E is associated with a pair of nodes (u,v) where u, v □V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is a loop?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 A graph in which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1		
aij = 1 if (vi, vj) Exists =0 otherwise 4 Define adjacent nodes BTL1 Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x□E is associated with a pair of nodes (u, v) where u, v □V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is a loop?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. 10 Define path in a graph. BTL1 A path in a diregraph. BTL1 The path in a graph. BTL1 The path in a graph. BTL1 The path in a graph. BTL1 A path which originates and ends in the same node is called a simple path. It is also called as edge simple. 12 What is a neyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1	3	
 Define adjacent nodes BTL1 Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x □E is associated with a pair of nodes (u,v) where u, v □V, then we say that the edge x connects the nodes u and v. What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. What is an undirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. Define path in a graph. BTL1 The path in a graph. BTL1 The path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. What is a simple path? BTL1 A path which originates and ends in the same node is called a cycle or circuit. What is an acyclic graph? BTL1 A path which originates and ends in the same node is called a cycle or circuit. What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 		
 Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x □ E is associated with a pair of nodes (u,v) where u, v □V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is a nundirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. 11 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 		
 For example, if an edge x □ E is associated with a pair of nodes (u,v) where u, v □V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is an undirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 A graph in which connects to itself, is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 The path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 	4	ů – Elektrik
(u,v) where u, v □V, then we say that the edge x connects the nodes u and v. 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is an undirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 14 What is meant by strongly connected and weakly connected in a graph? BTL1		
 5 What is a directed graph?BTL1 A graph in which every edge is directed is called a directed graph. 6 What is an undirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 		
A graph in which every edge is directed is called a directed graph. 6 What is an undirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1	~	
 6 What is an undirected graph?BTL2 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 	5	Ŭ I
 A graph in which every edge is undirected is called an undirected graph. 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 		
 7 What is a loop?BTL2 An edge of a graph, which connects to itself, is called a loop or sling. 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 	6	
 An edge of a graph, which connects to itself, is called a loop or sling. 8 8 8 9 9 9 9 9 9 9 9 10 9 9 9 11 14 What is a simple graph. BTL1 A graph in a diagram, which does not have any cycles, is called a cycle or circuit. 14 What is meant by strongly connected and weakly connected in a graph? BTL1 	7	
 8 What is a simple graph?BTL2 A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is meant by strongly connected and weakly connected in a graph? BTL1 	/	
A graph in which weights are assigned to every edge is called a weighted graph. 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1	0	
 9 Define indegree and out degree of a graph (April/May 2018) BTL2 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. 10 Define path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1 	8	
 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. Define path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. What is meant by strongly connected and weakly connected in a graph? BTL1 		A graph in which weights are assigned to every edge is called a weighted graph.
 In a directed graph, for any node v, the number of edges, which have v as their initial node, is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. Define path in a graph. BTL1 The path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. What is meant by strongly connected and weakly connected in a graph? BTL1 	0	$\mathbf{D}_{\mathbf{r}}$
 is called the out degree of the node v. Outdegree: Number of edges having the node v as root node is the outdegree of the node v. Define path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. What is meant by strongly connected and weakly connected in a graph? BTL1 	9	
10 Define path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1		
 Define path in a graph. BTL1 The path in a graph is the route taken to reach terminal node from a starting node. What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. What is meant by strongly connected and weakly connected in a graph? BTL1 		
The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1		Outdegree. Number of edges having the node v as foot node is the outdegree of the node v.
The path in a graph is the route taken to reach terminal node from a starting node. 11 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1	10	Define noth in a granh RTI 1
 What is a simple path? BTL1 A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. What is meant by strongly connected and weakly connected in a graph? BTL1 	10	
A path in a diagram in which the edges are distinct is called a simple path. It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1	11	
It is also called as edge simple. 12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1		
12 What is a cycle or a circuit? BTL1 A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1		
A path which originates and ends in the same node is called a cycle or circuit. 13 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. 14 What is meant by strongly connected and weakly connected in a graph? BTL1	12	
 What is an acyclic graph? BTL1 A simple diagram, which does not have any cycles, is called an acyclic graph. What is meant by strongly connected and weakly connected in a graph? BTL1 		•
 A simple diagram, which does not have any cycles, is called an acyclic graph. What is meant by strongly connected and weakly connected in a graph? BTL1 	13	
14 What is meant by strongly connected and weakly connected in a graph? BTL1		
	14	What is meant by strongly connected and weakly connected in a graph? BTL1
An undirected graph is connected, if there is a path from every vertex to every other		An undirected graph is connected, if there is a path from every vertex to every other

	vertex. A directed graph with this property is called strongly connected.
	When a directed graph is not strongly connected but the underlying graph is connected,
	then the graph is said to be weakly connected.
15	Name the different ways of representing a graph. Give examples (Nov/Dec 2018)
	BTL2(Nov 10)
	a. Adjacency matrix
17	b. Adjacency list
17	What is an undirected acyclic graph? BTL1
	When every edge in an acyclic graph is undirected, it is called an undirected acyclic graph. It is also called as undirected forest.
18	What is meant by depth? BTL1
	The depth of a list is the maximum level attributed to any element with in the list
10	or with in any sub list in the list.
19	What is the use of BFS? BTL1
	BFS can be used to find the shortest distance between some starting node and the
	remaining nodes of the graph. The shortest distance is the minimum number of edges
20.	traversed in order to travel from the start node the specific node being examined.
20.	What is topological sort? (April/May 2017) BTL1
	It is an ordering of the vertices in a directed acyclic graph, such that: If there is a path from
01	u to v, then v appears after u in the ordering.
21.	Write the steps involved in BFS algorithm. BTL1
	1. Initialize the first node's dist number and place in queue
	 Repeat until all nodes have been examined Remove current node to be examined from queue
	4. Find all unlabeled nodes adjacent to current node
	5. If this is an unvisited node label it and add it to the queue
	6. Finished.
22	Define biconnected graph. BTL1
	A graph is called biconnected if there is no single node whose removal causes the
	graph to break into two or more pieces. A node whose removal causes the graph to become
	disconnected is called a cut vertex.
23.	What are the two traversal strategies used in traversing a graph?(April/May 2016)
	BTL1
	a. Breadth first search
	b. Depth first search
24	What is a Euler path? (Nov/Dec 2018) BTL1
	An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is
	a circuit that uses every edge of a graph exactly once. An Euler path starts and ends at
	different vertices. An Euler circuit starts and ends at the same vertex.
	PART B
1	Explain the various representation of graph with example in detail.(13 M) BTL3
	Answer pg no:385-390 Reema Theraja
	Definition(2M):
	Graph is a data structure that consists of following two components:
	1. A finite set of vertices also called as nodes.
	2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered

	It employs the following rules:
	 Rule 1 – Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.
	• Rule 2 – If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices from the stack, which do not have adjacent vertices.)
	• Rule 3 – Repeat Rule 1 and Rule 2 until the stack is empty.
4	What is topological sort? Write an algorithm to perform topological sort? (13M)
	(Nov/Dec 2018) (Nov 09)
	Answer Pg no:400-405 Reema Theraja
	Definition(2M): The topological sorting for a directed acyclic graph is the linear ordering of vertices. For every edge U-V of a directed graph, the vertex u will come before vertex v in the ordering.
	Algorithm for Topological Sorting(11M):
	topoSort(u, visited, stack)
	Input: The start vertex u, An array to keep track of which node is visited or not. A stack to store nodes.Output: Sorting the vertices in topological sequence in the stack.
	Begin
	mark u as visited
	for all vertices v which is adjacent with u, do
	if v is not visited, then
	topoSort(c, visited, stack)
	done
	push u into a stack
	End
	performTopologicalSorting(Graph)
	Input: The given directed acyclic graph. Output: Sequence of nodes.

	Begin
	Degin
	initially mark all nodes as unvisited
	for all nodes v of the graph, do
	if v is not visited, then
	topoSort(i, visited, stack)
	done
	pop and print all elements from the stack
	End.
	PART C
1.	Explain with an algorithm to determine the bi connected components in the given
	graph. (15M) BTL2
	Definition(2M)
	• It is connected, i.e. it is possible to reach every vertex from every other vertex, by
	a simple path.
	• Even after removing any vertex the graph remains connected.
	Algorithm for Bi connected Graph(13M):
	time = 0
	function isBiconnected(vertex, adj[][], low[], disc[], parent[], visited[], V)
	disc[vertex]=low[vertex]=time+1
	time = time + 1
	visited[vertex]=true child = 0
	for $i = 0$ to V
	if adj[vertex][i] == true
	if visited[i] == false
	child = child + 1
	parent[i] = vertex
	result = isBiconnected(i, adj, low, disc, visited, V, time) if result == false
	return false
	low[vertex] = minimum(low[vertex], low[i])
	if parent[vertex] == nil AND child > 1
	return false
	if parent[vertex] != nil AND low[i] >= disc[vertex] return false
	else if parent[vertex] != i
	low[vertex] = minimum(disc[i], low[vertex])


UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES

Searching- Linear Search - Binary Search. Sorting - Bubble sort - Selection sort - Insertion sort - Shell sort – Radix sort. Hashing- Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing.

	PART A
1	What is meant by Sorting?BTL1
	Sorting is ordering of data in an increasing or decreasing fashion according to some
	linear relationship among the data items.
2	List the different sorting algorithms. BTL2
	Bubble sort
	Selection sort
	Insertion sort
	• Shell sort
	Quick sort
	Radix sort
	• Heap sort
	• Merge sort
3	State the logic of bubble sort algorithm.(Nov/Dec 2017) BTL2
	The bubble sort repeatedly compares adjacent elements of an array. The first and second
	elements are compared and swapped if out of order. Then the second and third elements are
	compared and swapped if out of order. This sorting process continues until the last two
	elements of the array are compared and swapped if out of order.
4	What number is always sorted to the top of the list by each pass of the Bubble
	sort algorithm? BTL1
	Each pass through the list places the next largest value in its proper place. In essence, each item "bubbles" up to the location where it belongs.
5	When does the Bubble Sort Algorithm stop? BTL1
	The bubble sort stops when it examines the entire array and finds that no "swaps" are
	needed. The bubble sort keeps track of the occurring swaps by the use of a flag.
6	State the logic of selection sort algorithm. BTL2
	It finds the lowest value from the collection and moves it to the left. This is repeated until
	the complete collection is sorted.
7	How does insertion sort algorithm work?(April/May 2017) BTL2
	In every iteration an element is compared with all the elements before it. While comparing
	if it is found that the element can be inserted at a suitable position, then space is created for
	it by shifting the other elements one position up and inserts the desired element at the suitable
	position. This procedure is repeated for all the elements in the list until we get the sorted
8	elements. What operation does the insertion sort use to move numbers from the unserted section
0	What operation does the insertion sort use to move numbers from the unsorted section to the sorted section of the list? RTL 1
	to the sorted section of the list? BTL1 The Insertion Sort uses the swap operation since it is ordering numbers within a single list
	The Insertion Sort uses the swap operation since it is ordering numbers within a single list.

9	How many key comparisons and assignments an insertion sort makes in its worst case?
	BTL2
	The worst case performance in insertion sort occurs when the elements of the input array are
	in descending order. In that case, the first pass requires one comparison, the second pass
	requires two comparisons, third pass three comparisons, kth pass requires (k-1), and finally
	the last pass requires $(n-1)$ comparisons. Therefore, total numbers of comparisons are: $f(n)$
	$= 1+2+3+\dots+(n-k) + \dots + (n-2) + (n-1) = n(n-1)/2 = O(n2)$
10	Which sorting algorithm is best if the list is already sorted? Why? BTL1
	Insertion sort as there is no movement of data if the list is already sorted and complexity is
	of the order O(N).
11	Which sorting algorithm is easily adaptable to singly linked lists? Why? BTL1
	Insertion sort is easily adaptable to singly linked list. In this method there is an array link of
	pointers, one for each of the original array elements. Thus the array can be thought of as a
	linear link list pointed to by an external pointer first initialized to 0. To insert the k th element
	the linked list is traversed until the proper position for x[k] is found, or until the end of the
	list is reached. At that point x[k] can be inserted into the list by merely adjusting the pointers
	without shifting any elements in the array which reduces insertion time.
12	Why Shell Sort is known diminishing increment sort? BTL1
	The distance between comparisons decreases as the sorting algorithm runs until the last
	phase in which adjacent elements are compared. In each step, the sortedness of the sequence
	is increased, until in the last step it is completely sorted.
13	What is the key idea of radix sort? BTL1
	Sort the keys digit by digit, starting with the least significant digit to the most significant
	digit.
14	Define Searching.(April/May 2019) BTL1
	Searching for data is one of the fundamental fields of computing. Often, the difference
	between a fast program and a slow one is the use of a good algorithm for the data set.
	Naturally, the use of a hash table or binary search tree will result in more efficient searching,
	but more often than not an array or linked list will be used. It is necessary to understand good
	ways of searching data structures not designed to support efficient search.
15	What is linear search? BTL1
	In Linear Search the list is searched sequentially and the position is returned if the key
	element to be searched is available in the list, otherwise -1 is returned. The search in Linear
	Search starts at the beginning of an array and move to the end, testing for a match at each
1.5	item.
16	Define hash function? BTL1
	Hash function takes an identifier and computes the address of that identifier in the hash
17	table using some function.
17	Why do we need a Hash function as a data structure as compared to any other data
	structure? BTL2(may 10)
	Hashing is a technique used for performing insertions, deletions, and finds in constant

	average time.
18	What are the important factors to be considered in designing the hash function? (Nov
	10) BTL1
	• To avoid lot of collision the table size should be prime
	• For string data if keys are very long, the hash function will take long to compute.
19	What are the problems in hashing? BTL1
	a. Collision
20	b. Overflow
20	What do you mean by hash table? BTL1 The bash table data structure is merely on array of some fixed size, containing the
	The hash table data structure is merely an array of some fixed size, containing the keys. A key is a string with an associated value. Each key is mapped into some number in
	the range 0 to tablesize-1 and placed in the appropriate cell.
21.	What do you mean by hash function?(April/May 2019) BTL1
	A hash function is a key to address transformation which acts upon a given key to
	compute the relative position of the key in an array. The choice of hash function should be
	simple and it must distribute the data evenly. A simple hash function is hash_key=key mod table size.
22.	What do you mean by separate chaining? BTL1
	Separate chaining is a collision resolution technique to keep the list of all elements
	that hash to the same value. This is called separate chaining because each hash table element
	is a separate chain (linked list). Each linked list contains all the elements whose keys hash to the same index.
	PART B
1	Write an algorithm to implement Bubble sort with suitable example. (13M) BTL3
	Answer Pg no:434-437 Reema Theraja
	Definition for Bubble sort(2M): Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based
	algorithm in which each pair of adjacent elements is compared and the elements are
	swapped if they are not in order. This algorithm is not suitable for large data sets as its
	average and worst case complexity are of $O(n^2)$ where n is the number of items.
	Algorithm for Bubble sort(11M):
	begin BubbleSort(list)
	for all elements of list
	if list[i] > list[i+1]
	<pre>swap(list[i], list[i+1])</pre>
	end if
	end for
	return list
1	

	Step 5 – Insert the value
	Step 6 – Repeat until list is sorted
3	Explain selection sort in detail with suitable example. (13M) BTL2 Answer Pg no:441-442 Reema Theraja Definition for Selection sort(2M): Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place comparison-based algorithm in which the list is divided into two parts, the sorted part at the left end and the unsorted part at the right end. Initially, the sorted part is empty and the unsorted part is the entire list.
	Algorithm for Selection sort(11M): Step 1 – Set MIN to location 0 Step 2 – Search the minimum element in the list Step 3 – Swap with value at location MIN Step 4 – Increment MIN to point to next element Step 5 – Repeat until list is sorted
	Explain radix sort algorithm with suitable example. (13M) BTL1 Answer pg no:450-452 Reema Theraja Definition of radix sort(2M) On the first pass, all the numbers are sorted on the least significant digit and combined in an array. Then on the second pass, the entire numbers are sorted again on the second least significant digits and combined in an array and so on Algorithm: Radix-Sort (list, n) (11M) shift = 1 for loop = 1 to keysize do for entry = 1 to n do bucketnumber = (list[entry].key / shift) mod 10 append (bucket[bucketnumber], list[entry]) list = combinebuckets() shift = shift * 10
	PART C
1	 Explain binary search algorithm in detail with suitable example. (15M) (April/May 2019) BTL3` Answer Pg no:421-425 Reema Theraja Definition(2M) Binary search is a fast search algorithm with run-time complexity of O(log n). This search algorithm works on the principle of divide and conquer. For this algorithm to work properly, the data collection should be in the sorted form.
	Algorithm for Binary search(13M)
	Procedure binary_search
	$A \leftarrow sorted array$
	$n \leftarrow size of array$

	$x \leftarrow$ value to be searched
	Set lowerBound = 1
	Set upperBound = n
	while x not found
	if upperBound < lowerBound
	EXIT: x does not exists.
	set midPoint = lowerBound + (upperBound - lowerBound) / 2
	if A[midPoint] < x
	set lowerBound = midPoint + 1
	if A[midPoint] > x
	set upperBound = midPoint - 1
	if A[midPoint] = x
	EXIT: x found at location midPoint
	end while
	end procedure
-	
2	Explain Re-hashing and Extendible hashing.(15M)(April/May 2019) BTL1 Answer Pg no:473-481 Reema Theraja
	Definition of Rehashing(2M):
	As the name suggests, rehashing means hashing again . Rehashing is done because whenever key value pairs are inserted into the map, the load factor increases, which implies that the time complexity also increases as explained above. This might not give the required time complexity of $O(1)$.
	Hence, rehash must be done, increasing the size of the bucketArray so as to reduce the load factor and the time complexity.
	Steps involved in Rehashing(5M):
	Rehashing can be done as follows:
	 For each addition of a new entry to the map, check the load factor. If it's greater than its pre-defined value (or default value of 0.75 if not given), then Rehash.

• For Rehash, make a new array of double the previous size and make it the new bucketarray.
• Then traverse to each element in the old bucketArray and call the insert() for each
so as to insert it into the new larger bucket array. Definition of Extended Hashing(2M):
The problem with static hashing is that it does not expand or shrink dynamically as the size of the database grows or shrinks. Dynamic hashing provides a mechanism in which data buckets are added and removed dynamically and on-demand. Dynamic hashing is also known as extended hashing. Hash function, in dynamic hashing, is made to produce a large number of values and only a few are used initially.
Operation(8M)
• Querying – Look at the depth value of the hash index and use those bits to compute the bucket address.
• Update – Perform a query as above and update the data.
• Deletion – Perform a query to locate the desired data and delete the same.
• Insertion – Compute the address of the bucket
If the bucket is already full.
 Add more buckets.
 Add additional bits to the hash value.
 Re-compute the hash function.
Else
 Add data to the bucket,
If all the buckets are full, perform the remedies of static hashing.

10

9

9

CS8392OBJECT ORIENTED PROGRAMMINGL T P C3003

OBJECTIVES:

- To understand Object Oriented Programming concepts and basic characteristics of Java
- To know the principles of packages, inheritance and interfaces
- To define exceptions and use I/O streams
- To develop a java application with threads and generics classes
- To design and build simple Graphical User Interfaces

UNIT I INTRODUCTION TO OOP AND JAVA FUNDAMENTALS

Object Oriented Programming – Abstraction – objects and classes – Encapsulation- Inheritance – Polymorphism- OOP in Java – Characteristics of Java – The Java Environment – Java Source File -Structure – Compilation. Fundamental Programming Structures in Java – Defining classes in Java – constructors, methods -access specifiers – static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays , Packages – JavaDoc comments.

UNIT II INHERITANCE AND INTERFACES

Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the Object class – abstract classes and methods- final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces – Object cloning -inner classes, Array Lists – Strings

UNIT III EXCEPTION HANDLING AND I/O

Exceptions – exception hierarchy – throwing and catching exceptions – built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

JIT-JEPPIAAR/CSE/Mrs.M.SUGANYA/II Yr/SEM 03 /CS8392-OBJECT ORIENTED PROGRAMMING /UNIT 1-5/QB+Keys/Ver2.0

4.1

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING

Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations.

UNIT V EVENT DRIVEN PROGRAMMING

Graphics programming – Frame – Components – working with 2D shapes – Using color, fonts, and images – Basics of event handling – event handlers – adapter classes – actions – mouse events – AWT event hierarchy – Introduction to Swing – layout management – Swing Components – Text Fields, Text Areas – Buttons- Check Boxes – Radio Buttons – Lists- choices- Scrollbars – Windows –Menus – Dialog Boxes.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to:

- Develop Java programs using OOP principles
- Develop Java programs with the concepts inheritance and interfaces
- Build Java applications using exceptions and I/O streams
- Develop Java applications with threads and generics classes
- Develop interactive Java programs using swings

TEXT BOOKS:

1. Herbert Schildt, "Java The complete reference", 8th Edition, McGraw Hill Education, 2011.

2. Cay S. Horstmann, Gary cornell, "Core Java Volume –I Fundamentals", 9th Edition, Prentice Hall, 2013.

JIT-JEPPIAAR/CSE/Mrs.M.SUGANYA/II Yr/SEM 03 /CS8392-OBJECT ORIENTED PROGRAMMING /UNIT 1-5/QB+Keys/Ver2.0

8

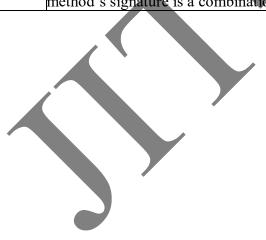
9

REFERENCES:

- 1. Paul Deitel, Harvey Deitel, "Java SE 8 for programmers", 3rd Edition, Pearson, 2015.
- 2. Steven Holzner, "Java 2 Black book", Dreamtech press, 2011.
- 3. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition,

Pearson Education, 2000.

Subject Code: CS8392 Subject Name: OBJECT ORIENTED PROGRAMMING

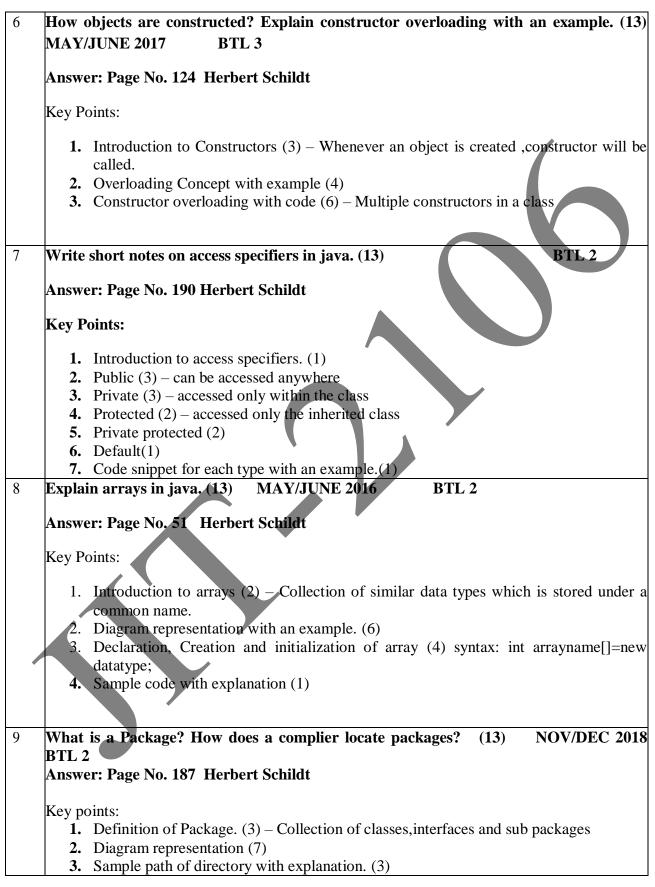

Subject Handler: M.SUGANYA

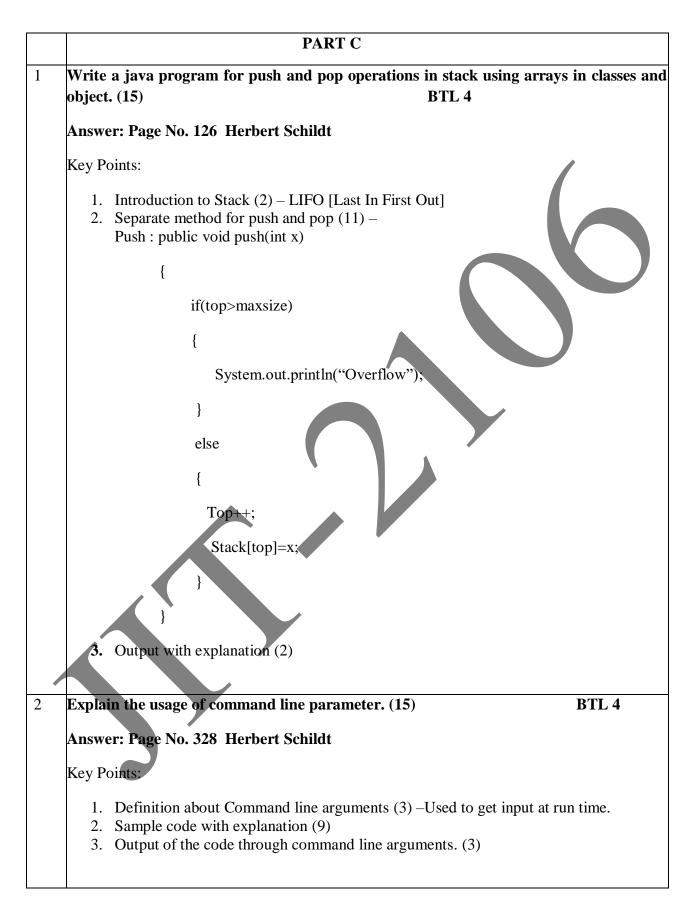
UNIT 1 - INTRODUCTION TO OOP AND JAVA FUNDAMENTALS

Object Oriented Programming - Abstraction – objects and classes - Encapsulation- Inheritance - Polymorphism- OOP in Java – Characteristics of Java – The Java Environment - Java Source File -Structure – Compilation. Fundamental Programming Structures in Java – Defining classes in Java – constructors, methods -access specifiers - static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays, Packages - JavaDoc comments.

	PART * A	
Q.NO	QUESTIONS	
1.	What is meant by Object Oriented Programming?OOP is a method of programming in which programs are organised as	BTL 1 cooperative
	collections of objects. Each object is an instance of a class and each class hierarchy.	belong to a
2.	What is a Class? Class is a template for a set of objects that share a common structure and a behaviour.	BTL 1 common
3.	What is an Object? Object is an instance of a class. It has state, behaviour and identity. It is also an instance of a class.	BTL 2 o called as
4.	What is an Instance?	BTL 1
	An instance has state, behaviour and identity. The structure and behaviour classes are defined in their common class. An instance is also called as an obj	

5.	What are the core OOP's concepts?BTL 2
	Abstraction, Encapsulation, Inheritance and Polymorphism are the core OOP's concepts.
6.	What is meant by abstraction? NOV/DEC 2018 BTL 5
	Abstraction defines the essential characteristics of an object that distinguish it from all other kinds of objects. Abstraction provides crisply-defined conceptual boundaries relative to the perspective of the viewer. It's the process of focussing on the essential characteristics of an object. Abstraction is one of the fundamental elements of the object model.
7.	What is meant by Encapsulation? APR/MAY 2019 BTL 1
	Encapsulation is the process of compartmentalising the elements of an abtraction that defines the structure and behaviour. Encapsulation helps to separate the contractual
	interface of an abstraction and implementation.
8.	What are Encapsulation, Inheritance and Polymorphism? BTL 2
	Encapsulation is the mechanism that binds together code and data it manipulates and
	keeps both safe from outside interference and misuse. Inheritance is the process by
	which one object acquires the properties of another object. Polymorphism is the feature
	that allows one interface to be used for general class actions.
9.	What are methods and how are they defined?BTL 2
	Methods are functions that operate on instances of classes in which they are defined.
	Objects can communicate with each other using methods and can call methods in other
	classes. Method definition has four parts. They are name of the method, type of object
	or primitive type the method returns, a list of parameters and the body of the method. A
	method's signature is a combination of the first three parts mentioned above.




10.	What are different types of access modifiers (Access specifiers)?BTL 2
	Access specifiers are keywords that determine the type of access to the member of a class. These keywords are for allowingprivileges to parts of a program such as functions and variables. These are:
	public: Any thing declared as public can be accessed from anywhere.
	private: Any thing declared as private can't be seen outside of its class.
	protected: Any thing declared as protected can be accessed by classes in the same package and subclasses in the other packages.
	default modifier : Can be accessed only to classes in the same package.
11.	What is an Object and how do you allocate memory to it? BTL 3
	Object is an instance of a class and it is a software unit that combines a structured set of data
	with a set of operations for inspecting and manipulating that data. When an object is created
	using new operator, memory is allocated to it.
12.	Explain the usage of Java packages. BTL 1
	This is a way to organize files when a project consists of multiple modules. It also helps
	resolve naming conflicts when different packages have classes with the same names.
	Packages access level also allows you to protect data from being used by the non-authorized
	classes.
13.	What is method overloading and method overriding? NOV/DEC 2016 BTL 4
	Method overloading: When a method in a class having the same method name with
	different arguments is said to be method overloading. Method overriding : When a method in
14.	a class having the same method name with same arguments is said to be method overriding What gives java it's "write once and run anywhere" nature? BTL 4
14.	what gives java it's write once and run anywhere nature. DIL 4
	All Java programs are compiled into class files that contain bytecodes. These byte codes
1.7	can be run in any platform and hence java is said to be platform independent.
15.	What is a constructor? What is a destructor?BTL 2Constructor is an operation that creates an object and/or initialises its state. Destructor is an
	operation that frees the state of an object and/or destroys the object itself. In Java, there is no
	concept of destructors. It's taken care by the JVM.
16.	What is the difference between constructor and method?BTL 2
	Constructor will be automatically invoked when an object is created whereas method has to be called explicitly

17.	What is Static member classes?	BTL 1
	A static member class is a static member of a class. Like any other a static member class has access to all static methods of the parent, or	
18.	What is Garbage Collection and how to call it explicitly?	BTL 1
	When an object is no longer referred to by any variable, java automatica memory used by that object. This is known as garbage collection. System. gc be used to call it explicitly.	
19.	In Java, How to make an object completely encapsulated?	BTL 2
	All the instance variables should be declared as private and public getter and should be provided for accessing the instance variables	setter methods
	What is static variable and static method?	BTL 2
	Static variable is a class variable which value remains constant for the en	
	method is the one which can be called with the class itself and can hole variables	d only the state
	What is finalize() method in Java? APR/MAY 2015	BTL 1
	finalize () method is used just before an object is destroyed and can be call garbage collection.	lled just prior to
	What is the difference between String and String Buffer?	BTL 2
22	a) String objects are constants and immutable whereas StringBuffer objects a	re not.
	b) String class supports constant strings whereas StringBuffer class suppor modifiable strings.	ts growable and
	What is a package?	BTL 1
23	A package is a collection of classes and interfaces that provides a high	gh-level layer of
	access protection and name space management.	, i i i i i i i i i i i i i i i i i i i
	What is the difference between this() and super()?	BTL 2
24	this() can be used to invoke a constructor of the same class whereas sup	per() can be used
	to invoke a super class constructor.	

	Explain working of Java Virtual Machine (JVM)? BTL 2	
25	JVM is an abstract computing machine like any other real computing machine which fin converts .java file into .class file by using Compiler (.class is nothing but byte code file.) an Interpreter reads byte codes.	
	PART * B	
1	How Strings are handled in java? Explain with code, the creation of	
	Substring, Concatenation and testing for equality. (13) NOV/DEC 2018 BTL 3	
	Answer: Page No. 389 Herbert Schildt	
	Key Points:	
	 Introduction to Strings (3) – Strings is the collection of characters. Various Operations on Strings [Strcat,Strepy,strlen,strrev](6) Sample code explaining substring, concatenation and equality. (2) Output with explanation (2) 	
2	Explain with an example the following features of Constructors: (13)	
	(i). Overloaded Constructors	
	(ii). A Call to another constructor with this operator	
	(iii). An object initialization block	
	(iv). A static initialization block BTL 2	
	Answer: Page No. 124 Herbert Schildt Key Points:	
	 1. Introduction to constructor with sample code (3) [Whenever an object is created will be automatically called] Sample code : 	,it
	Class student	
	{	
	Student()	
	{	

	}
	};
	 Concept of overloading, constructor overloading with code (8) – [Multiple constructors inside the class is called overloading] Explanation of Object Initialization block (1) Explanation about static Initialization block (1)
3	Write a java program to sort ten names in descending order. (13) BTL 5
	Answer: Page No. 153 Herbert Schildt
	Key Points:
	1. Coding (include necessary comments) (11)
	2. Output explanation (2)
4	 Explain string handling classes in Java with examples. (13) APR/MAY 2016 BTL 3 Answer: Page No. 389 Herbert Schildt Key Points: String Concatenation (3) [strCat()] Character Extraction (3) [charAt()] String Comparison(3) [strCmp()] Modifying a string(3) valueOf() (1)
5	 Explain briefly the object oriented concepts. (13) Answer: Page No. 18 Herbert Schildt Key Points: Abstraction (3) –gathering essential details and removing background details Encapsulation (3) – binding of data members and member functions Inheritance (3) – Deriving a sub class from super class Polymorphism (3) – Ability to take more than one form Dynamic Binding and Message Passing.(1)

3 Describe the static fields and methods used in java. (15) APR/MAY 2015 BTL 5 Answer: Page No. 366 Herbert Schildt Key Points: Definition of static data member (6) – Static is declared as datamember Definition of static member function(5) – Static is declared as memberfunction. 3. Sample code with static field and method (4)

UNIT 2 – INHERITANCE AND INTERFACES

Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the Object class – abstract classes and methods- final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces - Object cloning -inner classes, Array Lists – Strings

1 What is meant by Inheritance?

PART A

BTL 1

Inheritance is a relationship among classes, wherein one class shares the structure or behaviour defined in another class. This is called Single Inheritance. If a class shares the structure or behaviour from multiple classes, then it is called Multiple Inheritance. Inheritance defines "is-a" hierarchy among classes in which one subclass inherits from one or more generalised superclasses.

2 What is meant by Inheritance and what are its advantages?

BTL 1

Inheritance is the process of inheriting all the features from a class. The advantages of inheritance are reusability of code and accessibility of variables and methods of the super class by subclasses.

3 What is the difference between superclass and subclass? APR/MAY2018 BTL 4

A super class is a class that is inherited whereas sub class is a class that does the inheriting.

JIT-JEPPIAAR/CSE/Mrs.M.SUGANYA/II Yr/SEM 03 /CS8392-OBJECT ORIENTED PROGRAMMING /UNIT 1-5/QB+Keys/Ver2.0

4	Differentiate	between	a	Class	and	an	Object?	NOV/DEC	2017
	BTL 4								
	The Objec	t class is the	highe	est-level c	lass in t	he Java	a class hierar	chy. The Class	class is
	used to represent	nt the classe	s and	interface	es that a	are load	led by a Jav	a program. The	e Class
	class is used to								
	prototype of rea	-			-			-	
	life object. Eve	ry object be	longs	to a clas	ss and	every c	lass contain	s one or more	related
	objects.								
5.	What is meant	by Binding	?					BTL 1	
				_					
	Binding de	notes associa	ation	of a name	with a	class			
6.	What is meant	by Polymor	phisr	n?				BTL 1	
			_						
	• •	•			0			Polymorphism	
	characteristic of				erent bel	navior (or value in a	subclass, to som	nething
	that was declare	d in a parent	class						
7	What is Dynan	nic Binding?	AP	R/MAY 2	.017			BTL 1	
	Dinding	fana ta tha li			a dura a	all 4 a 41	ha anda ta h	a arrage to d in an	
	-		-					e executed in re	-
	to the call. Dyr with a given pro								
	with a given pic						the call at Tu	in-time. It is asso	ociateu
	What is final m	nodifier?						BTL 1	
8	The final	modifier ke	vwor	d makes	that th	e prog	rammer can	not change the	value
0	anymore. The a							-	
	method.								
		asses- A fina							
		riables- A fire thods- A fin				-			
9	What is an Abs					verriduk	en by suberd	BTL 1	
			-						
								ss is written w	
	expectation that				II add to	o its str	ucture and t	behaviour, typica	ally by
	implementing it	s abstract op	eratio	ns.					
10	What are inner	class and a	nony	mous clas	ss?			BTL 2	
	Inner class	: classes de	fined	in other	classes	includ	ling those d	efined in metho	ods are
	called inner class						-		

is instantiated
is instantiated
BTL 2
straction while
BTL 1
ions have such
BTL 2
, methods and
ss that inherits
BTL 1
is made during
opistion is not
ociation is not ng.
BTL 1
at runtime and
I with built-in
lection API we
DV/DEC 2019
th instances of

18	What is the difference between abstract class and interface?	BTL 2
	a) All the methods declared inside an interface are abstract whereas abst have at least one abstract method and others may be concrete or abstract.	ract class must
	b) In abstract class, key word abstract must be used for the methods when we need not use that keyword for the methods.	ereas interface
	c) Abstract class must have subclasses whereas interface can't have subclasses	lasses.
19	Can you have an inner class inside a method and what variables can you	access? BTL 4
	Yes, we can have an inner class inside a method and final variables can be	e accessed.
20	What is interface and its use?	BTL 2
	Interface is similar to a class which may contain method's signature only	
	and it is a formal set of method and constant declarations that must be define that implements it. Interfaces are useful form	ed by the class
	that implements it. Interfaces are useful for:	
	a) Declaring methods that one or more classes are expected to implement.	
	b) Capturing similarities between unrelated classes without forcing a class rela	tion.
	c) Determining an object's programming interface without revealing the actuclass.	al body of the
01		
21	How is polymorphism achieved in java?	BTL 2
	Inheritance, Overloading and Overriding are used to achieve Polymorph	nism in java.
22	What modifiers may be used with top-level class?	BTL 2
	public, abstract and final can be used for top-level class.	
23	What is a cloneable interface and how many methods does it contain?	BTL 1
	It is not having any method because it is a TAGGED or MARKER interf	ace.
24	What are the methods provided by the object class?	BTL 1
	The Object class provides five methods that are critical when writing Java programs:	multithreaded
	• notify	

	• notifyAll	
	• wait (three versions)	
25	What is object cloning? NOV/DEC 2017	BTL 1
	It is the process of duplicating an object so that	two identical objects will exist in the
	memory at the same time.	two identical objects will exist in the
1	PART B Explain about inheritance in java. (13) NOV/DEC	C 2017 BTL 2
1	Key Points:	
	1. Introduction about inheritance (2) – Process	of deriving a sub class from super
	class.	or deriving a sub class noir seper
	2. Diagram(5)	
	3. Usage of 'extends" keyword (2) – Inheriting su	per class.
	4. Superclass and subclass code (2) –	
	Syntax of super class :	
	Class Superclassname {	
	Syntax of Sub class :	
	Class Subclassname extends Superclassnam	ie { }
	5. Sample code with output (2)	
	Answer: Page No. 161 in Herbert Schildt	
2	State the properties of inheritance. (13)	BTL 3
	Key Points:	de sie in a solo al se for as anno a la se
	 Introduction about inheritance (5) –Process of Diagram (4) 	deriving a sub class from super class
	 Diagram (4) Usage of 'extends" keyword (1) – Inheriting su 	upor alass
	 4. Advantages of inheritance (1) - Reusability 	iper class
	 Advantages of interitance (1) -Reusability Rules to be followed in inheritance (2) 	
	Answer: Page No, 145 in Herbert Schildt	
3	What is dynamic binding? How it is achieved?	? (13) APR/MAY 2018
	BTL 1	
	Key Points:1. Definition of Dynamic Binding (2) – Binding h	happens at run time.
	2. Difference between early and late binding (6) -	-In early binding ,binding happens at
	compile time whereas in late binding, happ achieved through overloading and late binding	
	3. Sample code with output.(5)	uene veu un ough overrunig.
	Answer: Page No. 198 in Herbert Schildt	

4	Explain interfaces with example. (13) BTL 3	
	Key Points:	
	1. Definition of interfaces (2) – Collection of final variables and abstract methods	
	 Usage of keyword "implements" (2) 	
	3. Diagrammatic explanation (4)	
	4. Sample code illustrates the inheritance concept. (5)	
5	Answer: Page No. 196 in Herbert SchildtExplain briefly about multilevel inheritance with neat example.BTL 4	
5	Explain briefly about multilevel inheritance with neat example.BTL 4Key Points:Image: Comparison of the second	
		ъ
	1. Introduction to multilevel inheritance (3)- deriving a sub class from another su	
	class.	
	2. Explanation with diagram (flowchart) (6)	
	3. Sample code for multilevel inheritance. (4)	
	Answer: Page No. 171 in Herbert Schildt	
6	Explain how inner classes and anonymous classes work in java program. (13)	
	BTL 4	
	Key Points:	
	1. Introduction to Inner classes (2)	
	2. Sample code snippet (7)	
	3. Anonymous class – Description (2)	
	4. Sample code with output. (2)	
	Answer: Page No. 731 in Herbert Schildt	
	PART C	
	Write a note on class hierarchy. How do you create hierarchical classes in Java? (1	5)
	BTL 4	
1	Key Points:	
	1. Introduction about inheritance (3) – Process of deriving a class from super class	
	2. Diagram (5)	
	3. Usage of 'extends" keyword (2) –Inheriting the super class.	
-	4. Superclass and subclass code (3)	
	5. Sample code with output (2)	
	Answer: Page No. 161 in Herbert Schildt	
	What is a Package? What are the benefits of using packages? Write down the steps	
2	creating a package and using it in a java program with an example. (15) NOV/DE	C
	2016 BTL 5	
	Key points:	
	1. Definition of Package. (3)	
	 Diagram representation (4) Sample path of directory with explanation (4) 	
	 4. Advantageous of Packages (4) 	

	Answer: Page No. 187 in Herbert Schildt
	Differentiate method overloading and method overriding. Explain both with an
3	example program. (15) MAY/JUNE 2017 BTL 1
	Key Points:
	1. Concept of Overloading (3) – Function which has the same name but differs with
	different arguments or different types
	2. Concept of Overriding (3) – Function which has the same name with same no of
	arguments.
	3. Difference between Overloading and overriding (3)
	4. Explanation with an example. (6)
	Answer: Page No. 158, 286 in Herbert Schildt
	UNIT -3: EXCEPTION HANDLING AND I/O
Exce	ptions - exception hierarchy - throwing and catching exceptions – built-in exceptions, creating
	exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and
	acter streams – Reading and Writing Console – Reading and Writing Files
	PART A
1	What is an exception?NOV/DEC 2019BTL 2
	An exception is an event, which occurs during the execution of a program, that disrupt
	the normal flow of the program's instructions.
2	What is error? BTL 1
2	
	What is error: BIL 1
	An Error indicates that a non-recoverable condition has occurred that should not be
	An Error indicates that a non-recoverable condition has occurred that should not be caught. Error, a subclass of Throwable, is intended for drastic problems, such a
	An Error indicates that a non-recoverable condition has occurred that should not be
3	An Error indicates that a non-recoverable condition has occurred that should not be caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself.
3	An Error indicates that a non-recoverable condition has occurred that should not be caught. Error, a subclass of Throwable, is intended for drastic problems, such a
3	An Error indicates that a non-recoverable condition has occurred that should not b caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself.
	An Error indicates that a non-recoverable condition has occurred that should not b caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes.
3	An Error indicates that a non-recoverable condition has occurred that should not b caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes.
	An Error indicates that a non-recoverable condition has occurred that should not be caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes.
	An Error indicates that a non-recoverable condition has occurred that should not be caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes. What are the advantages of using exception handling? APR/MAY 2018 BTL 2
	An Error indicates that a non-recoverable condition has occurred that should not b caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes. What are the advantages of using exception handling? APR/MAY 2018 BTL 2 Exception handling provides the following advantages over "traditional" error
	An Error indicates that a non-recoverable condition has occurred that should not b caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes. What are the advantages of using exception handling? APR/MAY 201 BTL 2
	An Error indicates that a non-recoverable condition has occurred that should not b caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes. What are the advantages of using exception handling? APR/MAY 201 BTL 2 Exception handling provides the following advantages over "traditional" error management techniques:
	An Error indicates that a non-recoverable condition has occurred that should not b caught. Error, a subclass of Throwable, is intended for drastic problems, such a OutOfMemoryError, which would be reported by the JVM itself. Which is superclass of Exception? BTL 1 "Throwable", the parent class of all exception related classes. What are the advantages of using exception handling? APR/MAY 2018 BTL 2 Exception handling provides the following advantages over "traditional" error

Grouping Error Types and Error Differentiation.

5	What are the types of Exceptions in Java? NOV/DEC 2019	BTL 1
	There are two types of exceptions in Java, unchecked exceptions exceptions.	and checked
	Checked exceptions : A checked exception is some subclass of Exception itself), excluding class RuntimeException and its subclasses. Each method mus all checked exceptions by supplying a catch clause or list each unhandled checked as a thrown exception.	t either handle
	Unchecked exceptions : All Exceptions that extend the RuntimeExcept unchecked exceptions. Class Error and its subclasses also are unchecked.	ion class are
6	Why Errors are Not Checked?	BTL 4
	A unchecked exception classes which are the error classes (Error and its see exempted from compile-time checking because they can occur at many points is and recovery from them is difficult or impossible. A program declaring su would be pointlessly.	in the program
7	How does a try statement determine which catch clause should be used	to handle an
	exception? BT	'L 1
	exception? BT When an exception is thrown within the body of a try statement, the catch	
	When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch	clauses of the clause that is
	When an exception is thrown within the body of a try statement, the catch	clauses of the clause that is
8	When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no mat	clauses of the clause that is ignored. BTL 2
8	When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement?	clauses of the clause that is ignored. BTL 2 ter whether or
	 When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no mat not an exception is thrown or caught. What is the difference between checked and Unchecked Exceptions in Java All predefined exceptions in Java are either a checked exception or 	clauses of the clause that is ignored. BTL 2 ter whether or PTL 4 an unchecked
	When an exception is thrown within the body of a try statement, the catcher try statement are examined in the order in which they appear. The first catcher capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no mate not an exception is thrown or caught. What is the difference between checked and Unchecked Exceptions in Java	clauses of the clause that is ignored. BTL 2 ter whether or BTL 4 an unchecked e should throw
	 When an exception is thrown within the body of a try statement, the catcher try statement are examined in the order in which they appear. The first catcher capable of handling the exception is executed. The remaining catch clauses are a which they appear the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no material exception is thrown or caught. What is the difference between checked and Unchecked Exceptions in Java All predefined exceptions in Java are either a checked exception or exception. Checked exceptions must be caught using try catch () block or we are exception. 	clauses of the clause that is ignored. BTL 2 ter whether or BTL 4 an unchecked e should throw
9	 When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no mat not an exception is thrown or caught. What is the difference between checked and Unchecked Exceptions in Java All predefined exceptions in Java are either a checked exception or exception. Checked exceptions must be caught using try catch () block or we the exception using throws clause. If you don't, compilation of program will failed. 	clauses of the clause that is ignored. BTL 2 tter whether or PRE BTL 4 an unchecked e should throw 1. BTL 2
9	 When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no mat not an exception is thrown or caught. What is the difference between checked and Unchecked Exceptions in Java All predefined exceptions in Java are either a checked exception or exception. Checked exceptions must be caught using try catch () block or we the exception using throws clause. If you don't, compilation of program will fail What is the difference between exception and error? 	clauses of the clause that is ignored. BTL 2 ter whether or BTL 4 an unchecked e should throw 1. BTL 2 m encounters.
9	 When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no mat not an exception is thrown or caught. What is the difference between checked and Unchecked Exceptions in Java All predefined exceptions in Java are either a checked exception or exception. Checked exceptions must be caught using try catch () block or we the exception using throws clause. If you don't, compilation of program will fail What is the difference between exception and error? The exception class defines mild error conditions that your program Exceptions can occur when trying to open the file, which does not exist connection is disrupted, operands being manipulated are out of prescribed randem context of the exception of the exception and error? 	clauses of the clause that is ignored. BTL 2 ter whether or BTL 4 an unchecked e should throw l. BTL 2 m encounters. , the network nges, the class
9	 When an exception is thrown within the body of a try statement, the catch try statement are examined in the order in which they appear. The first catch capable of handling the exception is executed. The remaining catch clauses are What is the purpose of the finally clause of a try-catch-finally statement? The finally clause is used to provide the capability to execute code no mat not an exception is thrown or caught. What is the difference between checked and Unchecked Exceptions in Java All predefined exceptions in Java are either a checked exception or exception. Checked exceptions must be caught using try catch () block or we the exception using throws clause. If you don't, compilation of program will fail What is the difference between exception and error? The exception class defines mild error conditions that your program Exceptions can occur when trying to open the file, which does not exist 	clauses of the clause that is ignored. BTL 2 ter whether or a? BTL 4 an unchecked e should throw 1. BTL 2 m encounters. , the network nges, the class ror conditions

	terminate when such an error is encountered.
11	What is the catch or declare rule for method declarations? BTL 2
	If a checked exception may be thrown within the body of a method, the method must either catch the exception or declare it in its throws clause.
12	When is the finally clause of a try-catch-finally statement executed? BTL 2
	The finally clause of the try-catch-finally statement is always executed unless the thread of execution terminates or an exception occurs within the execution of the finally clause.
13	What if there is a break or return statement in try block followed by finally block? BTI 2
	If there is a return statement in the try block, the finally block executes right after the return statement encountered, and before the return executes.
14	What are the different ways to handle exceptions? BTL 2
	There are two ways to handle exceptions: Wrapping the desired code in a try block followed by a catch block to catch th
	exceptions. List the desired exceptions in the throws clause of the method and let the caller of the method handle those exceptions.
15	How to create custom exceptions? BTL 1
	By extending the Exception class or one of its subclasses. Example: class MyException extends Exception {
	<pre>public MyException() { super(); }</pre>
	<pre>public MyException(String s) { super(s); } }</pre>
16	Can we have the try block without catch block? BTL 2
	Yes, we can have the try block without catch block, but finally block should follow th try block.

	Note: It is not valid to use a try clause without either a catch clause or a finally	y clause.
17	What is the difference between swing and applet?	BTL 4
	Swing is a light weight component whereas Applet is a heavy weig Applet does not require main method, instead it needs init method.	ght Component.
18	What is the use of assert keyword?	BTL 2
	Assert keyword validates certain expressions. It replaces the if block throws an AssertionError on failure. The assert keyword should be used arguments (means without that the method does nothing).	
19	How does finally block differ from finalize() method? NOV/DEC 2016	BTL
	Finally block will be executed whether or not an exception is thrown. free resoources. finalize() is a protected method in the Object class which JVM just before an object is garbage collected.	
20	What is the difference between throw and throws clause? APR/MAY 201	7 BTL 2
	throw is used to throw an exception manually, where as throws is use	d in the case of
	checked exceptions, to tell the compiler that we haven't handled the excep	tion, so that the
	exception will be handled by the calling function.	
21	What are the different ways to generate and Exception?	BTL 2
	There are two different ways to generate an Exception.	
	1. Exceptions can be generated by the Java run-time system.	
	Exceptions thrown by Java relate to fundamental errors that violate the r language or the constraints of the Java execution environment.	ules of the Java
	2. Exceptions can be manually generated by your code.	
	Manually generated exceptions are typically used to report some error caller of a method.	condition to the
22	Where does Exception stand in the Java tree hierarchy?	BTL 2
	• java.lang.Object	
	• java.lang.Throwable	
	• java.lang.Exception	
	• java.lang.Error	

23	What is StackOverflowError? N	OV/DEC 2018	В	TL 1
	The StackOverFlowError is an I	-	-	-
	Encounters that your application/code			
	recursive methods or a large amount object. This error is generated by JVM		from the server an	ia storea ili some
	object. This error is generated by J V W			
	e.g. void swap(){			
	swap();			
	}			
24	Brief about the exception hierarchy	in java.		BTL 2
	The hierarchy is as follows: Three	-	_	-
	are two types of Exceptions: Checked	exceptions and	UncheckedException	ons. Both type of
	exceptions extends Exception class			
25	How do you get the descriptive info	ormation about t	he Exception occu	urred during the
	program execution?		BT	L 2
	All the exceptions inherit a meth	od printStackTrac	ce() from the Thro	wable class. This
	method prints the stack trace from wh	-		
	entered method first and continues do		-	-
	way down the call stack from the top.			
		PART B		
1	Discuss on Exception handling in de		OV/DEC 2018	BTL 2
1	Key points:		0 17 <u>D</u> LC 2010	DILZ
	1. Creation of Exception class (4)			
	2. Sample code includes try and c	atch block (4)		
	Try {			
	}			
Ť	catch(Exception e)			
	} Finally			
	litility			
	}			
	3. Catching exceptions (2)			
	4. Sample code for different exce	ptions (3)		
	Answer: Page No. 299 in Herbert Sch			

JIT-JEPPIAAR/CSE/Mrs.M.SUGANYA/II Yr/SEM 03 /CS8392-OBJECT ORIENTED PROGRAMMING /UNIT 1-5/QB+Keys/Ver2.0

2	Explain briefly about user defined exceptions and stack trace elen	nents in exception
	handling mechanisms. (13)	BTL 1
	Key Points:	
	 Concept of Exception and exception handling (4) Predefined and userdefined exceptions (5) ArithmeticException, ArrayOutOfBoundException, SQLException, 	Predefined – IOException.
	3. Sample code for userdefined exception with output (4) Answer: Page No. 221 in Herbert Schildt	
3	 Explain the task of catching exceptions with example. (13) BTL 2 Key points: Creation of Exception class (4) Sample code includes try and catch block (4) Catching exceptions (2) Sample code for different exceptions (3) Answer: Page No. 207 in Herbert Schildt 	APR/MAY 2018
4	 Explain in detail about reading and writing files in JAVA. (13) Key Points: FileInputStream class (4) FileOutputStream class (4) Sample code with explanation (5) Answer: Page No. 661 in Herbert Schildt 	BTL 1
5	 Brief about the following classes: (13) (a). Byte Stream (b). Character Stream (c). PrintWriter class Key points: Explanation about the above-said class (3+3+3) Sample code for each class with the concept.(2+1+1) 	BTL 1
	Answer: Page No. 582 in Herbert Schildt	
1	PART C	NOV/DEC 2017
1	 Explain the task of catching exceptions with example. (15) BTL 2 Key points: Creation of Exception class (5) 	NOV/DEC 2017

	2. Sample code includes try and catch block (4)
	3. Catching exceptions (3)
	4. Sample code for different exceptions (3)
	Answer: Page No. 207 in Herbert Schildt
2	Describe about how JAVA handles overflows and underflows. (15) BTL 4
	Key Points:
	1. Overflow or underflow conditions never throw a run time exception (5)
	2. Flowed output is predictable and reproducible. That is, its behaviour is the same
	every time you run the program.(5)
	3. Sample code (5)
	Answer: Page No. 223 in Herbert Schildt
3	Discuss the concept of exception handling with an application of your choice. Write
	necessary code snippets. (15) MAY/JUNE 2017 BTL 6
	Key points:
	1. Creation of Exception class (5)
	 Sample code includes try and catch block (6)
	3. Catching exceptions (2)
	4. Sample code for different exceptions(2)
	Answer: Page No. 299 in Herbert Schildt
	UNIT 4 - MULTITHREADING AND GENERIC PROGRAMMING
Diffe	rences between multi-threading and multitasking, thread life cycle, creating threads
	pronizing threads, Inter-thread communication, daemon threads, thread groups. Generic
•	amming – Generic classes – generic methods – Bounded Types – Restrictions and
	ations.
	PART A
1	Explain different way of using thread? BTL 1
1	The thread could be implemented by using runnable interface or by inheriting from the
	Thread class. The former is more advantageous, 'cause when you are going for multiple
	inheritance, the only interface can help.
2	What are the different states of a thread ?BTL 1
	The different thread states are ready, running, waiting and dead.
3	Why are there separate wait and sleep methods? BTL 1
	The static Thread.sleep(long) method maintains control of thread execution but delays the
	next action until the sleep time expires. The wait method gives up control over thread

	execution indefinitely so that other threads can run.
4	What is multithreading and what are the methods for inter-thread communication and what is the class in which these methods are defined? BTL 2
	Multithreading is the mechanism in which more than one thread run independent of each other within the process. wait (), notify () and notifyAll() methods can be used for inter- thread communication and these methods are in Object class. wait() : When a thread executes a call to wait() method, it surrenders the object lock and enters into a waiting state. notify() or notifyAll() : To remove a thread from the waiting state, some other thread must make a call to notify() or notifyAll() method on the same object.
5	What is synchronization and why is it important? BTL 2 With respect to multithreading, synchronization is the capability to control the access of multiple threads to shared resources. Without synchronization, it is possible for one thread to modify a shared object while another thread is in the process of using or updating that object's value. This often leads to significant errors.
6	How does multithreading take place on a computer with a single CPU? BTL1 The operating system's task scheduler allocates execution time to multiple tasks. By quickly switching between executing tasks, it creates the impression that tasks execute sequentially.
7	What is the difference between process and thread? NOV/DEC2018 BTL1 Process is a program in execution whereas thread is a separate path of execution in a program.
8	What happens when you invoke a thread's interrupt method while it is sleeping or waitIng? BTL 1 When a task's interrupt() method is executed, the task enters the ready state. The next time the task enters the running state, an InterruptedException is thrown.
9	How can we create a thread? BTL 2 A thread can be created by extending Thread class or by implementing Runnable interface Then we need to override the method public void run().
10	What are three ways in which a thread can enter the waiting state? BTL 2 A thread can enter the waiting state by invoking its sleep() method, by blocking on I/O, by unsuccessfully attempting to acquire an object's lock, or by invoking an object's wait()

	method. It can also enter the waiting state by invoking its (deprecated) susp	
11	How can i tell what state a thread is in ?	BTL 2
	Prior to Java 5, isAlive() was commonly used to test a threads state. If is	Alive() returned
	false the thread was either new or terminated but there was simply no wa	y to differentiate
	between the two.	
12	What is synchronized keyword? In what situations you will Use it?	BTL 1
	Synchronization is the act of serializing access to critical sections of code.	We will use this
	keyword when we expect multiple threads to access/modify the same dat	
	synchronization we need to look into thread execution manner.	
13	What is serialization?	BTL 1
	Serialization is the process of writing complete state of java object into ou	itput stream, that
	stream can be file or byte array or stream associated with TCP/IP socket.	
14	What does the Serializable interface do? APR	/MAY 2016
	BTL 1	
	Serializable is a tagging interface; it prescribes no methods. It serve	e to assign the
	Serializable data type to the tagged class and to identify the class as	-
	developer has designed for persistence. ObjectOutputStream serializes of	
	which implement this interface.	
15	When you will synchronize a piece of your code?	BTL 2
10		
	When you expect your code will be accessed by different threads and the	ese threads may
	change a particular data causing data corruption.	
16	What is daemon thread and which method is used to create the daemo	on thread? BTL
	4	
	Daemon thread is a low priority thread which runs intermittently in the ba	ck ground doing
	the garbage collection operation for the java runtime system. setDaemon r	
	create a daemon thread.	
17		DTI 4
17	What is the difference between yielding and sleeping?	BTL 4
	When a task invokes its yield() method, it returns to the ready state. When	en a task invokes
	When a task invokes its yield() method, it returns to the ready state. When its sleep() method, it returns to the waiting state.	en a task invokes

	There are two types of casting, casting between primitive numeric types and casting
	between object references. Casting between numeric types is used to convert larger values,
	such as double values, to smaller values, such as byte values. Casting between object
	references is used to refer to an object by a compatible class, interface, or array type
	reference.
19	What classes of exceptions may be thrown by a throw statement?BTL 4
	A throw statement may throw any expression that may be assigned to the Throwable type.
	r the w statement may the wary expression that may be assigned to the rine wable type.
20	A Thread is runnable, how does that work? BTL 4
	The Thread class' run method normally invokes the run method of the Runnable type it is
	passed in its constructor. However, it is possible to override the thread's run method with
	your own.
21	Can I implement my own start() method? BTL 4
	The Thread start() method is not marked final, but should not be overridden. This method
	contains the code that creates a new executable thread and is very specialised. Your
	threaded application should either pass a Runnable type to a new Thread, or extend Thread
	and override the run() method.
22	
22	Do I need to use synchronized on setValue(int)? BTL 1
	It depends whether the method affects method local variables, class static or instance
	variables. If only method local variables are changed, the value is said to be confined by
	the method and is not prone to threading issues.
23	What is thread priority?BTL 2
	Thread Priority is an integer value that identifies the relative order in which it should be
	executed with respect to others. The thread priority values ranging from 1- 10 and the
	default value is 5. But if a thread have higher priority doesn't means that it will execute
	first. The thread scheduling depends on the OS.
	internet and an and a set of the set.
24	What are the different ways in which a thread can enter into waiting state?
24	
24	What are the different ways in which a thread can enter into waiting state? BTL 2
24	
24	BTL 2
24	BTL 2 There are three ways for a thread to enter into waiting state. By invoking its sleep()
	BTL 2 There are three ways for a thread to enter into waiting state. By invoking its sleep() method, by blocking on I/O, by unsuccessfully attempting to acquire an object's lock, or by invoking an object's wait() method.
24	BTL 2 There are three ways for a thread to enter into waiting state. By invoking its sleep() method, by blocking on I/O, by unsuccessfully attempting to acquire an object's lock, or by

	following input Size of the pool to be constructed and name of the class which
	implements Runnable (which has a visible default constructor) and constructs a thread pool
	with active threads that are waiting for activation. once the threads have finished
	processing they come back and wait once again in the pool.
	PART B
1	How generic methods and generic expressions are translated? (13) BTL 3
	Key Points:
	1. Concept of Generic methods (4)
	2. Generic code (4)
	3. Virtual machine (5)
	Answer: Page No. 366 in Herbert Schildt
2	Explain in detail, the inheritance rules for generic types. (13) BTL 1
-	Key Points:
	1. Introduction about Inheritance (5)
	 How generics can be used in inheritance? (4)
	3. Sample code with explanation (2)
	4. Output of the sample code(2)
	Answer: Page No. 359 in Herbert Schildt
	Allswei. Fage 100. 557 in Herbert Sennat
3	What are interrupting threads? Explain thread states and synchronization? (13) BTL
	4
	Key Points:
	1. Concept of interrupting thread (5)
	2. Different kinds of thread states with an example. (4) - newborn state, running
	state,runnable state,dead state,blocked state
	3. Explanation about synchronization (2) [One thread finishes its execution, then only
	the next thread starts]
	4. Sample code with output(2)
	Answer: Page No. 437 in Herbert Schildt
	Answer. Fage No. 457 in Herbert Schndt
4	Explain the various state of thread. (13) BTL 5
	Key Points:
	1. Explanation about threads (3) – Each and every part of a program
	2. New state (2)
	3. Runnable state(2)
	4. Blocked state (2)
	5.Ready state (2)
	6.Sample code with explanation(2)
	Answer: Page No. 231 in Herbert Schildt

5	Explain the process of synchronization in detail with suitable example. (13) BTL 3
	 Key Points: 1. Concept of Synchronization (5) 2. Usage of keyword "synchronized" and "volatile" (5) 3. Sample code with explanation (3) Answer: Page No. 241 in Herbert Schildt
	PART C
1	Explain the procedure for running a task in a separate thread and running multiple threads. (15)MAY/JUNE 2017BTL 5
	 Key Points: 1. Explanation about threads (5) 2. New state(3) 3. Runnable state (2) 4. Blocked state (2)
	5. Ready state(2)6. Sample code with explanation(1)Answer: Page No. 237 in Herbert Schildt
2	Explain the States of a thread with a neat diagram. (15)APR/MAY 2018BTL 4Key Points: 1.Explanation about threads (5) 2. New state (2) 3.Runnable state (2) 4.Blocked state (2) 5.Ready state(2) 6.Sample code with explanation (2)Answer: Page No. 231 in Herbert Schildt
3	What is Generic programming and why is it needed? List the limitations and restrictions of generic programming. (15) NOV/DEC 2019 BTL 2 Key Points: 1. Conept of Generic methods (4) 2. Generic code (6) 3. Virtual machine (3) 4. Limitations of Generic Programming (2) Answer: Page No. 361 in Herbert Schildt

UNIT-5 EVENT DRIVEN PROGRAMMING

Graphic	es programming - Frame - Components - working with 2D shapes - Using color, fonts, and
images	-Basics of event handling - event handlers - adapter classes - actions - mouse events- AWT
event h	ierarchy -Introduction to Swing – layout management - Swing Components – Text Fields,
Text A	reas – Buttons-Check Boxes – Radio Buttons – Lists- choices- Scrollbars – Windows –
Menu	s – Dialog Boxes
	PART A
1	What is the relationship between the Canvas class and the Graphics class? (BTL 4)
	A Canvas object provides access to a Graphics object via its paint() method.
2	How would you create a button with rounded edges? (BTL 3)
	There's 2 ways. The first thing is to know that a JButton's edges are drawn by a Border.
	so you can override the Button's paintComponent(Graphics) method and draw a circle on
	rounded rectangle (whatever), and turn off the border. Or you can create a custom border
	that draws a circle or rounded rectangle around any component and set the button's border to it.
3	What is the difference between the 'Font' and 'FontMetrics' class? (BTL 2)
	The Font Class is used to render 'glyphs' - the characters you see on the screen
	FontMetrics encapsulates information about a specific font on a specific Graphics object
	(width of the characters, ascent, descent)
4	What is the difference between the paint() and repaint() methods? (BTL 2)
	The paint() method supports painting via a Graphics object. The repaint() method is used to cause paint() to be invoked by the AWT painting thread.
5	Which containers use a border Layout as their default layout?NOV/DEC 2018
	(BTL 1)
•	The window, Frame and Dialog classes use a border layout as their default layout.
6	What is the difference between applications and applets?BTL 2
	a) Application must be run on local machine whereas applet needs no explicit installation on local machine.
	b). Application must be run explicitly within a java-compatible virtual machine whereas applet loads and runs itself automatically in a java-enabled browser.

	c). Application starts execution with its main method whereas applet starts execution with its init method.
	d). Application can run with or without graphical user interface whereas applet must run within a graphical user interface.
1	Difference between Swing and Awt? BTL 2
	AWT are heavy-weight componenets. Swings are light-weight components. Hence swing works faster than AWT.
	What is a layout manager and what are different types of layout managers available in java AWT?BTL 1
	A layout manager is an object that is used to organize components in a container. The different layouts are available are FlowLayout, BorderLayout, CardLayout, GridLayout and GridBagLayout.
	How are the elements of different layouts organized? BTL 2
	FlowLayout: The elements of a FlowLayout are organized in a top to bottom, left to right fashion.BorderLayout: The elements of a BorderLayout are organized at the borders (North, South, East and West) and the center of a container.
	CardLayout: The elements of a CardLayout are stacked, on top of the other, like a deck of cards.
	GridLayout: The elements of a GridLayout are of equal size and are laid out using the square of a grid.
	GridBagLayout: The elements of a GridBagLayout are organized according to a grid. However, the elements are of different size and may occupy more than one row or column of the grid. In addition, the rows and columns may have different sizes.
	The default Layout Manager of Panel and Panel sub classes is FlowLayout.
0	Why would you use SwingUtilities.invokeAndWait or SwingUtilities.invokeLater? (BTL 4)
	I want to update a Swing component but I'm not in a callback. If I want the update to happen immediately (perhaps for a progress bar component) then I'd use invokeAndWait. If I don't care when the update occurs, I'd use invokeLater.
1	What is an event and what are the models available for event handling? BTL 1

	An event is an event object that describes a state of change in a source. In other words,
	event occurs when an action is generated, like pressing button, clicking mouse, selecting a
	list, etc. There are two types of models for handling events and they are: a) event-
	inheritance model and b) event-delegation model
12	What is the difference between scrollbar and scrollpane?BTL 1
	A Scrollbar is a Component, but not a Container whereas Scrollpane is a Conatiner and
	handles its own events and perform its own scrolling.
13	Why won't the JVM terminate when I close all the application windows? BTL 4
	The AWT event dispatcher thread is not a daemon thread. You must explicitly call
	System.exit to terminate the JVM.
14	What is meant by controls and what are different types of controls in AWT?
	(BTL 1)
	Controls are components that allow a user to interact with your application and the AWT
	supports the following types of controls: Labels, Push Buttons, Check Boxes, Choice
	Lists, Lists, Scrollbars, and Text Components. These controls are subclasses of
	Component.
15	What is the difference between a Choice and a List? BTL 1
	A Choice is displayed in a compact form that requires you to pull it down to see the list of
	available choices. Only one item may be selected from a Choice. A List may be displayed
	in such a way that several List items are visible. A List supports the selection of one or
	more List items.
16	What is the purpose of the enableEvents() method? BTL 2
	The enableEvents() method is used to enable an event for a particular object. Normally, an
	event is enabled when a listener is added to an object for a particular event. The
*	enableEvents() method is used by objects that handle events by overriding their
	eventdispatch methods.
17	What is the difference between the File and RandomAccessFile classes? BTL 2
	The File class encapsulates the files and directories of the local file system. The
	RandomAccessFile class provides the methods needed to directly access data contained in
	any part of a file.
10	What is the life ends of an applet?
18	What is the lifecycle of an applet?BTL 2
18	init() method - Can be called when an applet is first loaded start() method - Can be called

oves off the applet's page. ith the applet. MenuItem? BTL 2 support a menu item that BTL 1 WT event-class hierarchy. BTL 1 ars when the internal state
support a menu item that BTL 1 WT event-class hierarchy. BTL 1
BTL 1 WT event-class hierarchy. BTL 1
WT event-class hierarchy. BTL 1
WT event-class hierarchy. BTL 1
rs when the internal state
occurs. It has two major
more sources to receive
ement methods to receive
BTL 1
Kit, then load the text into
BTL 1
he IComboBox' - but the
omponent.'
o another, usually altering
BTL 1
class that inherits from
a class that inherits from ethod, just like an applet
o another, usually alter

1	Describe the sophisticated layout management in user interface component with example. (13) BTL 2
	Key Points:
	 Explanation of layout manager class (5) – How content should appear in output FlowLayout (3) BorderLayout (2) GridLayout (2) Explanation with sample code and output (1) Answer: Page No. 796 in Herbert Schildt
2	State and explain in detail the basic of event handling. (13) APR/MAY 2018 BTL 1
	Key Points:
	 Event Sources (4) Event Classes (3) Event Listeners(3) Event Adapters(3)
	Answer: Page No. 707 in Herbert Schildt
3	Write a short notes on (i). JLabel (ii). JButton
	(iii). Layout Managers (13) BTL 1
	 Key Points: 1. Concepts of JLabel, JButton, Layout managers (3+3+3) 2. Sample code with output.(2+2) Answer: Page No. 950,949,707 in Herbert Schildt
4	Write short notes on the following : (13) NOV/DEC 2017 BTL 1 (i) Graphics programming (ii) Frame Key Points: Key Points: Key Points:
	 Concept of graphics Context (5) Graphics class drawing methods (4) –Lines,Rectangke,Circle,Polygon Explanation with sample code.(4) Answer: Page No. 307, 736 in Herbert Schildt

5	List the methods available to draw shapes. (13)	BTL 1
	Key points:	
	1. Shape Operations (6)	
	2. Text Operations (4)	
	3. Image Operations (3)	
	Answer: Page No. 749 in Herbert Schildt	
	PART C	
1	Explain the AWT Event handling in detail. (15) NOV BTL 1	V/DEC 2019
	Key Points:	
	1. Event Sources (4)	
	2. Event Classes (3)	
	3. Event Listeners(4)	
	4. Event Adapters (4)	
	Answer: Page No. 736 in Herbert Schildt	
2	How is a Frame created? Write a java program that creates a product e	nquirer form
	using frames. (15) MAY/JUNE 2017 BT	L 3
	Key Points:	
	1. Concept of Frame (5)	
	2. Usage of JFrame (6)	
	3. Sample code with explanation (4)	
	Answer: Page No. 736 in Herbert Schildt	
3	Explain any five swing components with an example program. (15) AP	R/MAY 2016
	BTL 2	
	Key/Points:	
	Key Pomits:	
	1. JPanel (3)	
	2. JFrame (3)	
	3. JInternalframe (2)	
	4. JWindow (2)	
	5. JDialog (2)	
	6. Habel (3)	
	Answer: Page No. 949, 950, 949 in Herbert Schildt	

EC8395

COMMUNICATION ENGINEERING

OBJECTIVES:

- To introduce the relevance of this course to the existing technology through demonstrations, case studies, simulations, contributions of scientist, national/international policies with a futuristic vision along with socio-economic impact and issues
- To study the various analog and digital modulation techniques
- To study the principles behind information theory and coding
- To study the various digital communication techniques

UNIT I ANALOG MODULATION

Amplitude Modulation – AM, DSBSC, SSBSC, VSB – PSD, modulators and demodulators – Angle modulation – PM and FM – PSD, modulators and demodulators – Superheterodyne receivers

UNITII PULSE MODULATION

Low pass sampling theorem – Quantization – PAM – Line coding – PCM, DPCM, DM, and ADPCM And ADM, Channel Vocoder - Time Division Multiplexing, Frequency Division Multiplexing

UNIT III DIGITAL MODULATION AND TRANSMISSION

Phase shift keying – BPSK, DPSK, QPSK – Principles of M-ary signaling M-ary PSK & QAM – Comparison, ISI – Pulse shaping – Duo binary encoding – Cosine filters – Eye pattern, equalizers

UNIT IV INFORMATION THEORY AND CODING

Measure of information – Entropy – Source coding theorem – Shannon–Fano coding, Huffman Coding, LZ Coding – Channel capacity – Shannon-Hartley law – Shannon's limit – Error control codes – Cyclic codes, Syndrome calculation – Convolution Coding, Sequential and Viterbi decoding

UNIT V SPREAD SPECTRUM AND MULTIPLE ACCESS

PN sequences – properties – m-sequence – DSSS – Processing gain, Jamming – FHSS – Synchronisation and tracking – Multiple Access – FDMA, TDMA, CDMA,

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Ability to comprehend and appreciate the significance and role of this course in the present contemporary world
- Apply analog and digital communication techniques.
- Use data and pulse communication techniques.
- Analyze Source and Error control coding.

TEXT BOOKS:

- 1. H Taub, D L Schilling, G Saha, -Principles of Communication Systems 3/e, TMH 2007
- 2. S. Haykin -Digital Communications John Wiley 2005

REFERENCES:

- 1. B.P.Lathi, -Modern Digital and Analog Communication Systemsl, 3rd edition, Oxford University Press, 2007
- 2. H P Hsu, Schaum Outline Series - Analog and Digital Communications | TMH 2006
- **3.** B.Sklar, Digital Communications Fundamentals and Applications 2/e Pearson Education 2007.

JIT-JEPPIAAR/ECE/Ms.R.ANANTHI REETA/IInd Yr/SEM 03/EC8395/COMMUNICATION ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

L T P C 3003

9

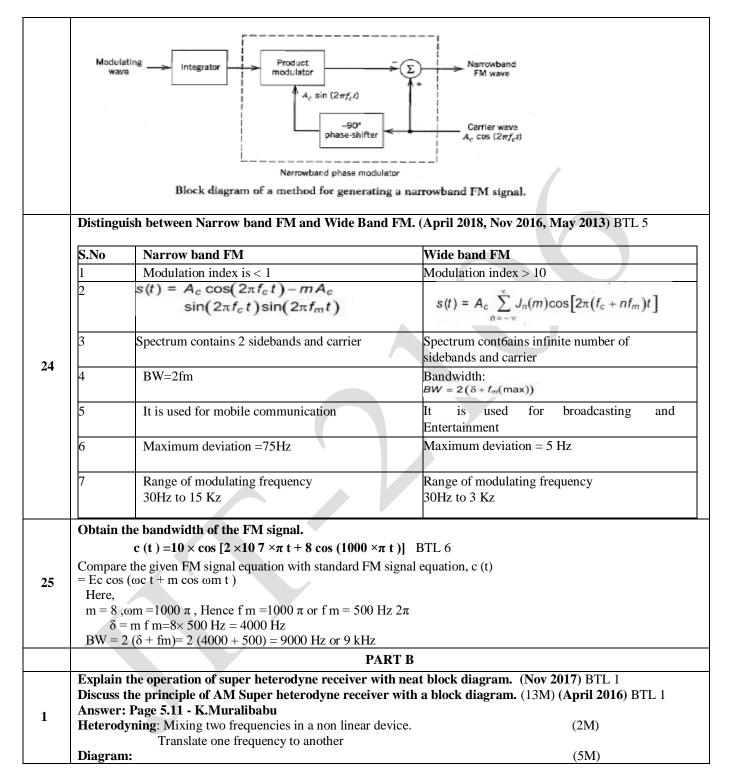
9

9

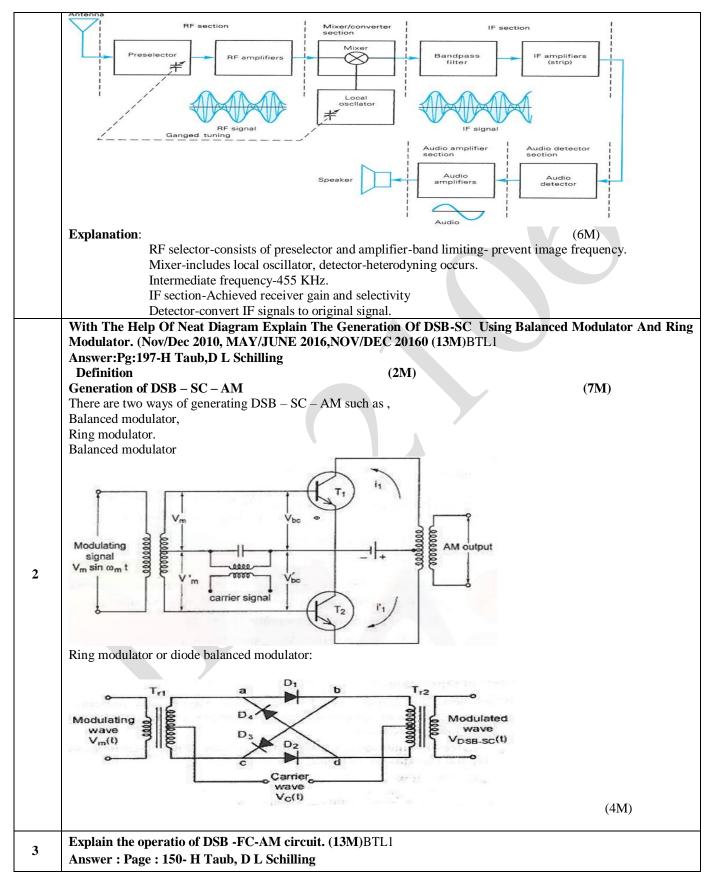
9

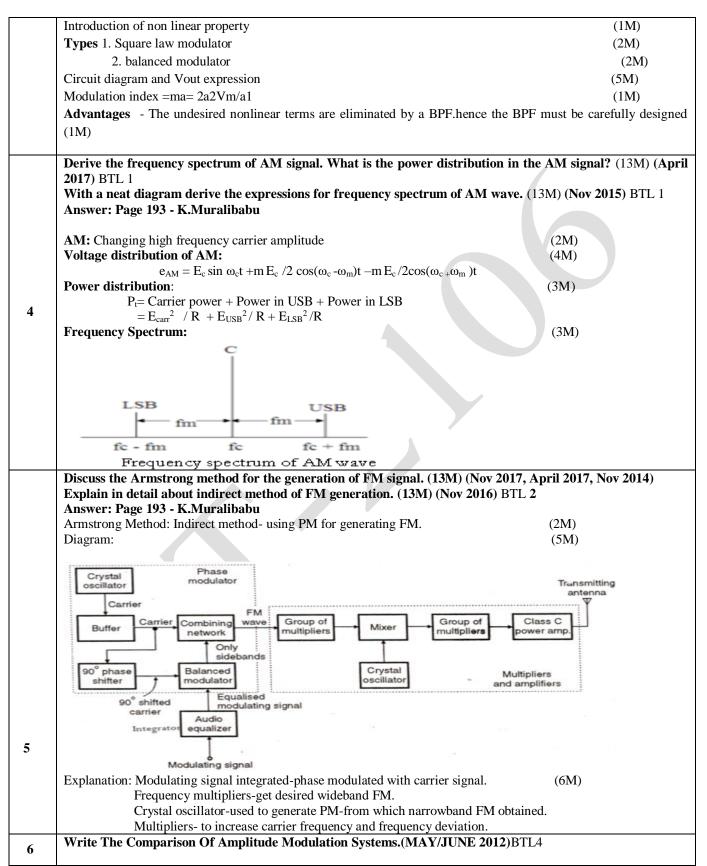
9

SUBJECT CODE: EC8395 SUBJECT NAME:COMMUNICATION ENGINEERING

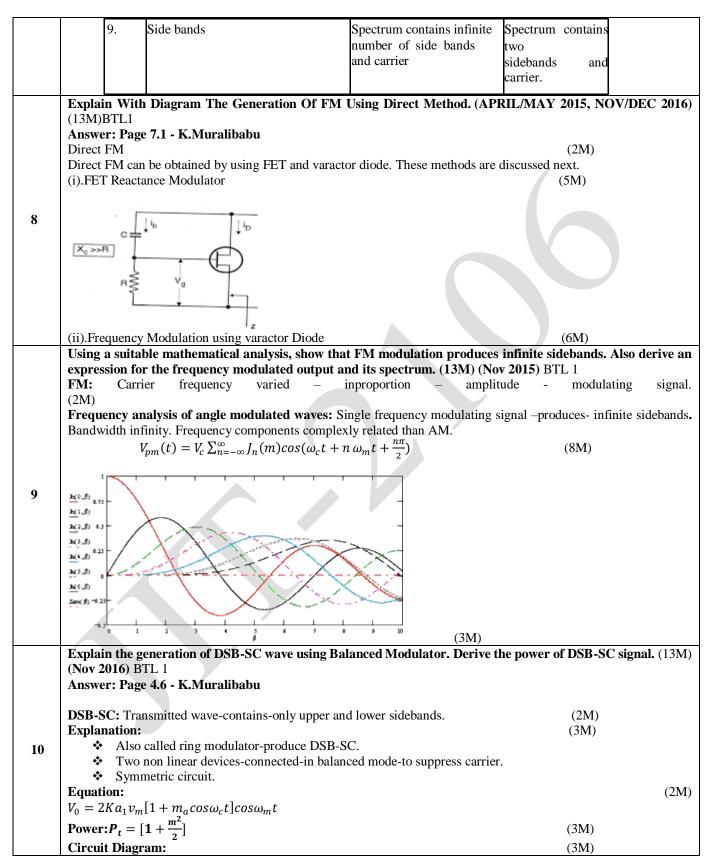

YEAR/SEMESTER:II /03 SUBJECT HANDLER: MS.R.ANANTHI REETA

	UNIT I- ANALOG MODULATION			
	tude Modulation – AM, DSBSC, SSBSC, VSB – PSD, modulators and demodulators – Angle modulation – PM M – PSD, modulators and demodulators – Superheterodyne receivers			
	PART * A			
Q.No.	Questions			
	Define modulation? What is the need formodulation? BTL1			
	Modulation is a process by which some characteristics of high frequency carrier Signal is varied in accordance with the instantaneous value of the modulating signal.			
1.	Needs for modulation:			
	• Ease of transmission			
	• Multiplexing			
	Reduced noise			
	Narrow bandwidth			
	Frequency assignment			
	Reduce the equipments limitations.			
2	 Reduce the equipments initiations. Give the Classification of Modulation.BTL1 There are two types of modulation. They are a)Analog modulation, b)Digital modulation Analog modulation is classified as follows (i)Continuous wave modulation (ii)Pulse modulation Continuous wave modulation is classified as follows (i)Amplitude modulation(ii)Double side band suppressed carrier (iii)Single side band suppressed carrier (iv)Vestigial side band suppressed carrier Angle modulation Frequency modulation Pulse modulation is classified as follows (i)Pulse amplitude modulation (ii)Pulse position modulation (iii)Pulse duration modulation (iv)Pulse code modulation Digital modulation is classified as follows Pulse the full of the shift keying (ii)Phase shift keying Frequency shift keying. 			
3	Define the term modulation index for AM. (May/June 2015) BTL1 Modulation index is the ratio of amplitude of modulating signal (Em) to amplitude of carrier (Ec) i.e.m = Em/Ec			
	What are the degrees of modulation?BTL1			
4	 a) Under modulation (m < 1) b) Critical modulation (m=1) c) Over modulation(m>1) 			

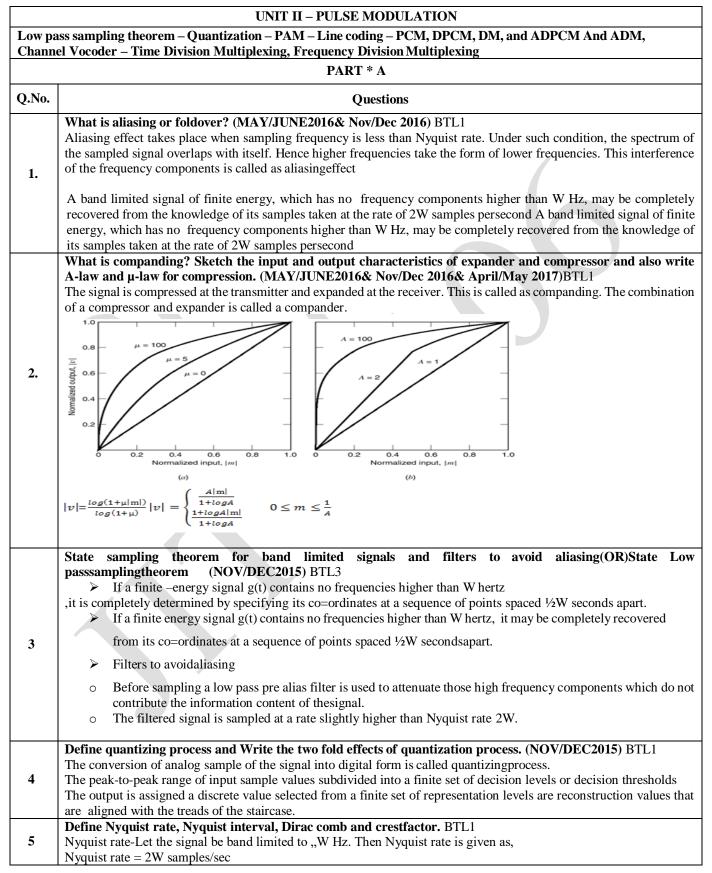

	Compare linear and non-linear modulators?BTL4					
I	S.No Linear Modulators			Non Linear Modula	tors	
	1.	Heavy filtering is not required		Heavy filtering is req	uired.	
5	2.	These modulators are used in h modulation.	nigh level	vel These modulators are used in low level modulation.		
	3.	The carrier voltage is very mu	-			
		than modulating signal		greater than the carrie	er signal voltage.	
	Define A	mplitude Modulation.BTL1				
6	In amplitude modulation, the amplitude of a carrier signal is varied according to variations in amplitude of modulating signal.					
		ignal can be represented mathem		s, $eAM = (Ec + Em si)$	nomt) sinoct	
	and the m	odulation index is given as,m = I	Em /EC			
7	What is Super Heterodyne Receiver?BTL1 The super heterodyne receiver converts all incoming RF frequencies to a fixed lower frequency, called intermediate frequency (IF). This IF is then amplitude and detected to get the original signal.					
	Difference	e between high level modulation Low level AM modulator			L4 level AM modulator	
8	1. Modula the transm	ation takes place prior to the fina			place in the final element of final	
	2. Less m	odulating signal power is require	ed	2.More modulating	signal power is required.	
	<u> </u>	AM with DSB-SC and SSB-SC	-			
	S.No	AM signal	DSB-SC	;	SSB-SC	
9	1	Bandwidth = 2fm	Bandwic	lth = 2fm	Bandwidth = fm	
,	2	Contains USB,LSB,Carrier	Contains	s USB,LSB	USB,LSB	
	3	More Power is required for transmission	Power retained that of A	equired is less than .M.	Power required is less than AM &DSB-SC	
10	 What are the advantages of VSB-AM?BTL1 1. It has bandwidth greater than SSB but less than DSB system. 2. Power transmission greater than DSB but less than SSB system. 3. No low frequency component lost. Hence it avoids phase distortion. 					
	How will	you generating DSBSC-AM?B		1		
11	There are two ways of generating DSBSC-AM such as					
11	a).Balanced modulator,					
		b).Ring modulators				
12	Define demodulation BTL1 Demodulation or detection is the process by which modulating voltage is recovered from the modulated signal. It is the reverse process of modulation. The devices used for demodulation or detection are called demodulators or detectors. For amplitude modulation, detectors or demodulators are categorized as, 2. Square-law detectors 3. Envelope detectors					
		SB-SC. BTL 1				
13	After modulation, the process of transmitting the sidebands (USB, LSB) alone and suppressing the carrier is called as Double Side Band-Suppressed Carrier.					
14		B-SC. BTL1				
	Denne 55					


JIT-JEPPIAAR/ECE/Ms.R.ANANTHI REETA/IInd Yr/SEM 03/EC8395/COMMUNICATION ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

	(i) SSB-SC stands for Single Side Band Suppressed Carrier
	(ii) When only one sideband is transmitted, the modulation is referred to as Single side band modulation. It is also called as SSB or SSB-SC.
	What is Vestigial Side Band Modulation?BTL1
15	Vestigial Sideband Modulation is defined as a modulation in which one of the sideband is partially suppressed
	and the vestige of the other sideband is transmitted to compensate for that suppression. Define depth modulation in AM. (Nov 2017) BTL1
16	It is defined as the ratio between message amplitude to that of carrier amplitude. m=Em/Ec. It is also
	known as co efficient of modulation
	What are the advantages of signal sideband transmission? What are the disadvantages of single side band
	transmission? BTL1
	Advantage:
	a) Power consumption
17	b) Bandwidth conservation c) Noise reduction
	Disadvantages :
	A) Complex receivers: Single side band systems require more complex and expensive receivers thn conventiaonal AM transmission.
	B) Tuning difficulties: Single side band receivers require more complex and precise tunig than conventional AM receivers.
	Define frequency modulation. Define modulation index of frequency modulation. (May/June 2015) BTL1
	Frequency modulation is defined as the process by which the frequency of the carrier wave is varied in
18	accordance with the instantaneous amplitude of the modulating or message signal.
_	Modulation index of frequency modulation.
	It is defined as the ratio of maximum frequency deviation to the modulating $\beta = \delta f/f$ m
	Define phase modulation. (MAY/JUNE 2014)BTL1
19	Phase modulation is defined as the process of changing the phase of the carrier signal in accordance with the
	instantaneous amplitude of the message signal.
	What are the types of Frequency Modulation? (MAY/JUNE 2015)BTL1
20	Based on the modulation index FM can be divided into types. They are Narrow band FM and Wide band FM. If the
20	modulation index is greater than one then it is wide band FM and if the modulation index is less than one then it is
	Narrow band FM
	What are the two methods of producing an FM wave? BTL1
	Basically there are two methods of producing an FM wave. They are,
21	i) Direct method: In this method the transmitter originates a wave whose frequency varies as function of the modulating source. It is used for the concretion of NPEM
	modulating source. It is used for the generation of NBFM ii) Indirect method: In this method the transmitter originates a wave whose phase is a function of the modulation.
	Normally it is used for the generation of WBFM where WBFM is generated from NBFM
	A 80 MHz carrier is frequency modulated by a sinusoidal signal of 1V amplitude and the frequency
	sensitivity is 100 Hz/V. Find the approximate bandwidth of the FM waveform if the modulating signal
	has a frequency of 10 kHz.BTL5 Frequency Sensitivity = 100 Hz/ volt. Amplitude of
	modulating signal = $1V$
22	Hence maximum frequency deviation, $\delta = 100 \text{ Hz} / \text{volt} \times 1\text{V} = 100 \text{ kHz}$
	Frequency of modulating signal, fm =10khz
	$BW = 2 \left[\delta + f(max)\right]$
	$= 2 [100 + 10 \times 10^3]$
	BW = 20.2 kHz
23	Draw the block diagram of a method for generating a narrow band FM.BTL6



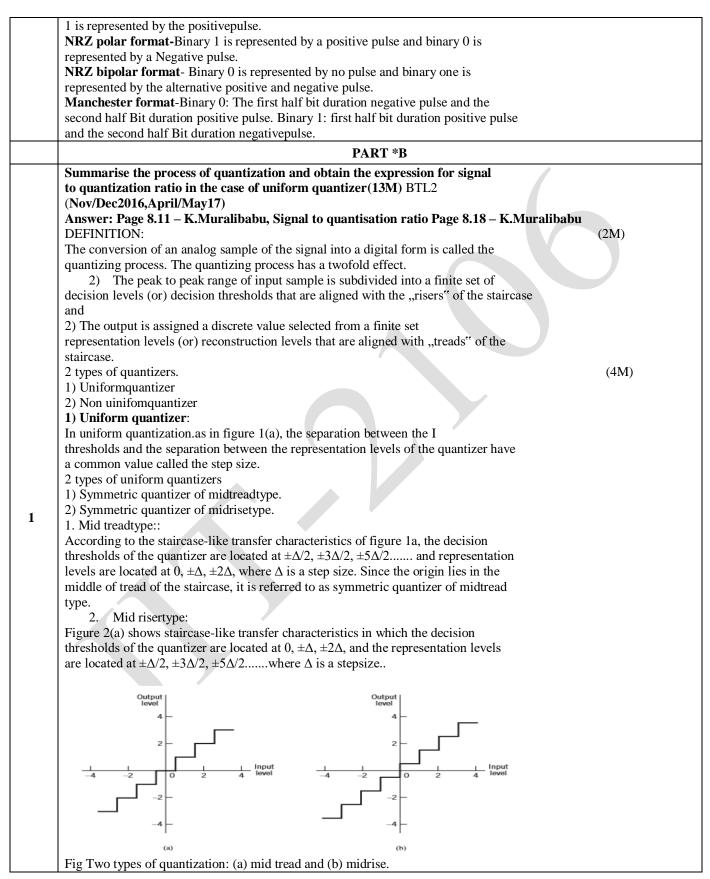
ACADEMIC YEAR: 2019-2020

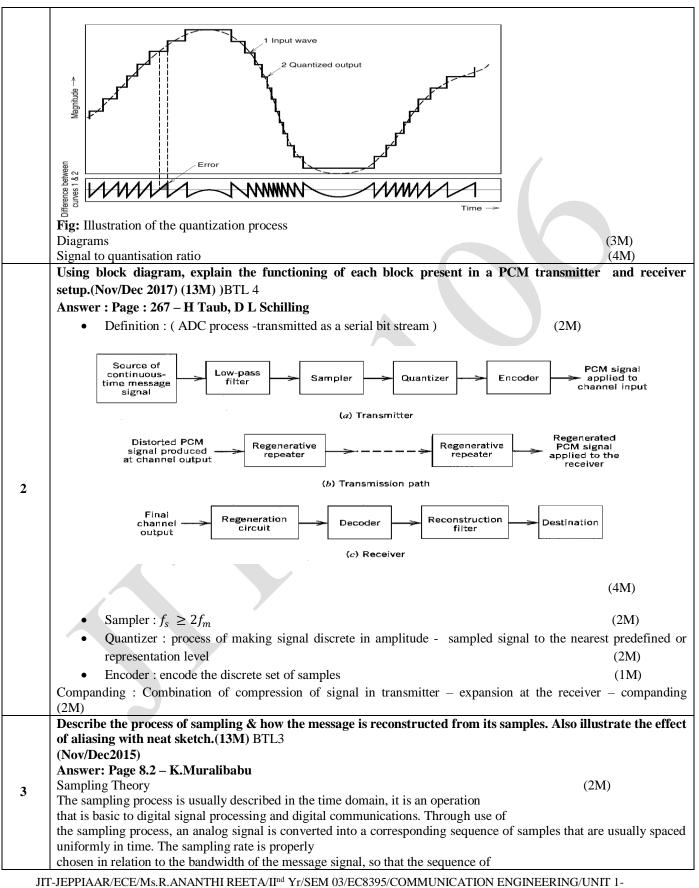

	ge 4.24 - K.Muralibabu		(13M)			
Descriptior	on AM with carrier	DSB – SC	C – AM	SSB – SC - A	M VSB	- AM
Band widt	n 2fm	2f	m	fm	fm <b'< td=""><td>W<2fm</td></b'<>	W<2fm
Power Sav for Sinusoid al	33.33%	66.	.66%	83.3%	75	%
Power Saving for non Sinusoidal	33.33%	5	60%	75%	75	%
Generation methods	Easier to generate	Not di	fficult	More difficult generate		But generate than
Detection methods	Simple & Inexpensive	Diffi	cult	More difficult	Diffi	cult
No 1. 2.	Modulation index Maximum		Greater tha	n	Less than slightly greater than 1 5 KHz	(or)
3.	Maximum deviation Range of modulating Frequency		30 Hz to 1	5	30 Hz to 3 KH	İz
4.	Bandwidth			BW of narrow	Small. Approximatel y same as that of AM. BW=2fm	
5.	Maximum modulation		5 to 2500		than 1	eater
6.	Pre-emphasis and De-emphasis		Needed		Needed	
7.	Noise				Less suppressi noise	_
8.	Applications		Entertainm	ent broadcasting	FM m	obile

	1		
	T ₁ Modulating signal Carr sigr	o gso	−ø SB [pu]] −ø
	addition, a VSB system has improved	Schilling mplified since the need for sharp cuto l low-frequency response and can ever	
11	VSB modulator and demodulator of Explanation : The product modulator be generated by passing a DSB-SC si	r generates DSB-SC signal from the r	0
	Magnitude response of VSB filter dia Applications : VSB is used in televis	ion for transmission of picture signa	
	Advantages: required BW is less co		eed not have a sharp cut off (1M)
		PART * C	
	Compare Am and FM in detail.BT Answer: Page 6.13 - K.Muralibabu		(15M)
		AM	FM
	Stands for	AM stands for Amplitude Modulation	FM stands for Frequency Modulation
	Origin		FM radio was developed in the United states in the 1930s, mainly by Edwin Armstrong.
1	Modulating differences	In AM, a radio wave known as the "carrier" or "carrier wave" is modulated in amplitude by the signal that is to be transmitted. The frequency and phase remain	In FM, a radio wave known as the "carrier" or "carrier wave" is modulated in frequency by the signal that is to be transmitted. The amplitude and phase remain
	Pros and cons	AM has poorer sound quality compared with FM, but is cheaper and can be transmitted over long distances. It has a lower bandwidth so it can have	the same. FM is less prone to interference than AM. However, FM signals are impacted by physical barriers. FM has better sound quality due to higher bandwidth.
		more stations available in any frequency range.	

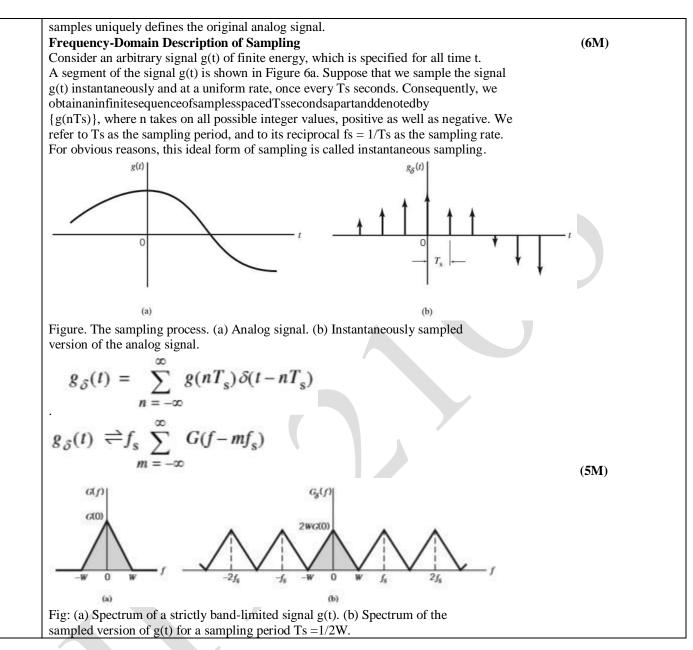
	Frequency Range	AM radio ranges from 535 to 1705 KHz (OR) Up to 1200 bits per second.	FM radio ranges in a higher spectrum from 88 to 108 MHz. (OR) 1200 to 2400 bits per second.
	Bandwidth Requirements	Twice the highest modulating frequency. In AM radio broadcasting, the modulating signal has bandwidth of 15kHz, and hence the bandwidth of an amplitude-modulated signal is 30kHz.	Twice the sum of the modulating signal frequency and the frequency deviation. If the frequency deviation is 75kHz and the modulating signal frequency is 15kHz, the bandwidth required is 180kHz.
	Zero crossing in modulated signal	Equidistant	Not equidistant
	Complexity	Transmitter and receiver are simple but syncronization is needed in case of SSBSC AM carrier.	Transmitter and receiver are more complex as variation of modulating signal has to beconverted and detected from corresponding variation in frequencies.(i.e. voltage to frequency and frequency to voltage conversion has to be done).
	Noise	AM is more susceptible to noise because noise affects amplitude, which is where information is "stored" in an AM signal.	FM is less susceptible to noise because information in an FM signal is transmitted through varying the frequency, and not the amplitude.
	BTL1 Answer: Page: 147 - H Taub, D L S Introduction of DSB-SC –the mode	Schilling alated wave consists of only upper	Derive the power of DSB-SC Signal (15M) and lower sidebands Transmitted power is not contain any useful information ,but the
	channel bandwidth required is the sar		-
	BW=2fm (only upper and lower side	oands),66.6%	(2M)
2	DSB-SC generation diagram		
	and D3,D4- reverse biased -magnetic D1,D2-reverse biased and I	ear device) ,ring modulator (didoes field cancel each other and negative D3,D4- forward biased -opposite ma	agnetic field) (8M)
	Advantages-more efficient is use of	transmitted power (66.6%), better sig	gnal to noise ratio compared to SSB

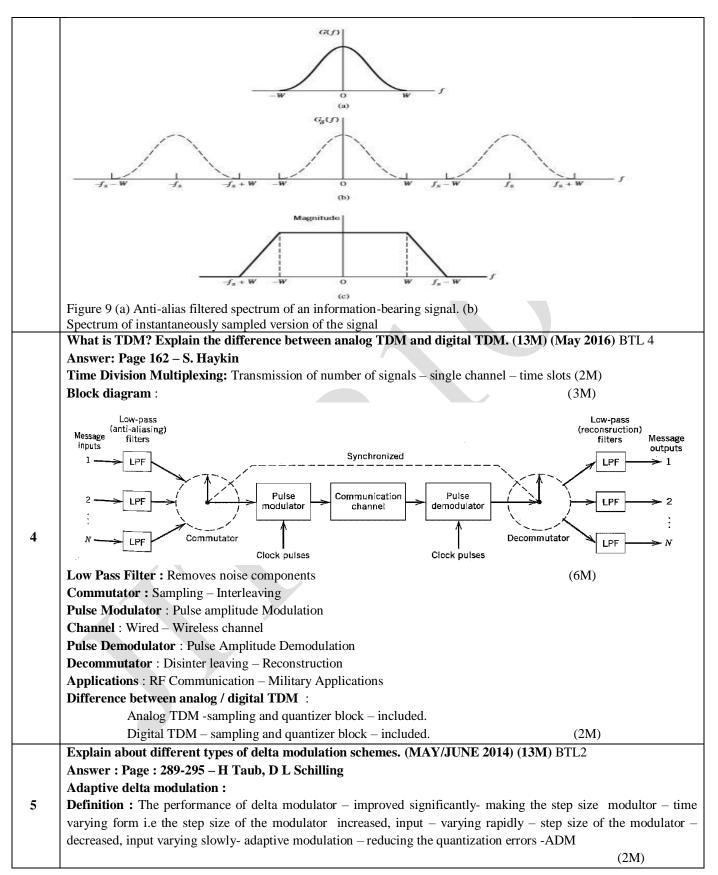
	Disadvantages -Even though the carrier is suppressed, the BW of DSB-SC remains same as AM and more than SSB
	(2M)
	A,(i)Determine the peak frequency deviation (Δf) and modulation index(mf) for an FM modulation with a deviation sensitivity Kf=5khz and modulating signal Vm(t)=2cos(2π *2000t) BTL6 (7M)
	(ii) The peak phase deviation (mp) for a pm modulator with a deviation sensitivity Kp=2.5rad/v and a
	modulating signal Vm(t)= $2\cos(2\pi 2000t)$ (8M)
	Kf=5khz/v
	$Vm(t) = 2\cos(2\pi 2000t)$
	Kp=2.5 rad/v
	Vm=2v,fm=2000hz
	Peak freq deviation
	$\Delta f = Kf Vm$
	=5khz/v *2v=10khz
3	Modulation index mf= $\Delta f/fm=10khz/2khz=5$
	Modulation index of PM
	Mp=KpV=2.5 rad/v * 2=5rad
	B,In a FM system, if the max value of deviation is 75khz and the max modulating freq is 10khz. Calculate the
	deviation ratio and bandwidth of the system using carsons rule. BTL3
	Deviation ratio $D = \Delta fm Max/Fm max$
	=75/10
	=7.5
	-1.5
	System bandwidth B=2[= Δ fmax + fm(max)]
	=2[75+10]
	=170khz

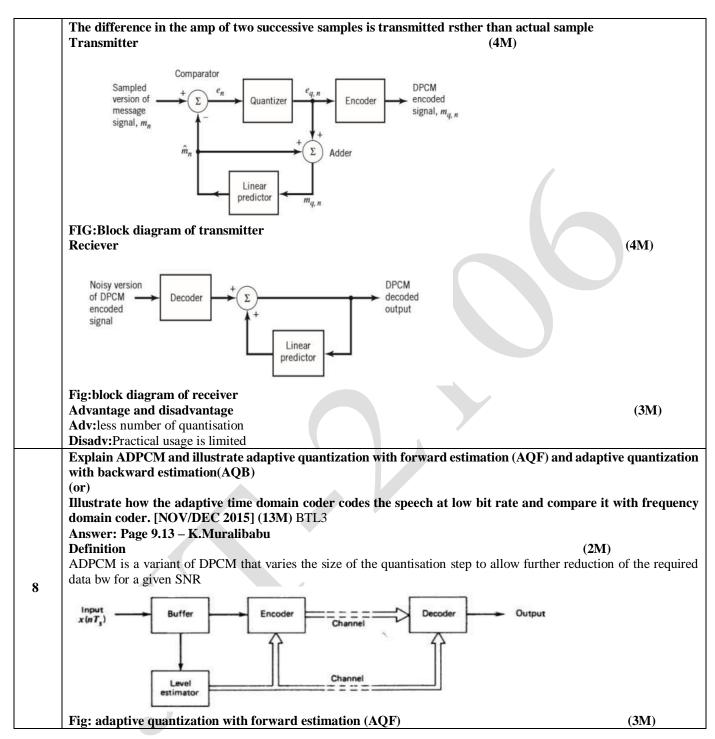



	Aliasing will not take place if sampling rate is greater than Nyquist rate.
	Nyquist interval- Its reciprocal ¹ / ₂ W is called Nyquist interval.
	Dirac comb or ideal sampling function- It is nothing but a periodic impulse train in which the impulses are spaced by a time interval of Ts seconds.
	Crest Factor – It defines how strong the peak value is with respect to its rms value.
	What is meant byquantization, Quantization noise power andquantization error? BTL1
	While converting the signal value from analog to digital, quantization is performed.
	The analog value is assigned to nearest digital value. This is called quantization. The quantized value is then converted
6	into equivalent binary value. The quantization levels are fixed depending upon the number of bits. Quantization is
U	performed in every Analog to DigitalConversion.
	Quantization noise power is the quantizer error instance and is given byvariance(ie) , where q is stepsize.
	Quantization error is the difference between the output and input values of quantizer
	What is meant by PCM and what are the noises present in PCM system what is the SNR of PCM system if the
	number of quantization level is 2 ⁸ ? BTL1
	Pulse code modulation (PCM) is a method of signal coding in which the message signal is sampled, the amplitude of
	each sample is rounded off to the nearest one of a finite set of discrete levels and encoded so that both time and amplitude
	are represented in discrete form. This allows the message to be transmitted by means of a digital waveform.
7	Aliasing noise, quantization noise, Channel noise, Intersymbol interference
	Signal to noiseRatio
	S ind $D < (A O + CO) dD$
	$\frac{-\ln aB}{N} \leq (4.8 + 60)aB$
	$\frac{s}{N}indB \le (4.8 + 6\vartheta)dB$ $\le (4.8 + 6 \times 8)dB$ $\le 52.2 dB$
	What you meant by non- uniform quantization? BTL1
8	Step size is not uniform. Non uniform quantizer is characterized by a step size that increases as the separation from the
	origin of the transfer characteristics is increased. Non- uniform quantization is otherwise called as robust quantization.
	What is the disadvantage of uniform quantization over the non-uniform quantization? BTL1
9	SNR decreases with decrease in input power level at the uniform quantizer but non-uniform quantization maintain a
	constant SNR for wide range of input power levels. This type of quantization is called as robust quantization.
	What are the advantages and disadvantages of PCMSystem? BTL1
	Advantages:
	Very Efficient power bandwidthexchange.
	Highly robust as it is immune to channel noise and interference.
10	As regenerative repeaters are used, PCM used in long haul communication.
	As it is digital coding techniques are available for compression, encryption and errorcorrection.
	Disadvantages
	PCM signal generation and reception involve complexprocesses.
	PCM requires much larger transmission bandwidth than analog modulation.
	What is TDM? Write its advantages and disadvantages BTL1
	The system which enables joint utilization of a common channel by many independent message signals without mutual
	interference is called Time Division Multiplexing system.
	Advantages:
	Only one carrier in the medium at any giventime
11	High throughput even for manyusers
	Common TX component design, only one poweramplifier Flexible allocation of resources (multiple timeslots).
	Disadvantages
	Synchronization
	Requires terminal to support a much higher data rate than the user information rate therefore possible problems with
	intersymbol- interference.
	What is meant by forward and backward estimation?(NOV/DEC 2015) BTL1
	AQF: Adaptive quantization with forward estimation. Unquantized samples of the input signal are used to derive the
12	forwardestimates.
	AQB: Adaptive quantization with backward estimation. Samples of the quantizer output are used to derive the
	backward estimates.

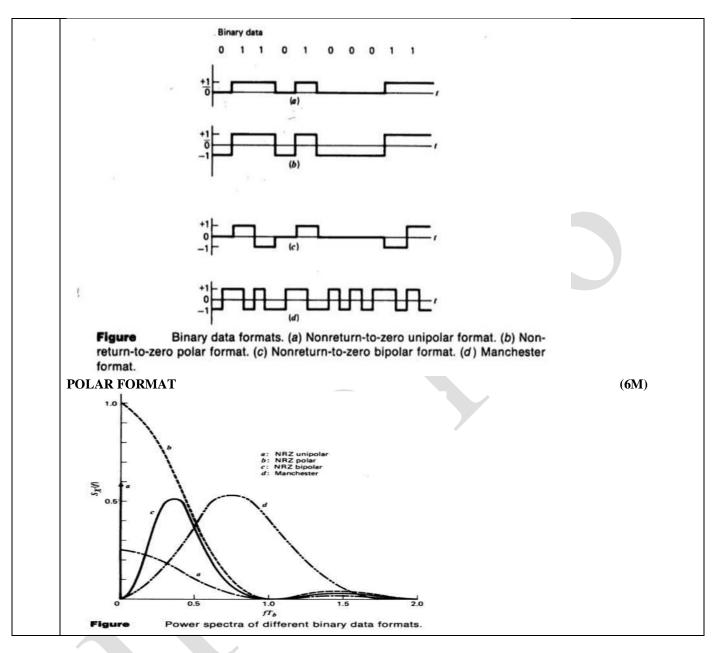
	Sideinformation
	Buffering
	Delay What are the advantages & disadvantage of delta modulator? (MAY/JUNE2016) BTL1
	Advantage:
	Delta modulation transmits only one bit for one sample. Thus the signaling rate and transmission channel bandwidth is
13	quite small for delta modulation. The transmitter and receiver implementation is very much simple for delta modulation. There is no analog to digital
13	converter involved in deltamodulation.
	Disadvantage:
	Poor SNR due to quantisation noise
	It requires more bit rate than PCM for the same S/N performance
	Mention the merits of DPCM. BTL1 Rendwidth requirement of DPCM is loss compared to PCM
14	Bandwidth requirement of DPCM is less compared toPCM. Quantization error is reduced because of predictionfilter
	Numbers of bits used to represent .one sample .value are also reduced compared to PCM.
	Define delta modulation and adaptive delta modulation(NOV/DEC 2015) BTL1
	Delta modulation is the one-bit version of differential pulse code modulation.
	Types of noise in DM or Drawbacks of DM
15	1.Slope Overload noise(Startup error) 2.Granular noise(Hunting)Adaptive delta modulation-The performance of a delta modulator can be improved significantly by making the step
	size of the modulator assume a time- varying form. In particular, during a steep segment of the input signal the step
	size of the modulator assume a time- varying form. In particular, during a steep segment of the input signal the step size is increased. Conversely, when the input signal is varying slowly, the step is reduced, In this way, the step size is
	adapting to the level of the signal. The resulting method is called adaptive delta modulation(ADM).
	Define ADPCM. BTL1
16	It means adaptive differential pulse code modulation, a combination of adaptive quantization and adaptive prediction.
16	Adaptive quantization refers to a quantizer that operates with a time varying step size. The autocorrelation function and power spectral density of speech signals are time varying functions of the respective variables. Predictors for such input
	should be time varying. So adaptive predictors are used.
	What is the main difference in DPCM and DM?BTL4
17	DM encodes the input sample by one bit. It sends the information about + δ or - δ , ie step rise or fall. DPCM can have
17	more than one bit of encoding the sample. It sends the information .about difference between actual sample value and
	the predicted sample value What are the two basis transformers of multiplaying 2 DTL 1
	What are the two basic types of multiplexing? BTL1 • Frequency division multiplexing
10	 Time division multiplexing
18	In FDM many signals are transmitted simultaneously where each signal occupies a different frequency slot within a
	common bandwidth.
	In TDM the signals are transmitted at a time, instead they are transmitted in different time slots.
	Advantages of FDM? BTL1
19	 A large number of signals (Channels) can be transmitted simultaneously FDM does not need synchronization between its transmitter and receiver for proper operation Demodulation
17	of FDM is easy
	 Due to slow narrow band fading only a single channel gets affected
	Applications of FDM? BTL1
20	Telephone systems AM (amplitude modulation) and FM(frequency modulation) radio broadcasting
	TV broadcasting and also first generation of cellular phones used FDM.
21	Compare uniform and non uniform quantisation BTL4
<i>4</i> 1	S.No Uniform Quantisation Non-uniform quantisation

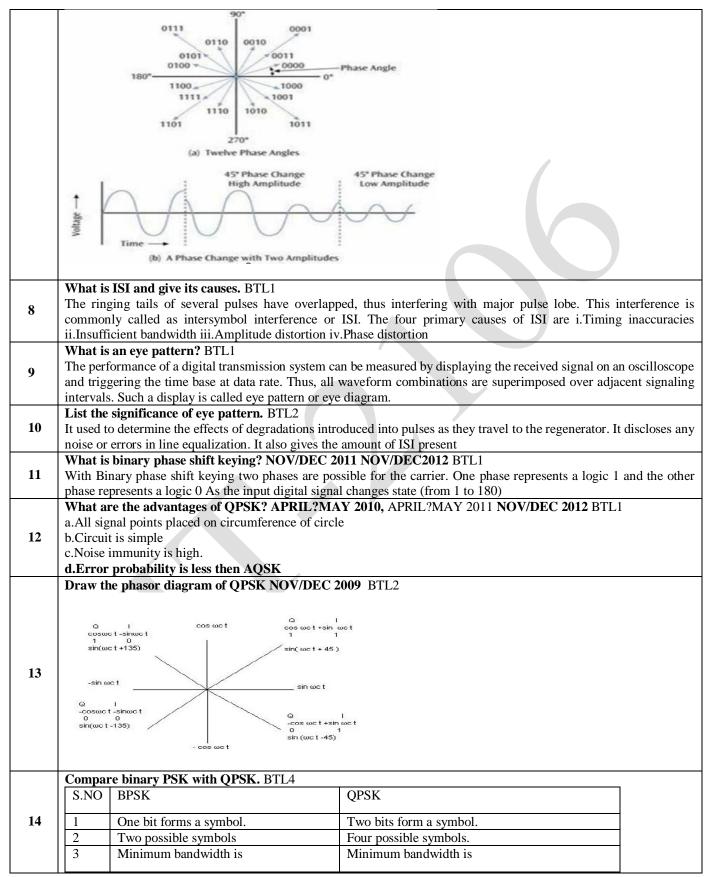

ACADEMIC YEAR: 2019-2020

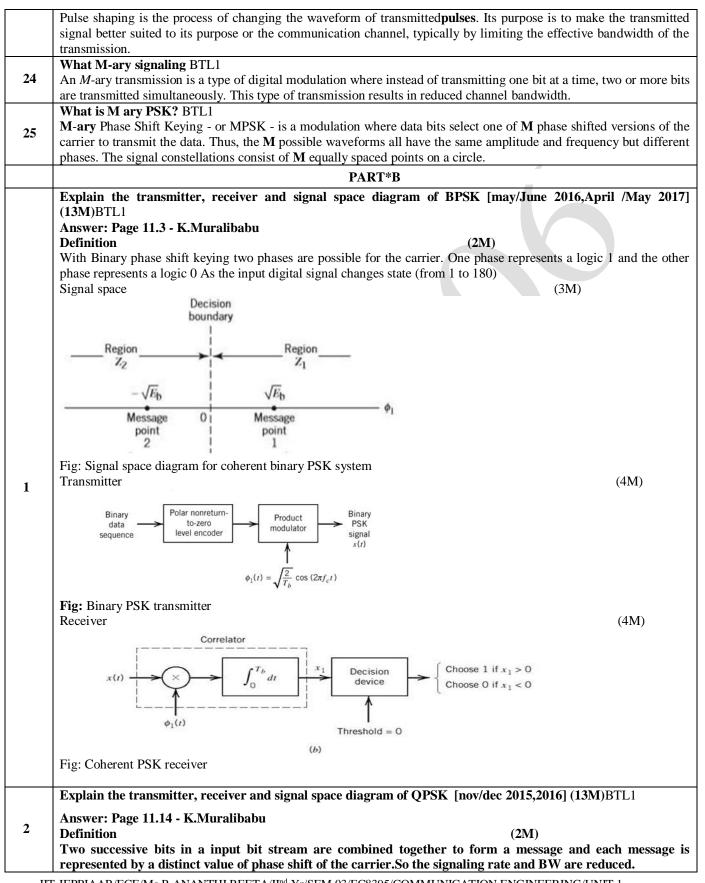

	1	The signal to noise ratio varies with in amplitude		constant with non uniform quantisation	
	2	The quantisation step size remains same thro dynamic range of the signal	0	specific law depending upon amplitude of the input signal	
22	to 3.6K The sig r=v fs v=8bits w=3.6k Samplin r=v*fs=	HZ.Determine the bit rate. BTL4 naling rate in PCM is hz ng freq fs=2W =2*3.6=7.2 KHZ :8*7.2*10 ³ =57.6 bits/sec	el with 8-b	it accuracy.Assume the speech in baseband limited	
		re PCM and DPCM BTL4		DDCM	
	S.NO	РСМ		DPCM	
23	1	Large BW required		BW is less than PCM	
	2	Poor SNR		Good SNR	
	3	Suitable for video, audio and telephony		Suitable for video and speech signal	
		rison between DM and ADM BTL			
	S.NO	DM	AD	M	
24	1	It uses only one bit for one sample		uses only one bit for one sample	
	2	Step size is fixed		cording to the signal variation step size varies	
	3	Lowest bandwidth is required		thest bandwidth is required	
25	Advantage: ▶ One bit per sample is taken ▶ Because of the variable step size, the dynamic range is wide ▶ SNR is better than DM Disadvantage: ▶ Quantisation noise granular noise is present				
	\mathbf{A}	Adaptive algorithm uses complex circuits fo	r modulatio	on and demodulation	
26		e properties of linecodes (April/May 2017) H Transmission Bandwidth : as small aspossib Power Efficiency : As small as possible for oferror Error detection and correction capability :E: Favorable power spectral density :dc=0	ble given BW	and probability	
27	What a Line co form of	ire line codes? Name some popular line code ding refers to the process of representing the b voltage or current variations optimally tuned sical channel beingused. Unipolar (Unipolar NRZ and UnipolarRZ) Polar (Polar NRZ and PolarRZ) Non-Return-to-Zero, Inverted(NRZI) Manchesterencoding	oit stream (1"s and 0"s) in the	
28	Define 2) ii) NRZ iii) NRZ iv) Mat NRZ u	the followingterms BTL1 NRZ unipolar format Z polar format Z bipolar format nchesterformat nipolar format-In this format binary 0 is repr AR/ECE/Ms.R.ANANTHI REETA/II nd Yr/SEM 03			
	JEFTIA	AK/ECE/MS.K.ANANTHI KEETA/II 17/SEM 03 Ver2.0)/EC0373/C	JUMUTUCATION ENGINEERING/UNIT 1-	

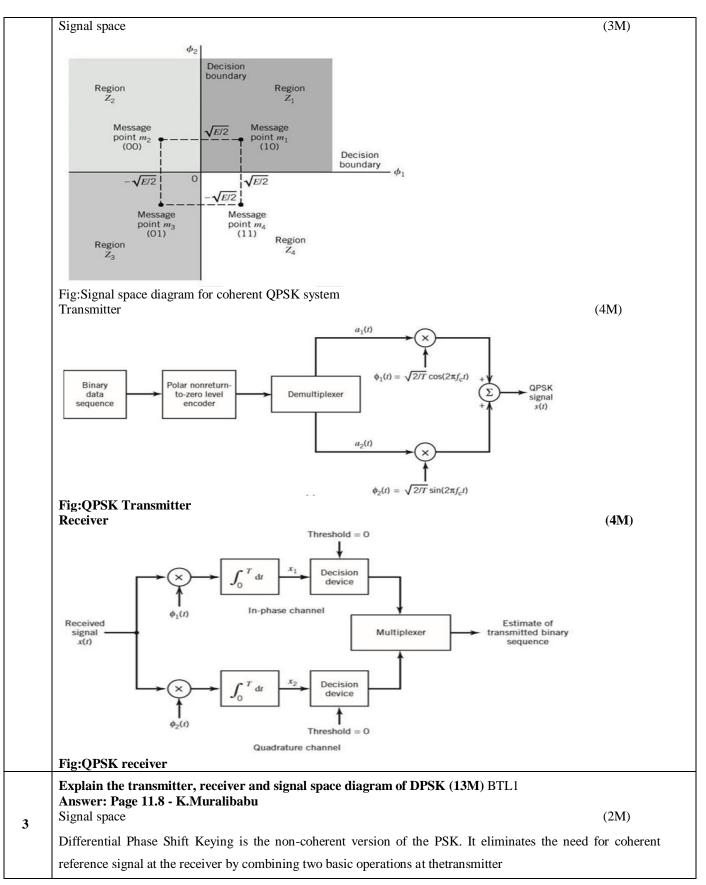


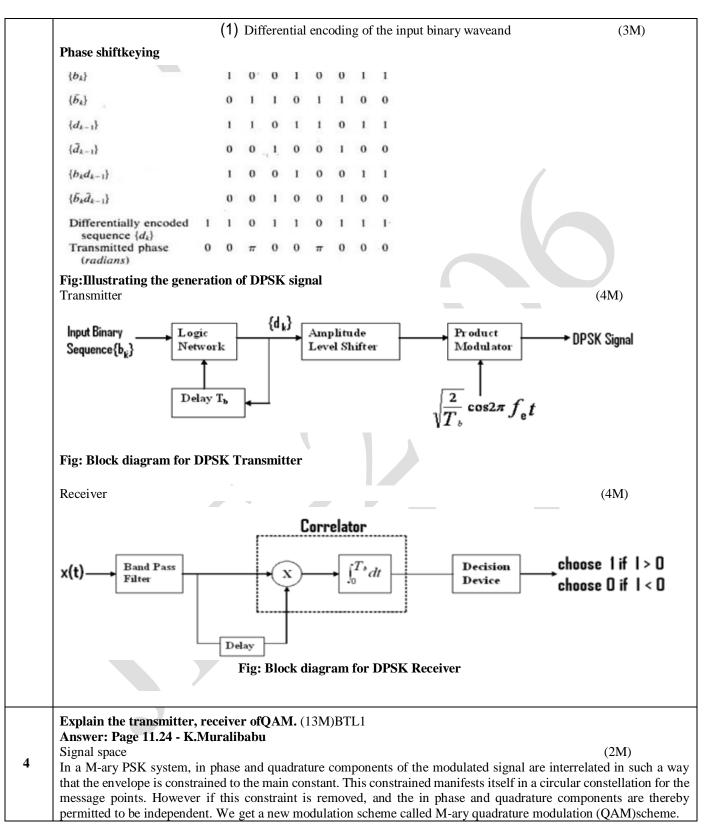
5/QB+Keys/Ver2.0

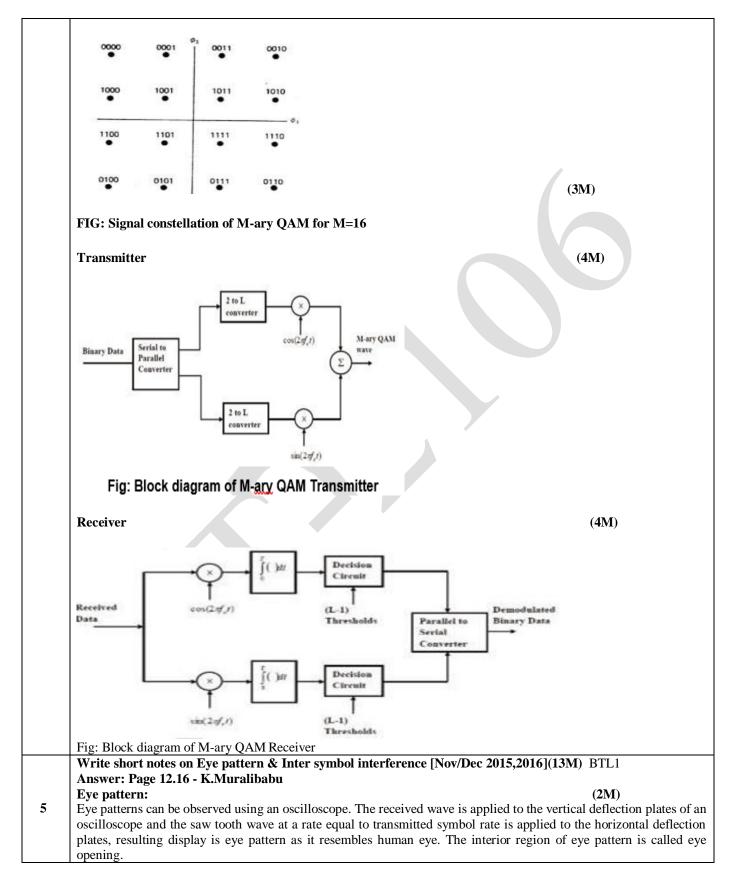


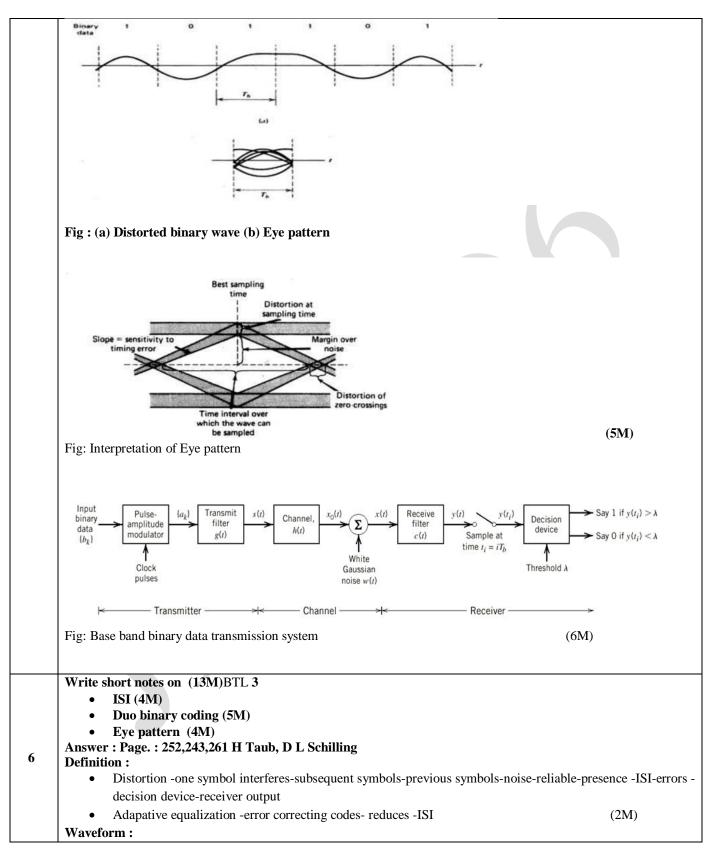

	ADM transmitter – receiver block diagram	(2M+2M)
	Transmitter : logic for step control	(1M)
	• Step size doubled – one bit quantizer output – high	
	• Step size reduced – one bit quantizer output – low	(2M)
	• Receiver : 1.for each incoming bit step size – produced 2. The step size -de	cided- both previous, present
	inputs	(2M)
	 Advantages : SNR better than DM -reduction in slope overload distortion – gra 	
		inutial horse
	Better utilization – BW compared DM	
	Low signalling rate Explain how Adaptive Delta Modulation performs better and gains more	(2M)
	SNR than delta modulation.[Nov/Dec 2016,April/May 2017] (13M)BTL1 Answer: Page 9.10 – K.Muralibabu Definition (2M The performance of the delta modulator can be improved significantly by making	0
	the step size of the modulator (assume time-varyingform).	
	• During a steep segment of the input signal the step size isincreased.	
	• Conversely when the input signal is varying slowly, the step size isreduced.	
	• In this way, the step size is adapted to the level of the input signal is called	
	adaptive delta modulation(ADM).	
	Several ADM schemes to adjust stepsize	
	 Discrete set of values is provided for the stepsize. Continuous range for step size variation isprovided. 	
	2) Continuous range for step size variation isprovided.	
	TRANSMITTER BLOCK DIAGRAM	(4M)
6	Logic for step size control Input $+ \bigcirc e(nT_{*})$ $\overline{x(nT_{*})}$ $\overline{x(nT_{*})}$ $\overline{x(nT_{*})}$ $u[(n-1)T_{*}]$ $\overline{T_{*}}$ Accumulator	
	RECEIVER	(4M)
	Input	
	Advantage and disadvantage	(3M)
	Advantage and disadvantage Adv: low signaling	
	Less complicated	
	Disadv:Slope overload error	
	Granular noise	
	Explain DPCM transmitter andreceiver.(April/May 2017) (13M)BTL1	
7	Answer: Page 9.1 – K.Muralibabu	
	Definition (2M)	

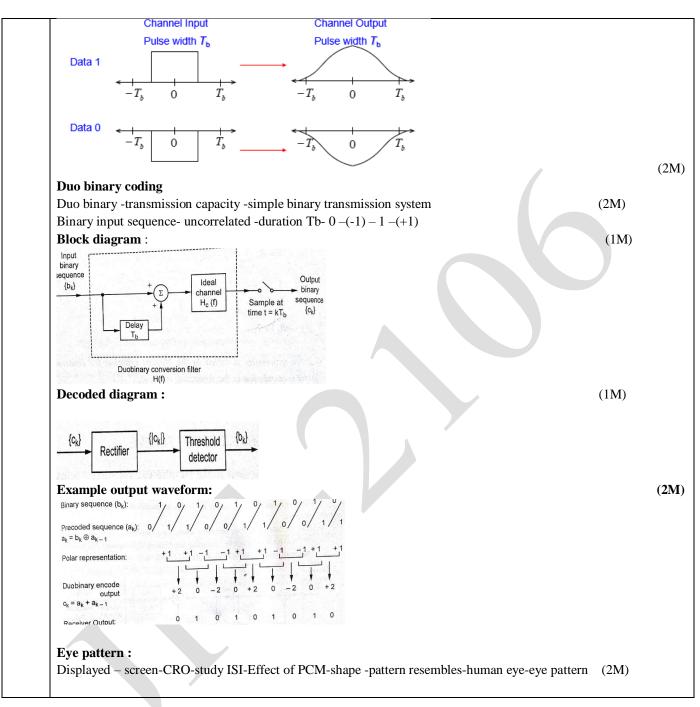


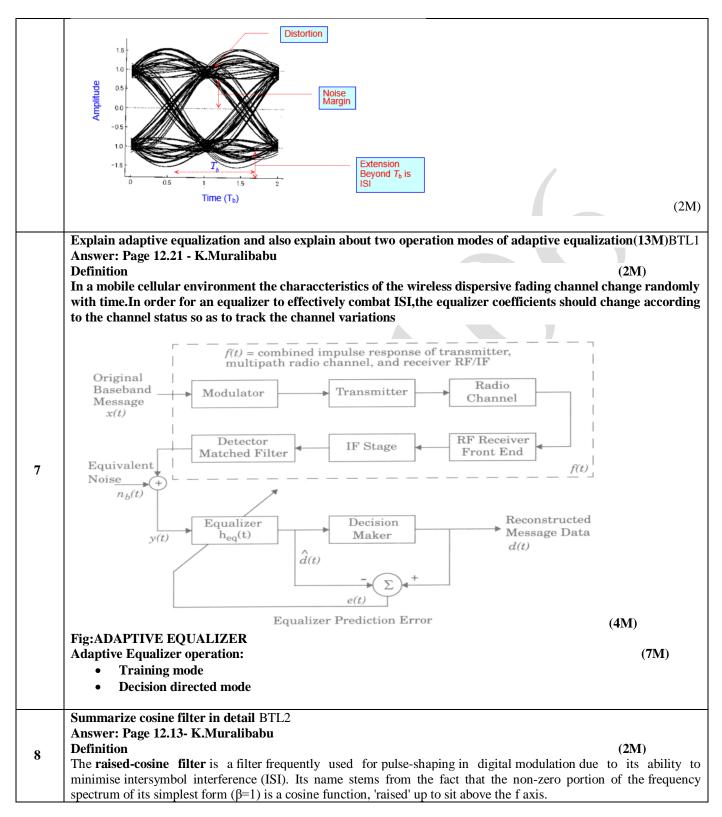


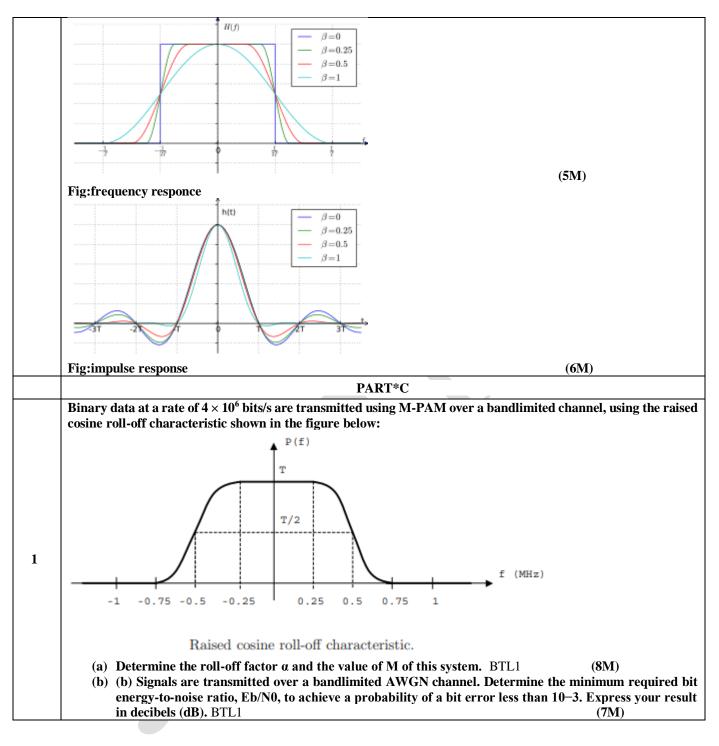

	-	ng – BPSK, DPSK, QPSK – Principles of M-an inary encoding – Cosine filters – Eye pattern	ry signaling M-ary PSK & QAM – Comparison, ISI – Pulse . equalizers	
r		PART*A	, • 1	
1	2016),(N BPSK-F QAM-T separate QPSK-7	(OV/DEC2015),(April/May 2017) BTL4 hase of the carrier is shifted between two values he information carried is contained in both amp information sources modulate the same carrier f	blitude and phase of the transmitted carrier. Signals from two frequency at the same time. It conserves the B.W. is carried in the phase. Phase of carrier takes place on one of	
		ush coherent and non-coherent reception.(Ma		
	S.NO	Coherent detection Local carrier generated at the receiver is phase locked with	Non-coherent detection Local carrier generated at the receiver not be phase locked with the	
2		the carrier at the transmitter.	carrier at the transmitter.	
	2	Synchronous detection	Synchronous detection is not Possible	
	3	Low probability of error	High probability of error	
	4	Complex in design	Simple in design	
3	For a give wave. Ed	ven bit rate 1/Tb, a QPSK wave requires half t	smission bandwidth and bit Information it carries? BTL4 he transmission bandwidth of the corresponding binary PSK a QPSK wave carries twice as many bits of information as the	
4	List out Stereo b Encodin Used inr	the applications of QAM. BTL1 roadcasting of AMsignals g color signals in analog TV broadcastingsystem	1.	
5	Give the two basic operation of DPSKtransmitter. BTL4 Differential encoding of the input binarywave. Phase -shift keying hence, the name differential phase shiftkeying.			
6	The sign	DefineBER [MAY14] BTL1 The signal gets contaminated by several undesired waveforms in channel. The net effect of all these degradations causes error in detection. The performance measure of this error is called Bit error rate.		
7	Draw the constellation diagram of QAM. [NOV 10, MAY 13, NOV14] BTL2			

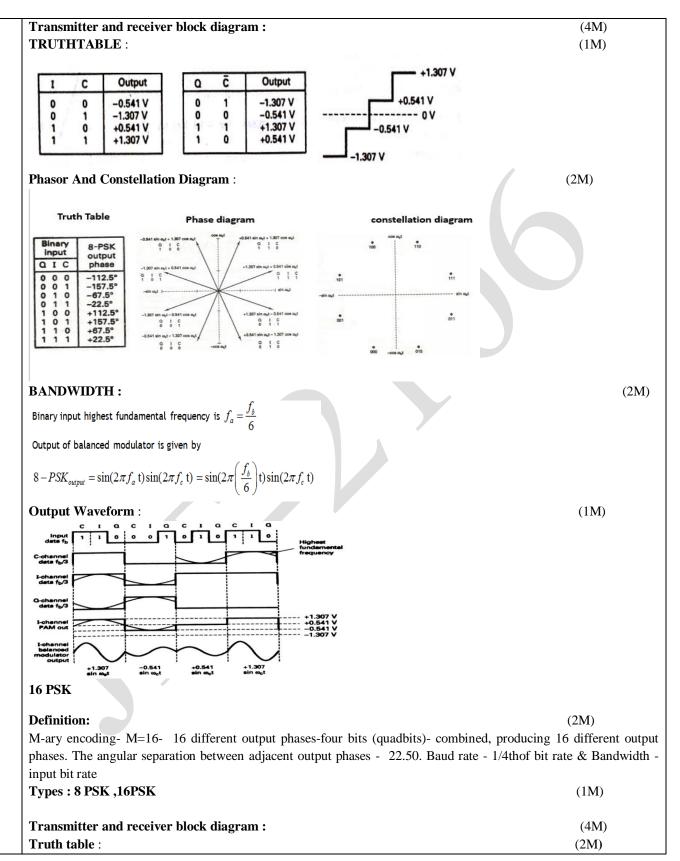


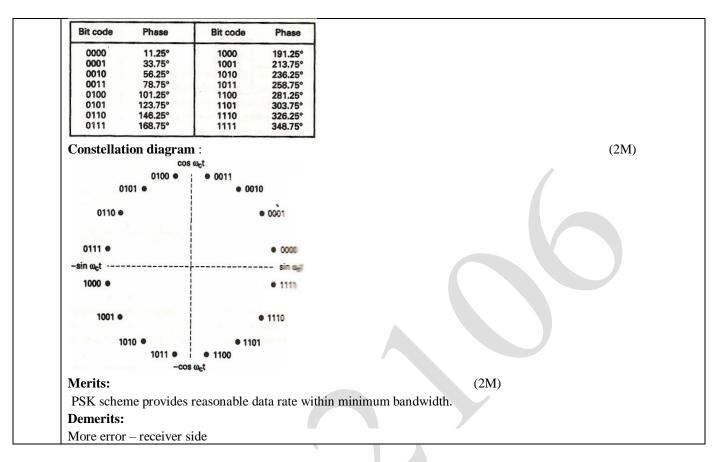

		twice of f b	equal to f b.		
	4	Symbol duration = Tb.	Symbol duration = 2Tb.		
	4	Symbol duration – 10.	Symbol duration – 210.		
	Bring out the difference between DPSK and BPSK. BTL4				
	S.NO	DPSK	BPSK		
	1	It does not need a carrier	It needs a carrier at receiver		
	-	at its receiver			
	2	Bandwidth reduced	More bandwidth.		
15	3	compared to BPSK Probability of error or bit	Commentively law		
	5	error rate more than BPSK	Comparatively low		
	4	Error propagation more,	Comparatively low, since it		
		since it uses two bits for its	uses only single bit		
		reception			
	5	Noise interference more	Comparatively low		
	What a	re the advantages of M-ary signali			
16		signaling schemes transmit bits at a	•		
10	time.				
		dth requirement of M-ary signalin			
		e block diagram of BPSK transmi	tter NOV/DEC 2012 BTL1		
	BPSK	transmitter			
	0 -				
	Binar data	converter Balanced	Bandpass Modulated filter		
17	in	(UP to BP) modulator			
		$\int \sin(\omega_c t)$			
	Buffer				
	$\int \sin(\omega_c t)$				
		Reference			
	Define	Reference carrier oscillator			
18		Reference carrier oscillator	f digital modulation where the digital information is contained in both the		
18	Quadrat	QAM. BTL1 ure amplitude modulation is a form o	f digital modulation where the digital information is contained in both the		
18	Quadrat amplitud	QAM. BTL1 ure amplitude modulation is a form of the transmitted carried	r.		
18	Quadrat amplitud Define i	QAM. BTL1 ure amplitude modulation is a form of the transmitted carrien nter symbol interference (ISI). NO	r. V/DEC 2011 BTL1		
18	Quadrat amplitud Define i The ring	QAM. BTL1 ure amplitude modulation is a form of le and phase of the transmitted carrien nter symbol interference (ISI). NO ging tails of several pulses have overl	r.		
18	Quadrat amplitud Define i The ring common	QAM. BTL1 ure amplitude modulation is a form of le and phase of the transmitted carrien nter symbol interference (ISI). NO ging tails of several pulses have overl	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is		
	Quadrat amplitud Define i The ring common i. Timin ii. Insuff	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO ging tails of several pulses have overlarly called as intersymbol interference g inaccuracies ficient bandwidth	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is		
	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO sing tails of several pulses have overlandly called as intersymbol interference g inaccuracies ficient bandwidth litude distortion	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is		
	Quadrat amplitud Define i The ring commor i. Timin, ii. Insuff iii. Amp iv. Phase	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO ging tails of several pulses have overlady called as intersymbol interference g inaccuracies fricient bandwidth litude distortion e distortion	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are		
	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define d	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO ging tails of several pulses have overlady called as intersymbol interference g inaccuracies ficient bandwidth litude distortion e distortion luo binary system?what are the dr	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are awbacks of it? BTL1		
	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO im	QAM. BTL1 ure amplitude modulation is a form of the and phase of the transmitted carrier nter symbol interference (ISI). NO sing tails of several pulses have overly ally called as intersymbol interference g inaccuracies ficient bandwidth litude distortion e distortion luo binary system?what are the dr applies doubling of the transmission of	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are		
	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO in maximu	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO sing tails of several pulses have overl ally called as intersymbol interference g inaccuracies ficient bandwidth ditude distortion e distortion luo binary system?what are the dr applies doubling of the transmission c m signaling rate.	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are awbacks of it? BTL1		
19	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO im maximu Drawbad	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO ging tails of several pulses have overland and the several pulses have	 by/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is by or ISI. The four primary causes of ISI are awbacks of it? BTL1 apacity of straight binary system. It is a practical means of achieving the 		
19	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO in maximu	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO ging tails of several pulses have overlandly called as intersymbol interference g inaccuracies ficient bandwidth litude distortion e distortion luo binary system?what are the dr uplies doubling of the transmission c m signaling rate. cks: Tails decay rate is faster than Nyqui	T. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are awbacks of it? BTL1 apacity of straight binary system. It is a practical means of achieving the st channel		
19	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO in maximu Drawbad	QAM. BTL1 ure amplitude modulation is a form of de and phase of the transmitted carrier nter symbol interference (ISI). NO ging tails of several pulses have overland and the several pulses have	 by/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are awbacks of it? BTL1 apacity of straight binary system. It is a practical means of achieving the st channel ropagate through the output 		
19	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO in maximu Drawbad > Why do	QAM. BTL1 ure amplitude modulation is a form of the and phase of the transmitted carrier nter symbol interference (ISI). NO ing tails of several pulses have overlandly called as intersymbol interference g inaccuracies ficient bandwidth litude distortion e distortion tuo binary system?what are the dr nplies doubling of the transmission of m signaling rate. cks: Tails decay rate is faster than Nyqui <u>Once errors are made,they tend to p</u> we needadaptive equalization in s	 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are awbacks of it? BTL1 apacity of straight binary system. It is a practical means of achieving the st channel ropagate through the output 		
19 20	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO in maximu Drawbad > Why do The fixe reduce,I	QAM. BTL1 ure amplitude modulation is a form of le and phase of the transmitted carrier nter symbol interference (ISI). NO ing tails of several pulses have overland ing tails of several pulses have overland interference g inaccuracies ficient bandwidth litude distortion e distortion huo binary system?what are the dr inglies doubling of the transmission com signaling rate. cks: Tails decay rate is faster than Nyqui Once errors are made,they tend to p we needadaptive equalization in s ed pair of transmitting and receivin SI.To realize the full transmission can	r. V/DEC 2011 BTL1 apped, thus interfering with major pulse lobe. This interference is or ISI. The four primary causes of ISI are awbacks of it? BTL1 apacity of straight binary system. It is a practical means of achieving the st channel ropagate through the output witched telephone network BTL4		
19 20	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO in maximu Drawbad > Why do The fixe reduce,I Define i	QAM. BTL1 ure amplitude modulation is a form of le and phase of the transmitted carrier nter symbol interference (ISI). NO ing tails of several pulses have overly ally called as intersymbol interference g inaccuracies ficient bandwidth litude distortion e distortion luo binary system?what are the dr applies doubling of the transmission com m signaling rate. cks: Tails decay rate is faster than Nyqui Once errors are made,they tend to po we needadaptive equalization in s ad pair of transmitting and receivin SI.To realize the full transmission cam raised cosine filter BTL1	The st channel ropagate through the output witched telephone network BTL4 g filters used in an average channel characteristics may not adequately pability of a telephone channel, there is a need for adaptive equalization		
19 20	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO im maximu Drawbad > Why do The fixe reduce,I Define I It is a	QAM. BTL1 ure amplitude modulation is a form of le and phase of the transmitted carrier nter symbol interference (ISI). NO ing tails of several pulses have overlady called as intersymbol interference g inaccuracies ficient bandwidth ditude distortion e distortion luo binary system?what are the dr mplies doubling of the transmission com m signaling rate. cks: Tails decay rate is faster than Nyqui Once errors are made,they tend to po we needadaptive equalization in s ad pair of transmitting and receivin SI.To realize the full transmission cam raised cosine filter BTL1 filter frequently used for pulse-shaa	The second state of the output system. It is a practical means of achieving the second state of the second		
19 20 21	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase Define o DUO im maximu Drawbad > Why do The fixe reduce, I Define r It is a interfere	QAM. BTL1 ure amplitude modulation is a form of le and phase of the transmitted carrier nter symbol interference (ISI). NO sing tails of several pulses have overl ally called as intersymbol interference g inaccuracies ficient bandwidth litude distortion e distortion luo binary system?what are the dr applies doubling of the transmission com m signaling rate. cks: Tails decay rate is faster than Nyqui <u>Once errors are made, they tend to p</u> we needadaptive equalization in s ad pair of transmitting and rreceivin SI.To realize the full transmission ca raised cosine filter BTL1 filter frequently used for pulse-shapence. Its name stems from the fact that	 apped, thus interfering with major pulse lobe. This interference is a or ISI. The four primary causes of ISI are awbacks of it? BTL1 apped, this interference is a practical means of achieving the st channel ropagate through the output witched telephone network BTL4 g filters used in an average channel characteristics may not adequately pability of a telephone channel, there is a need for adaptive equalization apping in digital modulationdue to its ability to minimize intersymbol at the non-zero portion of the frequency spectrum of its simplest form is a 		
19 20 21	Quadrat amplitud Define i The ring commor i. Timin ii. Insuff iii. Amp iv. Phase DUO in maximu Drawbad > Why do The fixe reduce,I Define I It is a interfere cosine fi	QAM. BTL1 ure amplitude modulation is a form of le and phase of the transmitted carrier nter symbol interference (ISI). NO ing tails of several pulses have overlady called as intersymbol interference g inaccuracies ficient bandwidth ditude distortion e distortion luo binary system?what are the dr mplies doubling of the transmission com m signaling rate. cks: Tails decay rate is faster than Nyqui Once errors are made,they tend to po we needadaptive equalization in s ad pair of transmitting and receivin SI.To realize the full transmission cam raised cosine filter BTL1 filter frequently used for pulse-shaa	 apped, thus interfering with major pulse lobe. This interference is a or ISI. The four primary causes of ISI are awbacks of it? BTL1 apped, this interference is a practical means of achieving the st channel ropagate through the output witched telephone network BTL4 g filters used in an average channel characteristics may not adequately pability of a telephone channel, there is a need for adaptive equalization apping in digital modulationdue to its ability to minimize intersymbol at the non-zero portion of the frequency spectrum of its simplest form is a 		





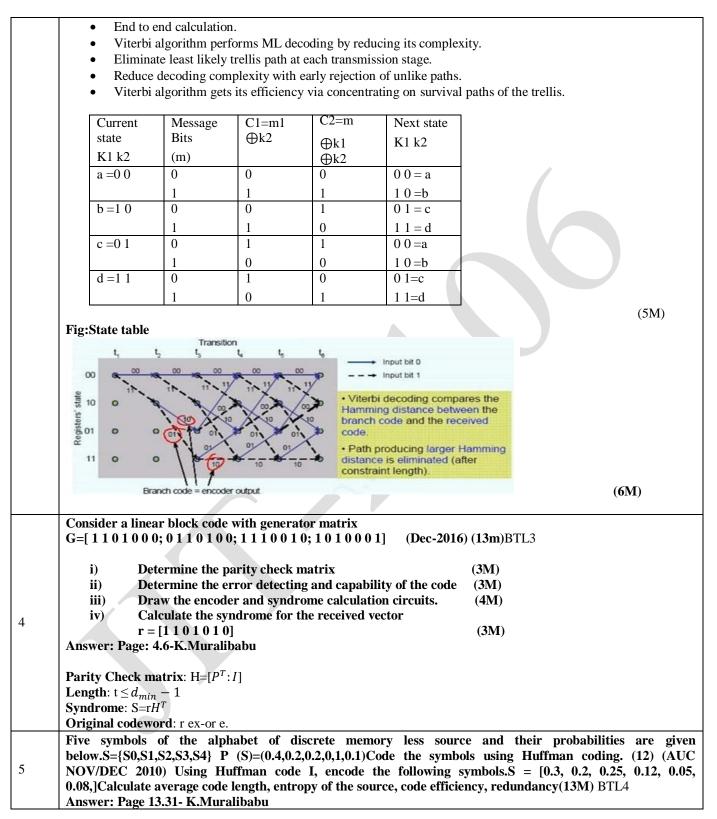


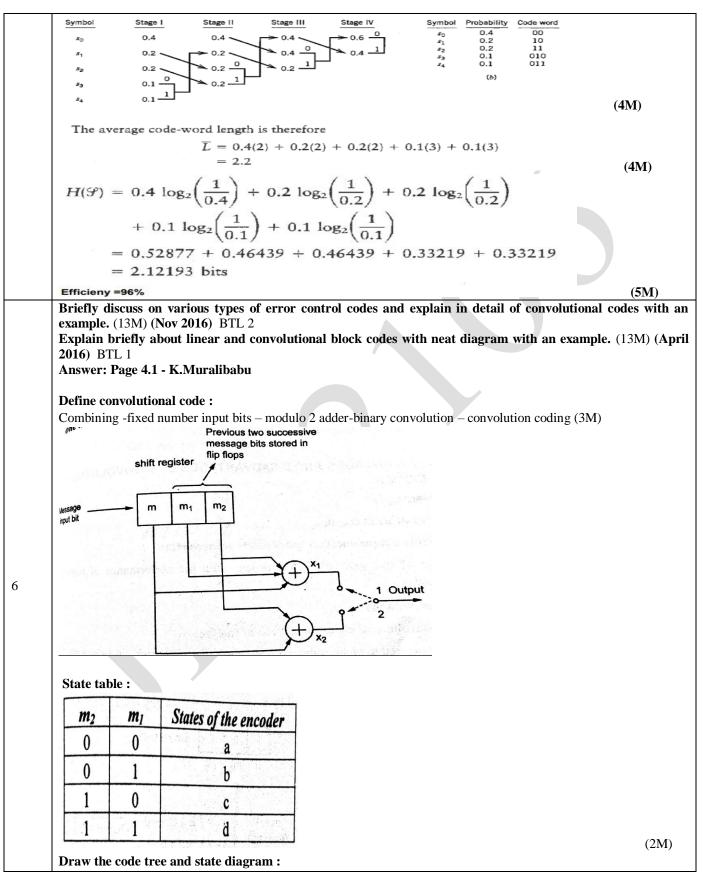


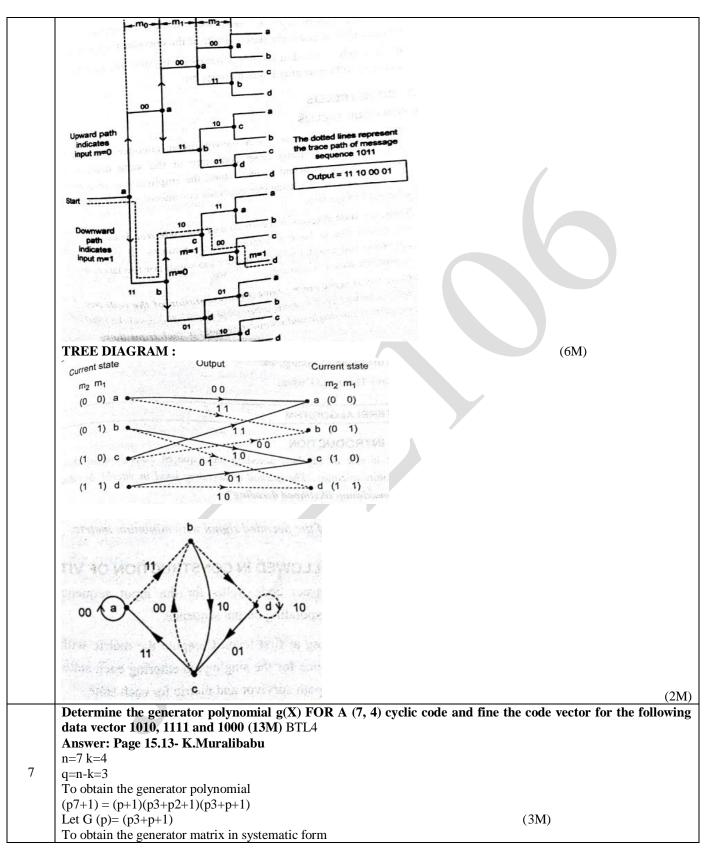


	Solution:
	 (a) R_b = 4 Mbits/s. Note that 1/2T = 0.5 MHz, the point of symmetry of the raised cosine. As a result, 1/T = 1 MHz. Since R_b = 1/T_b = log₂ M (1/T), it follows that log₂ M = 4 and therefore M = 16. To find the roll-off factor, note that 2α(1/2T) = 0.75 - 0.25 = 0.5 MHz (the region of
	the cosine characteristic) and therefore, with $1/2T = 0.5$ MHz, we obtain $\alpha = 0.5$.
	(b) The probability of a bit error for <i>M</i> -PAM is
	$P[\epsilon] = \frac{M-1}{M} Q\left(\sqrt{\frac{6\log_2 M}{M^2 - 1}} \frac{E_b}{N_0}\right).$
	For $M = 16$, $P[\epsilon] = \frac{15}{16} Q\left(\sqrt{\frac{24}{255} \left(\frac{E_b}{N_0}\right)_{\min}}\right) < 1 \times 10^{-3}$
	From the table of the Q-function, we have $Q(3.07) = 0.0011$. Therefore,
	$\sqrt{\frac{8}{85} \left(\frac{E_b}{N_0}\right)_{\min}} = 3.07 \longrightarrow \left(\frac{E_b}{N_0}\right)_{\min} = \frac{85}{8} (3.07)^2 = 100.14 = 20 \text{ dB}$
	In a digital communication system, the bit rate of a bipolar NRZ data sequence is 1 Mbps and carrier frequency
	is 100 MHz. Design by determining the symbol rate of transmission and the bandwidth requirement of the communications channel for BPSK,QPSK & DPSK System. (15M)BTL6
	SOLUTION: Given (3M) fb=1MBPS=1*106 The 1/0 + 10*106
	Tb=1/fb=1/2*106
2	BPSK BW ^{=2f} b
	Symbol rate= $1/T_b$ (4M)
	$\begin{array}{l} QPSK\\ BW=f_b\\ Symbol \ rate=1/2T_b \end{array} \tag{4M} \end{array}$
	DPSK
	BW=2fb Symbol rate=1/T _b (4M)
	Describe in detail about the operation of M ary- PSK(any one type) with neat diagram (15M) BTL1
	Answer : Page: (11.20-Murali babu. K) Definition : (2M)
3	Signal modulation technique - eight levels - phase shifts -supports three bits per symbol- 8-PSK, (n=3, M=8) to produce eight different phases- incoming bits - encoded in group -three- called tribits- producing eight different output
	phases. Types : 8 PSK ,16PSK (1M) 8PSK :

	UNIT IV INFORMATION THEORY AND CODING 9		
Chann	Measure of information – Entropy – Source coding theorem – Shannon–Fano coding, Huffman Coding, LZ Coding – Channel capacity – Shannon-Hartley law – Shannon's limit – Error control codes – Cyclic codes, Syndrome calculation – Convolution Coding, Sequential and Viterbi decoding		
	PART*A		
Q.No	Questions		
	Define entropy(Nov-Dec 2014) BTL1		
1	The entropy of a source is a measure of the average amount of information per source symbol in a long message.		
	$H = \sum_{i=1}^{\infty} pi \log 2\left(\frac{1}{pi}\right)$		
	State the properties of entropy. BTL1		
2	a) For sure event or impossible event entropy is zero.b) For M number of equally H max = log 2 M likely symbols, entropy is log2 M		
	c) Entropy is lower bound on average number of bits per symbols.		
	Define information rate BTL1		
2	If the message generated from source at the rate of r message per second, the information rate is defined as		
3	R=rH		
	Average no of bits of information per second		
	Define coding efficiency BTL1		
4	Coding efficiency is defined as the ratio of minimum of average code word length and average code word length		
	H=Lmin/L'		
	What is mutual information?(Apr-May 2015) BTL1		
5	It is defined as the amount of information transferred when Xi is transmitted and Yi is received. It is represented by I(Xi,Yi)		
	The average mutual information is defined as the amount of source information gain per received symbol		
	What is channel capacity? BTL1		
6	Channel capacity is defined as the maximum of the mutual information that may be transmitted through		
0	the channel.		
	$C=\max I(X;Y)$		
_	Define code rate BTL1		
7	The ratio k/n is called code rate. It is denoted as r R= k/n where r<1.		
	 What are the errors controls coding? BTL1 Linear block codes 		
8	Cyclic codes		
	Convolution codes		
	Find out the hamming distance and hamming weight of a given code C1= 1001, C2= 1010 BTL4		
	Hamming distance:		
	$\begin{array}{c c} D(C1,C2)=1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & & =2 \end{array}$		
9			
	Hamming weight:		
	C1=2		
	C2=2 Define hamming distance and hamming weight. BTL1		
10	The Hamming distance $d(C1,C2)$ between such a pair of code vectors is defined as the number of locations in which		
	their respective elements differ. The hamming weight of a code vector C is defined as the number of non zero elements		

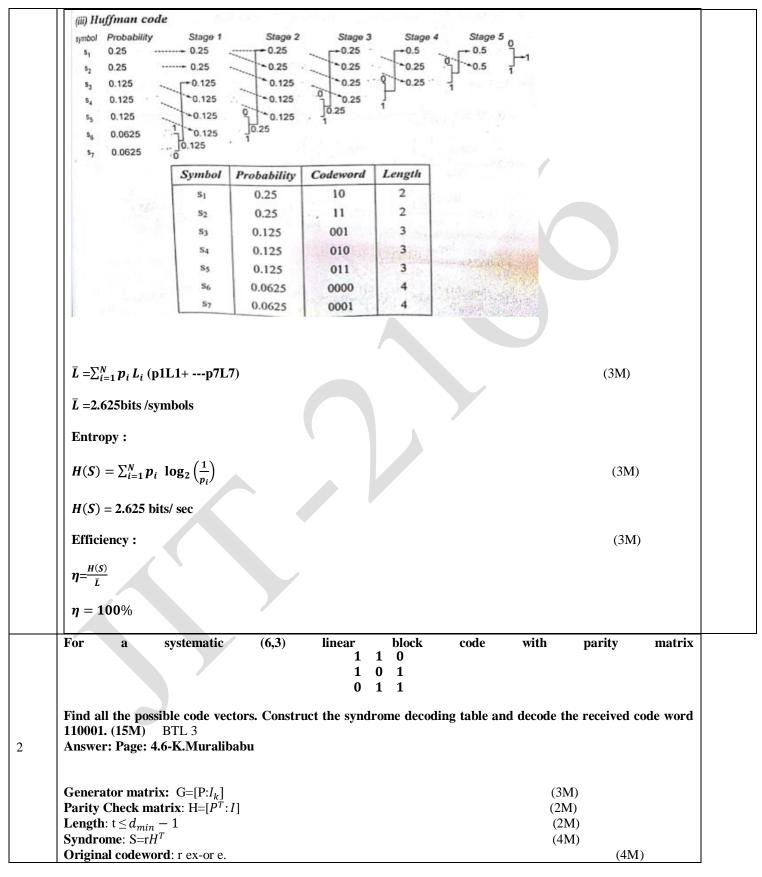

	in the code vector.
	What is information theory? BTL1
11	Information theory deals with the mathematical modelling and analysis of a communication system rather than
	with physical sources and physical channels.
12	Define bandwidth efficiency. (MAY/JUNE-2010) (NOV/DEC-2010) BTL1 The ratio of channel capacity to bandwidth is called bandwidth efficiency. i.e,Bandwidth
13	What is channel redundancy? BTL1
	Redundancy (γ) = 1 – code efficiency Redundancy should be as low as possible
	Name the two source coding techniques. BTL2
	The source coding techniques are,
14	a) Prefix coding
	b) Shannon-fano coding
	C) Huffman coding
	Give the expressions for channel capacity of a Gaussian channel.(MAY/JUNE 2016) BTL2
	Channel capacity of a Gaussian channel is given as, $C = B \log 1 + S^2$
15	bits / sec N Here B is Channel bandwidth
	S is signal power
	N is total noise power within the channel bandwidth.
16	What is prefix code? BTL1 In prefix code, no code word is the prefix of any other code word. It is variable length code. The binary digits
	(code words) are assigned to the messages as per their probabilities of occurrence.
	State Shannon Hartley theorem of channel capacity.(MAY/JUNE 2013,2014) (NOV/DEC 2011. 2013,2014,
	NOV/DEC 2016) BTL3
	The channel capacity of a additive Gaussian noise channel.
17	C=Blog2(1+S/N)
	Where
	B-channel bandwidth
	S/N -Signal to Noise ratio State source coding theorem.(nov/dec2015) BTL3
	The source coding theorem shows that it is impossible to compress the data such that the code rate (average number
18	of bits per symbol) is less than the Shannon entropy of the source, without it being virtually certain that information
	will be lost. However it is possible to get the code rate arbitrarily close to the Shannon entropy, with negligible
	probability of loss.
	What is the entropy of a binary memory-less source? BTL1
19	The entropy of a binary memory-less source $H(X)=-p_0 \log_{2p_0-(1-p_0)}\log_{2(1-p_0)}p_0$ probability of symbol, 0", p1=(1-p_0) \log_{2p_0-(1-p_0)}\log_{2p_0-(1-p_0)}p_0
	p0) =probability of transmitting symbol "1".
	List the properties of Hamming distance. (NOV/DEC 2014) BTL1
20	The Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as
	it fulfills the conditions of non-negativity, identity of indiscernibles and symmetry, and it can be shown by complete
	induction that it satisfies the triangle inequality as well.
	State the property of entropy.(May/June 2015) BTL3
21	1. $\text{Log}M \ge H(x) \ge 0$
	2. $H(X) = 0$ if all probabilities are zero
	3. $H(X) = \log_2 M$ if all probabilities are equal
	Give the relation between the different entropies. BTL4
22	H(X,Y)=H(X)+H(Y/X)=H(Y)+H(X/Y)
	H(X)- entropy of the source(Y/X), $H(X/Y)$ -conditional entropy $H(Y)$ -entropy of destination
	H(X,Y)- Joint entropy of the source and destination
L	In the source and destinution


-										
	Define viterbi	coding BTL1								
23						d of thedigital data rect them at the rece	transmission. With the			
	Define L-Z cod	ling BTL1								
	Lempel-Ziv Sou	arce Coding								
24	order to encode ASCII character symbol are neer widely used Un used L-Z, or clo	on of these phras r of 8 binary digit ded. Typically the ix file compressi- osely related enco- so (optionally) be	ses one need s. (Actually of e compression on utility con ding. • LZ be	s only A binar only 7 are need on is about 2:1 mpress as well ecame very wi	y digits. • Norm led) • Using L-Z or 3:1. • Varian l as gzip. Severa dely used when	ally, a computer sto Z encoding, far less ints of L-Z codes wa al other popular con it became part of th	der and the decoder) in ores each symbol as an than 7 binary digits pe as the algorithm of the npression utilities also the GIF image format in Z codes. We will only			
	Define syndror	ne calculation B	ΓL1							
25	A parity and/or multi-channel d bytes are intend of m bits in seri the Galois field	syndrome genera igital data commu led to be digitally al order of signific	ator generate unication sys encoded in cance in the lois field bei	tem using a lin n by m bit data form of a code ng defined by	near code or a c a blocks to form word having n e an m-order fiel	oset of such code ir a respective codew lements represented d generator polynor	brrection of errors in a which data and parity yord in n parallel bytes by respective bytes in nial in integral powers			
		by convolution of								
26	rate $R_{code} = k / n$		ength K of a				/2. In general, the <i>code</i> ifts over which a single			
	-		P	ART*B						
	efficiency for (a Refer model: A	a)Shannon fano Answer: Page 13.	coding (b) Ĥ 16- K.Mura	luffman codir libabu	ng.(Nov/Dec 20		m5=0.15 find codinş			
	$H=\sum_{i=1}^{\infty}pi$	$log2(\frac{1}{p_i})$								
	=0.4	$H = \sum_{i=1}^{\infty} p i \log 2\left(\frac{1}{p_i}\right)^{n}$ = 0.4 log $\chi(1/0.4) + 4 \times 0.15 \log_2(1/0.15)$								
	=2.171 bits (2M)									
	(a)Shannon fano coding (4M)									
	Message	Probability	I	II	III	No of	Code			
	incosuge	Trobublinty	1	n		bits	Word			
1	m1	0.4	0	0		2	00			
1	m 2	0.15	0	1		2	01			
	m 3	0.15	1	0	0	3	100			
	m 4	0.15	1	0	1	3	101			
	m 5	0.15	1	1		2	11			
			code word le 3 bits.	$=0.48 \times 2$		15+3×0.15+2×0.15 (2M)				
	Coding efficien	CV = <u>Average infor</u>	mation/messo	$\frac{1}{2} = \frac{2.17 \text{ bits}}{2}$	= 0.9439=94.39	1%	(2M)			
	C		code length	2.3bits	5.7 107-7 1.07		· · ·			
	b)Huffman codi	mg					(2M)			


}

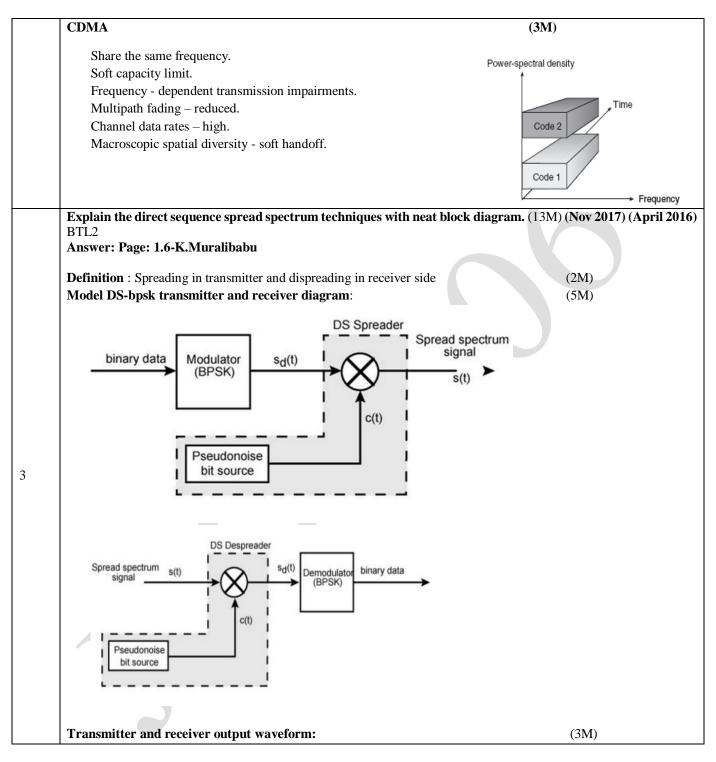
ACADEMIC YEAR: 2019-2020

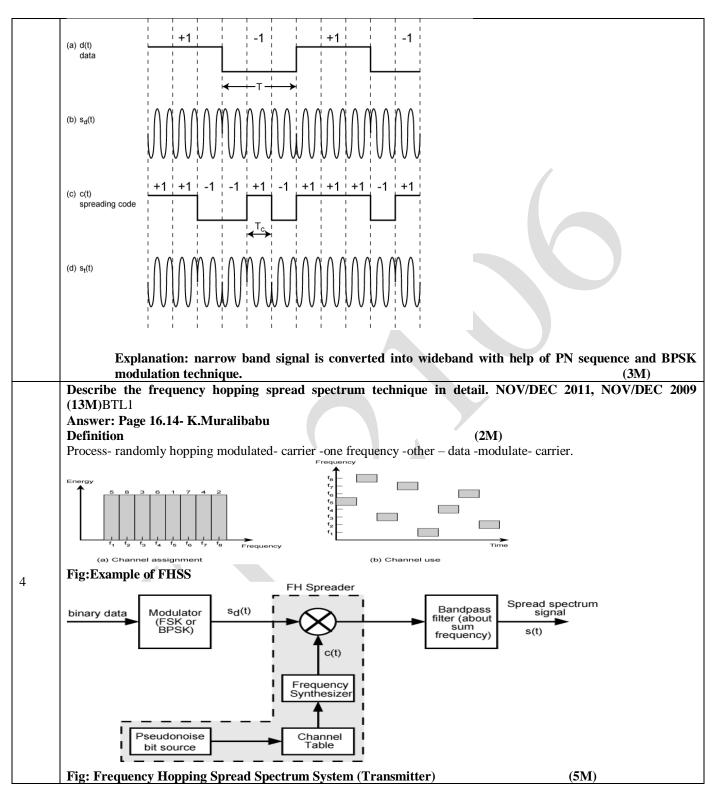
	Message	Probability	I	II	III	IV	Code	
							word	
	m1	0.4	0.4	0.4	0.4	0.6_0	1	
	m 2	0.15	0.15	0.3	0.30	0.4 1	000	
	m 3	0.15	0.15	€0.15 B	0.3 1		00	
	m 4	0.15	0.15 0	0.15			010	
	m 5	0.15	0.15)			011	
		$\sum_{k=0}^{k-1} lkpk$ =0.4×1+4×0.1 =2.2 bits.	5+3					(2M)
	Coding efficient	$cy = \frac{2.17bits}{2.2bits} = 0.9$	9868=98.689	%				(1M)
	Answer: Page 2 Shannon's secon Need for channer Presence -noise-	discrepancies – o	abu nannel codir putput and in	ng theorem put data sequ	ience			3M)
		= 9 out of 10 tran $= 10^{-6} \text{ even low}$			- level of re	liability		
		$= 10^{-2} - even lovance -digital comr$			nel noise		(3	M)
2	Discrete memoryless source Trensmi	Channel encoder	Discrete memoryless channel Noise	Chan		Destination		
	Code rate :							
	$r = \frac{k}{n} = \frac{No \ of \ messa}{no.of \ bit.}$	ges bits in a block s in code word	< 1				(1)	M)
	Average inform						(1	M)
	$=\frac{H(S)}{T_S}$ bits/sec							
	Channel capaci	ty per units :					(1)	M)
	$=\frac{c}{T_c}$ bits/sec						× ×	,
	T _C Statement :						(21	N)
		urce output -trans	mitted - ove	r _channel_r	econstructed	l_small prot		(1)
	$T_S \simeq T_C$ (so	aree output -irans				i sinan prot	adinty (1101)	
		possibility -trans						M)
	Explain how v BTL1	iterbi's decodin	g procedur	e is used	for decodiı	ng convolu	ition codes. (A	Apr/may 2015)(13M)
3		5.28- K.Muralib	abu					
	• ML alg	ORITHM. orithm is too com	nlex to searc	h all availab	le naths			(2M)
L		/Is.R.ANANTHI RE						

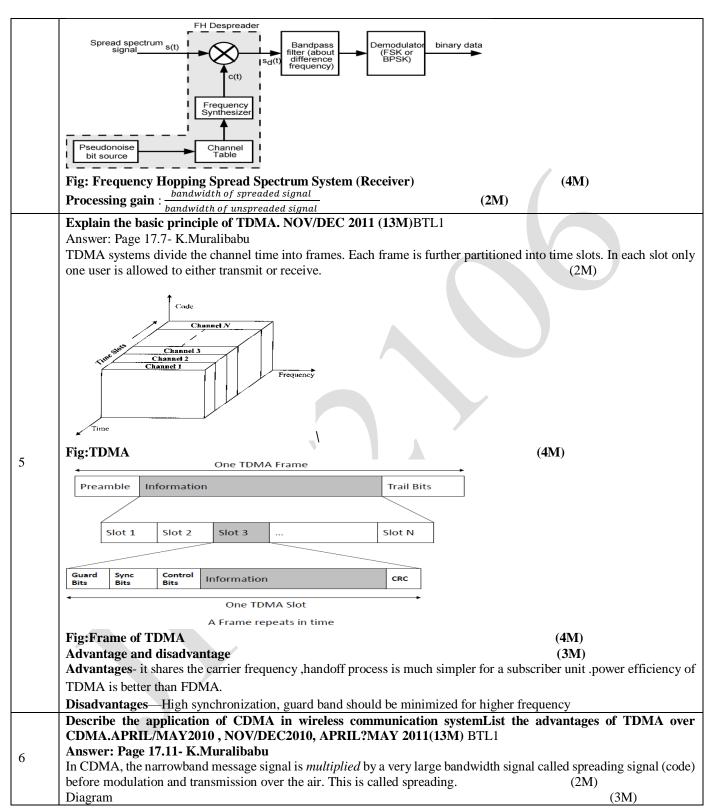


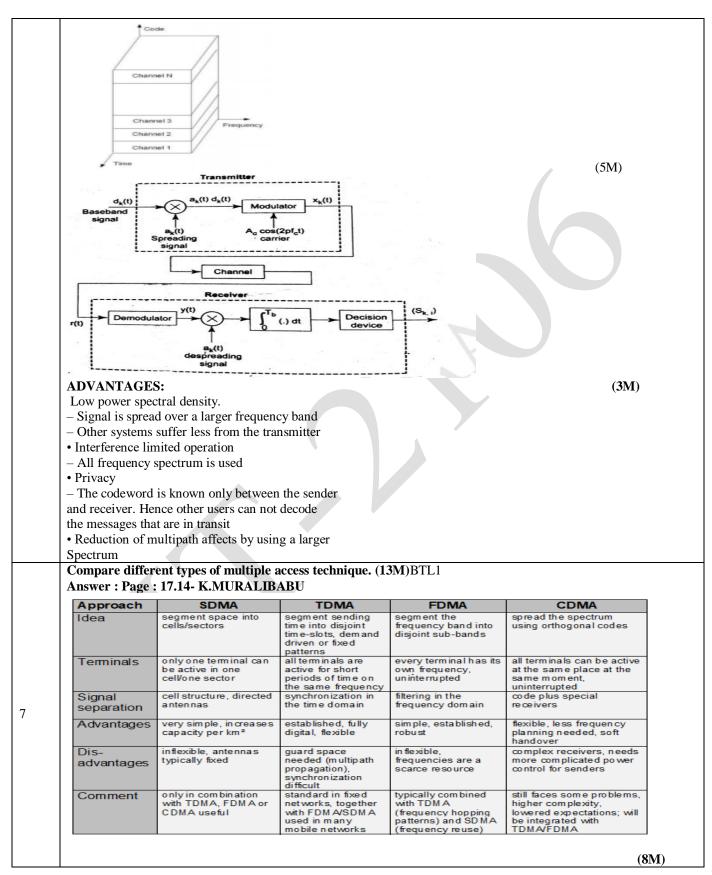
	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$	
	$G = \begin{bmatrix} 0 & 1 & 0 & 0 & : & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & : & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & : & 0 & 1 & 1 \end{bmatrix}$	
	To determine the code vector	
	1. code vector for M=1010	
	X=MG X=[1010011]	(3 M)
	2. code vector for M=1111	
	X=MG	
	X=[111111]	(3M)
	3. code vector for M=1000	
	X=MG	
	X=[1000101]	(4M)
	What are cyclic codes. Explain the merits and demerits Give the properties (2010) (13M)BTL1	of cyclic codes. (AU- May/June
	Answer: Page 15.10- K.Muralibabu	
	Definition	(2M)
	Cyclic codes forms as subclass of linear block code.	
	Properties of cyclic code 1. Linearity property.	(5M)
	The sum of two code word in the code is also a code word.	
	2.Cyclic property	
	$(c_{n-1}, c_0, \ldots, c_{n-2}),$ $(c_{n-2}, c_{n-1}, \ldots, c_{n-3}),$	
	$(c_{n-2}, c_{n-1}, \ldots, c_{n-3}),$	
	•	
8	$(c_1, c_2, \ldots, c_{n-1}, c_0)$	
°,	A cyclic shift of a code word in the code is also a code word.	
	GENERATOR POLYNOMIAL $C(\mathbf{X}) = c_1(\mathbf{X}) c_2(\mathbf{X})$	
	C(X) = a(X) g(X)	
	Encoding procedure	(4M)
	Encoder of cyclic code	
	Switch	
	$\begin{pmatrix} g_1 \end{pmatrix} \begin{pmatrix} g_2 \end{pmatrix} \begin{pmatrix} g_{n-k-1} \end{pmatrix}$	
	$p_0 + + p_1 + p_2 + \dots + p_{n-k-1} + + +$	
	n-k shift register stages Output	
	$\mathbf{v}_{(X)}$	
	m(X) o Switch 2	

	ve	eived → ++ ctor → +++	+	Switch 1	witch Synd 2 out			
dv an	d disadv						(2M)	
			PA	RT*C				
-		1					of occurrence	
	Symbol Probabilit	S1 0.25	<u>S2</u> 0.25	S3 0.125	S4 0.125	85 0.125	S6 0.0625	S7 0.0625
Shann		ng & Huffa	i Babu aman coding :				(6M)	
Shann Shann	on fano codi on Fano Co ols Probability	ng & Huffa de V Stage 1	aman coding :	Stage 3	Stage 4 CV		(6M)	
Shann Shann Symbo	on fano codi on Fano Co ols Probability	ng & Huffa de Stage 1	aman coding : Stage 2			0 2	(6M)	
Shann Shanno Symbo Symbo	tion fano codi on Fano Co- ols Probability 0.25 0.25 0.125	ng & Huffa de y Stage 1 0.5 0 0]	Stage 2 0.25 0 0.25 1		0	0 2 1 2	(6M)	
Shann Shann Symbo Symbo S ₁ S ₂	tion fano codi an Fano Co- als Probability 0.25 0.25 0.125 0.125	ng & Huffa de y Stage 1 0.5 0 0] 1 1	Stage 2 0.25 0 0.25 1 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0	Stage 3 125 0 125 1	0	0 2 1 2 10 3	(6M)	
Shann Shanno Symbo S ₁ S ₂ S ₃	$\begin{array}{c} \text{for fano codi}\\ \text{for fano Collow}\\ \text{for fano Collow}\\ \text{for fano Collow}\\ \text{for fano Collow}\\ 0.25\\ 0.25\\ 0.125\\ 0.125\\ 0.125\end{array}$	ng & Huffa de y Stage 1 0.5 0 0] 0.5 0] 0]	Stage 2 0.25 0 0.25 1 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0	Stage 3	0	0 2 1 2 10 3 11 3	(6M)	
Shanno Symbo S1 S2 S3 S4	ton fano codi on Fano Co ols Probability 0.25 0.125 0.125 0.125 0.125 0.125	ng & Huffa de y Stage 1 0.5 0 0 0 1 1 1 1	Stage 2 0.25 0 0.25 1 0.25 1 0.25 0 0.1 0.25 0 0.25 0 0.25 1	Stage 3 125 0 125 1	00 0 10 10 11	0 2 1 2 10 3 11 3 0 3	(6M)	
Shann Symbo Symbo S1 S2 S3 S4 S5	ton fano codi on Fano Co ols Probability 0.25 0.125 0.125 0.125 0.125 0.0625	ng & Huffa de y Stage 1 0.5 0 0 0 1 1 1 1	Stage 2 0.25 0 0.25 1 0.25 1 0.25 0 0.1 0.25 0 0.25 0 0.25 1	Stage 3 125 0 125 1 125 0 1 0.06	0 0 10 10 11 25 0 11	0 2 1 2 10 3 11 3 0 3 10 4	(6M)	

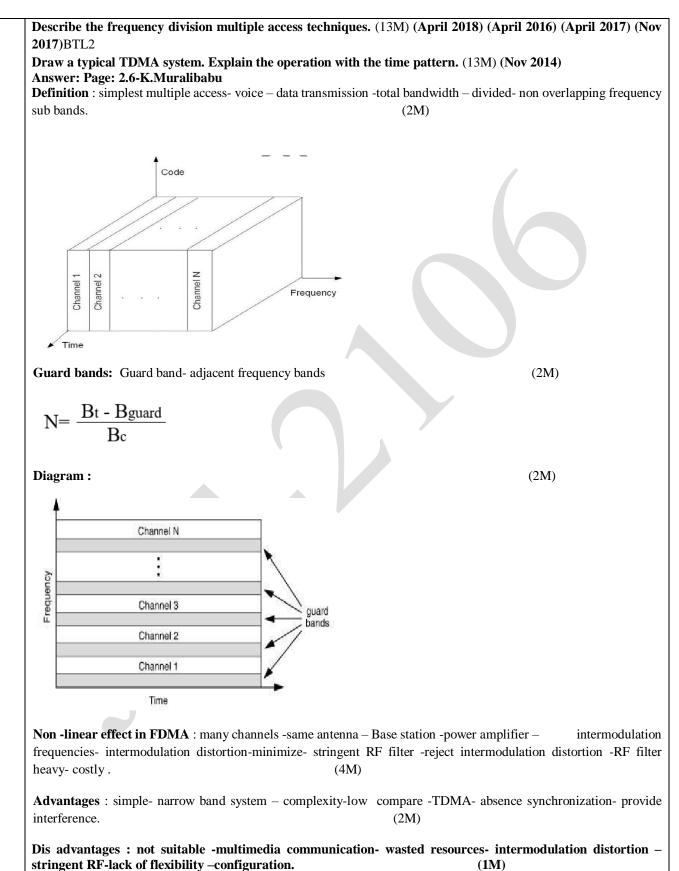


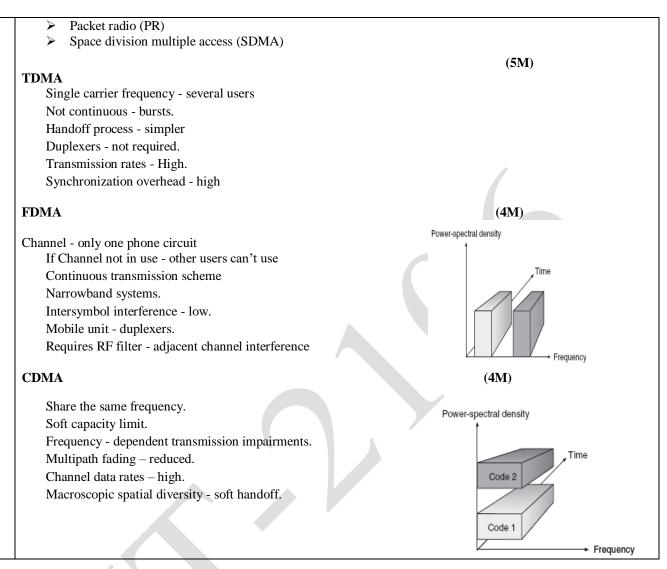

	The generator polynomial of a (7, 4) cyclic code is G (p) = p3+p+1. Find all the Code vectors for the code in non- systematic form. (15M) BTL3 Answer: Page: 4.12-K.Muralibabu
3	n=7 k=4 q= n-k =3 consider message M = (m3 m2 m1 m0) $M(p) = m_3 p^3 + m_2 p^2 + m_1 p^1 + m_0$ $X(p)=M(p) G(p)= p^5 + p^2 + p^1+1$


			gain, Jamming – FHSS – Synchronisation and t	tracking					
Mult	iple Access -	- FDMA, TDMA, CDMA							
		PART*A							
		spread spectrum techniques. NOV/DEC 2011							
1		2 Diete sequence spread spectrum (nur concrete Dina) phase sint							
-	keying								
	Frequency hop spread spectrum								
•		What is CDMA? NOV/DEC 2011 BTL1							
2			ed a distinct spreading code(PN sequence), thereby	permittin					
		riber full access to the channel all of the time.							
2			tion?APRIL/MAY 2010, APRIL?MAY 2011 B	TLI					
3		y applications.							
		communication	ADDIL MANY 2010 ADDIL 2MANY 2011 DTL	1					
4			A APRIL/MAY 2010, APRIL?MAY 2011 BTL atio obtained by the use of spread spectrum . It is						
-		chieved by the processing a spread spectrum sig		uenneu a					
		fective jamming power and processing. NOV							
_		g margin) db = (processing gain) db -10log 10 (E							
5		E b /N o) min is minimum value needed to suppo							
		probability of error.							
		the principle of frequency hopping spread spe	ctrum? BTL2						
6		NOV/DEC 2009							
U	The type	of spread spectrum in which the carrier hops rand	domly from one frequency to another is called freq	luency ho					
	spread sp								
	Compar	e slow and fast frequency hopping. BTL4							
	S.NO	Slow Frequency	Fast Frequency Hopping						
		Hopping							
7									
,	1	More than one symbols are transmitted per	More than one frequency hops are						
		frequency hop.	required to transmit one symbol.						
	2	Chip rate is equal to symbol rate.	Chip rate is equal to hop rate.						
	3	Symbol rate higher than hop rate.	Hop rate higher than symbol rate.						
		What are the two different techniques used in speech coding for wireless communication? BTL1							
8		i. Multi-pulse excited Linear Predictive Coding (LPC).							
		excited LPC							
~		e the two function of fast frequency hopping?							
9		Jammer over the entire measure of the spectrum							
		2. Retuning the Jamming signal over the frequency band of transmitted signal							
		e the features of code Division multiple Access	ses? BTL1						
10		 It does not require external synchronization networks. CDMA offers gradual degradation in performance when the no. of users is increased But it is easy to add new user 							
			in the no. of users is increased But it is easy to add	a new use					
		to the system.							
	M/rito co	Write some features of TDMA? BTL1							
		*In TDMA, no. of time slots depends upon modulation technique, available bandwidth							
	*In TDM			The attransmission occurs in bursts It uses different time slots for transmission and reception, then duplexers					
	*In TDM *Data tra	nsmission occurs in bursts	then duplexers						
11	*In TDM *Data tra It uses c	nsmission occurs in bursts lifferent time slots for transmission and receptior	n, then duplexers						
11	*In TDM *Data tra It uses c are not re	nsmission occurs in bursts lifferent time slots for transmission and receptior quired	n, then duplexers						
11	*In TDM *Data tra It uses c are not re *Adaptiv	nsmission occurs in bursts lifferent time slots for transmission and receptior quired e equalization is necessary	n, then duplexers						
11	*In TDM *Data tra It uses c are not re *Adaptiv *Guard t	nsmission occurs in bursts lifferent time slots for transmission and receptior quired e equalization is necessary me should be minimized	n, then duplexers						
	*In TDM *Data tra It uses of are not re *Adaptiv *Guard t	nsmission occurs in bursts lifferent time slots for transmission and receptior quired e equalization is necessary <u>me should be minimized</u> me features of CDMA? BTL1							
11	*In TDM *Data tra It uses of are not re *Adaptiv *Guard t Write so *In CDM	nsmission occurs in bursts lifferent time slots for transmission and receptior quired e equalization is necessary me should be minimized me features of CDMA? BTL1 [A system, many users share the same frequency							
	*In TDM *Data tra It uses of are not re *Adaptiv *Guard t Write so *In CDM FDD may	nsmission occurs in bursts lifferent time slots for transmission and receptior quired e equalization is necessary me should be minimized me features of CDMA? BTL1 [A system, many users share the same frequency							


	*Multipath fading may be substantially reduced
	*CDMA uses co –channel cells, it can use macroscopic spatial diversity
	to provide soft hand Off.
	What is near far effect in a CDMA system ? APRIL/MAY 2015 BTL1
	The near-far problem is a condition in which a receiver captures a strong signal and thereby makes it impossible for
13	the receiver to detect a weaker signal.
	The near-far problem is particularly difficult in CDMA systems, where transmitters share transmission frequencies and
	transmission time.
1.4	What are Walsh codes. BTL1
14	Walsh codes are orthogonal codes obtained from Hadamard matrices
	They are used in CDMA to separate the users
	Write some advantages of TDMA? BTL1 Data transmission occurs in burst
15	It uses different time slots for transmission and reception, then duplexers
	are not
	Write some advantages and disadvantages of CDMA BTL1
	Advantages:
	Multipath fading may be substantially reduced
16	*CDMA uses co –channel cells, it can use macroscopic spatial diversity to provide soft hand Off.
	Disadvantage:
	Implementation complexity, need for power control, to avoid capture need for a large contiguous frequency band (for
	direct sequence) & problems installing in the field.
18	Explain frequency hop spread spectrum(NOV/DEC 2015) BTL1
17	In this technique, changing the carrier frequency in pseudo-random manner widens the spectrum of data modulated
	carrier.
	How many stages of flip-flops are required to generate PN sequence of length 31? BTL3
10	N=2
18	$31 = 2^m - 1$
	m = 5 stages
10	Define code division multiple access. BTL1
19	In code division multiple access ,each subscriber is assigned a distinct spreading code(PN sequence), thereby permitting the subscriber full access to the channel all of the time.
	What is effective jamming power . BTL1
20	Jamming margin) $db = (processing gain) db - 10log 10 (E b /N o) min$
	What is processing gain? BTL1
21	Processing gain is defined as the gain in Signal to noise Ratio obtained by the use of spread spectrum. It is defined as
	the gain achieved by the processing a spread spectrum signal over an unspread signal .
	Is spread spectrum a modulation technique? BTL4
22	Sometimes people call spread spectrum modulation. But that does not carry conventional meaning of modulation.
	Rather it includes conventional digital modulation techniques to generate spread spectrum modulated signals.
	Why pseudo-random code is used as special code for spreading the spectrum? BTL2
22	Unintended receiver should not receive the signal. If the spreading code is not random, then unintended receiver can
23	obtain the code by observing the signal over certain period of time. But if the code is random, then it is very difficult
	to identify it.
	What are the popular coding sequences of CDMA system. (NOV/DEC 2014) BTL1
	Popular code sequences used in spread-spectrum transmission are
24	-Maximum Length sequences
24	-Walsh Hadamard sequences
24	-Walsh Hadamard sequences -Gold codes, and -Kasami codes.

25	Define slow frequency hopping. (NOV/DEC 2015) BTL1 Several symbols of data are transmitted in one frequency hop. This means symbol rate is higher than hop-rate.	
	PART*B	
1	What is a Pseudo noise sequence?How it is generated? What are the properties of Pseudo noise sequence Marks) APRIL/MAY 2010, APRIL?MAY2011, NOV/DEC2010 (13M)BTL1Answer: Page 16.3- K.Muralibabu > Pseudo noise sequences – definition.(2M)A periodic binary sequence with a noise like waveform Maximum length sequence= $N=2^m$ -1 	e? (8
2	Explain about the multiple access scheme.(Apr/May 2010)(13M) BTL1 Answer: Page 17.2- K.Muralibabu Three major techniques: (2M) > Frequency division multiple access (FDMA) > Time division multiple access (TDMA) > Code division multiple access (CDMA) Others: > Packet radio (PR) > Space division multiple access (SDMA) (4M) TDMA Single carrier frequency - several users Not continuous - bursts. Handoff process - simpler Duplexers - not required. Transmission rates - High. Synchronization overhead - high	
	FDMA (4M)	
	Channel - only one phone circuit If Channel not in use - other users can't use Continuous transmission scheme Narrowband systems. Intersymbol interference - low. Mobile unit - duplexers. Requires RF filter - adjacent channel interference	





8

			PART*C					
	Explain the spr	ead spectrum techniq	ues and its types (1	5M) BTL2				
	Answer : Page : 1.6- K.Muralibabu (refer part b 4,5)							
	Definition : spre	ading in transmitter and	(2M)					
	-	transmitter and receiv			(3M)			
		receiver output wavefor						
1	Explanation : narrow band signal is converted into wideband with help of PN sequence and BPSK me							
1	technique (3M)							
	-	arrier frequency hoppe	d one to another	χ- γ	(1M)			
	Types : slow and				ζ,			
	Block diagram (I				(3M)			
			v hopping the modul	ated data carrier form	one frequency to other, the	e data		
	used to modulate		, nopping the motion	(3M)	one nequency to other, the	uutu		
	Discuss in detai taken into accou	ferent types of multipl l the multiple access to int here as the channe 2.5- K.Muralibabu	techniques that are		nmunications. What differe	ences		
	Approach	SDMA	TDMA	FDMA	CDMA			
	Idea	segment space into	segment sending	segment the	spread the spectrum			
	lucu	cells/sectors	time into disjoint time-slots, dem and driven or fixed patterns	frequency band into disjoint sub-bands	using orthogonal codes			
	Terminals	only one terminal can	all term in als are	every terminal has its	all terminals can be active			
		be active in one cell/one sector	active for short periods of time on the same frequency	own frequency, uninterrupted	at the same place at the same moment, uninterrupted			
	Signal	cell structure, directed	synchronization in	filtering in the	code plus special			
2	separation	antennas	the time domain	frequency domain	re ceivers			
	Advantages	very simple, in creases capacity per km²	established, fully digital, flexible	simple, established, robust	flexible, less frequency planning needed, soft handover			
	Dis- advantages	inflexible, antennas typically fixed	guard space needed (multipath propagation), synchronization	in flexible, frequencies are a scarce resource	complex receivers, needs more complicated power control for senders			
	Comment	only in combination with TDMA, FDMA or CDMA useful	difficult standard in fixed net works, together with FDM A/SDM A used in many mebile petuedop	typically combined with TDM A (frequency hopping patterns) and SDMA	still faces some problems, higher complexity, lowered expectations; will be integrated with			
	Answer: Page 1 Three major tech Frequent	ut the multiple access 7.2- K.Muralibabu	used in many mobile networks scheme.(Apr/May 2 ccess (FDMA)	patterns) and SDMA (frequency reuse)				
	FrequentTime di	ncy division multiple ac	(TDMA)		· · ·			

