

QUESTION BANK

REGULATION : 2017

- YEAR : II
- SEMESTER : 03
- BATCH : 2017-2021

DEPARTMENT

OF

ELECTRICAL &ELECTRONICS ENGINEERING

BLOOM'S TAXONOMY

Definition:

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition like thinking, learning and understanding.

Objectives:

- To classify educational learning objectives into levels of complexity and specification. The classification covers the learning objectives in cognitive, affective and sensory domains.
- > To structure curriculum learning objectives, assessments and activities.

Levels in Bloom's Taxonomy:

- BTL 1 Remember The learner recalls, restate and remember the learned information.
- BTL 2 Understand The learner embraces the meaning of the information by interpreting and translating what has been learned.
- BTL 3 Apply The learner makes use of the information in a context similar to the one in which it was learned.
- BTL 4 Analyze The learner breaks the learned information into its parts to understand the information better.
- BTL 5 Evaluate The learner makes decisions based on in-depth reflection, criticism and assessment.
- BTL 6 Create The learner creates new ideas and information using what has been previously learned.

TABLE OF CONTENT

	MA8351 – Transforms and Partial Differential Equations	
Unit No.	Торіс	Page No.
	Syllabus	1.1
Ι	Partial Differential Equations	1.3
II	Fourier Series	1.15
III	Applications of Partial Differential Equations	1.28
IV	Fourier Transforms	1.41
VZ - Transforms and Difference Equations		1.54
	EE8351- Digital Logic Circuits	
	Syllabus	2.1
Ι	Number Systems and Digital Logic Families	2.3
II	Combinational Circuits	2.23
III	Synchronous Sequential Circuits	2.47
IV	Asynchronous Sequential Circuits And Programmability Logic Devices	2.66
V	VHDL	2.81
	ME8792- Power Plant Engineering	
	Syllabus	3.1
Ι	Coal Based Thermal Power Plants	3.2
II	Diesel, Gas Turbine and Combined Cycle Power Plants	3.10
III	Nuclear Power Plants	3.17
IV	Power from Renewable Energy	3.23
V	Energy, Economic and Environmental Issues Of Power Plants	3.30
	EE8301-Electrical Machines-I	
	Syllabus	4.1
Ι	Magnetic Circuits and Magnetic Materials	4.3
II	Transformers	4.13
III	Electromechanical Energy Conversion and Concepts in Rotating Machines	4.24
IV	DC Generator	4.33
V	DC Motor	4.40
	Objective Type Questions	4.50
	EC8351- Electronic Devices and Circuits	
	Syllabus	5.1
Ι	PN Junction Devices	5.2
II	Transistors and Thyristors	5.15
III	Amplifiers	5.32

Iv	Multistage Amplifiers and Differential Amplifier	5.47
V	Feedback Amplifiers and Oscillators	5.56
	Objective Type Questions	5.66
	EE8391- Electromagnetic Theory	
	Syllabus	6.1
Ι	Electrostatics – I	6.2
II	Electrostatics – Ii	6.25
III	Magnetostatics	6.39
IV	Electrodynamic Fields	6.56
V	Electromagnetic Waves	6.74
	Objective Type Questions	6.90

MA8351 TRANSFORMS AND PARTIAL DIFFERENTIAL EOUATIONS

LTPC 0 0 4

OBJECTIVES :

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart • from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations. •
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNITI PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types. 12

UNIT II FOURIER SERIES

Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis. 12

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables Fourier Series Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction.

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z-transforms - Elementary properties - Inverse Z-transform (using partial fraction and residues) - Initial and final value theorems - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform.

OUTCOMES:

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXTBOOKS:

1. Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, New Delhi, 2014.

JIT-JEPPIAAR/MATHS/Mrs.M.SOPHIA/IIrd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver1.0

12

TOTAL: 60 PERIODS

12

12

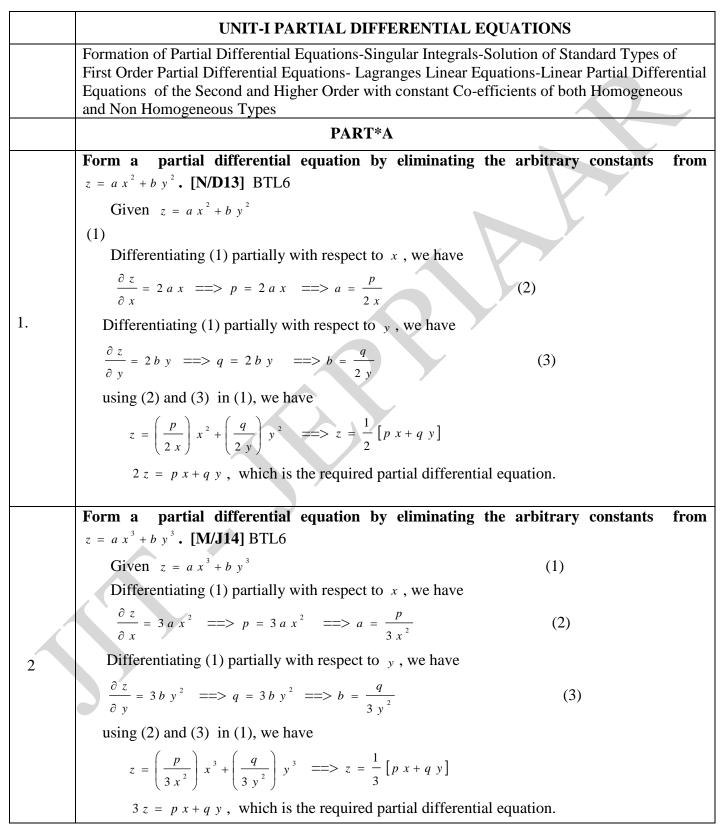
1.1

2. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998. **REFERENCES :**

1.. Andrews, L.C and Shivamoggi, B, "Integral Transforms for Engineers" SPIE Press, 1999.

2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014.

3. Erwin Kreyszig, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, India, 2016.


4. James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.

5 Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pyt. Ltd, New Delhi, 2016.

6. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

REGULATION : 2017 Subject Code: MA8353 Subject Name: TRANSFORMS AND PDE

ACADEMIC YEAR : 2018-2019 Year/Semester: II /03 Subject Handler:M.SOPHIA

Eliminate the arbitrary function f from $z = f\left(\frac{y}{x}\right)$ and form a p.d.e. [N/D12, N/D14] BTL5 Given $z = f\left(\frac{y}{x}\right)$ (1) Differentiate (1) partially w.r.to x and y , we get $p = \frac{\partial z}{\partial x} = f\left(\frac{x}{x}\right) \cdot \left(\frac{-y}{x^2}\right)$ (2) $q = \frac{\partial z}{\partial y} = f\left(\frac{x}{x}\right) \cdot \left(\frac{1}{x}\right)$ (3) (2)/(3), we get the required p.d. $\frac{p}{q} = \frac{-y}{x}$. Find the complete solution of the partial differential equation $p^3 - q^3 = 0$. [M/J16] BTL5 Given $p^3 - q^3 = 0$ This is of the form $F(p,q) = 0$ Hence, the complete integral is $z = ax + by + c$ where $a^3 - b^2 = 0$ (ie) $b = a$ Therefore, the complete integral is $z = ax + by + c$ where $a^3 - b^2 = 0$ (ie) $b = a$ Therefore, the complete solution is $z = a x + a y + c$. Solve $(p^3 - 2 \ D^3 \ D^3 = 0$ The auxiliary equation is $m^3 - 2m^3 = 0$ $m^2 (m-2) = 0$ $m^2 (m-2) = 0$ Hence the solution is $z = \phi_1(y) + x\phi_1(y) + \phi_2(y + 2x)$. Solve $(p^6 - D^{-1})z = 0$. [M/J14] BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, 1, -i$ Hence $z = f_1(y + x) + f_2(y - x) + f_1(y + ix) + f_1(y - ix)$. Solve $(p^3 - 4D^2 \ D^2 + 4D \ D^2)^2 z = 0$. [A/M15] BTL5 Auxiliary equation is $m^3 - 4m^2 + 4m = 0$				
3 Given $z = f\left(\frac{y}{x}\right)$ (1) Differentiate (1) partially w.r.to x and y, we get $p = \frac{\partial z}{\partial x} = f \cdot \left(\frac{y}{x}\right) \cdot \left(\frac{-y}{x^2}\right)$ (2) $q = \frac{\partial z}{\partial y} = f \cdot \left(\frac{y}{x}\right) \cdot \left(\frac{1}{x}\right)$ (3) (2)/(3), we get the required p.d. $\frac{p}{q} = \frac{-y}{x}$. Find the complete solution of the partial differential equation $p^3 - q^3 = 0 \cdot [M/JI6]$ BTL5 Given $p^3 - q^3 = 0$ This is of the form $r(p,q) = 0$ Hence, the complete noise $z = ax + ay + c$. Solve $(p^3 - 2b^2b')z = 0 \cdot [N/D09]$. BTL5 The auxiliary equation is $z^2 = a^2 = 0$ $m^2(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_1(y) + x\phi_2(y) + \phi_1(y+2x)$. Solve $(p^4 - D^{-4})z = 0 \cdot [M/J14]$ BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y + x) + f_2(y - x) + f_1(y + ix) + f_2(y - ix)$. Solve $(b^3 - 4D^2b' + 4DD^2)^2 = 0 \cdot [A/M15]$ BTL5		Eliminate the arbitrary function f from $z = f\left(\frac{y}{x}\right)$ and form a p.d.e. [N/D12 ,N/D14]		
3 Differentiate (1) partially w.r.to x and y, we get $p = \frac{\partial z}{\partial x} = f \cdot \left(\frac{y}{x}\right) \cdot \left(\frac{-y}{x^2}\right) \qquad (2)$ $q = \frac{\partial z}{\partial y} = f \cdot \left(\frac{y}{x}\right) \cdot \left(\frac{1}{x}\right) \qquad (3)$ (2)/(3), we get the required p.d. $\frac{p}{q} = \frac{-y}{x}$. Find the complete solution of the partial differential equation $p^3 - q^3 = 0 \cdot [M/J16]$ BTL5 Given $p^3 - q^3 = 0$ This is of the form $r(p,q) = 0$ Hence, the complete integral is $z = a x + b y + c$ Where $a^3 - b^3 = 0$ (ie) $b = a$ Therefore, the complete solution is $z = a x + a y + c$. Solve $(b^3 - 2 D^2 D^3) z = 0 \cdot [N/D09]$, BTL5 The auxiliary equation is $m^3 - 2m^2 = 0$ $m^2 (m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_1(y) + x\phi_2(y) + \phi_3(y+2x)$. Solve $(b^3 - D^{-4}) z = 0 \cdot [M/J14]$ BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_0(y + x) + f_2(y - x) + f_3(y + ix) + f_4(y - ix)$. Solve $(D^3 - 4D^2 D^2 + 4DD^2) z = 0 \cdot [A/M15]$ BTL5				
$p = \frac{\partial z}{\partial x} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{-y}{x^2}\right) \qquad (2)$ $q = \frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{1}{x}\right) \qquad (3)$ $(2)/(3), we get the required p.d. \frac{p}{q} = \frac{-y}{x}. Find the complete solution of the partial differential equation p^3 - q^3 = 0 \cdot [M/JI6] BTL5Given p^3 - q^3 = 0This is of the form F(p,q) = 0Hence, the complete integral isz = a x + b y + c where a^3 - b^3 = 0 (ie) b_j = aTherefore, the complete solution is z = a x + a y + c.Solve (p^3 - 2D^2D')z = 0, [N/D09], BTL5The auxiliary equation is m^3 - 2m^2 = 0m^2(m-2) = 0m = 0, 0, 2Hence the solution is z = \phi_1(y) + x\phi_2(y) + \phi_1(y+2x).Solve (D^4 - D^{-4})z = 0. [M/J14] BTL5The A.E. is m^4 - 1 = 0Therefore, the roots are m = 1, -1, i, -iHence z = f_1(y + x) + f_2(y - x) + f_3(y + ix) + f_4(y - ix).Solve (D^3 - 4D^2D' + 4DD'^2)z = 0. [A/M15] BTL5$		Given $z = f\left(\frac{y}{x}\right)$ (1)		
$p = \frac{\partial z}{\partial x} = f^{-1}\left(\frac{y}{x}\right) \cdot \left(\frac{-y}{x^{2}}\right) \qquad (2)$ $q = \frac{\partial z}{\partial y} = f^{-1}\left(\frac{y}{x}\right) \cdot \left(\frac{1}{x}\right) \qquad (3)$ $(2)/(3), \text{ we get the required p.d.e } \frac{p}{q} = \frac{-y}{x}.$ Find the complete solution of the partial differential equation $p^{-3} - q^{-3} = 0 \cdot [M/J16]$ BTL5 Given $p^{-3} - q^{-3} = 0$ This is of the form $F(p,q) = 0$ Hence, the complete integral is $z = ax + by + c$ where $a^{-3} - b^{-3} = 0$ (ie) $b = a$ Therefore, the complete solution is $z = ax + ay + c$. Solve $(D^{-3} - 2D^{-3}D^{-1})z = 0 \cdot [N/D09]$, BTL5 The auxiliary equation is $m^{-3} - 2m^{-2} = 0$ $m^{-2}(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_{+}(y) + x\phi_{+}(y) + \phi_{+}(y + 2x)$. Solve $(D^{-4} - D^{-4})z = 0 \cdot [M/J14]$ BTL5 The A.E. is $m^{-4} - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_{1}(y + x) + f_{2}(y - x) + f_{3}(y + ix) + f_{4}(y - ix)$. Solve $(D^{-3} - 4D^{-2}D^{-4} + 2D^{-2})z = 0 \cdot [A/M15]$ BTL5	2	Differentiate (1) partially w.r.to x and y , we get		
$(2)'(3), \text{ we get the required p.d.e } \frac{p}{q} = \frac{-y}{x}.$ Find the complete solution of the partial differential equation $p^3 - q^3 = 0 \cdot [M/J16]$ BTL5 Given $p^3 - q^3 = 0$ This is of the form $F(p,q) = 0$ Hence, the complete integral is $z = a x + b y + c$ where $a^3 - b^3 = 0$ (ie) $b = a$ Therefore, the complete solution is $z = a x + a y + c$. Solve $(D^3 - 2 D^2 D')z = 0$, $[N/D09]$, BTL5 The auxiliary equation is $m^3 - 2m^2 = 0$ $m^2(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_1(y) + x\phi_2(y) + \phi_3(y + 2x)$. Solve $(D^4 - D^{-4})z = 0$. $[M/J14]$ BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_i(y + x) + f_2(y - x) + f_3(y + ix) + f_4(y - ix)$. Solve $(D^3 - 4D^2 D' + 4DD'^2)z = 0$, $[A/M15]$ BTL5	5	$p = \frac{\partial z}{\partial x} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{-y}{x^2}\right) $ (2)		
$4 \qquad \qquad$		$q = \frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{1}{x}\right) $ (3)		
4 Given $p^3 - q^3 = 0$ This is of the form $F(p,q) = 0$ Hence, the complete integral is $z = ax + by + c$ where $a^3 - b^3 = 0$ (ie) $b = a$ Therefore, the complete solution is $z = ax + ay + c$. Solve $(D^3 - 2D^2D')z = 0$. [N/D09]. BTL5 The auxiliary equation is $m^3 - 2m^2 = 0$ $m^2(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_1(y) + x\phi_2(y) + \phi_3(y+2x)$. Solve $(D^4 - D^{-4})z = 0$. [M/J14] BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y+x) + f_2(y-x) + f_3(y+ix) + f_4(y-ix)$. Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$. [A/M15] BTL5		(2)/(3), we get the required p.d.e $\frac{p}{q} = \frac{-y}{x}$.		
4 This is of the form $F(p,q) = 0$ Hence, the complete integral is $z = ax + by + c$ where $a^3 - b^3 = 0$ (ie) $b = a$ Therefore, the complete solution is $z = ax + ay + c$. Solve $(D^3 - 2D^2D')z = 0$. [N/D09]. BTL5 The auxiliary equation is $m^3 - 2m^2 = 0$ $m^2(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_1(y) + x\phi_2(y) + \phi_3(y+2x)$. Solve $(D^4 - D^{+4})z = 0$. [M/J14] BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y+x) + f_2(y-x) + f_3(y+ix) + f_4(y-ix)$. Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$. [A/M15] BTL5		Find the complete solution of the partial differential equation $p^3 - q^3 = 0$. [<i>M</i> /J16] BTL5		
4 Hence, the complete integral is $z = a x + b y + c \text{ where } a^{3} - b^{3} = 0 \text{ (ie) } b = a$ Therefore, the complete solution is $z = a x + a y + c$. 5 Solve $(D^{3} - 2D^{2}D')z = 0$. [N/D09], BTL5 The auxiliary equation is $m^{3} - 2m^{2} = 0$ $m^{2}(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_{1}(y) + x\phi_{2}(y) + \phi_{3}(y+2x)$. 6 Solve $(D^{4} - D^{+4})z = 0$. [M/J14] BTL5 The A.E. is $m^{4} - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_{1}(y+x) + f_{2}(y-x) + f_{3}(y+ix) + f_{4}(y-ix)$. Solve $(D^{3} - 4D^{2}D' + 4DD'^{2})z = 0$. [A/M15] BTL5		Given $p^3 - q^3 = 0$		
$z = a x + b y + c \text{ where } a^{3} - b^{3} = 0 \text{ (ie) } b = a$ Therefore, the complete solution is $z = a x + a y + c$. Solve $(D^{3} - 2 D^{2} D')z = 0$. [N/D09]. BTL5 The auxiliary equation is $m^{3} - 2m^{2} = 0$ $m^{2}(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_{1}(y) + x \phi_{2}(y) + \phi_{3}(y + 2x)$. Solve $(D^{4} - D^{+4})z = 0$. [M/J14] BTL5 The A.E. is $m^{4} - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_{1}(y + x) + f_{2}(y - x) + f_{3}(y + ix) + f_{4}(y - ix)$. Solve $(D^{3} - 4 D^{2} D' + 4 D D'^{2})z = 0$. [A/M15] BTL5	4	This is of the form $F(p,q) = 0$		
Therefore, the complete solution is $z = a x + a y + c$. Solve $(D^3 - 2D^2D')z = 0$. [N/D09]. BTL5 The auxiliary equation is $m^3 - 2m^2 = 0$ $m^2(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_1(y) + x\phi_2(y) + \phi_3(y+2x)$. Solve $(D^4 - D^{+4})z = 0$. [M/J14] BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y + x) + f_2(y - x) + f_3(y + ix) + f_4(y - ix)$. Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$. [A/M15] BTL5	-			
5 Solve $(D^{3} - 2D^{2}D')z = 0$. [N/D09]. BTL5 The auxiliary equation is $m^{3} - 2m^{2} = 0$ $m^{2}(m-2) = 0$ m = 0, 0, 2 Hence the solution is $z = \phi_{1}(y) + x\phi_{2}(y) + \phi_{3}(y+2x)$. Solve $(D^{4} - D^{+4})z = 0$. [M/J14] BTL5 The A.E. is $m^{4} - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_{1}(y+x) + f_{2}(y-x) + f_{3}(y+ix) + f_{4}(y-ix)$. Solve $(D^{3} - 4D^{2}D' + 4DD'^{2})z = 0$. [A/M15] BTL5		$z = a x + b y + c$ where $a^{3} - b^{3} = 0$ (ie) $b = a$		
5 5 5 5 5 5 5 5 5 5 5 5 5 5				
5 $m^{2}(m-2) = 0$ $m = 0, 0, 2$ Hence the solution is $z = \phi_{1}(y) + x \phi_{2}(y) + \phi_{3}(y+2x)$. 6 Solve $(D^{4} - D^{+4})z = 0$. [M/J14] BTL5 The A.E. is $m^{4} - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_{1}(y+x) + f_{2}(y-x) + f_{3}(y+ix) + f_{4}(y-ix)$. Solve $(D^{3} - 4D^{2}D' + 4DD'^{2})z = 0$. [A/M15] BTL5				
m = 0, 0, 2 Hence the solution is $z = \phi_1(y) + x \phi_2(y) + \phi_3(y+2x)$.				
$Hence the solution is \ z = \phi_1(y) + x \phi_2(y) + \phi_3(y+2x).$ $Solve (D^4 - D^{+4}) z = 0 \cdot [M/J14] BTL5$ The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y+x) + f_2(y-x) + f_3(y+ix) + f_4(y-ix)$. $Solve (D^3 - 4D^2D' + 4DD'^2) z = 0 \cdot [A/M15] BTL5$	5			
6 Solve $(D^4 - D^{+4})z = 0$. [M/J14] BTL5 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y + x) + f_2(y - x) + f_3(y + ix) + f_4(y - ix)$. Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$. [A/M15] BTL5				
6 The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y + x) + f_2(y - x) + f_3(y + ix) + f_4(y - ix)$. Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$. [A/M15] BTL5		Hence the solution is $z = \phi_1(y) + x \phi_2(y) + \phi_3(y+2x)$.		
Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y + x) + f_2(y - x) + f_3(y + ix) + f_4(y - ix)$. Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$. [A/M15] BTL5		Solve $(D^4 - D^{+4})z = 0$. [M/J14] BTL5		
Hence $z = f_{\nu}(y + x) + f_{2}(y - x) + f_{3}(y + ix) + f_{4}(y - ix)$. Solve $(D^{3} - 4D^{2}D' + 4DD'^{2})z = 0$. [A/M15] BTL5	6			
Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$. [A/M15] BTL5				
$m(m^2 - 4m + 4) = 0$				
7 $m(m-2)(m-2) = 0$	7			
m = 0, $m = 2$, $m = 2$				
Hence the solution is $z = \phi_1(y+0x) + \phi_2(y+2x) + x\phi_3(y+2x)$				
$z = \phi_1(y) + \phi_2(y + 2x) + x\phi_3(y + 2x).$				

	GULATION : 2017 ACADEMIC YEAR : 2018-2019		
	Solve $(D + D' - 1)(D - 2D' + 3)z = 0$.[<i>N</i> / <i>D</i> 15] BTL5		
8	Given $(D + D' - 1)(D - 2D' + 3)z = 0$		
0	Here $m_1 = -1$, $c_1 = 1$, $m_2 = 2$, $c_2 = -3$		
	Hence the solution is $z = e^x \phi_1(y-x) + e^{-3x} \phi_2(y+2x)$.		
9	Form the partial differential equation by eliminating <i>a</i> and <i>b</i> from $z = a^2 x + a y^2 + b$. BTL6 Given $z = a^2 x + a y^2 + b$ Differentiating (1) partially with respect to <i>x</i> , we have $\frac{\partial z}{\partial x} = a^2 \Rightarrow p = a^2$ Differentiating (1) partially with respect to <i>y</i> , we have $\frac{\partial z}{\partial y} = 2 a y \Rightarrow q = 2 a y \Rightarrow a = \frac{q}{2 y}$ (3)		
	Using (3) in (2), we have $p = \left(\frac{q}{2y}\right)^2 \Rightarrow p = \frac{q^2}{4y^2} \Rightarrow 4py^2 = q^2$ which is the required		
	partial differential equation.		
	Eliminate the arbitrary function f from $z = f\left(\frac{y}{x}\right)$ and form the partial differential		
	equation. BTL5		
	Given $z = f\left(\frac{y}{x}\right)$ (1)		
	Differentiating (1) partially with respect to x , we have		
	$\frac{\partial z}{\partial x} = f'\left(\frac{y}{x}\right) \left[-\frac{y}{x^2}\right] \implies p = -\frac{y}{x^2} f'\left(\frac{y}{x}\right) $ (2)		
10	Differentiating (1) partially with respect to y , we have		
10	$\frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right) \left[\frac{1}{x}\right] \implies q = \frac{1}{x} f'\left(\frac{y}{x}\right) $ (3)		
	Equations $\frac{(2)}{(3)}$ implies $\frac{p}{q} = \frac{-\frac{y}{x^2} f'\left(\frac{y}{x}\right)}{\frac{1}{x} f'\left(\frac{y}{x}\right)}$		
	$= \frac{p}{q} = -\frac{y}{x} \implies x p = -y q$		
	x p + y q = 0, which is the required partial differential equation.		
	Form the partial differential equation by eliminating the arbitrary function from $\phi(x^2 - y^2, z) = 0$. [N/D14] BTL5		
11	$\varphi(x - y, z) = 0$. [N/D14] B1L5 The given relation is of the form $\varphi(u, v) = 0$ where $u = x^2 - y^2$ and $v = z$		
If the given relation is of the form $\phi(u, v) = 0$ where $u = x - y$ and $v = z$ IIT-IEPPIAAR/MATHS/Mrs M SOPHIA/II rd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL			

JIT-JEPPIAAR/MATHS/Mrs.M.SOPHIA/IIrd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver1.0

Hence the required pde is of the form P p + Q q = RWhere $P = \frac{\partial u}{\partial v} \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial v}$ $P = (-2y)(1) - (0)(0) \implies P = -2y$ $Q = \frac{\partial u}{\partial z} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial z}$ $Q = (0)(0) - (2x)(1) \implies Q = -2x$ $R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$ $R = (2 x)(0) - (-2 y)(0) \implies R = 0$ Therefore, the required equation is -2 y p - 2 x q = 0y p + x q = 0, which is the required partial differential equation. Find the complete integral of p + q = 1. [N/D14] BTL5 Given p + q = 1This is of the form F(p,q) = 012 Hence, the complete integral is z = a x + b y + c where a + b = 1 (ie) b = 1 - aTherefore, the complete solution is z = a x + (1 - a) y + c. Find the complete integral of $\sqrt{p} + \sqrt{q} = 1$. [M/J16] BTL5 Given p + q = 1This is of the form F(p,q) = 013 Hence, the complete integral is z = a x + b y + c where $\sqrt{a} + \sqrt{b} = 1$ (ie) $\sqrt{b} = 1 - \sqrt{a} \Rightarrow b = (1 - \sqrt{a})^2$ Therefore, the complete solution is $z = a x + (1 - \sqrt{a})^2 y + c$. Find the complete solution of the partial differential equation $p^3 - q^3 = 0 \cdot [M/J16]$ BTL5 Given $p^3 - q^3 = 0$ 14 This is of the form F(p,q) = 0Hence, the complete integral is z = a x + b y + c where $a^3 - b^3 = 0$ (ie) b = aFind the complete integral of p + q = p q.[M/J13] BTL5 Given p + q = p q15 This is of the form F(p, q) = 0. Hence the complete integral is $z = a \ x + b \ y + c$ where a + b + = ab

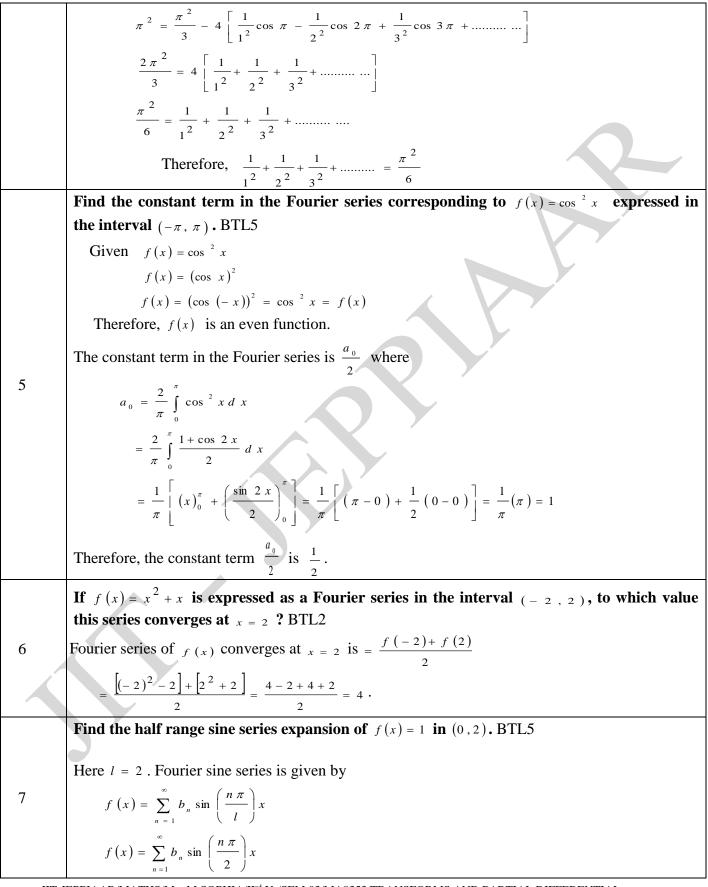
	ULATION : 2017 ACADEMIC YEAR : 2018-2019		
	b-a b=-a		
	(1-a)b = -a		
	$b = \frac{-a}{1-a}$		
	1-a		
	$b = \frac{a}{a}$		
	$b = \frac{a}{a-1}$		
	Therefore, the complete solution is $z = a x + \frac{a}{a-1}y + c$.		
	Find the complete integral of $\frac{z}{p q} = \frac{x}{q} + \frac{y}{p} + \sqrt{p q}$. [<i>N/D16</i>] BTL2		
16	Given $\frac{z}{p q} = \frac{x}{q} + \frac{y}{p} + \sqrt{p q}$ (1)		
	$(1) \times p \ q \implies z = p \ x + q \ y + p \ q \ \sqrt{p \ q}$		
	This is of the form $z = p x + q y + f(p,q)$		
Hence, the complete solution is $z = a x + b y + a b \sqrt{a b}$ Solve $p x^2 + q y^2 = z^2$. [N/D14] BTL5			
	Given $p x^2 + q y^2 = z^2$		
	This is of Lagrange's type. Here $P = x^2$ $Q = y^2$ $R = z^2$		
	The subsidiary equations are $\frac{d}{P} = \frac{d}{Q} = \frac{d}{R}$		
17	$\frac{d}{x}x^{2} = \frac{d}{y}y^{2} = \frac{d}{z}z^{2}$		
	$\frac{d x}{x^2} = \frac{d y}{y^2} \qquad \qquad \frac{d y}{y^2} = \frac{d z}{z^2}$		
	Integrating, we have		
	$\frac{1}{x} - \frac{1}{y} = a \qquad \qquad \frac{1}{y} - \frac{1}{z} = b$		
	Hence the solution is $\varphi\left(\frac{1}{x} - \frac{1}{y}, \frac{1}{y} - \frac{1}{z}\right) = 0$.		
	Find the general solution of $(4 D^2 - 12 D D' + 9 D'^2)z = 0$. BTL5		
	Auxiliary equation is $4m^2 - 12m + 9 = 0$		
	(2 m - 3)(2 m - 3) = 0		
18	3 3		
	$m = \frac{3}{2}$, $m = \frac{3}{2}$		
	Hence the solution is $z = \phi_1 \left(y + \frac{3}{2} x \right) + x \phi_2 \left(y + \frac{3}{2} x \right)$.		

NEV	GULATION : 2017 ACADEMIC YEAR : 2018-2019			
	Solve $(D^3 - 2D^2D')z = 0$. [N/D09]. BTL5			
The auxiliary equation is $m^3 - 2m^2 = 0$				
19	$m^2(m-2)=0$			
	m = 0 , 0 , 2			
	Hence the solution is $z = \phi_1(y) + x \phi_2(y) + \phi_3(y+2x)$.			
	Solve $(D^4 - D'^4)z = 0$. [M/J14] BTL5			
	The auxiliary equation is $m^4 - 1 = 0$			
20	$(m^2 + 1)(m^2 - 1) = 0$			
	m = 1, -1, i, -i			
	Hence the solution is $z = \phi_1(y+x) + \phi_2(y-x) + \phi_3(y+ix) + \phi_4(y-ix)$.			
	Form the partial differential equation by eliminating the arbitrary constants <i>a</i> and <i>b</i>			
	from $\log (a z - 1) = x + a y + b \cdot [A/M15]$ BTL6			
	Given $\log(a z - 1) = x + a y + b$ (1)			
	Differentiating (1) partially with respect to x, we have			
	$\frac{1}{a \ z - 1} \left(a \ \frac{\partial z}{\partial x} \right) = 1 \qquad \Longrightarrow \qquad \frac{a \ p}{a \ z - 1} = 1 \tag{2}$			
	Differentiating (1) partially with respect to y , we have			
	$1 \left(\begin{array}{c} \partial z \end{array} \right)$			
	$\frac{1}{a\ z-1}\left(a\ \frac{\partial z}{\partial y}\right) = a$			
	$\frac{a q}{a z - 1} = a \tag{3}$			
21	Dividing (2) by (3), we have $\begin{pmatrix} a & b \\ c & b \end{pmatrix}$			
	$\left(\frac{a}{a} \frac{p}{z-1}\right)$ 1 p 1 q			
	$\frac{\left(\frac{a \ p}{a \ z - 1}\right)}{\left(\frac{a \ q}{a \ z - 1}\right)} = \frac{1}{a} \Rightarrow \frac{p}{q} = \frac{1}{a} \Rightarrow a = \frac{q}{p}$			
	$\left(\frac{1}{a \ z-1}\right)$			
	Substituting the value of <i>a</i> in (2), we have $\left(\frac{q}{p}\right)_p$			
$\frac{\left(\begin{array}{c}p\right)^{T}}{p} = 1 \frac{q}{\left(\begin{array}{c}p\\q\end{array}\right)} = 1 \Rightarrow \frac{p q}{q} = 1 \Rightarrow p q = q z - p$				
$\frac{\left(\frac{q}{p}\right)p}{\left(\frac{q}{p}\right)z-1} = 1 \frac{q}{\left(\frac{q \ z-p}{p}\right)} = 1 \implies \frac{p \ q}{q \ z-p} = 1 \implies p \ q = q \ z-p$				
	$ \begin{array}{c} (p) \\ \Rightarrow p + p q = q z \Rightarrow p(1+q) = q z \end{array} $			
	which is the required partial differential equation.			
	Form the partial differential equation by eliminating <i>a</i> and <i>b</i> from $z = a^2 x + a y^2 + b$			
22	.[N/D15] BTL6			
	Given $z = a^2 x + a y^2 + b$ (1) Differentiation (1) as the with many set to a set been			
	Differentiating (1) partially with respect to x , we have IEPPIAAR/MATHS/Mrs.M.SOPHIA/II rd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL			

KEG	GULATION: 2017 ACADEMIC YEAR: 2018-2019
	$\frac{\partial z}{\partial x} = a^2 \implies p = a^2 \tag{2}$
	Differentiating (1) partially with respect to y , we have
	$\frac{\partial z}{\partial y} = 2 a y \implies q = 2 a y \implies a = \frac{q}{2 y} $ (3)
	Using (3) in (2), we have $p = \left(\frac{q}{2y}\right)^2 \Rightarrow p = \frac{q^2}{4y^2} \Rightarrow 4py^2 = q^2$ which is the required
	partial differential equation.
	Form the PDE by eliminating the arbitrary constants ' <i>a</i> ', ' <i>b</i> ' from the relation
	$4(1 + a^{2})z = (x + a y + b)^{2}$. [A/M15] BTL6
	Given $4(1 + a^2)z = (x + a y + b)^2$ (1)
	Differentiating (1) partially with respect to x , we have
	$4\left(1+a^{2}\right)\frac{\partial z}{\partial x}=2\left(x+a\ y+b\right) \implies 4\left(1+a^{2}\right)p=2\left(x+a\ y+b\right) $ (2)
	Differentiating (1) partially with respect to y , we have
	$4\left(1+a^{2}\right)\frac{\partial z}{\partial y}=2\left(x+a\ y+b\right)\left(a\right) \Rightarrow \ 4\left(1+a^{2}\right)q=2\ a\ \left(x+a\ y+b\right) \tag{3}$
23	Dividing (2) by (3), we have $\frac{p}{q} = \frac{1}{a} \Rightarrow a = \frac{q}{p}$ (4)
	From (2), we have $x + a \ y + b = \frac{4(1 + a^2)p}{2}$ (5)
	Using (5) in (1), we have $4(1+a^2)z = \left(\frac{4(1+a^2)p}{2}\right)^2$
	$4(1+a^{2})z = \frac{16(1+a^{2})^{2}p^{2}}{4} \implies z = (1+a^{2})p^{2}$
	Using (4) in (6), we have $\Rightarrow z = \left(1 + \left(\frac{q}{p}\right)^2\right)p^2 \Rightarrow z = \left(\frac{p^2 + q^2}{p^2}\right)p^2 \Rightarrow z = p^2 + q^2$
	which is the required partial differential equation.
	Form the partial differential equations of all planes passing through the origin.[M/J16]
	BTL6
	Let the equation of the plane be
	a x + b y + c z + d = 0 (1) where a, b, c and d are constants.
24	Since plane (1) passes through the origin, we have
	$a(0) + b(0) + c(0) + d = 0 \implies d = 0$
	substituting $d = 0$ in (1), we have
	a x + b y + c z = 0 (2)
	Differentiating (2) partially with respect to x , we have

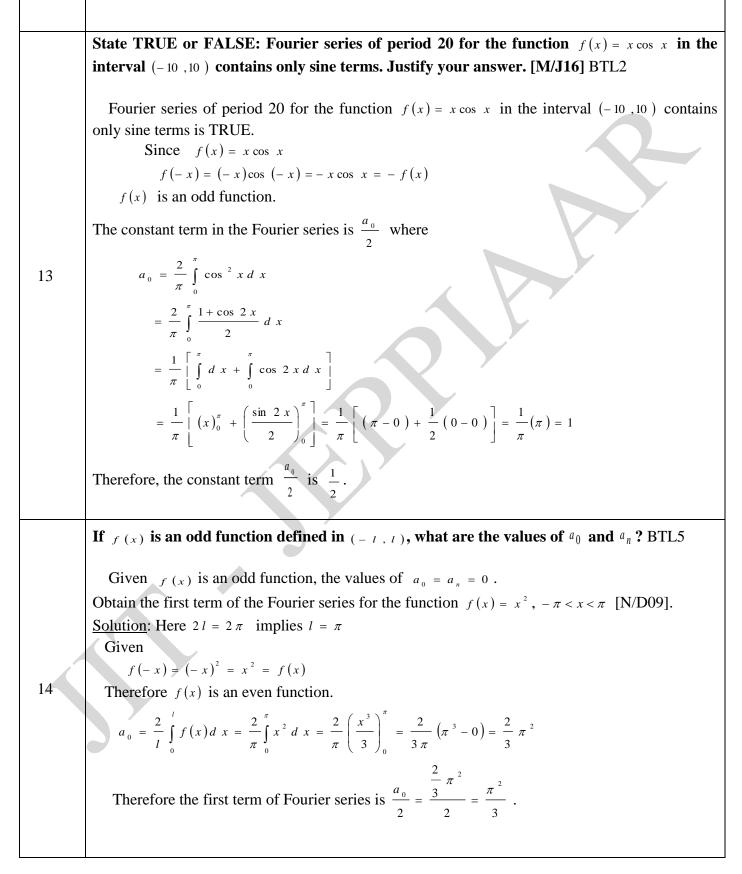
NEC	ULATION : 2017 ACADEMIC YEAR : 2018-2019		
	$a + c \frac{\partial z}{\partial x} = 0 \Longrightarrow a + c p = 0 \Longrightarrow a = -c p \tag{3}$		
	Differentiating (2) partially with respect to y , we have		
	$b + c \frac{\partial z}{\partial y} = 0 \implies b + c q = 0 \implies b = -c q$ (4)		
	using (3) and (4) in (2), we have		
	$(-c p)x + (-c q)y + c z = 0 \implies -c p x - c q y + c z = 0$		
	$-c [p x + q y - z] = 0 \implies x p + y q - z = 0$		
	x p + y q = z, which is the required partial differential equation.		
	Find the PDE of all spheres whose centers lie on the x-axis. [N/D16] BTL5		
	Let the centre of the sphere be $(a, 0, 0)$ a point on the x - axis and r be its radius.		
	Hence, its equation is		
	$(x-a)^{2} + (y-0)^{2} + (z-0)^{2} = r^{2}$		
	$(x-a)^2 + y^2 + z^2 = r^2 $ (1)		
	Differentiating (1) partially with respect to x , we have		
	$2(x-a) + 2z \frac{\partial z}{\partial x} = 0 \implies 2(x-a) + 2z p = 0 \implies 2[(x-a) + z p] = 0$		
25	$(x-a)+z p = 0 \implies (x-a) = -z p$ (2)		
	Differentiating (1) partially with respect to y , we have		
	$2 y + 2 z \frac{\partial z}{\partial y} = 0 \implies 2 y + 2 z q = 0 \implies 2 [y + z q] = 0$		
	$y + z q = 0 \implies y = -z q$ (3)		
	Using (2) and (3) in (1), we have		
	$(-z p)^{2} + (-z q)^{2} + z^{2} = r^{2} \implies z^{2} p^{2} + z^{2} q^{2} + z^{2} = r^{2}$		
	$z^{2}(p^{2}+q^{2}+1)=r^{2}$, which is the required partial differential equation.		
	PART * B		
1			
	Find the partial differential equation of all planes which are at a constant distance 'a' from		
	the origin. (8 M) BTL5		
	Answer : Page : 1.8- DR.A.SINGARAVELU		
	• $l = -(\sqrt{1 - l^2 - m^2}) p$ $m = -(\sqrt{1 - l^2 - m^2}) q$ (4 M)		
	• $z = px + qy + a\sqrt{1 + p^2 + q^2}$ (4 M)		
2			
	Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$. (8 M) BTL5		
	Solve $z = px + qy + \sqrt{1 + p} + q^{-1}$ (8 M) BTL5 Answer : Page :1.56- DR.A.SINGARAVELU		
	AIISWEI , TAZE JIJU DA,A,DIIVOAAA VELU		

ACADEMIC YEAR: 2018-2019


	ACADEMIC TEAR . 2010-2017		
	• $z = ax + by + \sqrt{1 + a^2 + b^2}$. (2 M)		
	• $x^2 + y^2 + z^2 = 1$ (4 M)		
	• $z = ax + \phi(a)y + \sqrt{1 + a^2 + \phi(a)^2}$ (2 M)		
3	• $z = ax + \psi(a)y + \sqrt{1 + a} + \psi(a)$ (2 ivi)		
3			
	Find the singular integral of $z = px + qy + p^2 + pq + q^2$. (8 M) BTL5 Answer : Page :1.59- DR.A.SINGARAVELU		
	• $z = ax + by + a^2 + ab + b^2$. (2 M)		
	• $xy - x^2 - y^2 = 3z$ (6 M)		
4			
	Solve $z = px + qy + p^2 - q^2$. (8 M) BTL5 Answer : Page :1.58- DR.A.SINGARAVELU • $z = ax + by + a^2 - b^2$. (2 M)		
	• $z = ax + by + a = b$. (2 101) • $y^2 - x^2 = 4z$ (6 M)		
5	y - x = 4z (0 (VI)		
5	Form the partial differential equation by eliminating the arbitrary function ϕ from		
	$\varphi(x^2 + y^2 + z^2, xyz) = 0.$ (8 M) BTL5 Answer : Page :1.28- DR.A.SINGARAVELU		
	• $\begin{vmatrix} yz + pxy & 2x + 2pz \\ xz + qxy & 2y + 2qz \end{vmatrix} = 0$ (4 M)		
	• $x(y^2 - z^2) p + y(z^2 - x^2) q = z(x^2 - y^2)$ (4 M)		
6			
	Solve $z = px + qy + p^2 q^2$. (8 M) BTL5		
	Answer : Page :1.60- DR.A.SINGARAVELU		
	• $z = ax + by + a^2b^2$. (4 M)		
	• $z = -3\left(\frac{xy}{4}\right)^{\frac{2}{3}}$ (4 M)		
7			
	Solve $p^2 + q^2 = x^2 + y^2$. (8 M) BTL5		
	Answer : Page: 1.77- DR.A.SINGARAVELU		
	• $p^2 - x^2 = y^2 - q^2 = a$ (2 M)		
	• $z = \frac{x}{2}\sqrt{x^2 + a} + \frac{a}{2}\log(x + \sqrt{x^2 + a}) + \frac{y}{2}\sqrt{y^2 - a} - \frac{a}{2}\log(y - \sqrt{y^2 - a}) + c$ (6M)		
8			
	Solve $(mz - ny) p + (nx - lz)q = ly - mx$. (8 M) BTL5		
	Answer : Page :1.106- DR.A.SINGARAVELU		
	• $\frac{dx}{dx} = \frac{dy}{dz} = \frac{dz}{dz}$ (2 M)		
	mz - ny nx - lz ly - mx		
JTT-J	EPPIAAR/MATHS/Mrs.M.SOPHIA/II rd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL		

REC	GULATION : 2017ACADEMIC YEAR : 2018-2019
	• $\varphi(x^2 + y^2 + z^2, lx + my + nz) = 0$ (6 M)
9	
	Solve $x(z^2 + y^2) p + y(x^2 + z^2) q = z(y^2 - x^2)$ (8 M) BTL5
	Answer : Page :1.108- DR.A.SINGARAVELU
	• $\frac{dx}{x(z^2 + y^2)} = \frac{dy}{y(x^2 + z^2)} = \frac{dz}{z(y^2 - x^2)}$ (2 M)
	$x(z^2 + y^2) = y(x^2 + z^2) = z(y^2 - x^2)$
	• $\varphi(x^2 - y^2 + z^2, \frac{yz}{x}) = 0$ (6 M)
10	
	Solve $x(y-z)p + y(z-x)q = z(x-y)$ (8 M) BTL5
	Answer : Page: 1.126- DR.A.SINGARAVELU
	• $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$ (2 M)
	• $\varphi(xyz, x + y + z) = 0$ (6 M)
11	
	Find the general solution $(3z - 4y)p + (4x - 2z)q = 2y - 3x$. (8 M) BTL5
	Answer : Page: 1.105- DR.A.SINGARAVELU
	• $\frac{dx}{(3z-4y)} = \frac{dy}{(4x-2z)} = \frac{dz}{2y-3x}$ (2 M)
	• $\varphi(x^2 + y^2 + z^2, 2x + 3y + 4z) = 0$ (6 M)
12	$\varphi(x + y + z, 2x + 3y + 4z) = 0 $ (0141)
12	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$. (8 M) BTL5
	Solve $x^{-}(y-z)^{-}p^{-}y^{-}(z-x)^{-}q^{-}z^{-}(x-y)^{-}$. (8 M) BTL5 Answer : Page: 1.103- DR.A.SINGARAVELU
	5
	$\frac{dx}{x^{2}(y-z)} = \frac{dy}{y^{2}(z-x)} = \frac{dz}{z^{2}(x-y)}$ (2 M)
	$\varphi(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}, xyz) = 0$ (6 M)
13	• $x y z$ (6 M)
15	Find the general solution of $f_{1}(x,y) = x^{2} - y^{2}$ DTI 5 (9 M)
	Find the general solution of $z(x - y) = px^2 - qy^2$. BTL5 (8 M) Answer : Page: 1.125- DR.A.SINGARAVELU
	• $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{z(x-y)}$ (2 M)
	• $\varphi(\frac{1}{x} + \frac{1}{y}, \frac{z}{x+y}) = 0$ (6 M)
14	
	Find the general solution of $(y + z) p + (z + x) q = x + y$. (8 M) BTL5
	Answer : Page: 1.112- DR.A.SINGARAVELU
<u> </u>	

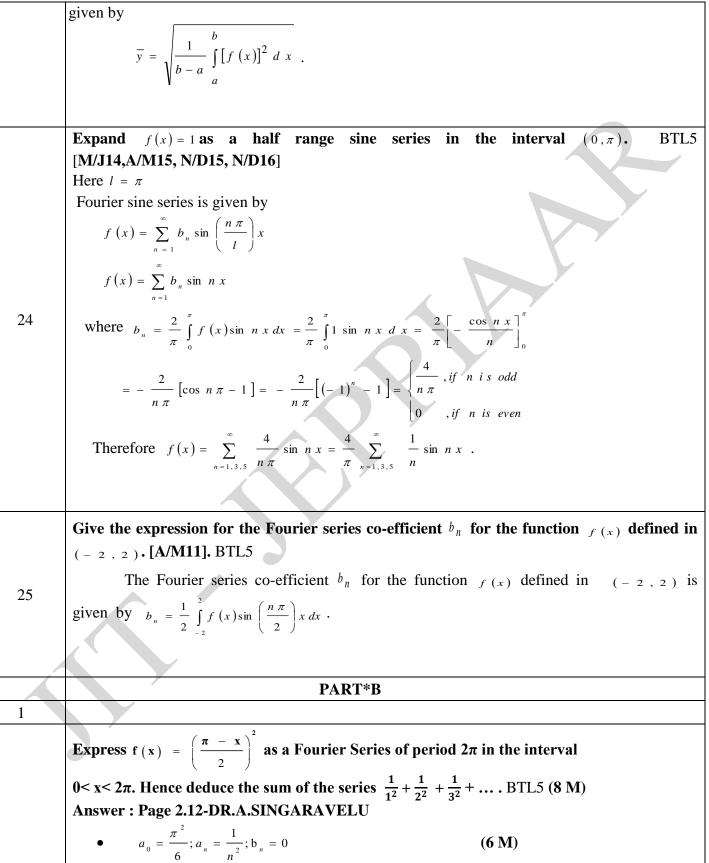
RE	GULATION: 2017	ACADEMIC YEAR : 2018-2019	
	• $\frac{dx}{(y+z)} = \frac{dy}{(z+x)} = \frac{dz}{x+y}$ (2 M)		
	(y + z) $(z + x)$ $x + y$ (2)		
	• $\varphi(\frac{x-y}{y-z}, (y-z)\sqrt{x+y+z}) = 0$ (6 M)		
15			
	Solve $(D^2 - DD' - 20D'^2)z = e^{5x+y} + \sin(4x-y)$. (8 M) B	TL5	
	Answer : Page: 1.165- DR.A.SINGARAVELU		
	• C.F = $f_1(y + 5x) + f_2(y - 4x)$ (2 M)	
	• $P.I = \frac{x}{9} \left(e^{5x+y} - \cos(4x-y) \right)$ ((5 M)	
	• $z = f_1(y + 5x) + f_2(y - 4x) + \frac{x}{9}(e^{5x+y} - \cos(4x - y))$) (1 M)	
16			
	Solve $(D^2 - D'^2)z = e^{x-y} \sin(2x+3y)$. (8 M) BTL5	VY	
	Answer : Page :1.152- DR.A.SINGARAVELU		
	• C.F = $f_1(y + x) + f_2(y - x)$	(3 M)	
	• $P.I = \frac{1}{25}e^{x-y}(\sin(2x+3y) - 2\cos(2x+3y))$	(4 M)	
	• $z = f_1(y + x) + f_2(y - x) + \frac{1}{25}e^{x-y}(\sin(2x + 3y) - 2)$	$\cos(2x + 3y)$ (1 M)	
17			
	Solve $(D^2 - 2DD' + D'^2)z = x^2 y e^{x+y}$. (8 M) BTL5		
	Answer : Page :1.151- DR.A.SINGARAVELU		
	• C.F = $f_1(y + x) + xf_2(y + x)$ (3 M)		
	• $P.I = e^{x+y} \left(\frac{x^4 y^2}{12} + \frac{x^5 y}{15} + \frac{x^6}{60} \right)$ (4 M)		
	• $z = f_1(y + x) + xf_2(y + x) + e^{x+y} \left(\frac{x^4y^2}{12} + \frac{x^5y}{15} + \frac{x^6}{60} \right)$	(1 M)	
18			
	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \sinh(x + y) + e^{x + 2y}$. (8 M) BTL5		
Answer : Page: 1.176- DR.A.SINGARAVELU			
	• $C \cdot F = f_1(y - x) + x f_2(y - x)$ (3 M)		
	• $P.I = \frac{e^{x+2y}}{9} + \frac{1}{4}\sinh(x+y)$ (4 M)		
	• $z = f_1(y - x) + xf_2(y - x) + \frac{e^{x+2y}}{9} + \frac{1}{4}\sinh(x + y)$	(1 M)	


REG	GULATION: 2017	ACADEMIC YEAR : 2018-2019	
	Solve $(D^2 + DD' - 6D'^2)z = y \cos x.$ (8 M) BTL5		
	Answer : Page: 1.157 -DR.A.SINGARAVELU		
	• $C \cdot F = f_1(y - 3x) + f_2(y + 2x)$	(3 M)	
	• $P.I = \sin x - y \cos x$	(4 M)	
	• $z = f_1(y - 3x) + f_2(y + 2x) + \sin x - y \cos x$	(1 M)	
19			
	Solve $(D^2 + D'^2 + 2DD' + 2D + 2D' + 1)z = e^{2x+y}$.	8 M) BTL5	
	Answer : Page: 1.184 - DR.A.SINGARAVELU		
	• C.F = $e^{-x} f_1(y-x) + x e^{-x} f_2(y-x)$	(3 M)	
	e^{2x+y}		
	• $P.I = \frac{e^{2x+y}}{16}$	(4 M)	
	• $z = e^{-x} f_1(y - x) + x e^{-x} f_2(y - x) + \frac{e^{2x + y}}{16}$	(1 M)	
20			
	Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL:	5	
	Answer : Page : 1.185- DR.A.SINGARAVELU		
	• C.F = $f_1(y + x) + e^{3x} f_2(y - x)$	(3 M)	
	$-1 \begin{bmatrix} x^2y & xy & x^3 & x^2 & 65x \end{bmatrix}$		
	• $P.I = \frac{-1}{3} \left[\frac{x^2 y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right]$	(4 M)	
	• $z = f_1(y+x) + e^{3x}f_2(y-x) - \frac{1}{3}\left[\frac{x^2y}{2} + \frac{xy}{3} + \frac{xy}{3}\right]$	$\frac{x^{3}}{6} + \frac{x^{2}}{3} + \frac{65x}{9} $ (1 M)	
21			
	Solve $(2D^2 - DD' - D'^2 + 6D + 3D')z = xe^y$ (8 M) BTL5		
	Answer : Page: 1.189- DR.A.SINGARAVELU		
	• C.F = $f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x)$	(3 M)	
	• $C.F = f_1(y - \frac{1}{2}x) + e - f_2(y + x)$	(3 141)	
	• $P \cdot I = \frac{2e^y}{25} [5x - 12]$	(4 M)	
	• $z = f_1(y - \frac{1}{2}x) + e^{-3x}f_2(y + x) + \frac{2e^y}{25}[5x - 12x]$	2] (1 M)	
	$2 \qquad 2 \qquad$		

	UNIT II-FOURIER SERTIES	
	Dirichlets condition,General Fourier series,and Even functions,Half range Sine series,Half range Cosine series,Complex form of Fourier series,Parsevals Identity,Harmonic Analysis	
	PART*A	
	State Dirichlet's conditions for a given function to expand in Fourier series. BTL1	
	A function $f(x)$ defined in $c \le x \le c + 2l$ can be expanded as an infinite trigonometric series	
1	of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$ provided	
-	(i) $f(x)$ is single-valued and finite in $(c, c+2l)$	
	(ii) $f(x)$ is continuous or piecewise continuous with finite number of finite	
	discontinuities in $(c, c+2l)$.	
	(iii) $f(x)$ has no or finite number of maxima or minima in $(c, c+2l)$.	
	State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. BTL1	
	If a function $f(x)$ defined in $(c, c + 2l)$ can be expanded as the infinite	
	trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$, then	
	$a_0 = \frac{1}{l} \int_{-\infty}^{-\infty} f(x) dx$	
2		
	$a_{n} = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$	
	$b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	
	Does $f(x) = \tan x$ possess a Fourier series expansion? BTL1	
3		
	No, $f(x) = \tan x$ does not possess a Fourier expansion. Because $f(x) = \tan x$ has an infinite discontinuity (io) Dirichlet's condition is not activity of the discontinuity (io) dirichlet's condition is not activity.	
	infinite discontinuity. (ie) Dirichlet's condition is not satisfied.	
	If $x^2 = \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos nx}{n^2}$ in $-\pi < x < \pi$, then find $\sum_{n=1}^{\infty} \frac{1}{n^2}$. BTL5	
4	n = 1 n $n = 1$ n	
	Given $x^{2} = \frac{\pi^{2}}{3} - 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n x$	
	$x^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{1}{1^{2}} \cos x - \frac{1}{2^{2}} \cos 2x + \frac{1}{3^{2}} \cos 3x + \dots \right]$	
	The point $x = \pi$ is the point of discontinuity (right extreme point)	

	ULATION: 2017 ACADEMIC TEAR: 2018-2019	
	where $b_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi}{l}\right) x dx = \frac{2}{2} \int_0^2 1 \sin\left(\frac{n\pi}{2}\right) x dx = \int_0^2 \sin\left(\frac{n\pi}{2}\right) x dx$	
	$= -\frac{2}{n\pi} \left[\cos\left(\frac{n\pi}{2}\right) x \right]_{0}^{2} = -\frac{2}{n\pi} \left[\cos n\pi - 1 \right] = -\frac{2}{n\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} \frac{4}{n\pi}, & \text{if } n \text{ is odd} \\ 0, & \text{if } n \text{ is even} \end{cases}$	
	Therefore $f(x) = \sum_{n=1,3,5}^{\infty} \frac{4}{n\pi} \sin\left(\frac{n\pi}{2}\right) x = \frac{4}{\pi} \sum_{n=1,3,5}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right) x$.	
	If the function $f(x) = x$ in the interval $0 < x < 2\pi$, then find the constant term of the	
	Fourier series expansion of the function f. [N/D15] BTL5	
8	$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} x dx = \frac{1}{\pi} \left[\frac{x^{2}}{2} \right]_{0}^{2\pi} = \frac{1}{\pi} \left[2\pi^{2} - 0 \right] = \frac{2\pi^{2}}{\pi} = 2\pi$	
	The constant term of the Fourier series expansion $=\frac{a_0}{2}=\frac{2\pi}{2}=\pi$.	
	If $x^2 = \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos n x}{n^2}$ in $-\pi < x < \pi$, then find $\sum_{n=1}^{\infty} \frac{1}{n^2}$. [M/J16] BTL5	
	Given $x^2 = \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$	
	$x^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{1}{1^{2}} \cos x - \frac{1}{2^{2}} \cos 2x + \frac{1}{3^{2}} \cos 3x + \dots \right]$	
	The point $x = \pi$ is the point of discontinuity (right extreme point)	
9	$\pi^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{1}{1^{2}} \cos \pi - \frac{1}{2^{2}} \cos 2\pi + \frac{1}{3^{2}} \cos 3\pi + \dots \right]$	
	$\pi^{2} - \frac{\pi^{2}}{3} = -4 \left[\frac{1}{1^{2}} (-1) - \frac{1}{2^{2}} (1) + \frac{1}{3^{2}} (-1) + \dots \right]$	
	$\frac{2\pi^2}{3} = 4\left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots\right]$	
	$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \dots$	
	Therefore, $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$	
	If $(\pi - x)^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{\cos n x}{n^2}$ in $0 < x < 2\pi$, then deduce that the value of $\sum_{n=1}^{\infty} \frac{1}{n^2} \cdot [\underline{N/D14}]$	
	BTL5	
10	Given $(\pi - x)^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{\cos n x}{n^2}$	
	$\left(\pi - x\right)^{2} = \frac{\pi^{2}}{3} + 4\left[\frac{1}{1^{2}}\cos x + \frac{1}{2^{2}}\cos 2x + \frac{1}{3^{2}}\cos 3x + \dots \right]$	

	The point $x = 0$ is the left extreme point of discontinuity	
	$\frac{f\left[0\right] + f\left[2\pi\right]}{2} = \frac{\pi^2}{3} + 4\left[\frac{1}{1^2}\cos 0 + \frac{1}{2^2}\cos 0 + \frac{1}{3^2}\cos 0 + \dots\right]$	
	$\frac{\left(\pi - 0\right)^2 + \left(\pi - 2\pi\right)^2}{2} = \frac{\pi^2}{3} + 4\left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \right]$	
	$\frac{\left(\pi-0\right)^2+\left(\pi-2\pi\right)^2}{2}=\frac{\pi^2}{3}+4\left[\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\dots\right]$	
	$\pi^{2} - \frac{\pi^{2}}{3} = 4 \left[-\frac{1}{1^{2}} (-1) + \frac{1}{2^{2}} (1) - \frac{1}{3^{2}} (-1) + \dots \right]$	
	$\frac{2\pi^2}{3} = 4\left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \right]$	
	$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \dots$	
	Therefore, $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.	
	If the Fourier series of the function $f(x) = x$, $-\pi < x < \pi$ with period 2π is given by	
	$f(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots\right), \text{ then find the sum of the series}$	
	$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \cdot [\underline{A/M15}]$ BTL5	
	Given $f(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots\right)\dots(1)$	
11	The point $x = \frac{\pi}{2}$ is the point of continuity.	
	Substitute $x = \frac{\pi}{2}$ in (1), we have	
	$\frac{\pi}{2} = 2\left(1 - 0 - \frac{1}{3} - 0 + \frac{1}{5} - 0 - \frac{1}{7} - 0 + \dots \right)$	
	Hence, $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$.	
	EXAMPLE Give the expression for the Fourier series co-efficient b_n for the function $f(x)$ defined in	
	(- 2, 2). [A/M11]. BTL5	
12	The Fourier series co-efficient b_n for the function $f(x)$ defined in $(-2, 2)$ is	
	given by $b_n = \frac{1}{2} \int_{-2}^{2} f(x) \sin\left(\frac{n\pi}{2}\right) x dx$.	

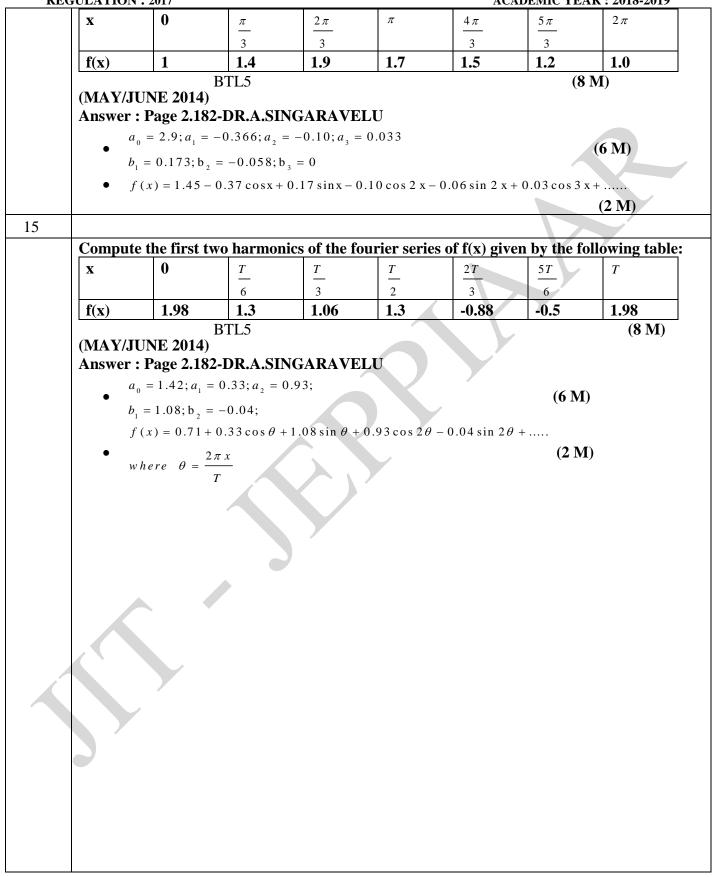


Find the value of b_n in the Fourier series expansion of $f(x) = \begin{cases} x + \pi & in (-\pi, 0) \\ -x + \pi & in (0, \pi) \end{cases}$. [M/J16] BTL2 Given $f(x) = \begin{cases} x + \pi & \text{in } (-\pi, 0) \\ -x + \pi & \text{in } (0, \pi) \end{cases}$ 15 Let $\varphi_1(x) = x + \pi$ $\varphi_2(x) = -x + \pi$ $\varphi_1(-x) = -x + \pi = \varphi_2(x)$ Therefore, f(x) is an even function. Hence, $b_n = 0$. Find the value of the Fourier series of $f(x) = \begin{cases} 0 & in (-c, 0) \\ 1 & in (0, c) \end{cases}$ at the point of discontinuity x = 0 **.**BTL2 [<u>M/J16]</u> Given $f(x) = \begin{cases} 0 & in (-c, 0) \\ 1 & in (0, c) \end{cases}$ 16 $\begin{bmatrix} Value & of f(x) \end{bmatrix}_{x=0} = \lim_{h \to 0} \frac{1}{2} \begin{bmatrix} f(0-h) + f(0+h) \end{bmatrix}$ $= \lim_{h \to 0} \frac{1}{2} \left[0 + 1 \right] = \frac{1}{2}.$ Find the Fourier constants b_n for $x \sin x$ in $(-\pi, \pi)$. BTL2 Given $f(x) = x \sin x$ $f(-x) = -x \sin(-x) = -x(-\sin x) = x \sin x = f(x)$ 17 Therefore, f(x) is an even function. Hence, $b_{r} = 0$. Find the co-efficient b_n of the Fourier series for the function $f(x) = x \sin x$ in (-2, 2). [N/D12]. BTL5 Given $f(x) = x \sin x$ 18 $f(-x) = -x \sin(-x) = -x(-\sin x) = x \sin x = f(x)$ Therefore, f(x) is an even function. Hence, $b_n = 0$.

Г

	Write down Parseval's formula on Fourier coefficients. [N/D14] BTL5	
19	If $y = f(x)$ can be expanded as Fourier series of the form	
	$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$ in (0, 21), then the root-mean square	
	$2 \overline{f_{n=1}} (l) \overline{f_{n=1}} (l)$ value \overline{y} of $y = f(x)$ in $(0, 2l)$ is given by	
	21	
	$\overline{y}^2 = \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} a_n^2 + \frac{1}{2} \sum_{n=1}^{\infty} b_n^2 \text{ where } \overline{y}^2 = \frac{1}{2l} \int_{0}^{1} [f(x)]^2 dx.$	
	n=1 $n=1$ 0	
	Find the root mean square value of $f(x) = x^2$ in $(0, 1)$. [N/D10]. BTL5	
	The root mean square value of $f(x) = x^2$ in $(0, t)$ is given by	
20	$- \boxed{1 \begin{array}{c}l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\l\\$	
	$\overline{y} = \sqrt{\frac{1}{l-0}} \int_{0}^{l} \left[x^{2}\right]^{2} dx = \sqrt{\frac{1}{l}} \int_{0}^{l} x^{4} dx = \sqrt{\frac{1}{l}} \left[\frac{x^{5}}{5}\right]_{0}^{l} = \sqrt{\frac{1}{l}} \left[\frac{t^{5}}{5} - 0\right] = \sqrt{\frac{t^{4}}{5}}.$	
	Find the root mean square value of the function $f(x) = x$ in the interval $(0, 1)$. [N/D11].	
	BTL5	
	The root mean square value of $f(x) = x$ in $(0, 1)$ is given by	
21	$\begin{bmatrix} l \\ 1 \\ r \\ r$	
	$\overline{y} = \sqrt{\frac{1}{l-0}} \int_{0}^{l} [x]^{2} dx = \sqrt{\frac{1}{l}} \left[\frac{x^{3}}{3}\right]_{0}^{l} = \sqrt{\frac{1}{l}} \left[\frac{l^{3}}{3} - 0\right] = \sqrt{\frac{l^{2}}{3}}.$	
	Find the root mean square value of $f(x) = x(l-x)$ in $0 \le x \le l$.[<u>N/D15</u>] BTL5	
	The root mean square value of a function $f(x) = l x - x^2$ in $0 \le x \le l$ is given	
22	by $\overline{y} = \sqrt{\frac{1}{l-0}} \int_{0}^{l} [f(x)]^2 dx = \sqrt{\frac{1}{l}} \int_{0}^{l} [lx - x^2]^2 dx = \sqrt{\frac{1}{l}} \int_{0}^{l} [l^2 x^2 + x^4 - 2lx^3] dx$	
	$= \sqrt{\frac{1}{l}} \left[l^{2} \left(\frac{x^{3}}{3} \right)_{0}^{l} + \left(\frac{x^{5}}{5} \right)_{0}^{l} - 2 l \left(\frac{x^{4}}{4} \right)_{0}^{l} \right] = \sqrt{\frac{1}{l}} \left[\frac{l^{5}}{3} + \frac{l^{5}}{5} - \frac{l^{5}}{2} \right] = \sqrt{\frac{1}{l}} \left[\frac{l^{5}}{30} \right] = \sqrt{\frac{l^{4}}{30}} = \frac{l^{2}}{\sqrt{30}}.$	
	$ \begin{bmatrix} l \\ 3 \end{bmatrix}_{0} \begin{bmatrix} 5 \\ 0 \end{bmatrix}_{0} \begin{bmatrix} 4 \\ 0 \end{bmatrix} \begin{bmatrix} l \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} \begin{bmatrix} l \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} l \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\$	
	Define root mean square value of a function $f(x)$ over the interval (a, b) . [M/J12,	
23	N/D12]. BTL5	
	The root mean square value of a function $f(x)$ over the interval (a, b) is	

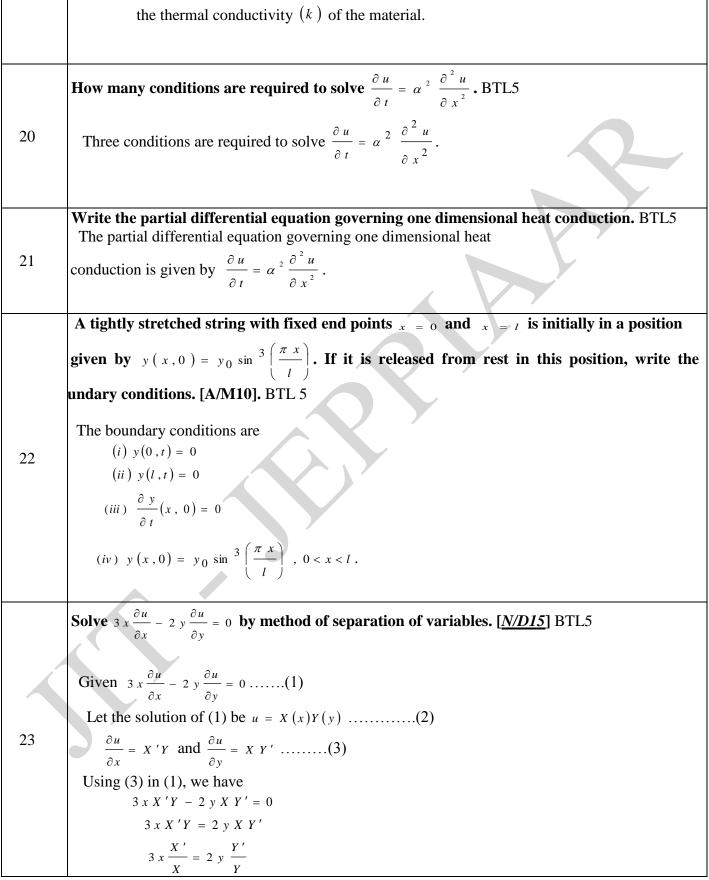
JIT-JEPPIAAR/MATHS/Mrs.M.SOPHIA/IIrd Yr/SEM 03/MA8353/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS 1-5/QB+Keys/Ver1.0



	$\mathbf{f}(x) = \frac{\pi^2}{2} + \sum_{n=1}^{\infty} \frac{\cos nx}{n} (1 \text{ M})$	
	• $f(x) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ (1 M)	
	• $1/1^2 + 1/2^2 + 1/3^2 + \dots = \frac{\pi^2}{6}$ (1 M)	
2		
	Obtain the Fourier Series of period 2π for the function $f(x) = x^2$ in $(-\pi, \pi)$. Deduce that	
	(i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$ (iii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ BTL5 (8 M)	
	Answer : Page 2.40-DR.A.SINGARAVELU	
	• $a_0 = \frac{2\pi^2}{3}; a_n = \frac{4}{n^2} (-1)^n; b_n = 0$ (6 M)	
	• $f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n \cos nx$ (1 M)	
	$1/1^{2} + 1/2^{2} + 1/3^{2} + \dots = \frac{\pi^{2}}{6};$	
	• $1/1^2 - 1/2^2 + 1/3^2 - \dots = \frac{\pi^2}{12}$; (1 M)	
	$1/1^{2} + 1/3^{2} + 1/5^{2} + \dots = \frac{\pi^{2}}{8}$	
3		
	Obtain the Fourier Series to represent the function $f(x) = x , -\pi < x < \pi$ and deduce	
	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8} \text{.BTL5 (8 M)}$	
	Answer : Page 2.52DR.A.SINGARAVELU	
	• $a_0 = \pi; a_n = \frac{2}{n^2 \pi} \left[(-1)^n - 1 \right]; b_n = 0$ (6 M)	
	• $f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi} \left[(-1)^n - 1 \right] \cos nx$ (1 M)	
	• $1/1^2 + 1/3^2 + 1/5^2 + \dots = \frac{\pi^2}{8}$ (1 M)	
4		
	Obtain the Fourier Series of $f(x) = x \sin x in (-\pi,\pi)$. BTL5 (8 M) Answer : Page 2.58-DR.A.SINGARAVELU	
	2 $\left[\int (x + x)^{n+1} \right]$ $(x + x)^{n+1}$	
	$a_{0} = 2; a_{n} = \frac{2}{(n+1)(n-1)} \left[(-1)^{n+1} \right]; b_{n} = 0$ (6 M)	
	$a_1 = \frac{-1}{2}$	

KEC	SULATION : 2017 ACADEMIC TEAR : 2018-2019
	• $f(x) = 1 - \frac{\cos x}{2} + \sum_{n=2}^{\infty} \frac{2}{(n+1)(n-1)} \Big[(-1)^{n+1} \Big] \cos nx$ (2 M)
5	
	Obtain the Fourier Series of $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ and hence deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}. \text{ BTL5} \qquad (8 \text{ M})$
	Answer : Page 2.72-DR.A.SINGARAVELU
	• $a_0 = 0; a_n = \frac{4}{n^2 \pi^2} \Big[1 - (-1)^n \Big]; b_n = 0$ (6 M)
	• $f(x) = \frac{8}{\pi^2} \sum_{n \text{ is ODD}}^{\infty} \frac{\cos nx}{n^2}$ (1 M)
	• $1/1^2 + 1/3^2 + 1/5^2 + \dots = \frac{\pi^2}{8}$ (1 M)
6	
	If $\mathbf{f}(\mathbf{x}) = \begin{cases} 0, \ -\pi \le x \le 0\\ sinx, \ 0 \le x \le \pi \end{cases}$, Prove that $\mathbf{f}(\mathbf{x}) = \frac{1}{\pi} + \frac{1}{2} \sin x - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos nx}{4n^2 - 1}$
	Hence show that (i) $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{2}$ (ii) $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$. BTL5 (8 M)
	Answer :Page 2.64-DR.A.SINGARAVELU
	• $a_0 = \frac{2}{\pi}; a_n = \frac{-1}{(n^2 - 1)\pi} \left[1 + (-1)^n \right]; b_n = \begin{cases} 0 & if n \neq 1 \\ \frac{1}{2} & if n = 1 \end{cases}$ (6 M) $a_1 = 0$
	• $f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{1}{\pi} \sum_{n=2}^{\infty} \frac{\cos nx}{(n^2 - 1)} \left[1 + (-1)^n \right]$ (1 M)
7	• $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{2}$ and $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$ (1 M)
	$\mathbf{F} = 1 + $
	Find half range sine series for $f(x) = x(\pi - x)$ in $(0,\pi)$. Deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \dots$ BTL5 (8 M)
	Answer :Page 2.144-DR.A.SINGARAVELU
	• $b_n = \frac{4}{n^3 \pi} \left[1 - (-1)^n \right]$ (6 M)
	• $f(x) = \frac{8}{\pi} \left[\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right]$ (1 M)
	• $1/1^{3} - 1/3^{3} + 1/5^{3} - \dots = \frac{\pi^{3}}{32}$ (1 M)
8	

ACADEMIC YEAR : 2018-2019Obtain the Fourier Series of $f(x) = \begin{cases} l - x, & 0 < x \le l \\ 0, & l \le x \le 2l \end{cases}$ and hence deduce $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ (8 M) BTL5 Answer : Page 2.85-DR.A.SINGARAVELU • $a_0 = \frac{l}{2}; a_n = \left\{ \frac{2l}{n^2 \pi^2} \text{ if n is } Odd \\ 0 \text{ if n is even} \right\}; b_n = \frac{l}{n\pi}$ (6 M) • $f(x) = \frac{l}{4} + \sum_{n=1,3,5}^{\infty} \frac{2l}{n^2 \pi^2} \cos \frac{n \pi x}{l} + \sum_{n=1}^{\infty} \frac{1}{n \pi} \sin \frac{n \pi x}{l}$ (1 M) • $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$ (1 M) 9 $\begin{array}{c} x, \ 0 < x \leq \frac{l}{2} \\ l - x, \ \frac{l}{2} \leq x \leq l \end{array}$ (8 M) BTL5 Obtain the half range sine series of the function $f(x) = \begin{cases} \\ \\ \\ \\ \end{cases}$ Answer : Page 2.153-DR.A.SINGARAVELU • $b_n = \frac{4l}{n^2 \pi^2} \sin \frac{n\pi}{2}$ (7 M) • $f(x) = \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} \sin \frac{n\pi x}{l}$ (1 M) 10 Obtain the half range sine series of the function $f(x) = lx - x^2$ in $0 \le x \le l$. (8 M) BTL5 Answer : Page 2.157-DR.A.SINGARAVELU • $b_n = \begin{cases} \frac{8l^2}{n^3 \pi^3} & \text{If } n \text{ is } O dd \\ 0 & O \text{ therw ise} \end{cases}$ (7 M) • $f(x) = \frac{8l^2}{3} \left| \frac{\sin\left(\frac{\pi x}{l}\right)}{1^3} + \frac{\sin\left(\frac{3\pi x}{l}\right)}{2^3} + \frac{\sin\left(\frac{5\pi x}{l}\right)}{5^3} + \dots \right|$ (1 M) 11 the Fourier series for $f(x) = 1 + x + x^2$ in $(-\pi, \pi)$. Obtain Deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6} \cdot BTL5 \quad (8 \text{ M})$ Answer : Page 2.44-DR.A.SINGARAVELU


KEG	GULATION: 2017 ACA	ADEMIC YEAR : 2018-2019
	For $f_1(x)$	
	$a_{0} = 0; b_{n} = \frac{2}{n} \left[(-1)^{n+1} \right]; a_{n} = 0$ • For $f_{2}(x)$	(6 M)
	$a_0 = 2 + \frac{2\pi^2}{3}; a_n = \frac{4}{n^2} [(-1)^n]; b_n = 0$	
	• $f(x) = 1 + \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2} + 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n^2}$ (1 M)	
	• $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$ (1 M)	
12		
	Find the Fourier series of periodicity 2π for $f(x)=x^2$, in -	
	$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi}{90} \cdot [\mathbf{M}/\mathbf{J}13, \mathbf{A}/\mathbf{M}15, \mathbf{N}/\mathbf{D}15, \mathbf{N}/\mathbf{D}16] \text{ BT}$	TL5 (8 M)
	Answer :Page 2.166-DR.A.SINGARAVELU	
	• $a_0 = \frac{2\pi^2}{3}; a_n = \left\{\frac{4(-1)^n}{n^2}\right\}; b_n = 0$	(6 M)
	• $f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \left\{ \frac{4(-1)^n}{n^2} \right\} \cos nx$	(2 M)
	• $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$ (1 M)	
13		
	By using cosine series for $f(x) = x$ in $0 < x < \pi$, show that $\frac{\pi^4}{96}$	= $1 + \frac{1}{3^4} + \frac{1}{5^4} + \dots$. [N/D14]
	(8 M) BTL5 Answer :Page 2.169-DR.A.SINGARAVELU	
	• $a_0 = l; a_n = \begin{cases} \frac{-4l}{n^2 \pi^2} & \text{if } n \text{ is } O dd \\ 0 & O \text{ therw ise} \end{cases}$	(6 M)
	• $f(x) = \frac{l}{2} + \sum_{n=1,3,5}^{\infty} \left\{ \frac{-4l}{n^2 \pi^2} \right\} \cos \frac{n \pi x}{l}$ (1 M)	
	• $\frac{\pi^4}{96} = 1 + \frac{1}{3^4} + \frac{1}{5^4} + \dots$ (1 M)	
14		
	Compute the first three harmonics of the fourier series of f(x) gi	ven by the following table:

	UNIT-III APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS
	Classification Of PDE-Method of Separation Of Variables-Solution Of One Dimentional Wave Equations-One Dimentional Heat Equations-Steaty State Solution Of Two Dimentional Equation Of Heat Conduction
	PART*A
1	Write down all possible solutions of one dimensional wave equation. [N/D09,M/J14,N/D14].BTL2 (i) $y(x,t) = (c_1e^{px} + c_2e^{-px})(c_3e^{pat} + c_4e^{-pat})$ (ii) $y(x,t) = (c_5 \cos px + c_6 \sin px)(c_7 \cos pat + c8 \sin pat)$ (iii) $y(x,t) = (c_9x + c_{10})(c_{11}t + c_{12})$
	Classify the PDE $4u_{xx} = u_t$. BTL2
2	Given $4u_{xx} - u_t = 0$. Here $A = 4$, $B = 0$, $C = 0$ then $B^2 - 4AC = 0$ Therefore the given PDE is <i>parabolic</i> .
3	Classify the PDE $x^{2}u_{xx} + 2xyu_{xy} + (1 + y^{2})u_{yy} - 2u_{x} = 0$. BTL2 Given $x^{2}u_{xx} + 2xyu_{xy} + (1 + y^{2})u_{yy} - 2u_{x} = 0$ Here $A = x^{2}$, $B = 2xy$, $C = 1 + y^{2}$ then $B^{2} - 4AC = -4x^{2} < 0$ Therefore the given PDE is <i>Elliptic</i> .
4	Classify the PDE $x^{2}u_{xx} + 2xyu_{xy} + (1 + y^{2})u_{yy} - 2u_{x} = 0$. BTL2 Given $x^{2}u_{xx} + 2xyu_{xy} + (1 + y^{2})u_{yy} - 2u_{x} = 0$ Here $A = x^{2}$, $B = 2xy$, $C = 1 + y^{2}$ then $B^{2} - 4AC = -4x^{2} < 0$ Therefore the given PDE is <i>Elliptic</i> .
5	What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation? [M/J12] BTL2 Solution of the one dimensional wave equation is of periodic in nature. But Solution of the one dimensional heat equation is not of periodic in nature.
6	Classify the PDE $u_{xx} + 2u_{xy} + u_{yy} = e^{(2x+3y)}$. BTL2 Here $A = 1, B = 2, C = 1$ $B^2 - 4AC = 0$ Then the given PDE is <i>parabolic</i> .
7	In the wave equation $u_{tt} = c^2 u_{xx}$, what does c^2 stand for? [M/J13] BTL5 $c^2 = T/m = \frac{Tension}{mass \ per \ unit \ length}$.
8	What are the basic assumption in 2-d heat equation (or) Laplace equation? BTL5 When the heat flow is along curves instead of straight lines, the curves lying in parallel planes the flow is called two dimensional.
9	State any two laws which are assumed to derive one dimensional heat equation. [M/J14]BTL1(i)(i)The sides of the bar are insulated so that the loss or gain of heat from the sides by

REC	GULATION : 2017 ACADEMIC YEAR : 2018-2019
	conduction or radiation is negligible.
	(ii) The same amount of heat is applied at all points of the face.
	Classify the PDE $u_{xx} + x u_{yy} = 0$. BTL2
10	Here $A = 1$, $B = 0$, $C = x$ therefore $B^2 - 4AC = -4x$
	(i) If $x = 0$ then the given PDE is <i>Parabolic</i>
	(ii) If $x < 0$ then the given PDE is <i>Elliptic</i>
	(iii) If $x > 0$ then the given PDE is <i>Hyperbolic</i>
	Define steady state temperature distribution. [N/D13] BTL5
11	If the temperature will not change when time varies is called steady state temperature
	distribution.
12	In one dimensional heat equation $u_{t} = \alpha^{2} u_{xx}$. What does α^{2} stands for? [M/J13] BTL5
	α^2 = thermal diffusivity.
	Write the steady state heat flow equation in two dimension in Cartesian equation and
	polar form. [M/J12]. BTL5
	The Cartesian equation of two dimensional heat flow is $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial v^2} = 0$.
12	$\partial x^2 \partial y^2$
13	$2\partial^2 \mu$ $\partial \mu$ $\partial^2 \mu$
	The polar form of two dimensional heat flow is $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$.
	$\partial r^2 \qquad \partial r^2 \qquad \partial \theta^2$
	Write down the governing equation of two dimensional steady state heat conduction.
	BTL5
14	$\partial^2 u \partial^2 u$
14	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is the governing equation of two dimensional steady state heat conduction.
	An insulated rod of length $_{60}$ cm has its ends at A and B maintained at $20\degree c$ and $80\degree c$
	respectively. Find the steady state solution of the rod. [N/D12,M/J12]. BTL5
	The steady state equation of one dimensional heat flow is $\frac{d^2 u}{dt} = 0$ (1)
	The steady state equation of one dimensional near now is $\frac{1}{dx^2} = 0$ (1)
	The solution of (1) is $u(x) = a x + b$ (2)
	Here $l = 60$
15	The boundary conditions are
	(i) u(0) = 20
	(ii) u(l) = 80
	Applying condition (i) in (2), we have $(a) = (a) + ($
	u(0) = a(0) + b ==> 20 = 0 + b ==> b = 20 Substituting ,,,,,,,,
	Substituting $b = 20$ in (2), we have (3)
	$u(x) = a x + 20 \qquad (3)$
	Applying condition (ii) in (3), we have

	$\begin{array}{c} \text{ACADEMIC TEAK : 2017-2019} \\ \hline u(l) = a(l) + 20 \implies 80 = a(60) + 20 \implies 60 a = 60 \implies a = 1 \\ \text{Substituting } a = 1 \text{in (3), we have } u(x) = x + 20 \end{array}$
	The ends <i>A</i> and <i>B</i> of a rod 20 <i>cm</i> long have the temperature at 30 ° <i>C</i> and 80 ° <i>C</i> until steady state prevails. Find the steady state temperature. [N/D14] BTL5
	The steady state equation of one dimensional heat flow is $\frac{d^2 u}{dx^2} = 0$ (1)
16	The solution of (1) is $u(x) = a x + b$ (2) Here $l = 20$
	The boundary conditions are (i) $u(0) = 30$ (ii) $u(1) = 80$ Applying condition (i) in (2), we have
	$u(0) = a(0) + b \implies 30 = 0 + b \implies b = 30$ Substituting $b = 30$ in (2), we have
	u(x) = a x + 30(3) Applying condition (ii) in (3) and substituting $l = 20$, we have
	$u(l) = a(l) + 30 \implies 80 = a(20) + 30 \implies 20 a = 50 \implies a = \frac{5}{2}$
	Substituting $a = \frac{5}{2}$ in (3), we have $u(x) = \frac{5}{2}x + 30$.
	State the three possible solutions of the one dimensional heat flow (unsteady state)equation. [N/D10, <u>N/D14,M/J16,N/D16</u>]. BTL5
17	The various possible solutions of one dimensional heat equation are (i) $u(x,t) = (A_1 e^{\lambda x} + B_1 e^{-\lambda x}) e^{-\alpha^2 \lambda^2 t}$
	$(ii) u(x,t) = (A_2 \cos \lambda x + B_2 \sin \lambda x)e^{-\alpha^2 \lambda^2 t}$
	$(iii) u(x,t) = A_3 x + B_3.$
18	State Fourier law of heat conduction. BTL5 The rate at which heat flows through any area is proportional to the area and to the temperature gradient normal to the area. This constant of proportionality is known as
	the thermal conductivity (k) of the material. It is known as Fourier law of heat conduction.
	State any two laws which are assumed to derive one dimensional heat equation. [M/J14] BTL5
19	The laws which are assumed to derive one dimensional heat equation are
	 (i) Heat flows from a higher to lower temperature. (ii) The amount of heat required to produce a given temperature change in a body is properticed to the mass of the heady and to the temperature change. This constant of
	proportional to the mass of the body and to the temperature change. This constant of proportionality is known as the specific heat (c) of the conducting material.
	 (iii) The rate at which heat flows through any area is proportional to the area and to the temperature gradient normal to the area. This constant of proportionality is known as

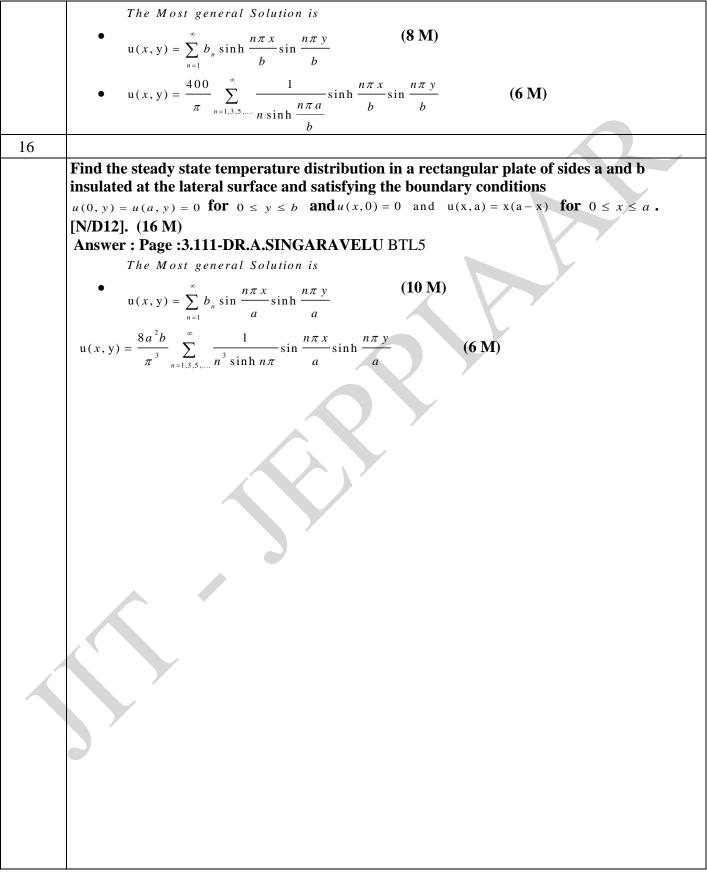
	JULATION : 2017 ACADEMIC YEAR : 2018-2019
	L.H.S is a function of x alone and R.H.S is a function of y alone. They are equal for all
	values of x and y . This is possible if each is a constant.
	$3x\frac{X'}{Y} = 2y\frac{Y'}{Y} = k$
	$3x\frac{X'}{X} = k \qquad \Rightarrow 3\frac{X'}{X} = \frac{k}{x} \dots (4)$
	$\begin{array}{cccc} X & X & X \\ Y' & Y' & Y' \end{array}$
	$2 y \frac{Y'}{Y} = k \qquad \Rightarrow 2 \frac{Y'}{Y} = \frac{k}{y} \dots \dots (5)$
	Integrating (4) with respect to x and (5) with respect to y , we have
	$3 \log X = k \log x + \log A \qquad 2 \log Y = k \log y + \log B$
	$\log X^{3} = \log x^{k} + \log A \qquad \qquad \log Y^{2} = \log y^{k} + \log B$
	$\log X^{3} = \log Ax^{k} \qquad \qquad \log Y^{2} = \log By^{k}$
	$X^{3} = Ax^{k} Y^{2} = By^{k}$
	$X = a x^{\frac{k}{3}} \qquad \qquad Y = b y^{\frac{k}{2}}$
	Hence the solution of (1) is $u = a x^{\frac{k}{3}} b y^{\frac{k}{2}} = a b x^{\frac{k}{3}} y^{\frac{k}{2}}$.
	Thence the solution of (1) is $u = a x^2 b y^2 = a b x^2 y^2$.
	Write the one dimensional heat equation. BTL5
	The one dimensional heat equation is $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ where $\alpha^2 = \frac{k}{\rho c}$.
24	The one dimensional near equation is $-a = a$, where $a = -\rho c$.
	Classify the following partial differential equation: BTL5
	(a) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$
	(b) $\frac{\partial^2 u}{\partial x \partial y} = \left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial u}{\partial y}\right) + x y \cdot$
	$\partial^2 u \partial^2 u$
	Given $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$
25	Here $A = 1$, $B = 0$, $C = -1$
	$B^2 - 4 A C = 0 - 4(1)(-1) = 4 > 0$
	Therefore, the given pde is hyperbolic.
	(b) $\frac{\partial^2 u}{\partial x \partial y} = \left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial u}{\partial y}\right) + x y$
	Here $A = 0$, $B = 1$, $C = 0$
	$B^2 - 4AC = (1)^2 - 4(0)(0) = 1 > 0$
	Therefore, the given pde is hyperbolic.

ſ

	Part*B
1	
	A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = k (lx - x^2)$ from which it is released at time $t = 0$. Find the displacement of any point of the string at a distance x from one end at any time t.
	(16 M) BTL5 Answer : Page 3.20-DR.A.SINGARAVELU
	Alswer - Lage 3.20-DR.A.SHIGARA VELU
	$(i) y(0,t) = 0 \forall t > 0$
	$(ii) y(l,t) = 0 \forall t > 0$
	• $(iii) \frac{\partial y}{\partial t}(x,0) = 0 \forall t > 0$ (2 M)
	$(iv) y(x,0) = k \left(lx - x^{2} \right)$
	The Most general Solution is
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$ (8 M)
	• $y(x,t) = \frac{8kl^2}{\pi^3} \sum_{n=1,3,5}^{\infty} \frac{1}{n^3} \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$ (6 M)
2	
	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position
	given by $y = y_0 \sin^3(\pi x/l)$. If it is released from rest from this position, find the
	displacement y(x, t). (16 M) BTL5 Answer : Page :3.25-DR.A.SINGARAVELU
	• Boundry Conditions (2 M)
	The Most general Solution is
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$ (8 M)
	• $y(x,t) = \frac{3y_0}{4} \sin \frac{\pi x}{l} \cos \frac{\pi at}{l} - \frac{y_0}{4} \sin \frac{3\pi x}{l} \cos \frac{3\pi at}{l}$ (6 M)
3	
	A tightly stretched string of length 21 is fixed at both ends. The midpoint of the string is displaced by a distance "h" transversely and the string is released from rest in this position. Find the displacement of any point of the string at any subsequent time. (16 M)

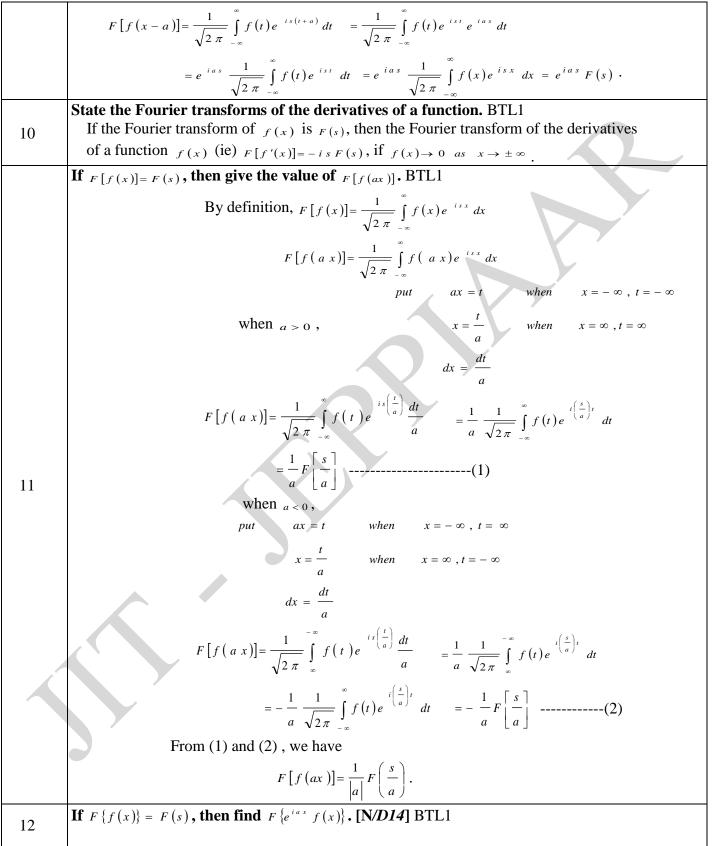
REGULA	TION: 2017	ACADEMIC YEAR : 2018-2019
	(<i>i</i>) $y(0,t) = 0 \forall t > 0$	
	$(ii) y(l,t) = 0 \forall t > 0$	
	$(iii)\frac{\partial y}{\partial t}(x,0) = 0 \forall t > 0$	
	$(III) \frac{\partial}{\partial t} (x, 0) = 0 \forall t > 0$	
	$\begin{bmatrix} 3hx \\ 0 \end{bmatrix}$	(2 M)
	$\frac{1}{l}$ for $\begin{pmatrix} 0, \frac{1}{3} \end{pmatrix}$	
	$(iv) y(x, 0) = \begin{cases} \\ 3h(l-x) \\ \\ \end{pmatrix}$	
	$(iv) y(x,0) = \begin{cases} \frac{3hx}{l} & for \left(0,\frac{l}{3}\right) \\ \frac{3h(l-x)}{2l} & for \left(\frac{l}{3},l\right) \end{cases}$	
	The Most general Solution is	
	• $n\pi x = n\pi at$	(8 M)
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} \cos \frac{n\pi at}{L}$	
	$8h \sum_{n=1}^{\infty} (-1)^n (2n-1)\pi x$	$\frac{(2n-1)\pi at}{\mathbf{(6 M)}}$
	• $y(x,t) = \frac{8h}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} \sin \frac{(2n-1)\pi x}{2l} \cos \frac{\pi^2}{2l}$	
3		
A ta	ut string of length l has its ends $x = 0$, $x = 0$	$= l$ fixed. The point where $x = \frac{l}{2}$ is
	wn aside a small distance <i>h</i> , the displacement	
	ermine $y(x, t)$ at any time t. (16 M) BTL5	$\partial t^2 = \partial t^2 + \partial x^2$
	swer :Page 3.40-DR.A.SINGARAVELU	
	(<i>i</i>) $y(0, t) = 0 \forall t > 0$	
	$(ii) y(l,t) = 0 \forall t > 0$	
	$(iii)\frac{\partial y}{\partial t}(x,0) = 0 \forall t > 0$ $(iv) y(x,0) = \begin{cases} \frac{3hx}{l} & for \left(0,\frac{l}{3}\right) \\ \frac{3h(l-x)}{2l} & for \left(\frac{l}{3},l\right) \end{cases}$	
	• ∂t	(2 M)
	$\begin{bmatrix} 3hx \\ for \\ 0, - \end{bmatrix}$	(=)
	(iv) v(x, 0) =	
	$\left \frac{3h(l-x)}{for\left(\frac{l}{r},l\right)}\right $	
	The Most general Solution is	
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$	(8 M)
	n = 1 l l	
	• $y(x,t) = \frac{9h}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{3} \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$	(6 M)
	$\pi^2 \prod_{n=1}^{\infty} n^2$ 3 l l	
4	• 141 4 . 4 1 . 1 . 4 • . • . • . • . • . • . • . • . • .	
		its $x = 0$ and $x = l$ is initially at rest in its sing each point a velocity $1 - (l - n)$ find the
		ving each point a velocity $\lambda x (l-x)$, find the
	blacement $y(x,t)$ at any distance x and at an	y time t. (16 M) B1L5
Ans	swer : Page 3.42-DR.A.SINGARAVELU	

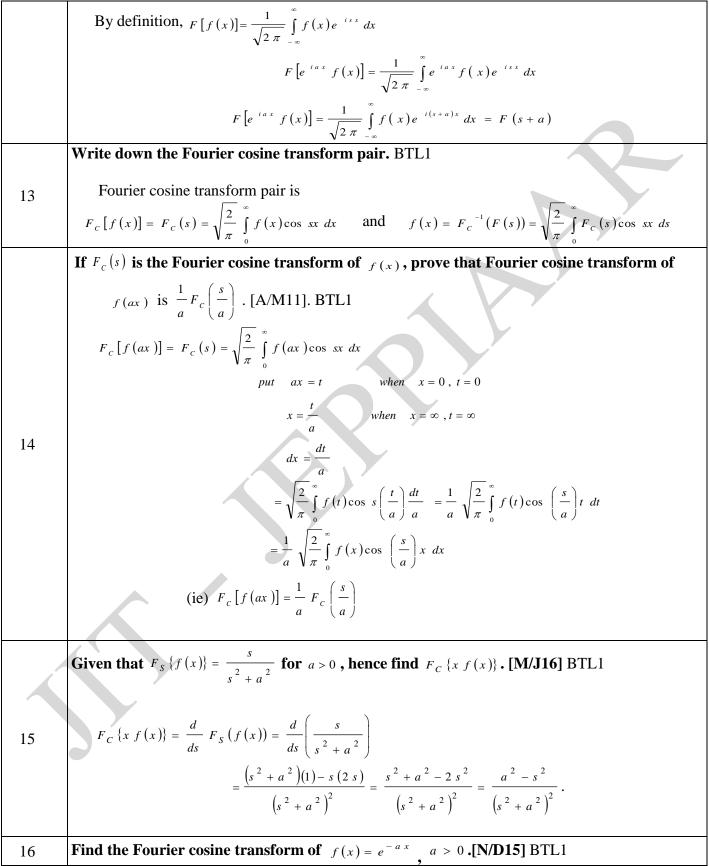
	$(i) y(0,t) = 0 \forall t > 0$
	$(ii) y(l,t) = 0 \forall t > 0$
	• $(iii) \frac{\partial y}{\partial t}(x,0) = \lambda x (l-x)$ (2 M)
	(iv) y(x,0) = 0
	The Most general Solution is
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$ (8 M)
	• $y(x,t) = \frac{8\lambda l^3}{a\pi^4} \sum_{n=1,3,5,}^{\infty} \frac{1}{n^4} \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$ (6 M)
5	
	If a string of length i is initially at rest in its equilibrium position and each of its points is
	given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = v_0 \sin^3 \frac{\pi x}{l}, 0 < x < l$. Determine the displacement function
	y(x,t). (16 M) BTL5 Answer :Page 3.46-DR.A.SINGARAVELU
	(<i>i</i>) $y(0,t) = 0 \forall t > 0$
	$(ii) y(l,t) = 0 \forall t > 0$
	• $(iii) \frac{\partial y}{\partial t}(x,0) = v_0 \sin^3 \frac{\pi x}{l}, 0 < x < l$ (2 M)
	(iv) y(x,0) = 0
	The Most general Solution is
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$ (8 M)
	• $y(x,t) = \frac{3v_0 l}{4\pi a} \sin \frac{\pi x}{l} \sin \frac{\pi a t}{l} - \frac{v_0}{12\pi a} \sin \frac{3\pi x}{l} \sin \frac{3\pi a t}{l}$ (6 M)
6	
	A string is stretched between two fixed points at a distance 21 apart and the points of the
	$\int \frac{cx}{100} \sin 0 < x < 1$
	string are given initial velocities $v = \begin{cases} l & l \\ l & l \end{cases}$, where x being the distance
	string are given initial velocities $v = \begin{cases} \frac{cx}{l} \text{ in } 0 < x < l \\ \frac{c}{l} (2l - x) \text{ in } l < x < 2l \end{cases}$, where x being the distance
	from an end point. Find the displacement of the string at any time. (16 M) BTL5
	Answer : Page 3.44-DR.A.SINGARAVELU

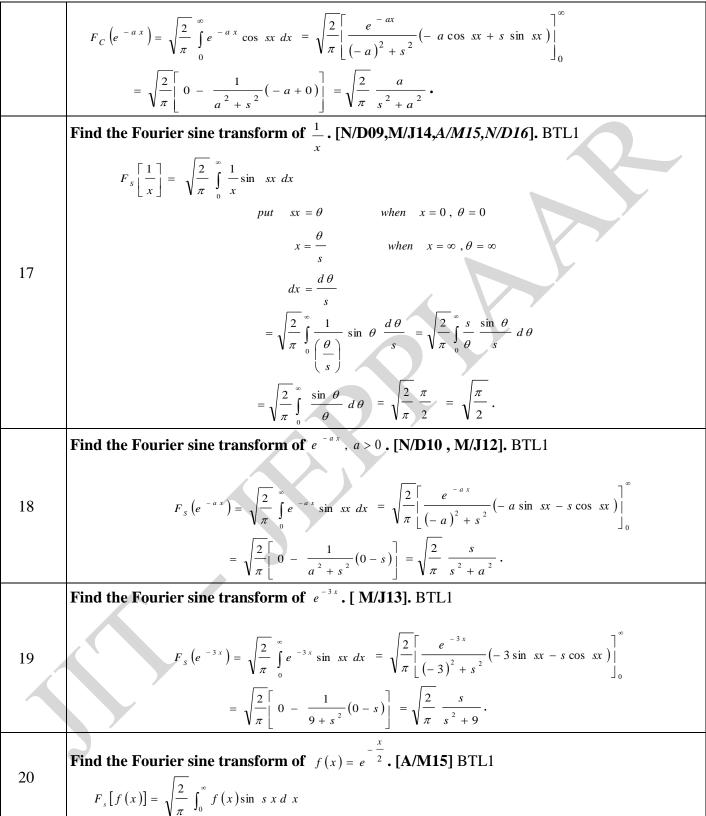

REGU	LATION: 2017	ACADEMIC YEAR : 2018-2019
	(<i>i</i>) $y(0, t) = 0 \forall t > 0$	
	$(ii) y(l,t) = 0 \forall t > 0$	
	• $(iii) \frac{\partial y}{\partial t}(x,0) = \begin{cases} \frac{cx}{l} & in & 0 < x < l \\ \frac{c}{l}(2l-x) & in & l < x < 2l \end{cases}$	(2 M)
	(iv) y(x,0) = 0	
	The Most general Solution is	
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$ (8 M)	
	• $y(x,t) = \frac{8c}{\pi^2 a} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} \sin \frac{(2n-1)\pi x}{2l} \sin \frac{(2n-1)\pi at}{2l}$	- (6 M)
7		
p n	A rod of length i has its ends A and B kept at 0°C and 120 prevail. If the temperature at B is suddenly reduced to 0°C maintained, find the temperature u(x,t) at a distance x from Answer : Page :3.71-DR.A.SINGARAVELU	and kept so while that of A is
	$(i) \mathbf{u}(0,t) = 0 \forall t \ge 0$	
	• $(ii) u(l,t) = 0 \forall t \ge 0$ (2 M)	
	$(iii)u(x,0) = \frac{120x}{l}$ The Most general Solution is	
	• $\mathbf{u}(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} e^{-\frac{c^2 n^2 \pi^2 t}{l^2}}$ (8 M)	
	• $u(x,t) = \frac{240}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{l} e^{\frac{-c^2 n^2 \pi^2 t}{l^2}}$ (6 N	()
8		
st k B	A rod, 30 cm long has its ends A and B kept at 20 ^o C and 80 tate conditions prevail. The temperature at each end is the rept so. Find the resulting temperature function $u(x, t)$ ta STL5 Answer : Page 3.68-DR.A.SINGARAVELU	en suddenly reduced to 0C and
	inswer - Tage 5.00-Divisitionitity ELC	
	$(i) \mathbf{u}(0,t) = 0 \forall t \ge 0$	
	• $(ii) u(30, t) = 0 \forall t \ge 0$ (2 M)	
	(iii)u(x,0) = 2x + 20	
	The Most general Solution is	
	• $\mathbf{u}(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{30} e^{-\frac{c^2 n^2 \pi^2 t}{900}}$ (8 M)	
JIT-JEP	PIAAR/MATHS/Mrs.M.SOPHIA/II rd Yr/SEM 03/MA8353/TRANSFORMS AN	D PARTIAL DIFFERENTIAL

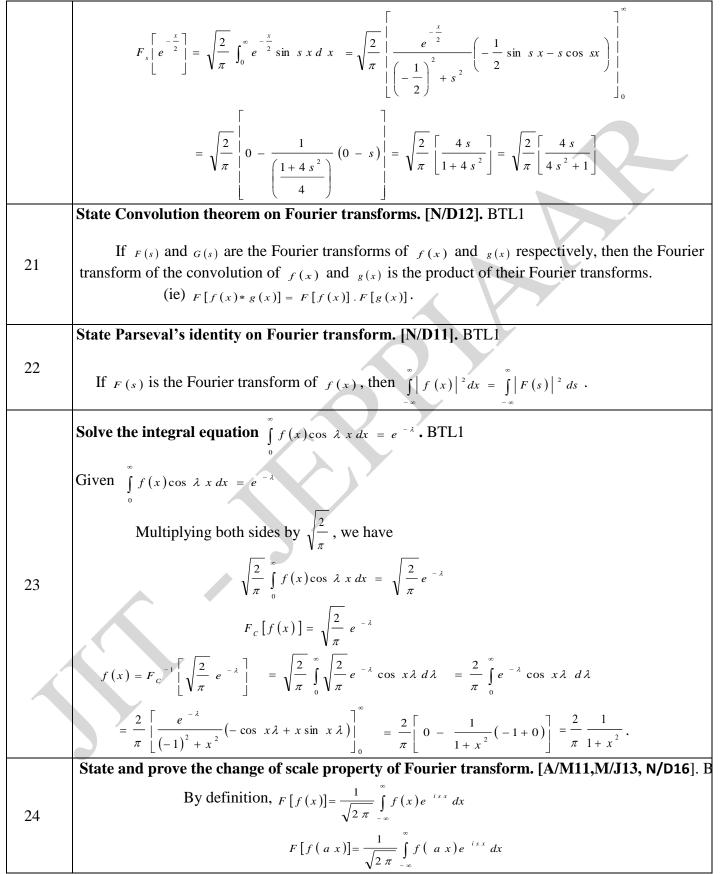
ACADEMIC YEAR: 2018-2019

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	KE	GULATION: 2017	ACADEMIC YEAR : 2018-2019
A metal bar 20 cm long with insulated sides, has its ends A and B kept at 30°C and 80°C respectively until steady state conditions prevail. The temperature at A is then suddenly raised to 40°C and at the same instant B is lowered to 60°C. Find the subsequent temperature at any point at the bar at any time. (16 M) BTL5 Answer : Page 3.76-DRA.SINGARAVELU (i) u(0,1) = 0 $\forall t \ge 0$ (ii) u(2,0) = 0 $\forall t \ge 0$ (iii) u(2,0) = 0 $\forall t \ge 0$ (iii) u(2,0) = 0 $\forall t \ge 0$ (iii) u(2,0) = $x + 40$ (2 M) and $u_{\tau}(x,0) = \frac{3x}{2} - 10$ The Most general Solution is $u(x,t) = \frac{x}{2}b_{x}\sin\frac{n\pi x}{20}e^{-\frac{x^{2}x^{2}t}{400}}$ (8 M) $u(x,t) = x + 40 - \frac{20}{\pi}\sum_{x=1}^{\infty} \frac{\left[1 \pm 2(-1)^{x}\right]}{n}\sin\frac{n\pi x}{20}e^{-\frac{x^{2}x^{2}x^{2}}{100}}$ (6 M) 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge $x = 0$ is kept at temperature given by $u = \left\{ 20 y \ for \ y \in [0,5] \\ 20(10 - y) \ for \ y \in [5,10] \right\}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DRA.SINGARAVELU (i) u(x,0) = 0 (ii) u(x,0) = 0 (iii) u(x,0) = 0 (iii) u(x,0) = 0 (iii) u(x,0) = 0 (iii) u(x,0) = $\left\{ 20y \ for \ y \in [0,5] \\ 20(10 - y) \ for \ y \in [5,10] \right\}$ The Most general Solution is $u(x,y) = \sum_{x=1}^{\infty} b_{x}\sin[\frac{n\pi y}{10}e^{-\frac{x}{10}}]$ (8 M) $u(x,y) = \sum_{x=1}^{\infty} b_{x}\sin[\frac{n\pi y}{10}e^{-\frac{x}{10}}]$ (6 M)		• $u(x,t) = \frac{40}{\pi} \sum_{n=1}^{\infty} \frac{\left[1 - 4(-1)^n\right]}{n} \sin \frac{n\pi x}{30} e^{\frac{-c^2 n^2 \pi^2 t}{900}}$	(6 M)
respectively until steady state conditions prevail. The temperature at A is then suddenly raised to 40°C and at the same instant B is lowered to 60°C. Find the subsequent temperature at any point at the bar at any time. (16 M) BTL5 Answer : Page 3.76-DR.A.SINGARAVELU (i) u(0,1) = 0 $\forall z = 0$ (ii) u(2,0,1) = 0 $\forall z = 0$ (iii) u(2,0,0) = $x + 40$ (2 M) and $u_{\tau}(x, 0) = \frac{3x}{2} - 10$ The Most general Solution is u(x,t) = $\frac{x}{2} b_{n} \sin \frac{n\pi x}{20} e^{-\frac{x^{n}x^{2}}{464}}$ (8 M) u(x,t) = $\frac{x}{2} b_{n} \sin \frac{n\pi x}{20} e^{-\frac{x^{n}x^{2}}{464}}$ (6 M) 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge x = 0 is kept at temperature given by $u = \left\{ 20 y \ for \ y \in [0,5] \\ 20(10 - y) \ for \ y \in [5,10] \right\}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DRA.SINGARAVELU (i) u(x,0) = 0 (ii) u(x,0) = 0 (ii) u(x,0) = 0 (iii) u(x,0) = $\left\{ \frac{20 y \ for \ y \in [0,5]}{20(10 - y) \ for \ y \in [5,10]} \right\}$ The Most general Solution is $u(x,y) = \frac{x}{x=1} b_{n} \sin \frac{n\pi x}{10} e^{-\frac{\pi x}{10}}$ (8 M) (u(x,y) = $\frac{800}{\pi^{2}} \sum_{x=1,3,2,}^{\infty} \frac{\left \frac{\sin \frac{n\pi x}{2} e^{-\frac{\pi x}{10}} \right }{n^{2}} e^{\frac{\pi x}{10}}$ (6 M)	9		
$(i) u(0, t) = 0 \forall t \ge 0$ $(ii) u(20, t) = 0 \forall t \ge 0$ $(ii) u(20, t) = 0 \forall t \ge 0$ $(iii) u_{1}(x, 0) = x + 40$ $(2 M)$ $and u_{1}(x, 0) = \frac{3x}{2} - 10$ The Most general Solution is $u(x, t) = \sum_{n=0}^{\infty} s_{n} s_{n} \frac{n\pi x}{20} e^{-\frac{x^{2}x^{2}x^{2}}{400}}$ $(8 M)$ $u(x, t) = x + 40 - \frac{20}{\pi} \sum_{n=1}^{\infty} \left[\frac{1 + 2(-1)^{n}}{n}\right] s_{n} \frac{n\pi x}{20} e^{-\frac{x^{2}x^{2}x^{2}}{400}}$ $(6 M)$ 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge x = 0 is kept at temperature given by $u = \left\{ 20y for y \in [0, 5] \\ 20(10 - y) for y \in [5, 10] \right\}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARAVELU $(i) u(x, 0) = 0$ $(i) (i) u(x, 0) = \frac{20 y for y \in [0, 5]}{20(10 - y) for y \in [5, 10]}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_{n} \sin \frac{n\pi y}{10} e^{\frac{-\pi y}{10}}$ $(8 M)$ $u(x, y) = \frac{800}{\pi^{2}} \sum_{n=1}^{\infty} \left[\frac{\sin \frac{n\pi y}{2}}{n^{2}} \frac{e^{-\pi x}}{10} e^{-\pi y} (6 M)$		respectively until steady state conditions prevail. The raised to 40°C and at the same instant B is lowered to temperature at any point at the bar at any time. (16 M	temperature at A is then suddenly 60°C. Find the subsequent
• (iii) $u_x(x,0) = x + 40$ (2 M) $and u_x(x,0) = \frac{3x}{2} - 10$ The Most general Solution is • $u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{20} e^{-\frac{x^2 n^2 x^2}{400}}$ (8 M) • $u(x,t) = x + 40 - \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\left[1 + 2(-1)^n\right]}{n} \sin \frac{n\pi x}{20} e^{\frac{x^2 n^2 x^2 x^2}{400}}$ (6 M) 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge $x = 0$ is kept at temperature given by $u = \begin{cases} 20y & for \ y \in [0,5] \\ 20(10 - y) & for \ y \in [5,10] \end{cases}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARA VELU (t) u(x, 0) = 0 (i) u(x, 10) = 0 (i) u(x, 0) = 0 (i) u(x, 0) = 0 (i) u(x, 0) = 0 $(i) u(x, y) = \begin{cases} 20y & for \ y \in [0,5] \\ 20(10 - y) & for \ y \in [5,10] \end{cases}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{\pi x}{10}}$ (8 M) $u(x, y) = \frac{x}{2} \int_{n=1}^{\infty} \frac{\left[\sin \frac{n\pi y}{10}\right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{\pi x}{10}}}$ (6 M)		8	
• (iii) $u_x(x,0) = x + 40$ (2 M) $and u_x(x,0) = \frac{3x}{2} - 10$ The Most general Solution is • $u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{20} e^{-\frac{x^2 n^2 x^2}{400}}$ (8 M) • $u(x,t) = x + 40 - \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\left[1 + 2(-1)^n\right]}{n} \sin \frac{n\pi x}{20} e^{\frac{x^2 n^2 x^2 x^2}{400}}$ (6 M) 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge $x = 0$ is kept at temperature given by $u = \begin{cases} 20y & for \ y \in [0,5] \\ 20(10 - y) & for \ y \in [5,10] \end{cases}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARA VELU (t) u(x, 0) = 0 (i) u(x, 10) = 0 (i) u(x, 0) = 0 (i) u(x, 0) = 0 (i) u(x, 0) = 0 $(i) u(x, y) = \begin{cases} 20y & for \ y \in [0,5] \\ 20(10 - y) & for \ y \in [5,10] \end{cases}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{\pi x}{10}}$ (8 M) $u(x, y) = \frac{x}{2} \int_{n=1}^{\infty} \frac{\left[\sin \frac{n\pi y}{10}\right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{\pi x}{10}}}$ (6 M)		(ii) u $(20, t) = 0 \forall t \ge 0$	
The Most general Solution is $u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{20} e^{\frac{t^2 x^2 x^2}{400}} \qquad (8 \text{ M})$ $u(x,t) = x + 40 - \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\left[1 + 2(-1)^n\right]}{n} \sin \frac{n\pi x}{20} e^{\frac{t^2 x^2 x^2 x^2}{400}} \qquad (6 \text{ M})$ 10 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge $x = 0$ is kept at temperature given by $u = \begin{cases} 20 y for y \in [0,5] \\ 20(10 - y) for y \in [5,10] \end{cases}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARAVELU $(i) u(x, 0) = 0$ $(iii) u(x, 10) = 0$ $(iii) u(0, y) = \begin{cases} 20 y for y \in [0,5] \\ 20(10 - y) for y \in [5,10] \end{cases}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{-\pi x}{10}} \qquad (8 \text{ M})$ $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,0,5,\dots}^{\infty} \frac{\left[\frac{\sin \frac{n\pi}{2}}{10}\right]}{n^2} \sin \frac{\pi x y}{10} e^{\frac{\pi x x}{10}} \qquad (6 \text{ M})$			
• $u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{20} e^{-\frac{x^2 x^2 x^2}{400}}$ (8 M) • $u(x,t) = x + 40 - \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\left[1 + 2(-1)^n\right]}{n} \sin \frac{n\pi x}{20} e^{-\frac{x^2 x^2 x^2}{400}}$ (6 M) 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge $x = 0$ is kept at temperature given by $u = \begin{cases} 20 y \ for \ y \in [0,5] \\ 20(10 - y) \ for \ y \in [5,10] \end{cases}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARAVELU (f) $u(x, 0) = 0$ (ii) $u(x, 10) = 0$ • (iii) $u(\infty, y) = 0$ (2 M) (iv) $u(0, y) = \begin{cases} 20 y \ for \ y \in [0,5] \\ 20(10 - y) \ for \ y \in [5,10] \end{cases}$ The Most general Solution is • $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{-\frac{n\pi x}{10}}$ (8 M) • $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{-\frac{n\pi x}{10}}$ (6 M)		2	
$u(x,t) = x + 40 - \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{\left[1 + 2(-1)^n\right]}{n} \sin \frac{n\pi x}{20} e^{-\frac{x^2 x^2 x^2}{400}} \qquad (6 \text{ M})$ 10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edgess and one short edge are kept at zero temperature while the other short edge $x = 0$ is kept at temperature given by $u = \begin{cases} 20 y for y \in [0,5] \\ 20(10 - y) for y \in [5,10] \end{cases}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARAVELU (i) $u(x, 0) = 0$ (ii) $u(x, 10) = 0$ (iii) $u(x, 0) = 0$ (iv) $u(0, y) = \begin{cases} 20 y for y \in [0,5] \\ 20(10 - y) for y \in [5,10] \end{cases}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{-\frac{\pi x}{10}}$ (8 M) $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,5,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2}\right]}{n^2} \sin \frac{n\pi y}{10} e^{-\frac{\pi x}{10}}$ (6 M)			
10 An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge $\mathbf{x} = 0$ is kept at temperature given by $u = \begin{cases} 20 \ y \ for \ y \in [0.5] \\ 20(10 - y) \ for \ y \in [5,10] \end{cases}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARAVELU (<i>i</i>) $u(x, 0) = 0$ (<i>ii</i>) $u(x, 0) = 0$ (<i>iii</i>) $u(x, 0) = 0$ (<i>iii</i>) $u(x, 0) = 0$ (<i>iii</i>) $u(x, 0) = 0$ (<i>iv</i>) $u(0, y) = \begin{cases} 20 \ y \ for \ y \in [0, 5] \\ 20(10 - y) \ for \ y \in [5, 10] \end{cases}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{n\pi x}{10}}$ (8 M) $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2} \right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$ (6 M)		n=1 2 0	$\frac{2\pi^2 t}{D}$ (6 M)
An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at zero temperature while the other short edge $\mathbf{x} = 0$ is kept at temperature given by $u = \begin{cases} 20 \ y \ for \ y \in [0,5] \\ 20(10 - y) \ for \ y \in [5,10] \end{cases}$ Find the steady state temperature distribution in the plate. (16 M) BTL5 Answer : Page 3.106-DR.A.SINGARAVELU (i) u(x, 0) = 0 (ii) u(x, 10) = 0 • $(iii) u(x, 10) = 0$ • $(iii) u(x, 0) = 0$ $(iv) u(0, y) = \begin{cases} 20 \ y \ for \ y \in [0,5] \\ 20(10 - y) \ for \ y \in [5,10] \end{cases}$ The Most general Solution is • $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi \ y}{10} e^{\frac{-n\pi x}{10}}$ (8 M) • $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2}\right]}{n^2} \sin \frac{n\pi \ y}{10} e^{\frac{-n\pi x}{10}}$ (6 M)	10		¢
Answer : Page 3.106-DR.A.SINGARAVELU (<i>i</i>) u(x, 0) = 0 (<i>ii</i>) u(x, 10) = 0 (<i>iii</i>) u(∞ , y) = 0 (<i>iv</i>) u(0, y) = $\begin{cases} 20 \ y \ for \ y \in [0, 5] \\ 20(10 - y) \ for \ y \in [5, 10] \end{cases}$ The Most general Solution is u(x, y) = $\sum_{n=1}^{\infty} b_n \sin \frac{n\pi \ y}{10} e^{\frac{-n\pi \ x}{10}}$ (8 M) u(x, y) = $\frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2}\right]}{n^2} \sin \frac{n\pi \ y}{10} e^{\frac{-n\pi \ x}{10}}$ (6 M)		temperature given by	e the other short edge x = 0 is kept at
(<i>ii</i>) $u(x, 10) = 0$ (<i>iii</i>) $u(\infty, y) = 0$ (2 M) (<i>iv</i>) $u(0, y) = \begin{cases} 20 \ y \ for \ y \in [0, 5] \\ 20(10 - y) \ for \ y \in [5, 10] \end{cases}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi \ y}{10} e^{\frac{-n\pi \ x}{10}}$ (8 M) $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2} \right]}{n^2} \sin \frac{n\pi \ y}{10} e^{\frac{-n\pi \ x}{10}}$ (6 M)			plate. (16 M) BTL5
• $(iii)u(\infty, y) = 0$ (2 M) $(iv)u(0, y) = \begin{cases} 20 \ y \ for \ y \in [0, 5] \\ 20(10 - y) \ for \ y \in [5, 10] \end{cases}$ The Most general Solution is • $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$ (8 M) • $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2}\right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$ (6 M)		(i) u (x, 0) = 0	
$(iv) u(0, y) = \begin{cases} 20 \ y & for \ y \in [0, 5] \\ 20(10 - y) & for \ y \in [5, 10] \end{cases}$ The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}} \qquad (8 \text{ M})$ $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2}\right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}} \qquad (6 \text{ M})$		$(ii) \mathbf{u}(\mathbf{x}, 10) = 0$	
The Most general Solution is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}} $ (8 M) $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2} \right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}} $ (6 M)		• $(iii)u(\infty, y) = 0$	(2 M)
• $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$ (8 M) • $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2} \right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$ (6 M)		$(iv) u(0, y) = \begin{cases} 20 y & for \ y \in [0, 5] \\ 20(10 - y) & for \ y \in [5, 10] \end{cases}$	
• $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi y}{10} e^{-10}$ • $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\frac{\sin \frac{n\pi}{2}}{n^2} \right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$ (6 M)			
h = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +		• $\mathbf{u}(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$ (8 M)	
11		• $\mathbf{u}(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,}^{\infty} \frac{\left[\sin \frac{n\pi}{2}\right]}{n^2} \sin \frac{n\pi y}{10} e^{\frac{-n\pi x}{10}}$	(6 M)
	11		

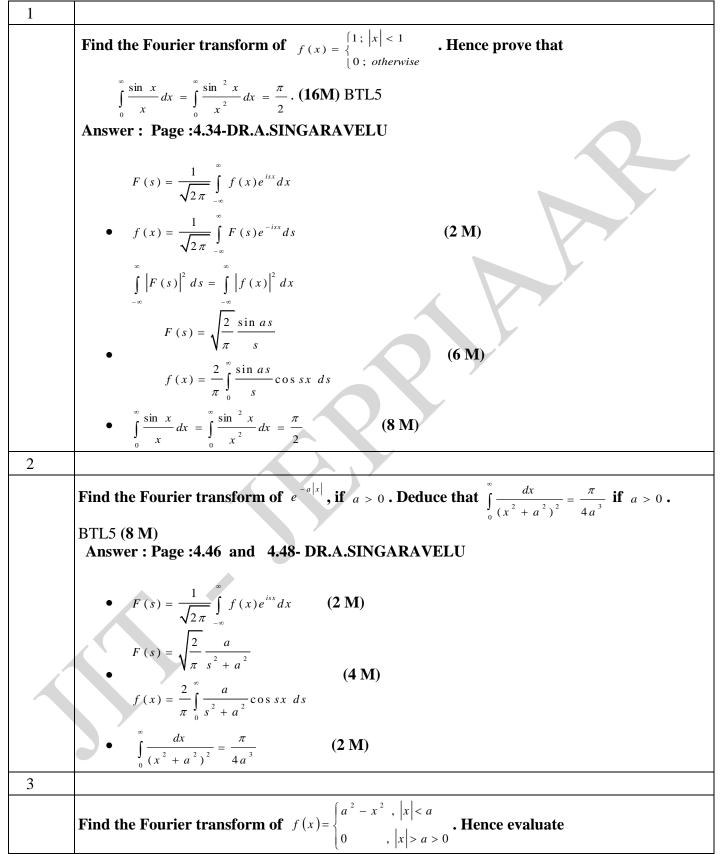

REC	GULATION: 2017 ACADEMIC YEAR: 2018-2019
	An infinitely long rectangular plate with insulated surface is 10cm wide. The two long
	edges and one short edge are kept at zero temperature while the other short edge
	$u = 20 x$ for $0 \le x \le 5$
	$\mathbf{v} = 0$ is kept at temperature given by
	$= 20 (10 - x) \text{ for } 5 \le x \le 10$
	Find the steady state temperature distribution in the plate. (16 M) BTL5
	Answer : Page :3.100-DR.A.SINGARAVELU
	(i) u(0, y) = 0
	(ii) u (10, y) = 0
	• $(iii)u(\mathbf{x},\infty) = 0$ (2 M)
	$(iv) u(x,0) = \begin{cases} 20x & for \ x \in [0,5] \\ 20(10-x) & for \ x \in [5,10] \end{cases}$
	The Most general Solution is
	• $u(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{10} e^{\frac{-n\pi y}{10}}$ (8 M)
	• $u(x, y) = \frac{800}{\pi^2} \sum_{n=1,3,5,\dots}^{\infty} \frac{\left[\frac{\sin \frac{n\pi}{2}}{2}\right]}{n^2} \sin \frac{n\pi x}{10} e^{\frac{-n\pi y}{10}}$ (6 M)
12	
	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially displaced to the
	form $k \sin\left(\frac{3\pi x}{l}\right) \cos\left(\frac{2\pi x}{l}\right)$ and then released. Find the displacement of the string at
	any distance x from one end at any time t. [M/J16] (16 M) BTL5 Answer : Page 3.40-DR.A.SINGARAVELU
	$(i) y(0,t) = 0 \forall t > 0$
	$(ii) y(l,t) = 0 \forall t > 0$
	ân a
	• $(iii)\frac{\partial y}{\partial t}(x,0) = 0 \forall t > 0$ (2 M)
	$(iv) y(x,0) = k \sin\left(\frac{3\pi x}{l}\right) \cos\left(\frac{2\pi x}{l}\right)$
	The Most general Solution is
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi at}{l}$ (8 M)
	• $y(x,t) = \frac{k}{2} \left[\sin \frac{\pi x}{l} \cos \frac{\pi a t}{l} + \sin \frac{5\pi x}{l} \cos \frac{5\pi a t}{l} \right]$ (6 M)
13	
	A tightly stretched string with fixed end points $x = 0$ and $x = t$ is initially at rest in its
	equilibrium position. If it is set vibrating giving each point a initial velocity $3x(l-x)$, find
	the displacement.(16 M) BTL5
	Answer : Page 3.54-DR.A.SINGARAVELU

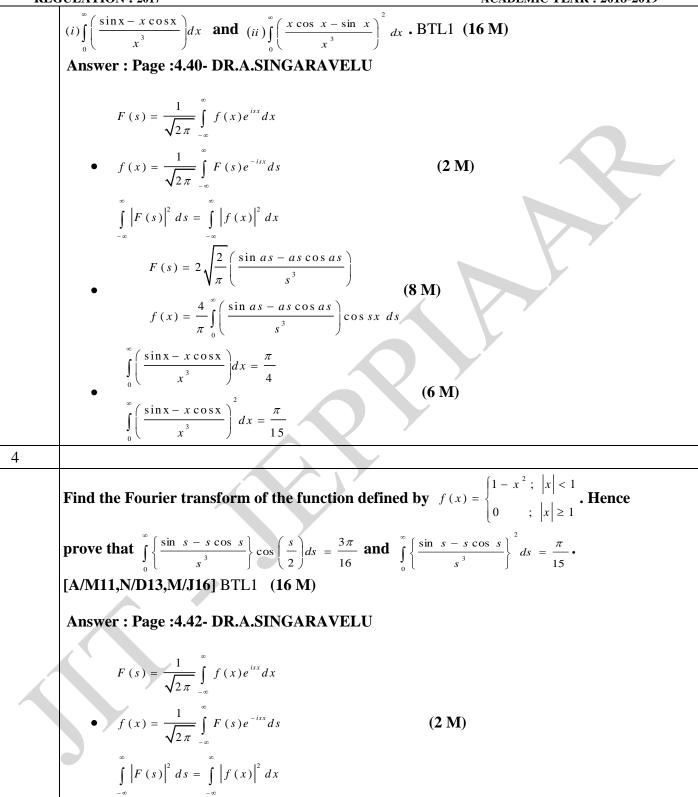

	$(i) y(0,t) = 0 \forall t > 0$
	$(ii) y(l,t) = 0 \forall t > 0$
	• $(iii) \frac{\partial y}{\partial t}(x,0) = 3x(l-x)$ (2 M)
	(iv) y(x, 0) = 0
	The Most general Solution is
	• $y(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \sin \frac{n\pi at}{l}$ (8 M)
	• $y(x,t) = \frac{24l^3}{\pi^4 a} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} \sin \frac{(2n-1)\pi x}{l} \sin \frac{(2n-1)\pi at}{l}$ (6 M)
14	
	Solve the problem of heat conduction in a rod given that the temperature function $u(x,t)$ is
	subjected to the condition, $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le l, t > 0$ (i) u is finite as $t \to \infty$
	(ii) $\frac{\partial u}{\partial x} = 0$ for $x = 0$ and $x = l, t > 0$ (iii) $u = lx - x^2$ for $t = 0$, $0 \le x \le l$.[A/M15] BTL5
	(16 M)
	Answer :Page :3.91-DR.A.SINGARAVELU
	$(i)\frac{\partial \mathbf{u}}{\partial t}(0,t) = 0 \forall t \ge 0$
	• $(ii) u(l,t) = 0 \forall t \ge 0$ (2 M)
	$(iii)u(x,0) = l x - x^2$, $0 \le x \le l$
	• $u(x,t) = \frac{l^2}{6} - \frac{l^2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos \frac{2n\pi x}{l} e^{\frac{-4c^2\pi^2 t}{l^2}}$ (14 M)
15	
	A square plate is bounded by the lines $x = 0$, $x = a$, $y = 0$ and $y = b$. Its surfaces are
	insulated and the temperature along $y = b$ is kept at 100 ° C , while the temperature
	along other three edges are at $0^{\circ}C$. Find the steady state temperature at any point in the
	plate.[<u>N/D14</u>] (16 M)
	Answer :Page :3.116-DR.A.SINGARAVELU BTL5 (i) $u(x, 0) = 0$
	$\bullet \qquad (ii) \mathbf{u}(\mathbf{x}, \mathbf{b}) = 0 \qquad (2 \mathbf{M})$
	(iii)u(0, y) = 0 $(iv)u(0, y) = 100$ for $v \in [0, h]$
	$(iv) u(a, y) = 100 for \ y \in [0, b]$

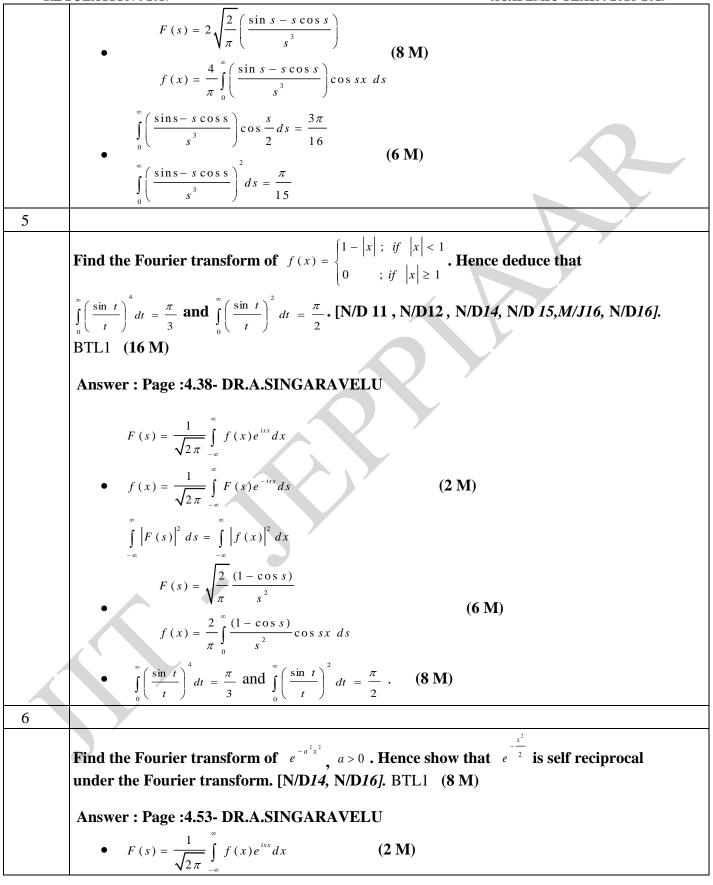



RE	REGULATION : 2017 ACADEMIC YEAR : 2018-2019	
	UNIT-IV FOURIER TRANSFORM	
	State of Fourier Integral Theorem-Fourier Transform Pair-Sine and Cosine Transforms-	
	Properties-Transform of Simple Functions-Convolution Theorem-Parsevals Identity	
	PART*A	
	State the Fourier integral theorem. [M/J14,A/M15,M/J16] BTL1	
	If $f(x)$ is piecewise continuous, has piecewise continuous derivatives in every finite interval	
1	in $(-\infty,\infty)$ and absolutely integrable in $(-\infty,\infty)$, then $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{is(x-t)} dt ds$ or	
	equivalently $f(x) = \frac{1}{\pi} \int_{0-\infty}^{\infty} \int_{0-\infty}^{\infty} f(t) \cos s(x-t) dt ds$.	
	Find the Fourier transform pair. [N/D10 , N/D11]. BTL1 The Fourier transform pair is	
2	$F(s) = F[f(x)] = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx and$	
	$f(x) = F^{-1}[F(s)] = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(s)e^{-isx} ds$	
	Define self reciprocal with respect to Fourier transform. [N/D13] BTL1	
3	If $f(s)$ is the Fourier transform of $f(x)$, then $f(x)$ is said to be self reciprocal under Fourier	
	transform.	
	Prove that Fourier transform is linear. [N/D15] BTL1 We have to arrow that $F[-1(x)] = F(-1(x))$	
	We have to prove that $F[a f(x)+b g(x)] = a F(f(x))+b F(g(x))$	
	By definition, we have $F[a \ f(x) + b \ g(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (a \ f(x) + b \ g(x)) e^{isx} dx$	
4	$F[a f(x) + b g(x)] = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} a f(x) e^{isx} dx + \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} b g(x) e^{isx} dx$	
	$F[a f(x) + b g(x)] = a \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx + b \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) e^{isx} dx$	
	$F\left[a f(x) + b g(x)\right] = a F(f(x)) + b F(g(x)).$	
	Find the Fourier transform of $f(x) = \begin{cases} e^{ikx}, a < x < b \\ 0, x < a \text{ and } x > b \end{cases}$. [N/D09] BTL1	
	$F\left[f(x)\right] = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i s x} dx$	
5	$F[f(x)] = \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{ikx} e^{isx} dx = \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{i(s+k)x} dx$	
	$= \frac{1}{\sqrt{2 \pi}} \left[\frac{e^{i(s+k)x}}{i(s+k)} \right] = \frac{1}{\sqrt{2 \pi}} \left[\frac{e^{i(s+k)b} - e^{i(s+k)a}}{i(s+k)} \right].$	

	If $_{F(s)}$ is the Fourier transform of $_{f(x)}$, write the formula for the Fourier transform of		
	$f(x)\cos ax$ in terms of F.[OR] State and prove modulation theorem on Fourier		
	transforms.[N/D14] BTL1		
	By definition, $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx$		
	$F[f(x)\cos ax] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\cos ax \ e^{-isx} \ dx$		
6	$F\left[f(x)\cos ax\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \left(\frac{e^{iax} + e^{-iax}}{2}\right) e^{-isx} dx$		
	$=\frac{1}{2}\left[\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{iax}e^{isx}dx+\int_{-\infty}^{\infty}f(x)e^{-iax}e^{isx}dx\right]$		
	$= \frac{1}{2} \left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i(s+a)x} dx + \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i(s-a)} dx \right]$		
	$=\frac{1}{2}\left[F\left(s+a\right)+F\left(s-a\right)\right]$		
	(ie) $F[f(x)\cos ax] = \frac{1}{2}[F(s+a)+F(s-a)].$		
	State the shifting property on Fourier transform. BTL1		
_	If $F(s)$ is the Fourier transform of $f(x)$, then $F(s)e^{ias}$ will be the Fourier transform of		
7	$f(x-a)$. (ie) $F[f(x-a)] = e^{ias} F(s)$.		
	If $F(s)$ is the Fourier transform of $f(x)$, obtain the Fourier transform of		
	f(x-2)+f(x+2).[M/J16] BTL1		
8	F[f(x-2) + f(x+2)] = F[f(x-2)] + F[f(x+2)]		
	$= e^{-i2s} F(s) + e^{i2s} F(s) = F(s) \Big[e^{i2s} + e^{-i2s} \Big] = F(s) (2\cos h2s) = 2F(s)\cos h2s.$		
	What is the Fourier transform of $f(x-a)$ if the Fourier transform of $f(x)$ is $F(s)$.		
	[A/M 10 , M/J 12 , N/D13]. BTL1		
	By definition, $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-isx} dx$		
9	$F\left[f\left(x-a\right)\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f\left(x-a\right) e^{-isx} dx$		
	$x - a = t$ when $x = -\infty$, $t = -\infty$		
	Put $x = \mathbf{t} + a$ when $x = \infty$, $t = \infty$		
	dx = dt		







<u>RE</u>	GULATION: 2017 ACADEMIC YEAR: 2018-2019
	$put \qquad ax = t \qquad when \qquad x = -\infty \ , \ t = -\infty$
	when $a > 0$, $x = \frac{t}{a}$ when $x = \infty$, $t = \infty$
	$dx = \frac{dt}{a}$
	$F\left[f\left(a\ x\right)\right] = \frac{1}{\sqrt{2\ \pi}}\int_{-\infty}^{\infty} f\left(t\right)e^{-\frac{i\ s\left(\frac{t}{a}\right)}{a}}\frac{dt}{a} \qquad = \frac{1}{a}\ \frac{1}{\sqrt{2\ \pi}}\int_{-\infty}^{\infty} f\left(t\right)e^{-\frac{i\left(\frac{s}{a}\right)t}{a}}dt$
	$=\frac{1}{a}F\left[\frac{s}{a}\right] (1)$
	when $a < 0$,
	put $ax = t$ when $x = -\infty$, $t = \infty$
	$x = \frac{t}{2}$ when $x = \infty$, $t = -\infty$
	а
	$dx = \frac{dt}{a}$
	$F\left[f\left(a\ x\right)\right] = \frac{1}{\sqrt{2\ \pi}}\int_{-\infty}^{\infty} f\left(t\right)e^{\frac{is\left(\frac{t}{a}\right)}{a}}\frac{dt}{a} = \frac{1}{a}\frac{1}{\sqrt{2\ \pi}}\int_{-\infty}^{\infty} f\left(t\right)e^{\frac{i\left(\frac{s}{a}\right)t}{a}}dt$
	$= -\frac{1}{a} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\left(\frac{s}{a}\right)t} dt = -\frac{1}{a} F\left[\frac{s}{a}\right] (2)$
	From (1) and (2), we have
	$F[f(ax)] = \frac{1}{ a } F\left(\frac{s}{a}\right).$
	Prove that $F[f(x-a)] = e^{isa} F(s) \cdot [N/D14, A/M15]$ BTL1
	By definition, $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-isx} dx$
	$F\left[f\left(x-a\right)\right] = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f\left(x-a\right) e^{-isx} dx$
25	$x - a = t$ when $x = -\infty, t = -\infty$
25	Put $x = \mathbf{t} + a$ when $x = \infty$, $t = \infty$
	$dx = dt$ $F\left[f\left(x-a\right)\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f\left(t\right) e^{-is\left(t+a\right)} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f\left(t\right) e^{-ist} e^{-ias} dt$
	$= e^{ias} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{ist} dt = e^{ias} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx = e^{ias} F(s) \cdot$
	PART*B

KEV	GULATION : 2017 ACADEMIC YEAR : 2018-2019
	• $F(s) = \frac{1}{a\sqrt{2}}e^{\frac{-s^2}{4a^2}}$ (4 M)
	• Put $a = \frac{1}{\sqrt{2}}$ We get $e^{-\frac{x^2}{2}}$ (2M)
7	
	Find the Fourier transform of $e^{-a x }$, $a > 0$ and hence deduce that (1) $\int_{0}^{\infty} \frac{\cos x t}{t} dt = \frac{\pi}{2} e^{-a x }$
	(1) $\int_{0} \frac{\cos x t}{a^{2} + t^{2}} dt = \frac{\pi}{2 a} e^{-a x }$
	(2) $F\left\{x e^{-a x }\right\} = i \sqrt{\frac{2}{\pi}} \frac{2 a s}{\left(s^2 + a^2\right)}$, here <i>F</i> stands for Fourier transform.
	[M/J14,N/D14] BTL1 (8 M)
	Answer : Page :4.46- DR.A.SINGARAVELU
	$F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx $ (2 M)
	(= -:-)
	$F(xf(x)) = -i\frac{d}{ds}(F(f(x)))$
	$F(s) = \sqrt{\frac{2}{\pi} \frac{a}{s^2 + a^2}}$
	$f(x) = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{a}{1-\cos(x)} dx$
	• (4 M) $f(x) = \frac{2}{\pi} \int_{0}^{\infty} \frac{a}{s^{2} + a^{2}} \cos sx ds$
	• $\int_{0}^{\infty} \frac{\cos x t}{a^{2} + t^{2}} dt = \frac{\pi}{2 a} e^{-a x } \text{ and } F\left\{x e^{-a x }\right\} = i \sqrt{\frac{2}{\pi}} \frac{2 a s}{\left(s^{2} + a^{2}\right)} $ (2 M)
8	
	Show that the Fourier transform of $e^{-\frac{x^2}{2}}$ is $e^{-\frac{x^2}{2}}$. [A/M10,N/D11,M/J13].[OR]Find the
	Fourier transform of $f(x) = e^{-\frac{x^2}{2}}$ in $(-\infty, \infty)$. [M/J16] BTL1 (8 M)
	Answer : Page :4.57- DR.A.SINGARAVELU
	• $F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$ (2 M)
	• $F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$ (2 M) • $F(s) = \frac{1}{\sqrt{2\pi}} e^{\frac{-s^2}{2}} \sqrt{2\Gamma(1/2)} = e^{\frac{-s^2}{2}}$ (6 M)
9	
	Find the Fourier sine transform of $f(x) = e^{-ax}$ where $a > 0$ and hence deduce that
L	1

$$\int_{a}^{b} \frac{s \sin xx}{a^{2} + s^{2}} ds = \frac{\pi}{2} e^{-sx}$$
 BTL1 (8 M)
Answer : Page :4.14 DR.A.SINGARAVELU
• $f(x) = \frac{2}{\pi} \int_{0}^{c} \sin ss \int_{0}^{c} f(t) \sin st dt ds$ (2 M)
• $\int_{a}^{c} \frac{s \sin xx}{a^{2} + s^{2}} ds = \frac{\pi}{2} e^{-sx}$ (6 M)
10
Evaluate $\int_{a}^{c} \frac{ds}{(x^{2} + a^{2})^{x^{2}} + b^{2}}$ using Fourier cosine transforms of e^{-sx} and e^{-sx} .
[N/D10, A/M11, N/D14, N/D15, M/J16]. BTL1 (8 M)
Answer : Page :4.47 · DR.A.SINGARAVELU
• $F_{c}(s) = \sqrt{\frac{2}{\pi}} \int_{a}^{c} f(x) \cos sx dx$ (2 M)
 $F_{c}(s^{-st}) = \sqrt{\frac{2}{\pi}} \left[\frac{a}{a^{2} + s^{2}} \right]$ (2 M)
 $F_{c}(s^{-st}) = \sqrt{\frac{2}{\pi}} \left[\frac{b}{a^{2} + s^{2}} \right]$ (2 M)
11
Find the Fourier cosine transform of $f(x) = e^{-sx}$ ($a > 0$) and using Parseval's identity
for cosine transform evaluate $\int_{a}^{c} \frac{ds}{(a^{2} + s^{2})^{-s}}$ [M/J13, N/D13] BTL1 (8 M)
Answer : Page :4.48 · DR.A.SINGARAVELU
• $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{a}{a^{2} + s^{2}} \right]$ (2 M)
 $F_{c}(s^{-st}) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
11
Find the Fourier cosine transform of $f(x) = e^{-st}$ ($a > 0$) and using Parseval's identity
for cosine transform evaluate $\int_{a}^{c} \frac{ds}{(a^{2} + s^{2})^{-s}} \left[(2 M) + \int_{a}^{c} (s^{2}) \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\int_{a}^{2} (1 \cos \cos s dx (2 M) + \int_{a}^{c} (s^{2}) \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{2} + s^{2})^{-s}} \right]$ (2 M)
 $F_{c}(s) = \sqrt{\frac{2}{\pi}} \left[\frac{ds}{(a^{$

ACADEMIC YEAR: 2018-2019

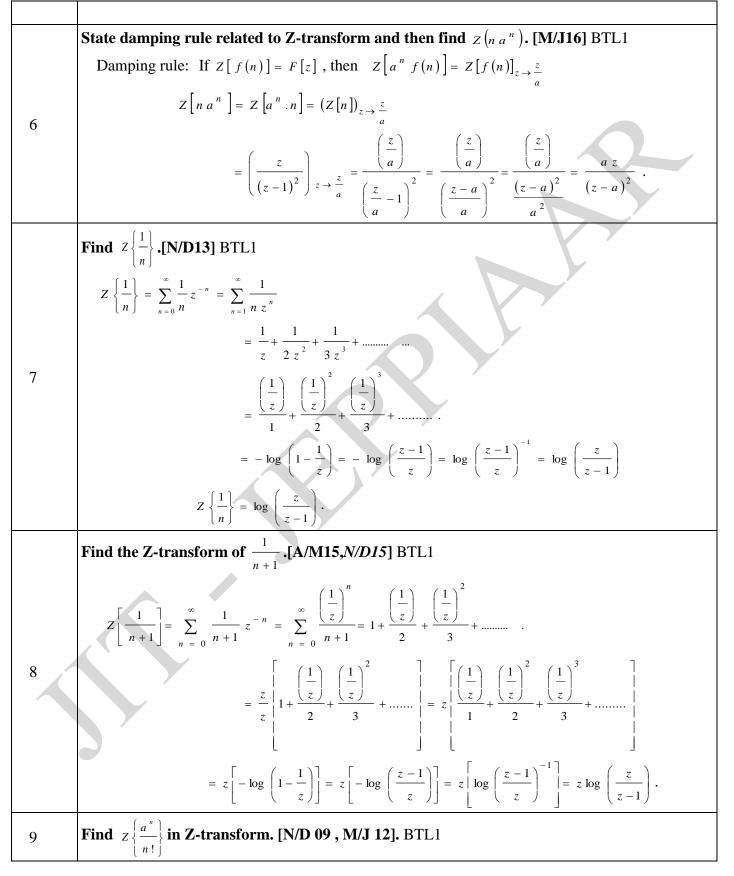
$$\int_{C} F(f(x)) = F(g(x)) = G(g(x)) = G(g(x))$$

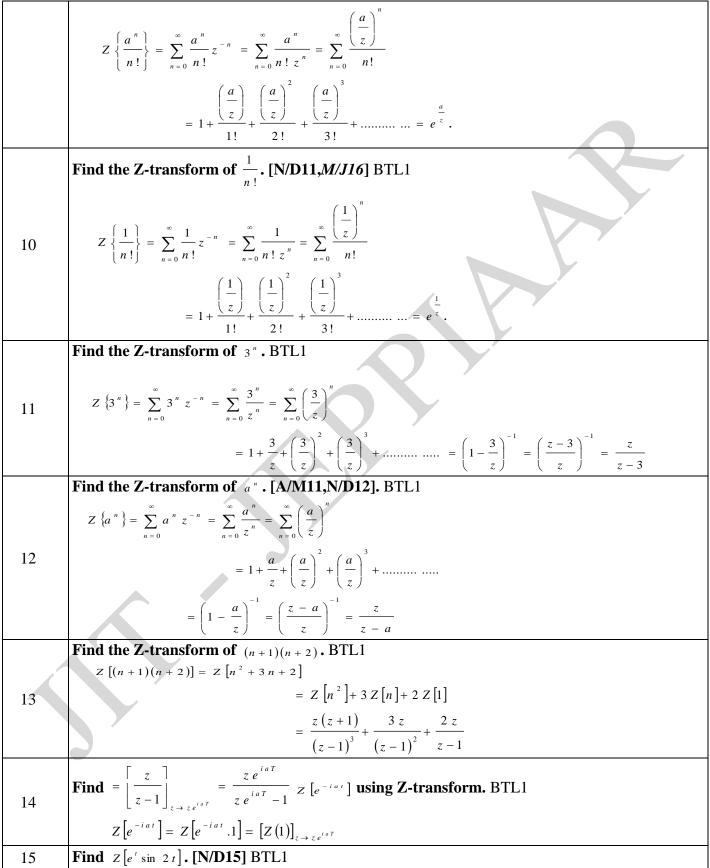
$$F(f(x)^{*}g(x)) = F(f(x))^{*}F(g(x))$$

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{C}^{\infty} f(x)e^{ix} dx = (2M)$$

$$For Proving F(f(x)^{*}g(x)) = F(f(x))^{*}F(g(x))$$

$$(4M)$$
13
Derive the Parseval's identify for Fourier transforms, [N/D10, M/J12]. BTL1 (8 M)
Answer: Page 4.26- DR.ASINGARAVELU
If f(x) is a given function defined in $(-\infty, \infty)$ then

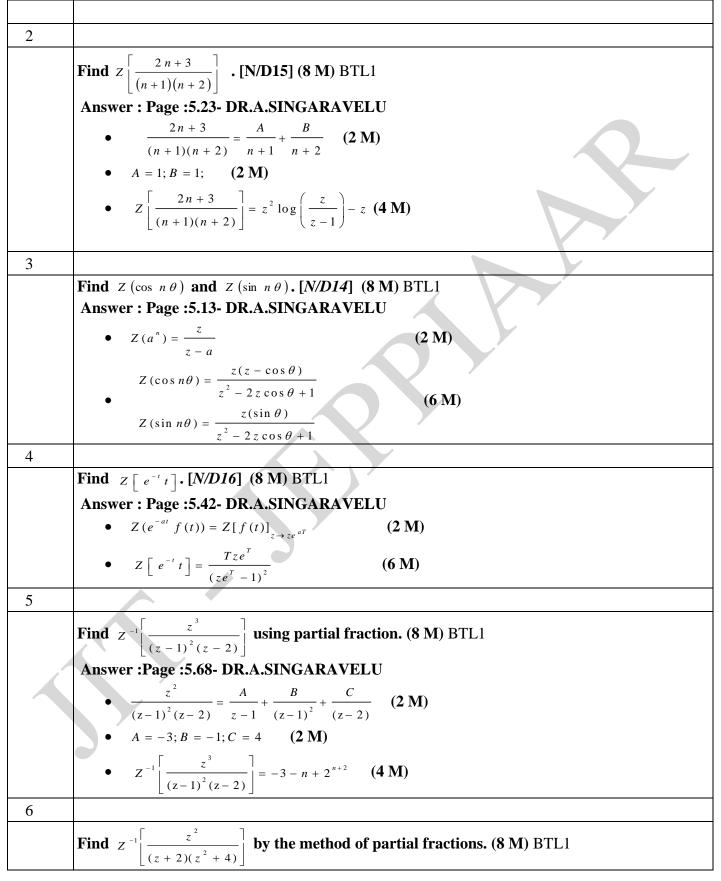

$$\int_{-\infty}^{\infty} |F(x)|^{2} dx = \int_{0}^{\infty} |f(x)|^{2} dx$$


$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(x)e^{ix} dx = (2M)$$

$$For Proving \int_{0}^{\infty} |F(x)|^{2} dx = \int_{0}^{\infty} |f(x)|^{2} dx$$

$$(4M)$$

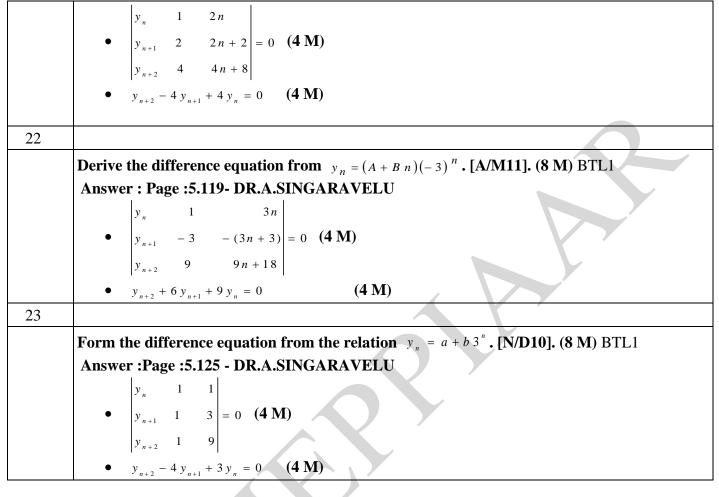
UNIT-V - Z-TRANSFORM AND DIFFERENCE EQUATIONS	
Z-Transform,Elementry Properties,Inverse Z-Transform using Partial Fraction and Residues Convolution Theorem,Formation of Difference equations,Solution of Difference Equations	
PART*A	
Define Z-transform of the sequence $\{f(n)\}$. BTL1	
Let $\{f(n)\}\$ be a sequence defined for $n = 0, \pm 1, \pm 2, \dots, \dots$, then the two-sided Z- transform of the sequence $f(n)$ is defined as	
$Z \{f(n)\} = F[z] = \sum_{n=-\infty} f(n) z^{-n}$, where z is a complex variable.	
If $\{f(n)\}\$ is a casual sequence, then the z-transform reduces to one-sided Z-transform and its	
definition is $Z \{f(n)\} = F[z] = \sum_{n=0}^{\infty} f(n) z^{-n}$.	
State the final value theorem in Z-transform.[<i>N/D15</i>] BTL1 If $z[f(t)] = F[z]$, then $\lim_{t \to \infty} f(t) = \lim_{z \to 1} (z-1)F[z]$.	
Find $Z\{n\}$.[M/J13, N/D14] BTL1	
$Z\{n\} = \sum_{n=0}^{\infty} n \ z^{-n} = \sum_{n=0}^{\infty} \frac{n}{z^{n}}$	
$= 0 + \frac{1}{z} + \frac{2}{z^{2}} + \frac{3}{z^{3}} + \dots \dots$	
$= \frac{1}{z} \left[1 + \frac{2}{z} + \frac{3}{z^2} + \dots \right] = \frac{1}{z} \left[1 + 2\left(\frac{1}{z}\right) + 3\left(\frac{1}{z}\right)^2 + \dots \right]$	
$= \frac{1}{z} \left[1 - \frac{1}{z} \right]^{-2} = \frac{1}{z} \left[\frac{z - 1}{z} \right]^{-2} = \frac{1}{z} \cdot \frac{z^{2}}{(z - 1)^{2}} = \frac{z}{(z - 1)^{2}}$	
$Z\left\{n\right\} = \frac{z}{\left(z-1\right)^2}.$	
If $Z\{n^2\} = \frac{z^2 + z}{(z-1)^3}$, then find $Z\{(n+1)^2\}$. [M/J16] BTL1	
$Z\{(n+1)^{2}\} = Z\{n^{2} + 2n + 1\} = Z[n^{2}] + 2Z[n] + Z[1]$	
$= \frac{z^{2} + z}{(z-1)^{3}} + 2 \frac{z}{(z-1)^{2}} + \frac{z}{z-1}.$	
Find $Z\left\{\left(\cos \theta + i \sin \theta\right)^n\right\}$. [<i>M</i> / <i>J16</i>] BTL1	
$Z\left\{\left(\cos \theta + i \sin \theta\right)^{n}\right\} = Z\left\{\cos n \theta + i \sin n \theta\right\}$	
$= Z \left\{ \cos n \theta \right\} + i Z \left\{ \sin n \theta \right\} = \frac{z \left(z - \cos \theta \right)}{z^2 - 2 z \cos \theta + 1} + i \frac{z \sin \theta}{z^2 - 2 z \cos \theta + 1}.$	



REGULATION : 2017 ACADEMIC YEAR : 2018-2019		
	$Z[e^{t} \sin 2t] = Z[\sin 2t]_{z \to ze^{-T}} = \left[\frac{z \sin 2T}{z^{2} - 2z \cos 2T + 1}\right]_{z \to ze^{-T}}$	
	$Z\left[e^{t} \sin 2t\right] = \frac{z e^{-T} \sin 2T}{z^{2} e^{-2T} - 2z e^{-T} \cos 2T + 1}$	
16	If $F(z) = \frac{z^2}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)\left(z - \frac{3}{4}\right)}$, find $f(0)$. [N/D09]. BTL1	
	Given $F(z) = \frac{z^2}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)\left(z - \frac{3}{4}\right)}$ By initial value theorem , we have	
	$f(0) = \lim_{z \to \infty} F(z) = \lim_{z \to \infty} \frac{z^2}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)\left(z - \frac{3}{4}\right)}$	
	$= \lim_{z \to \infty} \frac{z^2}{z \left(1 - \frac{1}{2z}\right) \cdot z \left(1 - \frac{1}{4z}\right) \left(z - \frac{3}{4}\right)}$	
	$= \lim_{z \to \infty} \frac{1}{\left(1 - \frac{1}{2z}\right)\left(1 - \frac{1}{4z}\right)\left(z - \frac{3}{4}\right)} = \frac{1}{\infty} = 0$	
	Find the inverse Z-transform of $\frac{z}{(z+1)^2}$. [N/D13] BTL1	
	Let $X(z) = \frac{z}{(z+1)^2}$	
17	$X(z)z^{n-1} = \frac{z \cdot z^{n-1}}{(z+1)^2} = \frac{z^n}{(z+1)^2}$	
17	z = -1 is a pole of order 2	
	$x(n) = \sum_{n \in \mathbb{N}} R$ where $\sum_{n \in \mathbb{N}} R$ is the sum of residue of $x(z) z^{n-1}$	
	$\operatorname{Re} s\left[X\left(z\right)z^{n-1}\right] = \lim_{z \to -1} \frac{1}{(2-1)!} \frac{d}{dz} \left[\left(z+1\right)^2 \frac{z^n}{\left(z+1\right)^2} \right] = \lim_{z \to -1} \frac{d}{dz} \left[z^n\right] = \lim_{z \to -1} n z^{n-1}$	
	$= n (-1)^{n-1} = -n (-1)^{n}.$	
18	State convolution theorem of Z-transform. [M/J14,A/M15,A/M15,N/D16] BTL1 If $w(n)$ is the convolution of two sequences $x(n)$ and $y(n)$, then	
	$Z[w(n)] = W(z) = Z[x(n)] \cdot Z[y(n)].$	
19	Form a difference equation by eliminating arbitrary constant from $u_n = A 2^{n+1}$.	
	[N/D11,N/D15]. BTL1	
	Given $u_n = A 2^{n+1}$	

	JULATION 2017 ACADEMIC LEAK 2010-2019
	$u_n = A 2^n .2$
	$u_n = 2 A 2^n \dots (1)$
	$u_{n+1} = A 2^{n+2}$
	$u_{n+1} = A 2^n . 2^2$
	$u_{n+1} = 4 A 2^n \dots (2)$
	Eliminating A from (1) and (2), we have
	$\begin{vmatrix} u_n & 2 \\ u_{n+1} & 4 \end{vmatrix} = 0 \implies 4 u_n - 2 u_{n+1} = 0 \implies u_{n+1} - 2 u_n = 0.$
	Form the difference equation generated by $y_n = a + b 2^n$. [A/M10]. BTL1
	Given $y_n = a + b 2^n$ (1)
	$y_{n+1} = a + b 2^{n+1} = a + b 2^n 2$
	$y_{n+1} = a + 2b 2^n$ (2)
	$y_{n+2} = a + b 2^{n+2} = a + b 2^{n} 4$
	$y_{n+2} = a + 4b2^n$ (3)
20	Eliminating a and b from (1), (2) and (3), we have
	$y_n = 1 = 1$
	$\begin{vmatrix} y_n & 1 & 1 \\ y_{n+1} & 1 & 2 \\ y_{n+2} & 1 & 4 \end{vmatrix} = 0$
	y_{n+2} 1 4
	$y_{n}(4-2) - y_{n+1}(4-1) + y_{n+2}(2-1) = 0$
	$2 y_n - 3 y_{n+1} + y_{n+2} = 0$
	$y_{n+2} - 3 y_{n+1} + 2 y_n = 0$
	Solve $y(n+1) - 2 y(n) = 0$ given $y(0) = 2 \cdot [N/D12]$ BTL1
	Given $y(n+1) - 2 y(n) = 0$
	Taking Z-transform on both sides of the above equation, we have $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 $
	z[y(n+1)] - 2 Z[y(n)] = 0 z Y(z) - z y(0) - 2 Y(z) = 0
21	z Y(z) - z Y(0) - 2 Y(z) = 0 z Y(z) - z(2) - 2 Y(z) = 0
21	(z-2)Y(z) = 2z
	$Y(z) = \frac{2 z}{z - 2} \text{implies} Z[y(n)] = \frac{2 z}{z - 2}$
	$y(n) = 2 Z^{-1} \left[\frac{z}{z-2} \right] = 2 \cdot 2^n = 2^{n+1}.$
	Define unit step sequence. Write its Z-transform. BTL1
22	The unit step sequence $u(n)$ is defined as $u(n) = \begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{for } n < 0 \end{cases}$. Its Z-transform is given by

	$Z\left[u\left(n\right)\right] = \frac{z}{z-1}.$		
	Find the Z-transform of n^2 . [M/J14] BTL1		
23	$Z\left[n^{2}\right] = Z\left[n.n\right] = -z\frac{d}{dz}Z\left[n\right] = -z\frac{d}{dz}\left[\frac{z}{\left(z-1\right)^{2}}\right]$		
	$= -z \left[\frac{(z-1)^{2} (1) - z \cdot 2 (z-1)}{(z-1)^{4}} \right] = -z \left[\frac{(z-1)(z-1-2z)}{(z-1)^{4}} \right]$		
	$= -z\left[\frac{-z-1}{(z-1)^{3}}\right] = \frac{z(z+1)}{(z-1)^{3}}.$		
	Prove that $Z[a^n f(n)] = \overline{f}\left(\frac{z}{a}\right)$. [N/D14] (OR) If $Z(x(n)) = X(z)$, then show that		
24	$Z\left(a^{n} x(n)\right) = X\left(\frac{z}{a}\right) \cdot [A/M15] BTL1$		
24	By definition, $Z[a^{n} f(n)] = \sum_{n=0}^{\infty} a^{n} f(n) z^{-n} = \sum_{n=0}^{\infty} f(n) \frac{z^{-n}}{a^{-n}}$		
	$=\sum_{n=0}^{\infty} f(n)\left(\frac{z}{a}\right)^{-n} = \bar{f}\left(\frac{z}{a}\right).$		
	If $Z[f(n)] = \overline{f}(z)$, then prove that $Z[f(-n)] = \overline{f}\left(\frac{1}{z}\right)$. [N/D14] BTL1		
25	$Z\left[f\left(-n\right)\right] = \sum_{n=0}^{\infty} f\left(-n\right) z^{-n} \qquad put -n = u \implies n = -u$		
	$n = 0$, $u = 0$ and $n = \infty$, $u = \infty$		
	$Z\left[f\left(-n\right)\right] = \sum_{u=0}^{\infty} f(u)z^{-(-u)} = \sum_{u=0}^{\infty} f(u)(z^{-1})^{-u} = \sum_{u=0}^{\infty} f(u)\left(\frac{1}{z}\right)^{-u} = \sum_{n=0}^{\infty} f(n)\left(\frac{1}{z}\right)^{-n} = \overline{f}\left(\frac{1}{z}\right).$		
	PART * B		
1			
	Find the Z-transform of $\frac{1}{n(n+1)(n+2)}$.[N/D13] (8 M) BTL1		
	Answer : Page :5.24- DR.A.SINGARAVELU		
	• $\frac{1}{n(n+1)(n+2)} = \frac{A}{n} + \frac{B}{(n+1)} + \frac{C}{(n+2)}$ (2 M)		
	• $A = \frac{1}{2}; B = -1; C = \frac{1}{2}$ (2 M)		
	• $Z\left[\frac{1}{n(n+1)(n+2)}\right] = \frac{1}{2}(z-1)^2 \log\left(\frac{z}{z-1}\right) - \frac{z}{2}$ (4 M)		



REGULATION: 2017 ACADEMIC YEAR: 2018-2019 Answer : Page :5.62- DR.A.SINGARAVELU • $\frac{z}{(z^2+4)(z+2)} = \frac{A}{z+2} + \frac{Bz+c}{(z^2+4)}$ (2 M) • $A = -\frac{1}{4}; B = \frac{1}{4}; C = \frac{1}{2}$ (2 M) • $Z^{-1}\left[\frac{z^2}{(z^2+4)(z+2)}\right] = -\frac{1}{4}(-2)^n + \frac{1}{4}2^n\cos\frac{n\pi}{2} + \frac{1}{4}2^n\sin\frac{n\pi}{2}$ (4 M) 7 Find the inverse Z-transform of $\frac{10 z}{z^2 - 3 z + 2}$. [N/D09]. (8 M) BTL1 Answer : Page :5.70- DR.A.SINGARAVELU • $\frac{1}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{(z-2)}$ (2 M) • A = -1; B = 1 (2 M) $Z^{-1} \left[\frac{10 z}{(z-1)(z-2)} \right] = 10(2^{n} - 1)$ (4 M) 8 Find the inverse Z-transform of $\frac{z^3 - 20 z}{(z-2)^3 (z-4)}$. [N/D09]. (8 M) BTL1 Answer : Page : 5.71- DR.A.SINGARAVELU • $\frac{z^2 - 20}{(z-2)^3(z-4)} = \frac{A}{z-2} + \frac{B}{(z-2)^2} + \frac{C}{(z-2)^3} + \frac{D}{(z-4)}$ (2 M) • $A = \frac{1}{2}; B = 2; C = 8; D = -\frac{1}{2}$ (2 M) • $Z^{-1}\left[\frac{z^3-20z}{(z-2)^3(z-4)}\right] = 2^n(\frac{1}{2}+n^2)-\frac{4^n}{2}$ (4 M) 9 Find the inverse Z-transform of $\frac{z^2 + z}{(z - 1)(z^2 + 1)}$, using partial fraction.[*N/D14*] (8 M) BTL1 Answer : Page :5.65- DR.A.SINGARAVELU • $\frac{z+1}{(z^2+1)(z-1)} = \frac{A}{z-1} + \frac{Bz+c}{(z^2+1)}$ (2 M) • A = 1; B = -1; C = 0 (2 M) • $Z^{-1}\left[\frac{z^2+z}{(z^2+1)(z-1)}\right] = 1 - \cos\frac{n\pi}{2}$ (4 M) 10

Find the inverse Z-transform of $\frac{z(z+1)}{(z-1)^3}$ by residue method. [N/D10]. (8 M) BTL1 Answer : Page : 5.86- DR.A.SINGARAVELU $\left. \begin{array}{c} \operatorname{Res} f(z) \\ @ z = 1 \ of \ order3 \end{array} \right\} = \frac{1}{2!} \lim_{z \to 1} \left[\frac{d^2}{dz^2} (z-1)^3 X(z) z^{n-1} \right]$ (2 M)• $Z^{-1}\left[\frac{z^2+z}{(z-1)^3}\right] = n^2$ (6 M) 11 Using residue method, find $Z^{-1}\left[\frac{z}{(z-1)(z-2)}\right]$. [A/M15,M/J16] (8 M) BTL1 Answer : Page : 5.83- DR.A.SINGARAVELU $\begin{cases} \operatorname{Res} f(z) \\ @ \ z = 1 \ of \ order 1 \end{cases} = \lim_{z \to 1} \left[(z - 1) X(z) z^{n-1} \right] \\ \operatorname{Res} f(z) \\ @ \ z = 2 \ of \ order 1 \end{cases} = \lim_{z \to 2} \left[(z - 2) X(z) z^{n-1} \right]$ (2 M)• $Z^{-1}\left[\frac{z}{(z-1)(z-2)}\right] = 2^n - 1$ (6 M) 12 Using convolution theorem Find $z^{-1} \left[\frac{z^2}{(z+a)(z+b)} \right]$ [M/J13,M/J14,A/M15,N/D15,N/D16] (8 M) BTL1 Answer : Page :5.79- DR.A.SINGARAVELU • $Z^{-1}\left[\frac{z^2}{(z+a)(z+b)}\right] = Z^{-1}\left(\frac{z}{z+a}\right)Z^{-1}\left(\frac{z}{z+b}\right)$ (2 M) • $Z^{-1}\left[\frac{z^2}{(z+a)(z+b)}\right] = (-a)^n * (-b)^n$ (2 M) $Z^{-1}\left[\frac{z^{2}}{(z-a)(z-b)}\right] = \frac{(-1)^{n}}{b-a}(b^{n+1}-a^{n+1}) \quad (4 \text{ M})$ 13 Using convolution theorem evaluate inverse Z-transform of $\left[\frac{z^2}{(z-1)(z-3)}\right]$. [A/M11,N/D13]. (8 M) BTL1 Answer : Page : 5.75- DR.A.SINGARAVELU • $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right] = Z^{-1}\left(\frac{z}{z-1}\right)Z^{-1}\left(\frac{z}{z-3}\right)$ (2 M) • $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right] = 1^n * 3^n$ (2 M)

ACADEMIC YEAR: 2018-2019

RE	GULATION : 2017	ACADEMIC YEAR : 2018-2019
	$Z(y(n+3)) = Z^{3}Y(z) - Z^{3}y(0) - Z^{2}y(1) -$	- Zy(2)
	• $Z(y(n+2)) = Z^2Y(z) - Z^2y(0) - Zy(1)$	(2 M)
	Z(y(n + 1)) = ZY(z) - Zy(0)	
	$8 4 (2)^{n}$	(6 M)
	• $y(n) = \frac{8}{3} + \frac{4}{3}(-2)^n$	(6 M)
18		
	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given $y_0 = y_1 = 0$, using Z-transform. (8 M)
	[N/D09,N/D12,M/J16,N/D16]. BTL1	
	Answer : Page : 5.119- DR.A.SINGARAVELU	
	$Z(y(n+3)) = Z^{3}Y(z) - Z^{3}y(0) - Z^{2}y(1) -$	- Zy(2)
	• $Z(y(n+2)) = Z^2Y(z) - Z^2y(0) - Zy(1)$	(2 M)
	Z(y(n+1)) = ZY(z) - Zy(0)	
	• $y(n) = \frac{1}{25} \left[2^n - (-3)^n + \frac{5}{3}n(-3)^n \right]$	(6 M)
	• $y(n) = \frac{1}{25} \begin{bmatrix} 2 & -(-3) & + & -n(-3) \\ 3 & 3 \end{bmatrix}$	
19		
	Solve $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$ and y	₁ = 1 , using Z-transform. [N/D10,N/D15].
	(8 M) BTL1	
	Answer : Page : 5.114- DR.A.SINGARAVELU	ſ
	$Z(y(n+3)) = Z^{3}Y(z) - Z^{3}y(0) - Z^{2}y(1) - Z^{3}y(0) - Z^{2}y(1) - Z^{3}y(0) - Z^{3$	7 (2)
	• $Z(y(n+2)) = Z^2Y(z) - Z^2y(0) - Zy(1)$	(2 M)
	Z(y(n+1)) = ZY(z) - Zy(0)	
	• $y(n) = \frac{1}{24} (3)^n - \frac{5}{12} (-3)^n + \frac{3}{8} (-1)^n$	(6 M)
	24 12 8	
20		
-	Using Z-transform solve $y_{n+2} - 7 y_{n+1} + 12 y_n = 0$	$y_0 = 0$ and $y_1 = 0$.[M/J13, M/J14] (8
	M) BTL1	- · · · · · ·
	Answer : Page :5.106- DR.A.SINGARAVELU	
	$Z(y(n+3)) = Z^{3}Y(z) - Z^{3}y(0) - Z^{2}y(1) -$	- Zy(2)
	• $Z(y(n+2)) = Z^2Y(z) - Z^2y(0) - Zy(1)$	(2 M)
	Z(y(n+1)) = ZY(z) - Zy(0)	
	• $y(n) = (2)^{n-1} - (3)^n + \frac{1}{2}(4)^n$	(6 M)
	y(n) = (2) = (3) + (4)	
21		
	Form the difference equation whose solution i	
	Answer : Page :5.103- DR.A.SINGARAVELU	J

EE8351 DIGITAL LOGIC CIRCUITS

LTPC

6+6

6+6

6+6

6+6

OBJECTIVES:

- > To study various number systems and simplify the logical expressions using Boolean functions.
- To study combinational circuits.
- To design various synchronous and asynchronous circuits.
- To introduce asynchronous sequential circuits and PLDs.
- > To introduce digital simulation for development of application oriented logic circuits.

UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code) - Digital Logic Families - comparison of RTL, DTL, TTL, ECL and MOS families -operation, characteristics of digital logic family.

UNIT II COMBINATIONAL CIRCUITS

Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps - simplification and implementation of combinational logic – multiplexers and de multiplexers - code converters, adders, subtractors, Encoders and Decoders.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters -asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous sequential circuits – Moore and Melay models- Counters, state diagram; state reduction; state assignment.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABILITY LOGIC DEVICES 6+6

Asynchronous sequential logic circuits-Transition tability, flow tability-race conditions, hazards & errors in digital circuits; analysis of asynchronous sequential logic circuits introduction to Programmability Logic Devices: PROM – PLA – PAL, CPLD-FPGA.

UNITV VHDI

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to Packages – Subprograms – Test bench. (Simulation /Tutorial Examples: adders, counters, flip flops, Multiplexers & De multiplexers).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- Ability to design combinational and sequential Circuits.
- Ability to simulate using software package.
- > Ability to study various number systems and simplify the logical expressions using Boolean functions

- > Ability to design various synchronous and asynchronous circuits.
- > Ability to introduce asynchronous sequential circuits and PLDs.
- > Ability to introduce digital simulation for development of application oriented logic circuits.

TEXT BOOKS:

- 1. James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.
- 2. M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education, 2013.
- 3. Comer "Digital Logic & State Machine Design, Oxford, 2012.

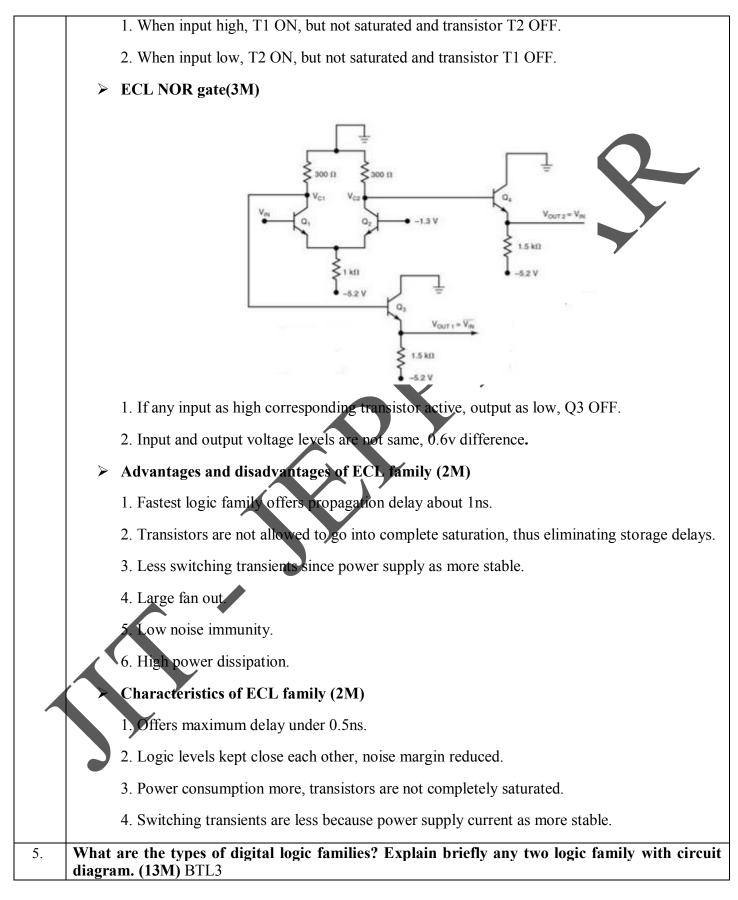
REFERENCES

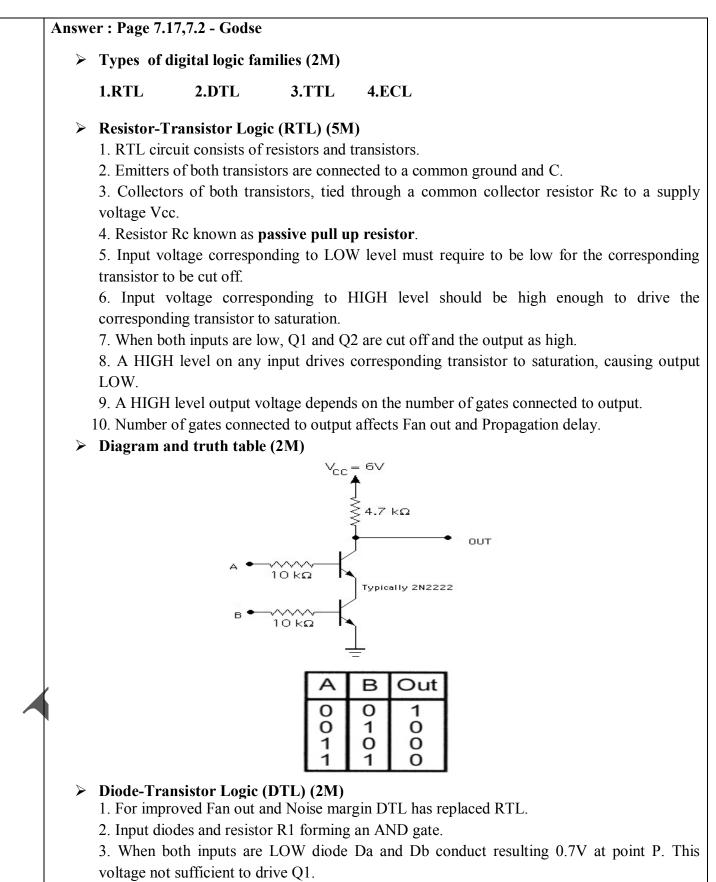
- 1. Mandal, "Digital Electronics Principles & Application, McGraw Hill Edu, 2013.
- 2. William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.
- 3. Thomas L.Floyd, 'Digital Fundamentals', 11th edition, Pearson Education, 2015.
- Charles H.Roth, Jr, Lizy Lizy Kurian John, 'Digital System Design using VHDL, Cenga 2013.
- 5. D.P.Kothari, J.S.Dhillon, 'Digital circuits and Design', Pearson Education, 2016

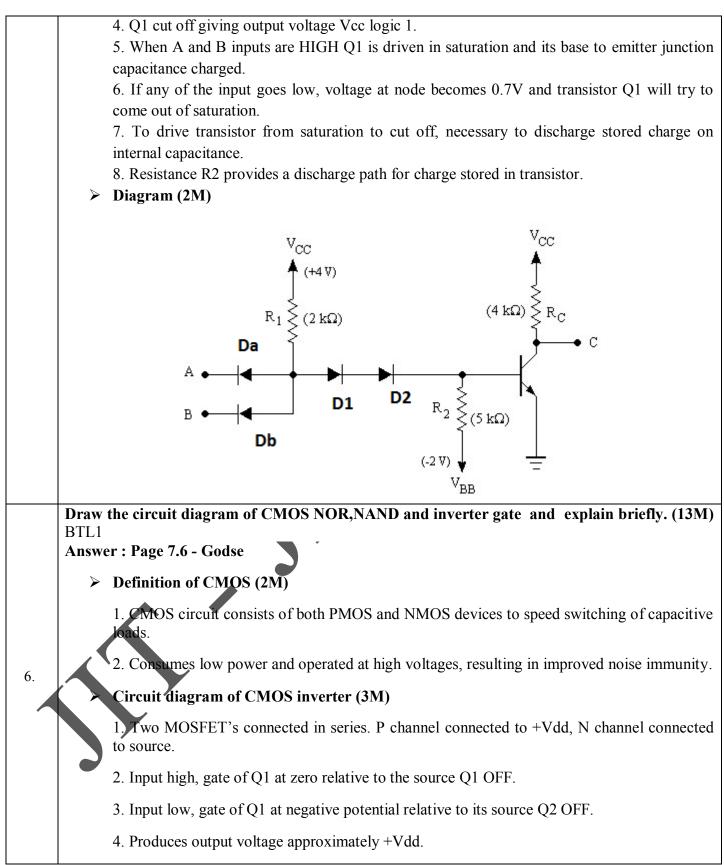
Subject Code : EE 8351 Subject Name : Digital Logic Circuits

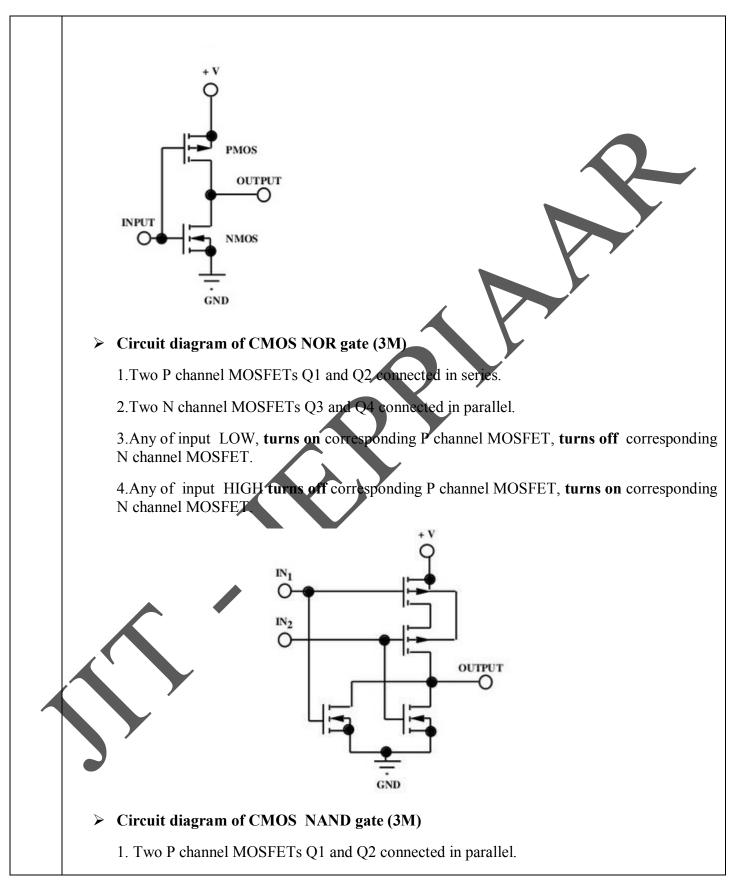
Year/Sem: II/03 Subject Handler: Mrs. L. Pattathurani

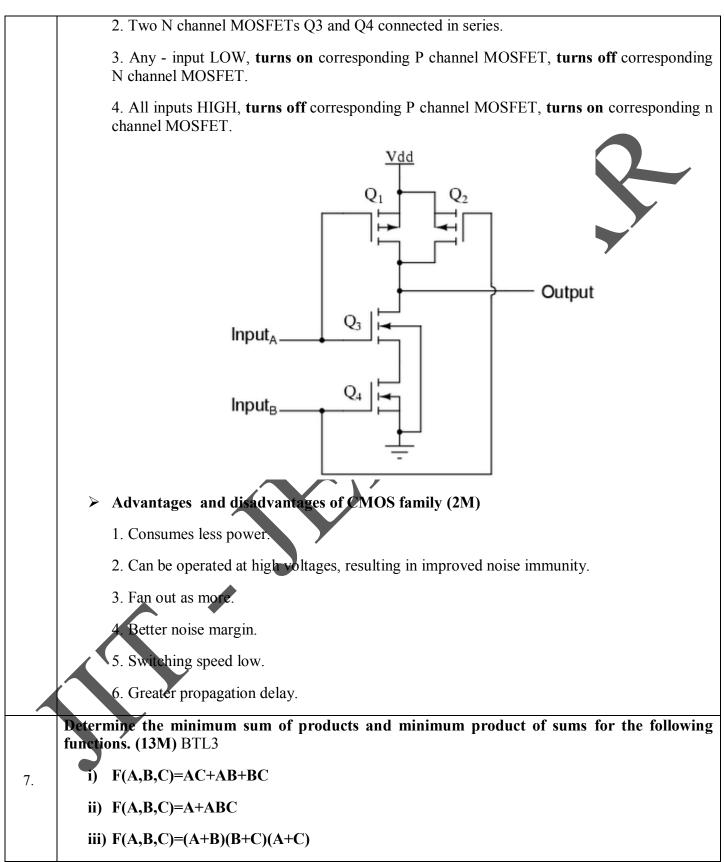
 odd. Consider the following two characters and their even and odd parity: With even parity with parity ASCII A = 1000001 01000001 ASCII T = 100100 11010 00 0101000. In case we add an extra bit in the left most position of the code to produce an even number of 1's in the character for even parity or an odd number of 1's in the character for odd parity. The parity thelpful in detecting errors during the transmission of information from one location to another. Define binary logic. BTL1 Binary logic consists of binary variables and logical operations. The variables are designated by alphabets such as A, B, C, x, y, z, etc., with each variable having only two distinct values: 1 at There are three basic logic operations: AND. OB, and NOT. Define are logic gates.BTL1 Logic gates are electronic circuits that operate ap one or more input signals to produce an or signal. Electrical signals such as voltages on currents exist throughout a digital system in eithe two recognizable values. Voltage-operate circuits respond to two separate voltage levels represent a binary variable equal to logic 1 or logic 0. State duality property. BTL1 Duality property states that evely algebraic expression deducible from the postulates of Boo algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by and 0's b(1's. Reduce AB (C)' + A'BC' + A'BC. BTL3 A'B'C + A'BC' + A'BC. BTL3 A'B'C + A'BC' + A'BC. (AB + C) = AB + (AC)' + AAB'C (A + C) = A + B] Reduce AB + (AC)' + AB'C (AB + C) = A + (AC)' + AAB'BC + AB'CC = AAB + (AC)' + AB'C [A - A'B] 6. 6. 		UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES				
 Q.No. Questions What is meant by parity bit? BTL1 A parity bit is an extra bit included with a message to make the total number of 1<i>k</i> either eve odd. Consider the following two characters and their even and odd parity: With even parity with parity ASCII A = 1000001 01000001 11000001, ASCII T = 10(0100, 1101000 01010100. In case we add an extra bit in the left most position of the code to produce an oven number of 1's in character for even parity or an odd number of 1's in the character for odd parity. The parity bit helpful in detecting errors during the transmission of information from one location to another. Define binary logic. BTL1 Binary logic consists of binary variables and logical operations. The variables are designated by alphabets such as A, B, C, x, y, z, etc., wint each variable, having only two distinct values: 1 ar There are three basic logic operations. AND OIJ, and NOT. Define are logic gates.BTL1 Logic gates are electronic circuits that operate on one or more input signals to produce an or signal. Electrical signals such as toplages on currents exist throughout a digital system in eith two recognizable values. Voltages on currents exist throughout a digital system in eith two recognizable values. Voltages on currents exist throughout a digital system in eith algebraic expression is desired, we simply interchange OR and AND operators and replace 1's b and 0's b 1's. Reduce A'BC' + A'BC' + A'BC. BTL3 A'B'C + A'BC' + A'BC. AB'C (AB + C) = ATL3 A'B'C + AB'C (AB + C) = ATC (C' + BC) = A' (C' + B) [A + A'B = A + B] Reduce AB + (AC)' + AB'C (AB + C) = AB + (AC)' + AB'C [A + A'B = [= A' (C' + BC' = A'B'C [A, A'B]] e A' + B + C' + AB'C [A + A'B = A + B] e A' + B + C' + AB'C [A + A'B = A + B] e A' + B + C' + AB'C [A + A'B = A + B] e A' + B + C' + AB'C [A + A'B = A + B] e A' + B + C' + AB'C [A + A'B = A + B] 	code) -	code) - Digital Logic Families -comparison of RTL, DTL, TTL, ECL and MOS families -operation,				
 What is meant by parity bit? BTL1 A parity bit is an extra bit included with a message to make the total number of 1/s either evelod. Consider the following two characters and their even and odd parity: With even parity with parity ASCII A = 1000001 01000001 11000001, ASCII T = 10 0100 10100 00 01010100. In case we add an extra bit in the left most position of the code to produce an even number of 1/s in character for odd parity. The parity thelpful in detecting errors during the transmission of information from one location to another. Define binary logic. BTL1 Binary logic consists of binary variables and logical operations. The variables are designated by alphabets such as A, B, C, x, y, z, etc., wint each variable having only two distinct values: 1 at There are three basic logic operations: AND OB, and NDT. Define are logic gates.BTL1 Logic gates are electronic circuits that operate are one or more input signals to produce an ot signal. Electrical signals work on voltage? So currents exist throughout a digital system in either two recognizable values. Voltage apperate of logic 0. State duality property. BTL1 Duality property states that evely algebraic expression deducible from the postulates of Boo algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by and 0's b.1's. Reduce A'BC' + A'BC' + A'BC. BTL3 A'B'C A'BC' + A'BC. BTL3 A'B'C A'BC' + A'BC (AB + C). BTL3 AB + (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C [AA = 0] AB + (AC)						
 A parity bit is an extra bit included with a message to make the total number of 1's either even odd. Consider the following two characters and their even and odd parity. With even parity with parity ASCII A = 1000001 01000001 11000001, ASCII T = 1010100 1101000 01010100. In case we add an extra bit in the left most position of the code to produce an even parity in the left most position of the code to produce an even parity is character for even parity or an odd number of 1's in the character for odd parity. The parity the helpful in detecting errors during the transmission of information from one location to another. Define binary logic. BTL1 Binary logic consists of binary variables and logical operations. The variables are designated by alphabets such as A, B, C, x, y, z, etc., with each variable having only two distinct values: 1 at There are three basic logic operations: AND, OR, and NOT. Define are logic gates.BTL1 Logic gates are electronic circuits that operate on one or more input signals to produce an or signal. Electrical signals such as toltages on currents exist throughout a digital system in eitht two recognizable values. Voltage-operater circuits respond to two separate voltage levels represent a binary variable equal to logic 1/or logic 0. State duality property. BTL1 Duality property states that every algebraic expression deducible from the postulates of Boo algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by and 0's b 1's. Reduce A'B C' + A'BC' + A'BC. BTL3 A'B'C' + A'BC' + A'BC. BTL3 A'B'C' + A'B'C (AB + C). BTL3 A'B'C' + A'B'C (AB + C). BTL3 AB + (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C (AB + C). BTL3 AB	Q.No.	Questions				
 2. Binary logic consists of binary variables and logical operations. The variables are designated by alphabets such as A, B, C, x, y, z, etc., with each variable having only two distinct values: 1 ar There are three basic logic operations: At D OR, and NOT. Define are logic gates.BTL1 Logic gates are electronic circuits that operate op one or more input signals to produce an or signal. Electrical signals such as voltages or currents exist throughout a digital system in either two recognizable values. Voltage operated circuits respond to two separate voltage levels represent a binary variable equal to logic 1 or logic 0. State duality property. BTL1 Duality property states that every algebraic expression deducible from the postulates of Boc algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by and 0's by 1's. 8. Reduce A'B'C' + A'BC' + A'BC. BTL3 A'B'C' + A'BC' + A'BC. BTL3 A'B'C' + A'BC' + A'BC. BTL3 A'B'C' + A'B'C (AB + C) BIL4 Befue A'B'C' + A'B'C (AB + C) BTL3 AB + (AC)' + AB'C (AB + C) BTL3 AB + (AC)' + AB'C (AB + C) BTL3 AB + (AC)' + AB'C [A.A' = 0] AB + (AC)' + AB'C [A.A' = 1] A'B + C' = AB'C [(AB)' = A' + B'] A' + B + C' + AB'C [(AB)' = A' + B'] A' + B + C' + AB'C [(A + A'B = A + B] 	1.	A parity bit is an extra bit included with a message to make the total number of 1/s either even or odd. Consider the following two characters and their even and odd parity: With even parity with odd parity ASCII A = 1000001 01000001 11000001, ASCII T = 1010100 11010100 01010100. In each case we add an extra bit in the left most position of the code to produce an even number of 1/s in the character for even parity or an odd number of 1/s in the character for odd parity. The parity bit is				
 Define are logic gates.BTL1 Logic gates are electronic circuits that operate on one or more input signals to produce an or signal. Electrical signals such as voltages of currents exist throughout a digital system in either two recognizable values. Voltage-operated circuits respond to two separate voltage levels represent a binary variable equal to logic 1/or logic 0. State duality property. BTL1 Duality property states that every algebraic expression deducible from the postulates of Bood algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by and 0's bt 1's. Reduce A'B'C' + A'BC' + A'BC. BTL3 A'B'C' A'BC' + A'BC. BTL3 A'B'C' A'BC' + A'BC = A'C'(B' + B) + A'B'C = A'C' + A'BC [A + A' = 1] = A' (C' + BC) = A' (C' + B) [A + A'B = A + B] Reduce AB+ (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C [A.A' = 0] = AB + (AC)' + AB'C [A.A = 1] = A' + B + C' + AB'C [A + A'B = A + B] = A' + B'C + B + C' [A + A'B = A + B] = A' + B'C + B + C' [A + A'B = A + B] = A' + B'C + B + C' [A + A'B = A + B] 	2.	Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets such as A, B, C, x, y, z, etc., with each variable having only two distinct values: 1 and 0.				
 4. Duality property states that every algebraic expression deducible from the postulates of Boc algebra remains valid if the operators and identity elements are interchanged. If the dual o algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by and 0's by 1's. 5. Reduce A'B'C' + A'BC' + A'BC. BTL3 A'B'C' + A'BC' + A'BC. BTL3 A'B'C' + A'BC' + A'BC = A'C'(B' + B) + A'B'C = A'C' + A'BC [A + A' = 1] = A' (C' + BC) = A' (C' + B) [A + A'B = A + B] 6. Reduce AB + (AC)' + AB'C (AB + C) = AB + (AC)' + AAB'BC + AB'CC = AB + (AC)' + AB'C [A.A = 1] = A' + B + C' + AB'C [A + A'B = A + B] 6. AB + A' + C' = AB'C [(AB)' = A' + B'] = A' + B + C' + AB'C [A + A'B = A + B] 	3.	Define are logic gates. BTL1 Logic gates are electronic circuits that operate on one or more input signals to produce an output signal. Electrical signals such as voltages of currents exist throughout a digital system in either of two recognizable values. Voltage- operated circuits respond to two separate voltage levels that				
5. $A'B'C' + A'BC' + A'BC = A'C'(B' + B) + A'B'C = A'C' + A'BC [A + A' = 1]$ = A'(C' + BC) = A'(C' + B) [A + A'B = A + B] Reduce AB+ (AC)' + AB'C (AB + C). BTL3 AB + (AC)' + AB'C (AB + C) = AB + (AC)' + AAB'BC + AB'CC = AB + (AC)' + AB'CC [A.A' = 0] = AB + (AC)' + AB'C [A.A = 1] = AB + A' + C' = AB'C [(AB)' = A' + B'] = A' + B + C' + AB'C [A + AB' = A + B] = A' + B'C + B + C' [A + A'B = A + B]	4.	Duality property states that every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged. If the dual of an algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by 0's				
6. $ \begin{array}{l} \textbf{Reduce AB} + (AC)' + AB'C (AB + C). BTL3 \\ AB + (AC)' + AB'C (AB + C) = AB + (AC)' + AAB'BC + AB'CC \\ = AB + (AC)' + AB'CC [A.A' = 0] \\ = AB + (AC)' + AB'C [A.A = 1] \\ = AB + A' + C' = AB'C [(AB)' = A' + B'] \\ = A' + B + C' + AB'C [A + AB' = A + B] \\ = A' + B'C + B + C' [A + A'B = A + B] \end{array} $	5.	A'B'C' + A'BC' + A'BC = A'C'(B' + B) + A'B'C = A'C' + A'BC [A + A' = 1]				
= A' + B + C' + B'C = A' + B + C' + B'	6.	Reduce $AB + (AC)' + AB'C (AB + C)$. BTL3 AB + (AC)' + AB'C (AB + C) = AB + (AC)' + AAB'BC + AB'CC = AB + (AC)' + AB'CC [A.A' = 0] = AB + (AC)' + AB'C [A.A = 1] = AB + A' + C' = AB'C [(AB)' = A' + B'] = A' + B + C' + AB'C [A + AB' = A + B] = A' + B'C + B + C' [A + A'B = A + B] = A' + B + C' + B'C				

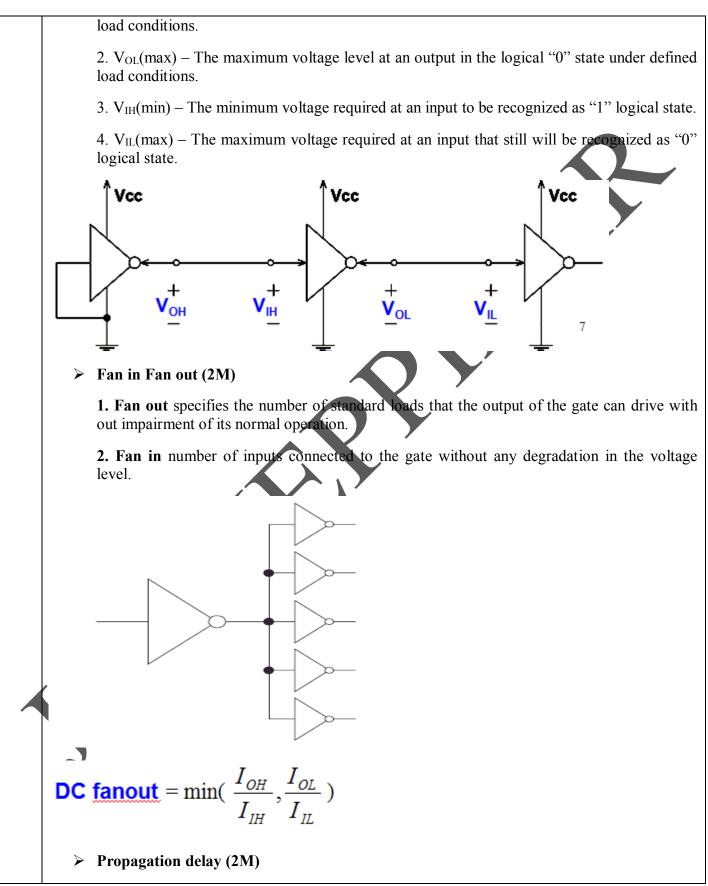

r	
	=A' + C' + 1
	= 1 [A + 1 = 1]
	Simplify the following expression $Y = (A + B) (A + C')(B' + C')$. BTL3
	Y = (A + B) (A + C') (B' + C')
7.	= (AA' + AC + A'B + BC) (B' + C') [A.A' = 0]
	= (AC + A'B + BC) (B' + C')
	= AB'C + ACC' + A'BB' + A'BC' + BB'C + BCC'
	= AB'C + A'BC'
	Show that $(X + Y' + XY)(X + Y')(X'Y) = 0$. BTL3
	(X + Y' + XY)(X + Y')(X'Y) = (X + Y' + X)(X + Y')(X' + Y)[A + A'B = A + B]
8.	= (X + Y') (X + Y')(X'Y) [A + A = 1] = (X + Y') (Y'Y) [A - A = 1]
	= (X + Y') (X'Y) [A.A = 1]
	= X.X' + Y'.X'.Y $= 0 [A A' = 0]$
	= 0 [A.A' = 0]
	Prove that ABC + ABC' + AB'C + A'BC = AB + AC + BC. BTL3 ABC + ABC' + AB'C + A'BC = AB (C + C') + AB'C + A'BC
	ABC + ABC' + AB'C + A'BC = AB(C + C') + AB'C + A'BC
	=AB + AB'C + A'BC $=A(B + B'C) + A'BC$
9.	$=A(B+C) + A^{2}BC$
	=AB + AC + A'BC
	=B(A+C) + AC
	=AB + BC + AC
	=AB + AC + BCProved
	Convert the given expression in canonical SOP form Y = AC + AB + BC. BTL3
	Y = AC + AB + BC
10.	= AC (B + B') + AB(C + C') + (A + A')BC
	= ABC + ABC' + AB'C + AB'C' + ABC + ABC' + ABC
	= ABC + ABC' + AB'C + AB'C' [A + A = 1]
	Convert the given expression in canonical POS form Y = (A + B)(B + C)(A + C). BTL3
	Y = (A + B)(B + C)(A + C)
11.	= (A + B + C.C')(B + C + A.A')(A + B.B' + C)
	= (A + B + C)(A + B + C')(A + B + C)(A' + B + C)(A + B + C)(A + B' + C) [A + BC = (A + B)(A + B + C)(A + B +
	B(A + C) Distributive law]
	(A + B + C)(A + B + C')(A' + B + C)(A' + B + C)(A + B' + C)
	List the steps in implementing a Boolean function with levels of NAND Gates. BTL2
	Simplify the function and express it in sum of products.
	Draw a NAND gate for each product term of the expression that has at least two literals. The inputs to each NAND gate are the literals of the term.
12.	Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
12.	level, with inputs coming from outputs of first level gates.
	A term with a single literal requires an inverter in the first level. However if the single literal
	is complemented, it can be connected directly to an input of the second level NAND gate.
	What is overflow?. How can it be deducted? BTL1
	Over flow is a problem in digital computers. The number of bits that hold the number is finite and a
13.	result that contains $n + 1$ bits cannot be accommodated. For this reason many computers detect the
	occurrence of an overflow, and when it occurs a corresponding flip flop is set that can be checked by
	the user.

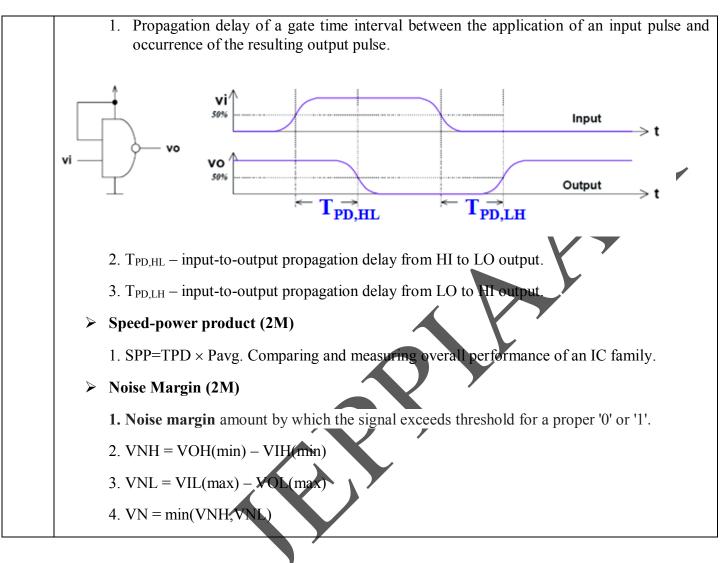

	An overflow condition can be detected by observing the carry into sign bit position and the carry out
	of the sign bit position. If these two carries are not equal, an overflow has occurred.
14.	Write the names of Universal gates. Why is it so called? BTL1
	The NAND and NOR gates are known as universal gates, since any logic function can be
	implemented using NAND or NOR gates.
15.	Construct OR gate using NAND gates.(AU MAY 2013) BTL3
	Binary to Decimal conversion. BTL2
16.	$1.10101_2 = 10101B = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{2} = 16 + 4 + 1 = 21$
10.	$2.101112 = 10111B = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 16 + 4 + 2 + 1 = 23$
	$3.1000112 = 100011B = 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{3} + 1 \times 2^{0} = 32 + 2 + 1 = 35$
	Octal to Decimal conversion. BTL2
	1. $27_8 = 2 \times 8^{-1} + 7 \times 8^{-0} = 16 + 7 = 25$
17.	
	2. $30_8 = 3 \times 8^{-1} + 0 \times 8^{-0} = 24$
	$3.4307_8 = 4 \times 8^{3} + 3 \times 8^{2} + 0 \times 8^{1} + 7 \times 8^{0} = 2247$
	What is the advantage of using Schottky TTL gate? BTL1
	The junction of the transistor is prevented from heavy forward bias when it is turned ON and hence
18.	the transistor is kept out of deep / hard saturation. This has been achieved by connecting a diode across the base-to-collector junction of the transistor. Otherwise, the deep saturation would cause
	surplus of carriers to be stored in the base region of the transistor which causes increased
	propagation delay. The diode used here is the schottky diode that has very little junction capacitance
	and fast recovery time.
	Mention the classification of saturated bipolar logic families. BTL1
	The bipolar logic family is classified as follows:
19.	1. RTL- Resistor Transistor Logic
17.	2. DTL- Diode Transistor logic
	3. I2L- Integrated Injection Logic 4. TTL- Transistor Transistor Logic
	5-ECL- Emitter Coupled Logic
	Mention the important characteristics of digital IC's. BTL1
	1. Fan out
20	2. Power dissipation
20.	3. Propagation Delay
	4. Noise Margin
	5. Fan In
21.	6. Operating temperature
<i>2</i> 1.	Define Fan in and Fan out. BTL1

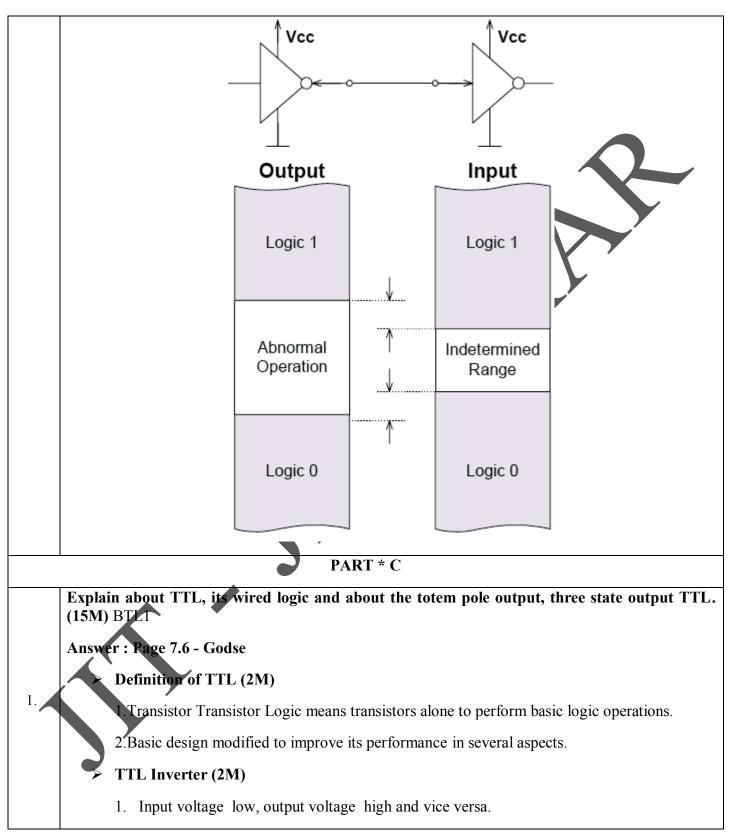

	Fan out specifies the number of standard loads that the output of the gate can drive with out
	impairment of its normal operation. Fan in is the number of inputs connected to the gate without any degradation in the voltage level.
	How schottky transistors are formed and state its use? BTL1
	A schottky diode is formed by the combination of metal and semiconductor. The presence of schottky
22.	diode between the base and the collector prevents the transistor from going into saturation. The
	resulting transistor is called as schottky transistor. The use of schottky transistor in TTL decreases the
	propagation delay without a sacrifice of power dissipation.
	State advantages and disadvantages of TTL. BTL1
	Advantages: 1. Easily compatible with other ICs.
23.	2. Low output impedance.
	Disadvantages:
	1. Wired output capability is possible both tristate and open collector types.
	2. Special circuits in Circuit layout and system design.
	State De Morgan's theorem. (A.U.MAY-2011) BTL1
24.	De Morgan suggested two theorems that form important part of Boolean algebra. They are, 1) The
	complement of a product is equal to the sum of the complements. $(AB)' = A' + B' 2$ The
	complement of a sum term is equal to the product of the complements. $(A + B)' = A'B'$
25	What is a unit distance code? (Nov/Dec 2015) BTL1
25.	The Gray code is a single-step code (i.e. a unit-distance code). It's often used in analog/digital conversion devices. Adjacent code patterns of Gray code differ in just only one bit to avoid
	ambiguity, i.e. consecutive code elements have a hamming distance of one.
	Define Propagation delay. BTL1
26.	The Propagation delay of a gate is basically the time interval between the application of an input
	pulse and occurrence of the resulting output pulse.
	PART * B
	State the postulates and theorems of Boolean algebra. (13M) (May 2008).BTL1
	Answer : Page 1.2 - Godse
	> Postulates (9M)
	$1.A + 0 = A A \cdot 1 = A$ identity
1.	$2.A + NOT[A] = 1 A \cdot NOT[A] = 0$ complement
	3.Commutative Property:
	For every a and b in K,
	a + b = b + a
	$\mathbf{a}. \mathbf{b} = \mathbf{b}. \mathbf{a}$
	4.Associative Property:

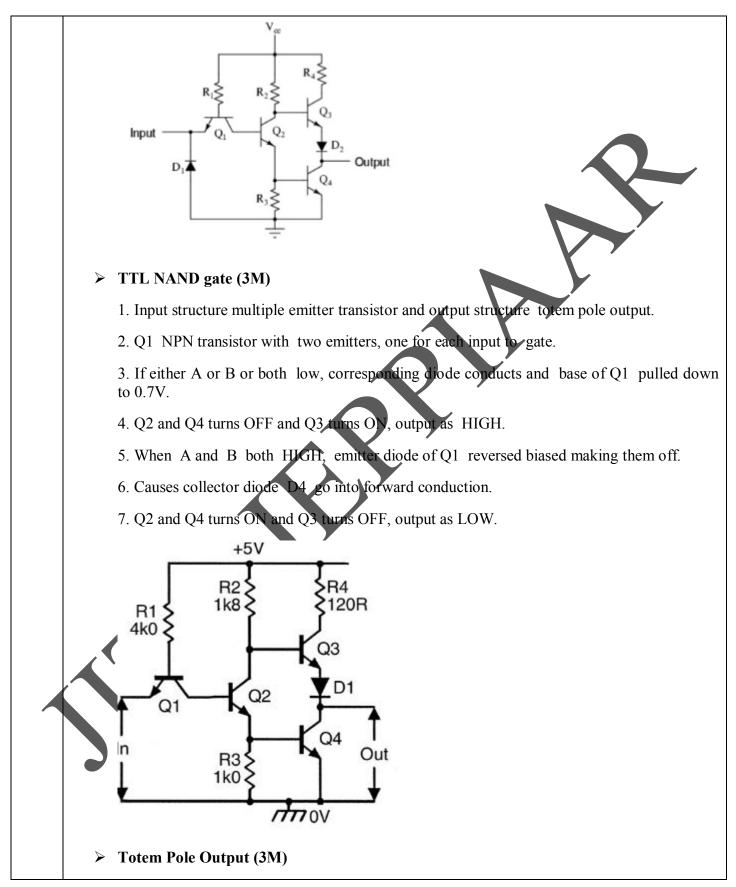

For every a, b, and c in K, a + (b + c) = (a + b) + ca. (b. c) = (a. b). c**5.Distributive Property:** For every a, b, and c in K, a + (b. c) = (a + b). (a + c)a. $(b+c) = (a \cdot b) + (a \cdot c)$ > Demorgan's theorems (4M) A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states: 1.(a + b)' = a'b'2. (ab)' = a' + b'Deduce the odd parity hamming code for the data : 1010. Introduce an error in the LSB of the hamming code and deduce the steps to detect the error. (13M) (May 16) BTL3 Answer : Page 1.51 - Godse > Procedure (5M) 1. Bit locations 3, 5 & 7 have two ones an odd parity P1 must be 1. 2. Bit locations 3, 6 & 7 have single one an odd parity P2 must be 0. 3. Bit locations 5, 6 & 7 have two ones an odd parity P4 must be 1. 2. 4. Hamming code 1011001. Error checking (5M) 1. P1 check locations 1, 3, 5 & 7 have two one's, Parity check for odd parity 2. P2 check locations 2, 3, 6 & 7 have single one Parity check for odd parity correct.....0. 3. P4 check locations 4, 5, 6 & 7 have single one Parity check for odd parity correct....0. Correct word is 0 0 1, bit number 1 location is in error (3M) Detect and correct error in the following received even parity hamming code 0 0 1 1 1 1 0 1 0 1 3. 0.Also find out the correct message. (13M) BTL3

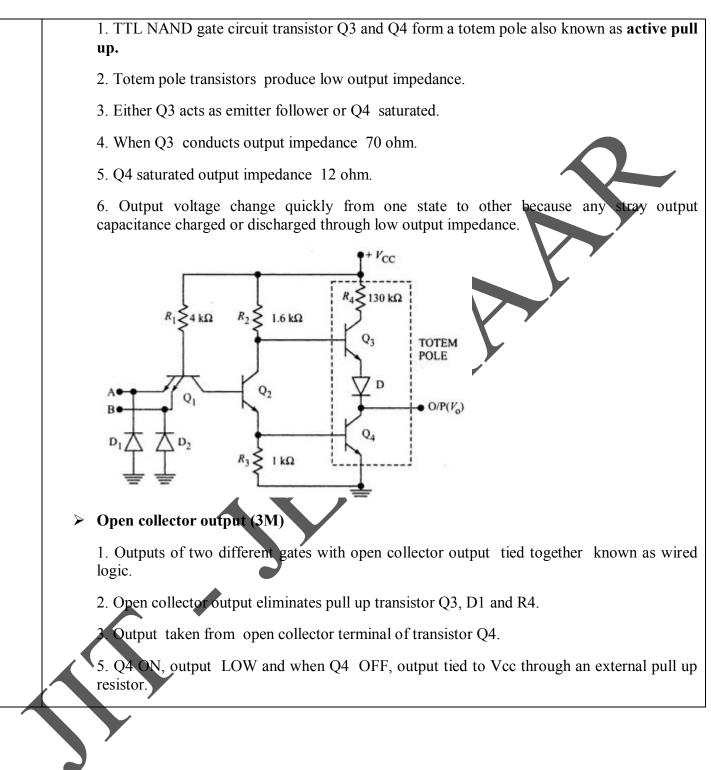

	Answer : Page 1.52 - Godse
	 Find no. of parity bits and information bits (2M)
	1. X+P=11, P=4.
	2. For given hamming code 7 information bits and 4 parity bits.
	 Construct bit location table (4M)
	 Check parity bits (5M)
	1. P1 check locations 1, 3,5,7,9 & 11 have two ones, Parity check for even parity correct0(LSB).
	2. P2 check locations 2, 3, 6,7,10 & 11 have three one's, Parity check for even parity wrong1.
	3. P4 check locations 4, 5, 6 & 7 have three one's, Parity check for even parity wrong1.
	4. P8 check locations 8,9,10 & 11 have two one's, Parity check for even parity correct0.
	The resultant word is 0 1 1 0, bit 6 location is an error. Correct message is 0 0 1 1 1 0 0 1 0 1 0 (2M)
	Explain the basic working principles of ECL logic families. (13M) BTL3
	Answer : Page 7.6 - Godse
	> Definition of ECL(2NI)
	1. Increasing overall speed by using different structure called current mode logic, also called as Emitter coupled circuit.
	Basic structure of ECL(4M)
4.	$V_{A} \xrightarrow{A} T_{1} \xrightarrow{T_{1}} V_{R}$








	iv) $F(A,B,C) = A.(A+B+C)$	
	Answer : Page 1.12,1.14 - Godse	
	Procedure for Sum of Product (6M)	
	1. Find missing literals in each product term.	
	2. AND product term with missing literal and its c	complement.
	3. Expand terms and reorder literals.	
	Procedure for Product of Sum (7M)	
	1. Find missing literals in each sum term.	
	2. OR sum term with missing literal and its compl	ement.
	3. Expand terms and reorder literals.	
	4. Omit repeated sum terms.	
8.		n into memory if the 12 bit word read out ec 2015) BTL3 located in positions 1,2,4,8 from left are 3,5,6,7,9,10,11 and 12 are left (3M) 12 Data word 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0
9.	 Answer : Page 2.6, 2.8 - Godse Characteristics of Logic family (2M) Propagation delay, Power dissipation, Current in and Fan out, Speed power product. Current and voltage parameters (3M) 	
	1. V _{OH} (min) – The minimum voltage level at an o	output in the logical "1" state under defined

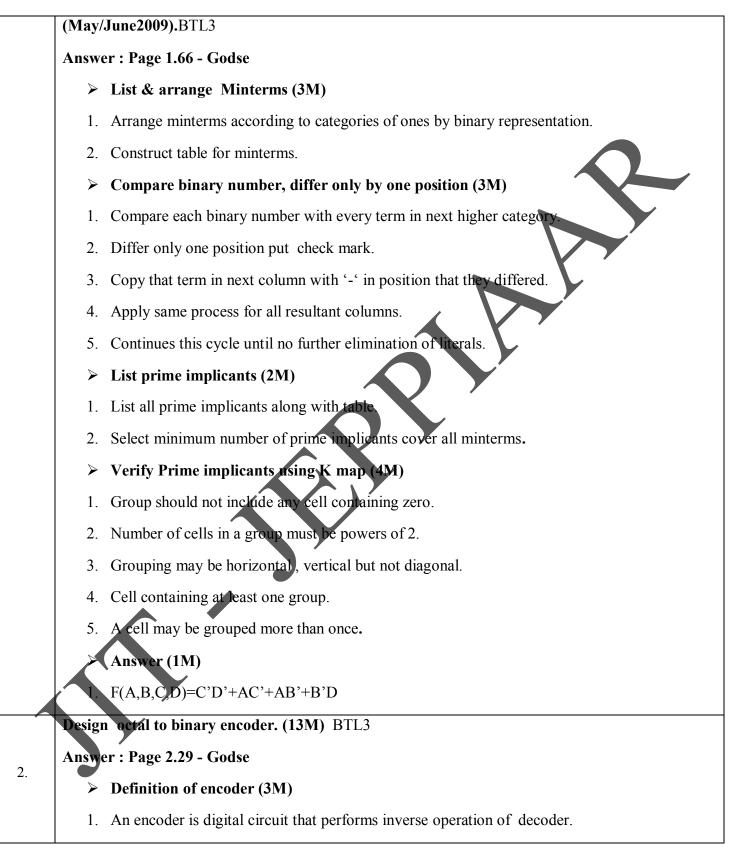


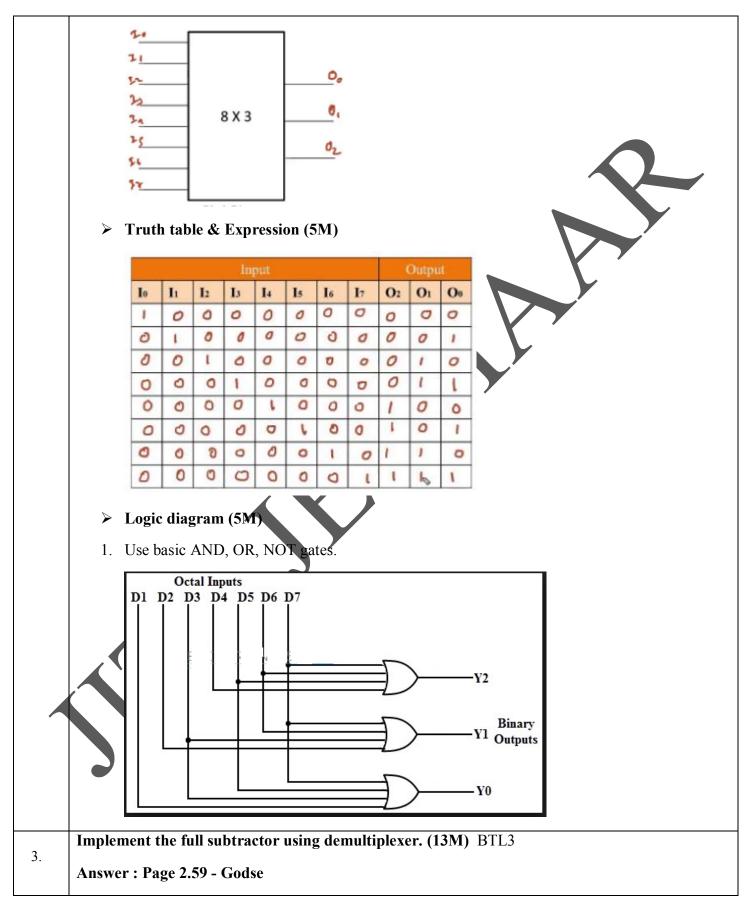
1. A complete alphanumeric code would include the 26 lowercase characters, 26 uppercase characters, 10 numeric digits, etc. 2. Many choices of codes represent alphanumeric characters and several control characters. 3. Information coding as EBCDIC code(extended binary coded decimal interchange code) 4. ASCII Code(American standard code for information interchange 5. ASCII code seven-bit code, 128 possible code groups. Error detection codes and correction codes (2M) 1. Used to detect and correct errors during the data transmission, 2. Parity bit and hamming codes error detection and error correction code. Explain in detail about error detecting and error correcting codes. (15M) BTL2 Answer : Page 1.81 - Godse > Definition of error correction and error detection codes (2M) 1. Codes which allow only error detection called error detecting codes. 2. Codes which allow error correction and detection called error detecting and error correcting codes > Types of error correction and error detection codes (1M) 1. Parity bit 2. Hamming code 3. Parity bit (6M) 1. Circuit that generates parity bit in the transmitter called parity generator. Circuit that checks parity bit in the receiver called parity checker. 3. Parity bits assigned to both rows and columns, generates block parity. 4. Add even parity bits to rows and columns of a 4*8 data block. 5. Parity errors in the third column and second row, third bit second word as error. 6. Parity errors in two columns two errors have occurred in one data word. ➤ Hamming code (6M) 1. Find no. of parity bits and information bits. X+P=11, P=4, in a given hamming code there are 7 information bits and 4 parity bits.

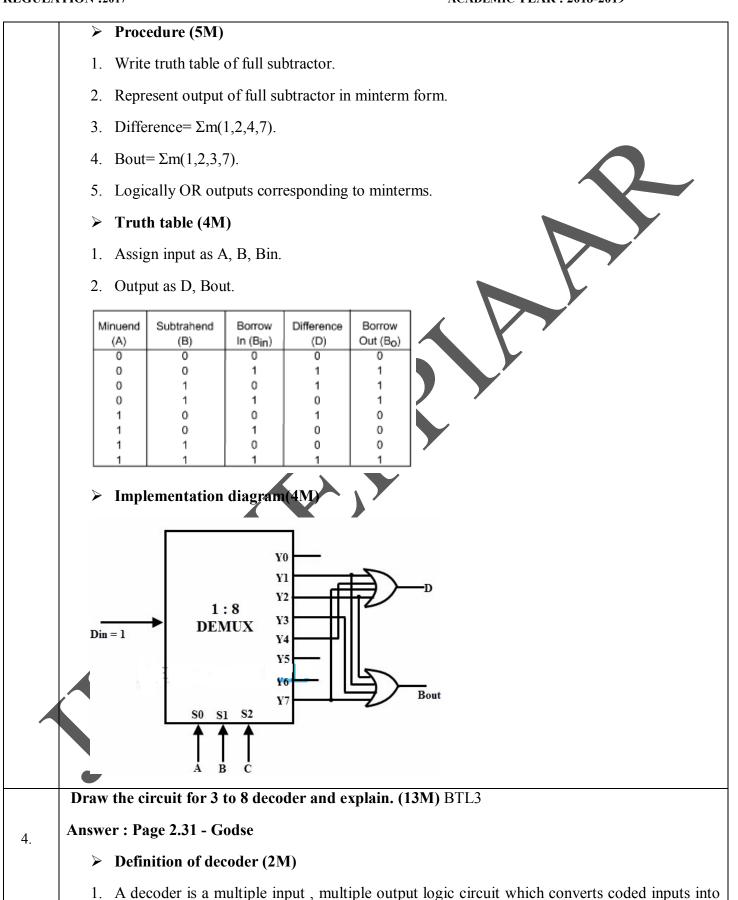
2. Locations of parity bit code as **D7 D6 D5 P4 D3 P2 P1. Pn** designates particular information bit.

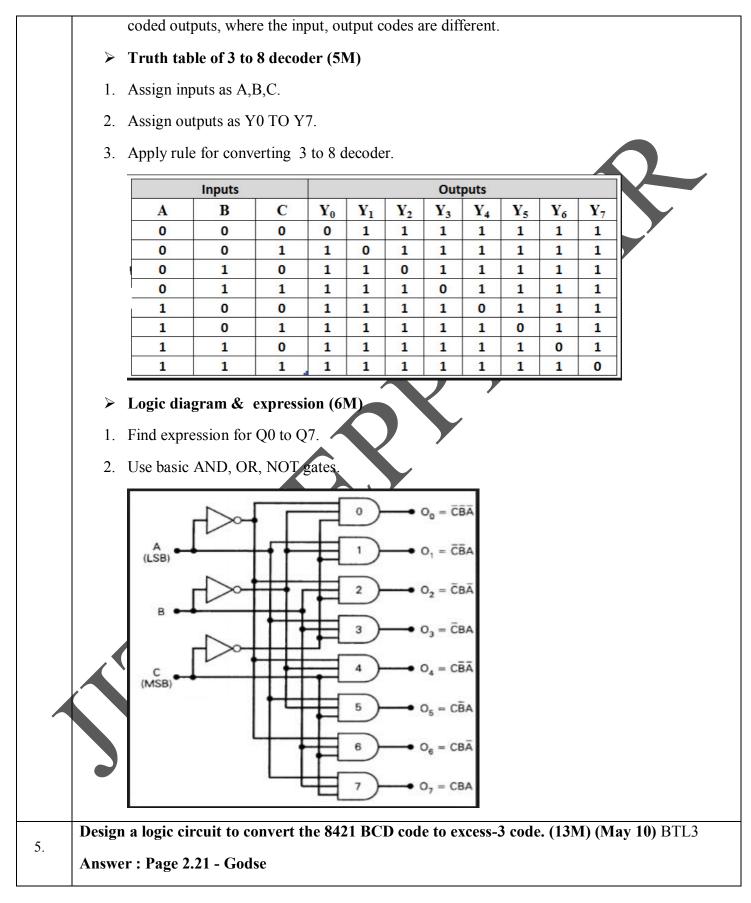
3. Check all bit locations one's in same location binary numbers.

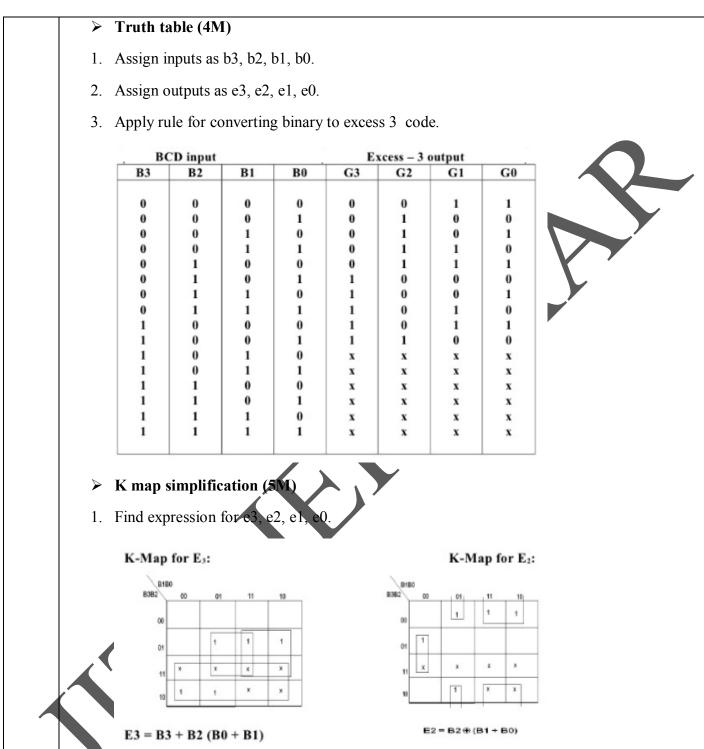
4. Check all bit locations one's in middle bit.

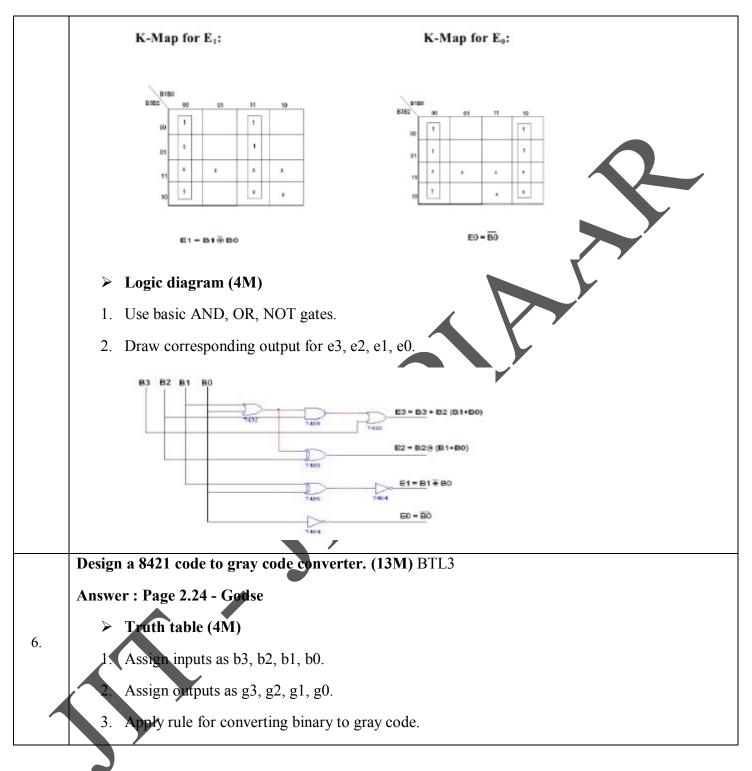

5. Check all bit locations one's in left most bit.

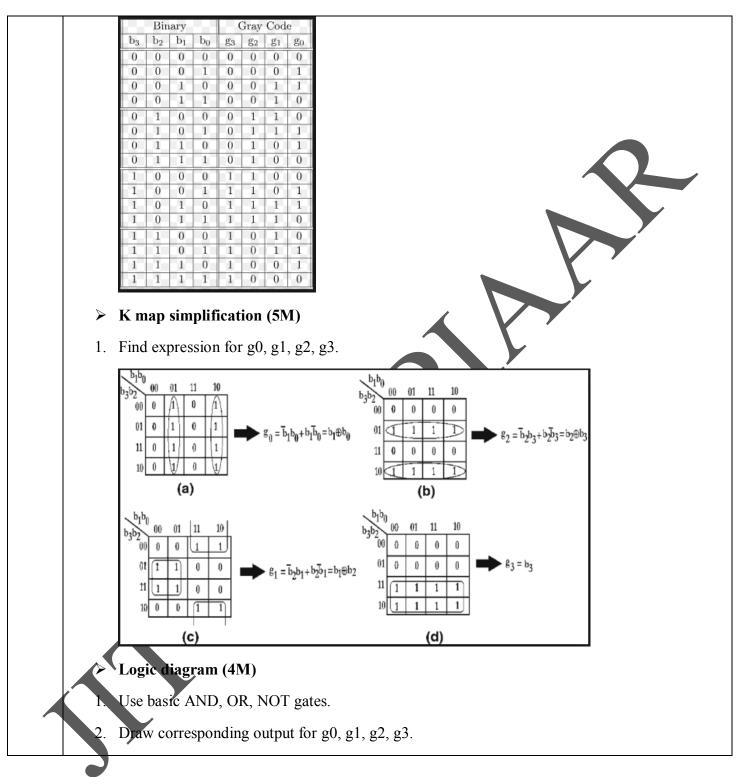

	UNIT II COMBINATIONAL CIRCUITS
	Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps - simplification and implementation of combinational logic – multiplexers and de multiplexers - code converters, adders, subtractors, Encoders and Decoders.
	PART * A
Q.No.	Questions
1.	 What are the methods adopted to reduce Boolean function? BTL1 1. Karnaug map 2. Tabular method or Quine Mc-Cluskey method 3. Variable entered map technique
2.	 State the limitations of karnaugh map. BTL1 1. Generally it is limited to six variable map (i.e) more than six variable involving expressions are not reduced. 2. The map method is restricted in its capability since they are useful for simplifying only boolean expression represented in standard form.
3.	What is a karnaugh map? BTL1 A karnaugh map or k map is a pictorial form of truth table, in which the map diagram is made up of squares, with each squares representing one minterm of the function.
4.	Define don't care conditions. BTL1 In some logic circuits certain input conditions never occur, therefore the Corresponding output never appears. In such cases the output level is not defined, it can be either high or low. These output levels are indicated by 'X' or'd' in the truth table and are called don't care conditions or incompletely specified functions.
5.	What is a prime implicant? BTU A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
6.	Define combinational logic. BTL1 When logic gates are connected together to produce a specified output for certain specified combinations of input variables, with no storage involved, the resulting circuit is called combinational logic.
7.	 Write the design procedure for combinational circuits. BTL1 1. Problem definition. 2. Determine the number of available input variables & required O/P variables. 3. Assigning letter symbols to I/O variables. 4. Obtain simplified Boolean expression for each O/P. 5. Obtain the logic diagram.
8.	Define Decoder and Encoder. BTL1 A decoder is a multiple - input multiple output logic circuit that converts coded inputs into coded outputs where the input and output codes are different. An encoder has 2n input lines and n output lines. In encoder the output lines generate the binary

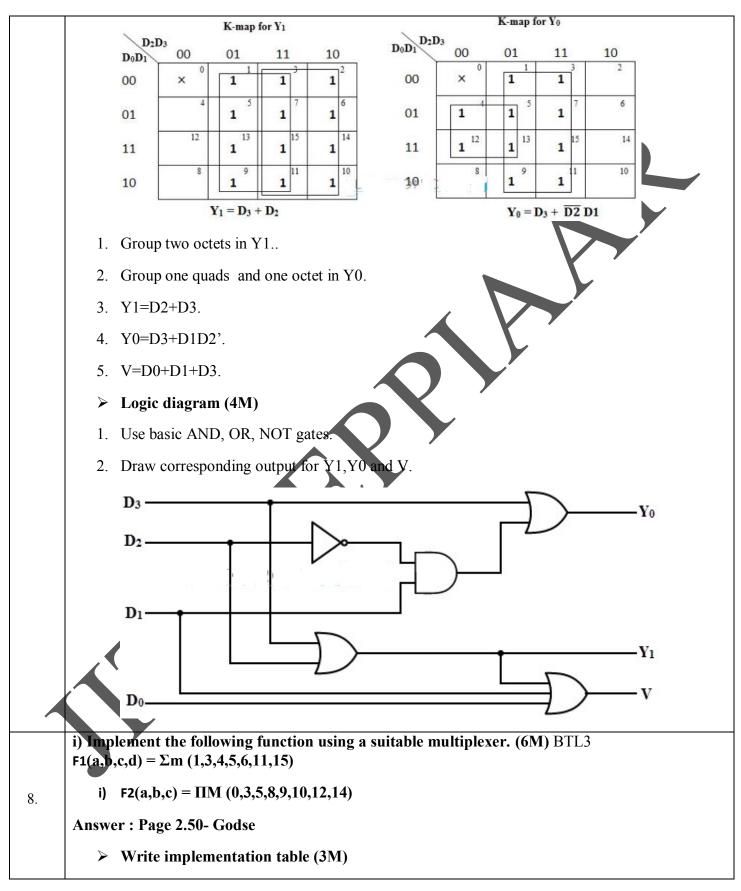

	code corresponding to the input value.
9.	What is binary decoder? BTL1 A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2n output lines.
10.	What is priority Encoder? BTL1 A priority encoder is an encoder circuit that includes the priority function. In priority encoder, if 2 or more inputs are equal to 1 at the same time, the input having the highest priority will take precedence.
11.	Define multiplexer. BTL1 Multiplexer is a digital switch. If allows digital information from several sources to be routed onto a single output line.
12.	What do you mean by comparator? BTL1 A comparator is a special combinational circuit designed primarily to compare the relative magnitude of two binary numbers.
13.	 Write down the steps in implementing a Boolean function with levels of NAND Gates. BTL3 1. Simplify the function and express it in sum of products. 2. Draw a NAND gate for each product term of the expression that has at least two Literals. 3. The inputs to each NAND gate are the literals of the term. This constitutes a group of first level gates. 4. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second level, with inputs coming from outputs of first level gates. 5. A term with a single literal requires an inverter in the first level. How ever if the single literal is complemented, it can be connected directly to an input of the second level NAND gate.
14.	 Give the general procedure for converting a Boolean expression in to multilevel NAND diagram. BTL2 1. By another circle along the same line, insert an inverter or complement the input Draw the AND-OR diagram of the Boolean expression. 2. Convert all AND gates to NAND gates with AND-invert graphic symbols. 3. Convert all OR gates to NAND gates with invert-OR graphic symbols. 4. Check all the bubbles in the same diagram. For every bubble that is not compensated.
15.	 What are the major categories of digital circuits? BTL1 The digital circuits basically of two types namely 1. Combinational circuits 2. Sequential circuits
16.	Define logic gates. BTL1 Logic gates are the basic elements that make up a digital system. The electronic gate is a circuit that is able to operate on a number of binary inputs in order to perform a particular logical function. The types of gates available are the NOT, AND, OR, NAND, NOR, exclusive-OR, and exclusive-NOR.
17.	Write the Boolean function of an XOR gate give its truth table. BTL3 Boolean Expression: Y = AB' + A'B Truth Table:
l	

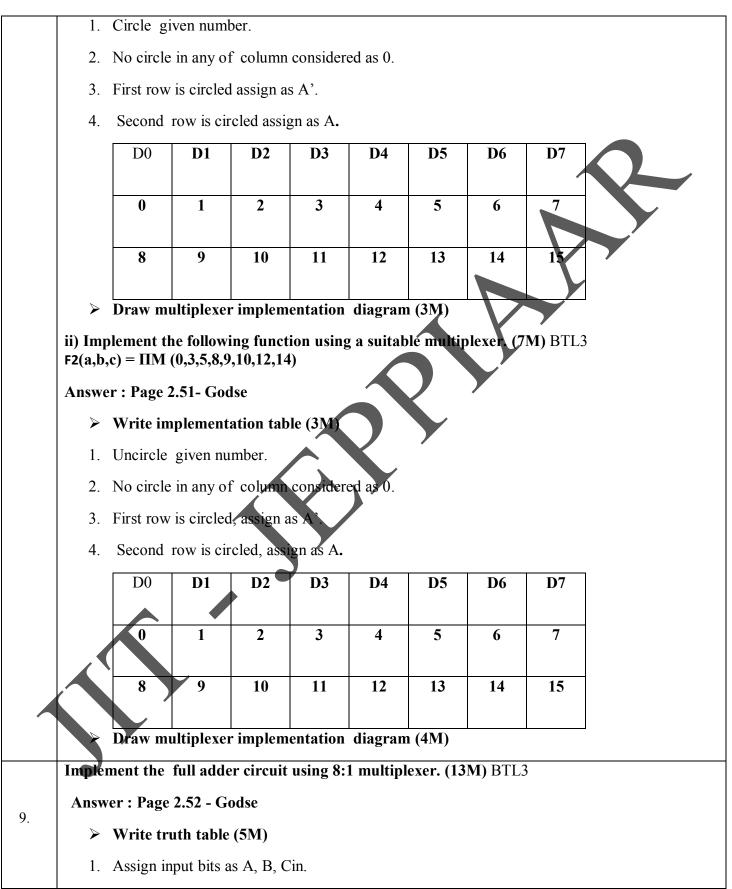

		0 0 0	
		0 1 1	
		1 0 1	
	D:66		
		ational and sequenti	al circuits. B1L3
	S. No Combinational	circuits	Sequential circuits
	1.In combinational output variablesdependent on the input variables.		In sequential circuits, the output variables depend not only on the present input variables but they also depend upon the past history of input variables.
18.	2. Memory unit is combinational of		Memory unit is required to store the past history of input variables in sequential Circuits.
	in speed becaus	nd output is due	Sequential circuits are slower than the combinational circuits.
		circuits are easy to	Sequential circuits are comparatively harder to design.
	5. Parallel adder is Circuit.	combinational	Serial adder is a sequential circuit.
19.	 Assigning letter sym Derivation of truth to Obtain simplified Bo 	mber of available input bols to input and outp able indicating the relation tolean expression for a	t variables and required output variables. ut variables. tionships between input and output variables.
	6. Obtain logic diagram		
20.		we have to add two on requires addition of	L1 bits along with the carry of the previous digit addition. of three bits. This is not possible with half-adder. Hence
21.	What is parallel Adde A single full-adder is binary numbers with	er? BTL1 capable of adding tw more than one b	to one-bit numbers and an input carry. In order to add it, additional full-adders must be employed. An-bit full adder circuits connected in parallel.
22.	What is the drawback The parallel adder is connected to the carry any stage cannot be p process. The delay is k	c in binary parallel a ripple carry adder in input of the next high roduced until the input nown as carry propaga	dder? How it can be rectified? BTL1 in which the carry output of each full- adder stage is her-order stage. Therefore, the sum and carry outputs of at carry occurs; this leads to time delay in the addition

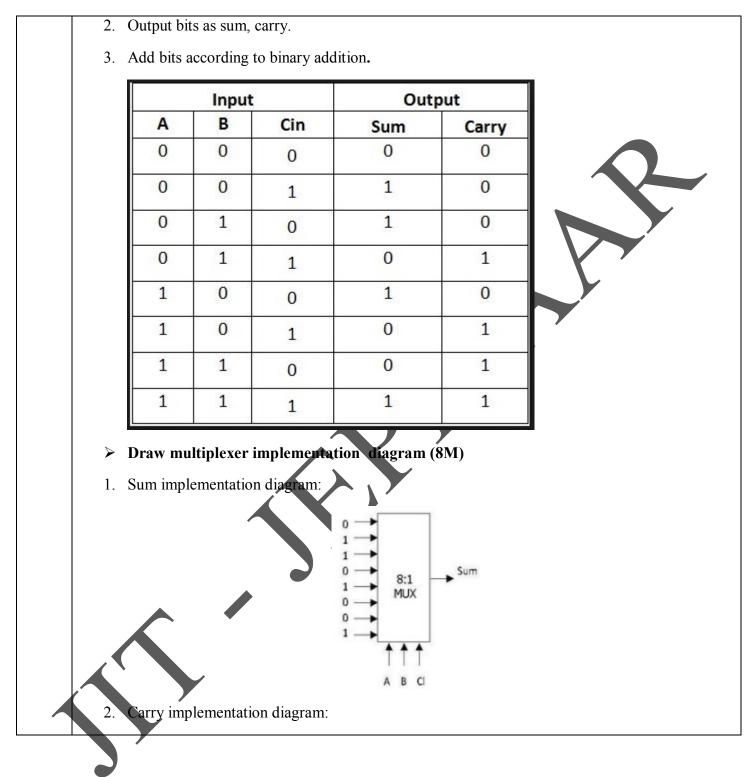

					gic gates to look at the lower order bits of the augend and
	Write short n				b be generated. BTL1
	1-Bit m	ultipli	er truth t	able:	
		A	В	Y	
23.		0	0	0	
		0	1	0	
		1	0	0	
		1	1	1	
24.		the ne	ext state	of some ur	STL1 nused state is again some unused state, it may happen that the o arrive at a used state. Such a condition is called Lock out
25.	How to avoid 1. The counter unused state to 2. It is not alway which are not from the Lock	r shou the ne ays ne forced out co	ld be pro ext state a cessary t , the circ ndition.	ovided wit as initial st o force all uit may ev	unused states into an initial state. Because from unused states entually arrive at a forced unused state. This frees the circuit
26.	present combin	nal circ	cuit cons of input	ists of log s. A comb	Ic gates whose outputs at any time are determined from the inational circuit performs an operation that can be specified it consists of input variables, logic gates, and output variables.
27.	Why is MUX A multiplexen and directs it t selection lines	called is con o a sir . Nori	as data nbination ngle outp nally the	selector? (al circuit to out line. The ere are 2n	A.U.MAY-2011) BTL1 hat selects binary information from one of many input lines e selection of a particular input line is controlled by a set of input lines and n selection lines whose bit combinations UX is called as data selector.
28.	In some logic appears. In suc	circuit h case by 'X'	s certain s the out	input cone put level is	ap help for circuit simplification? (A.U.DEC-2011) BTL1 ditions never occur, therefore the corresponding output never s not defined, it can be either high or low. These output levels tables and are called don't care conditions or incompletely
					PART * B
1.	Obtain the F=(0,2,4,8,9,1)				g Tabulation method and verify using K map.

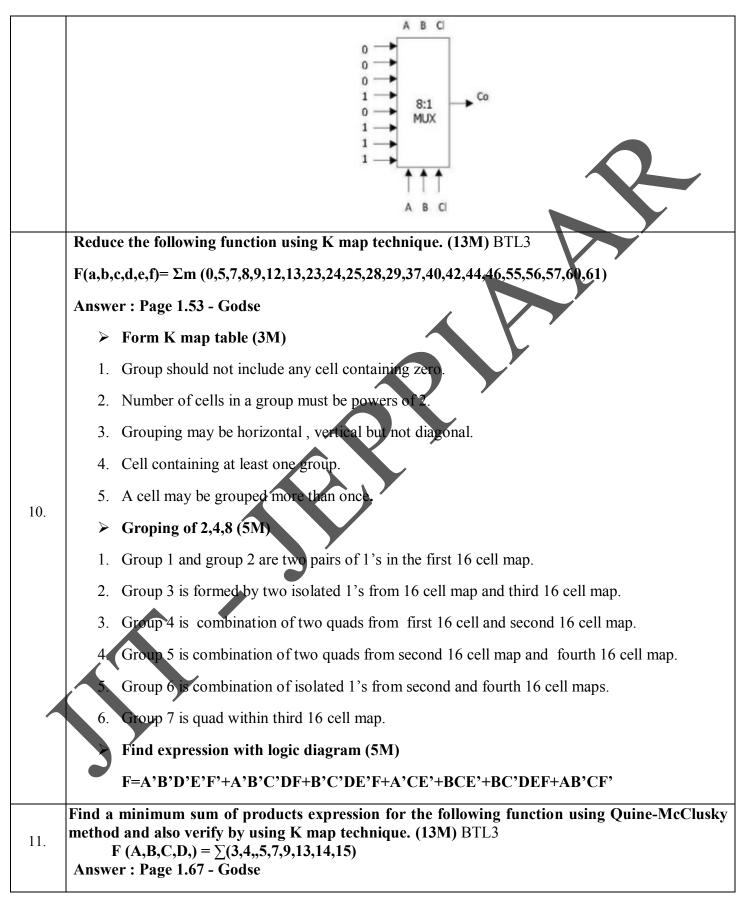


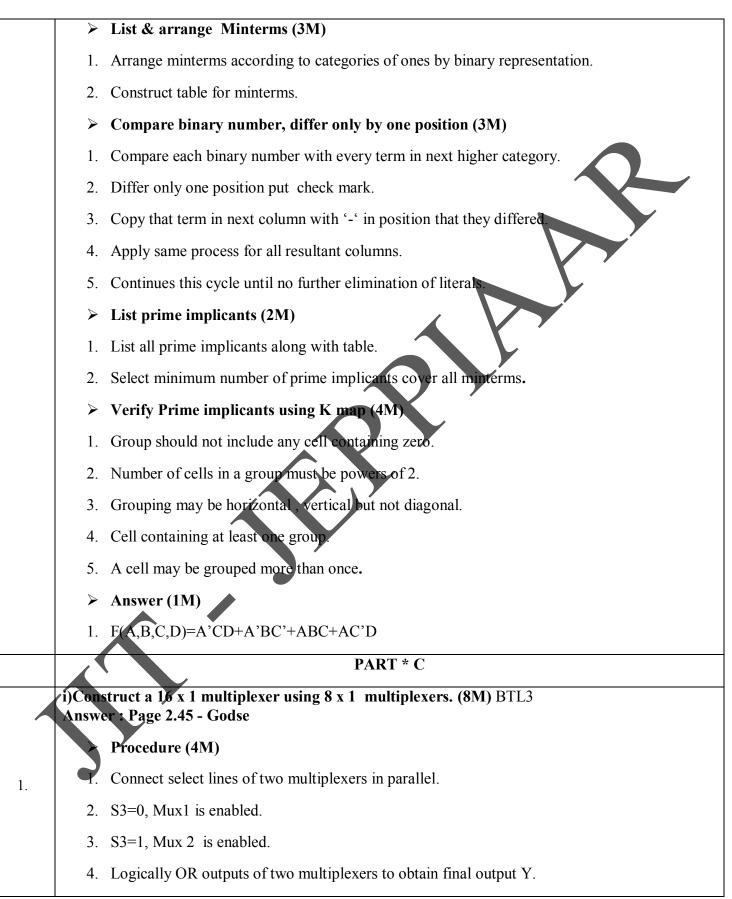


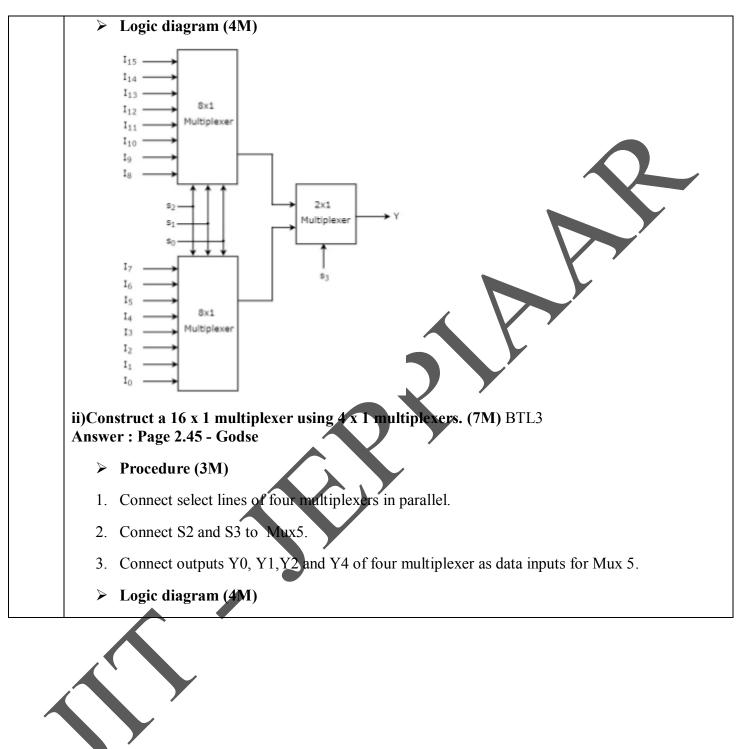


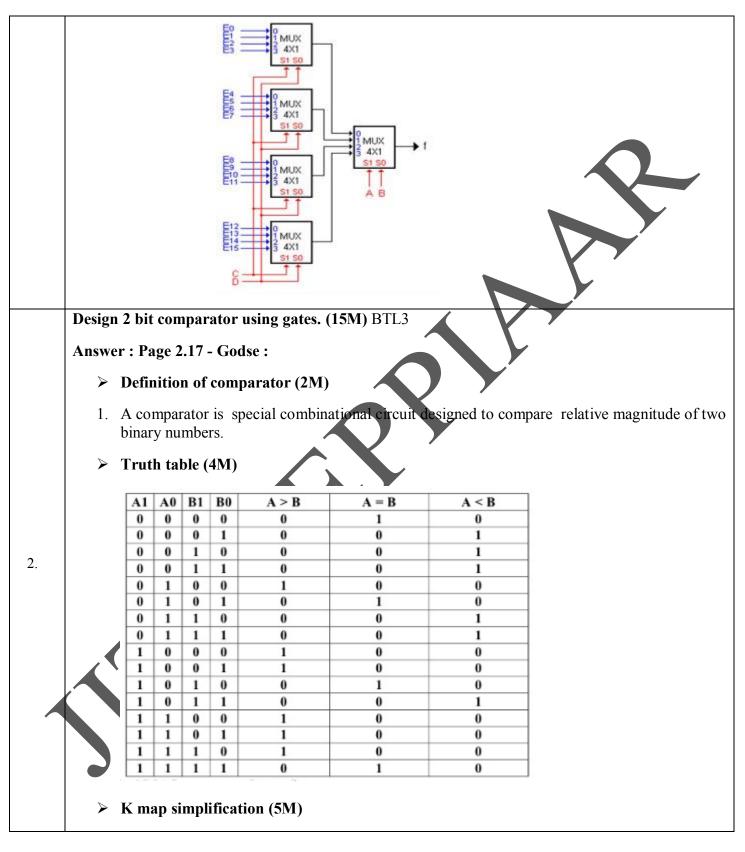


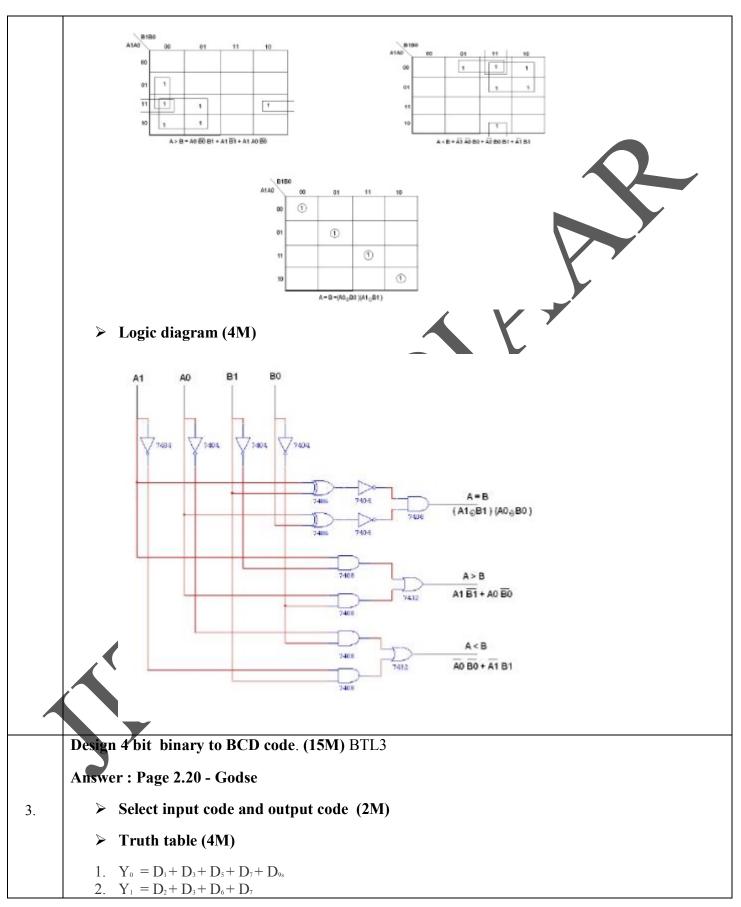


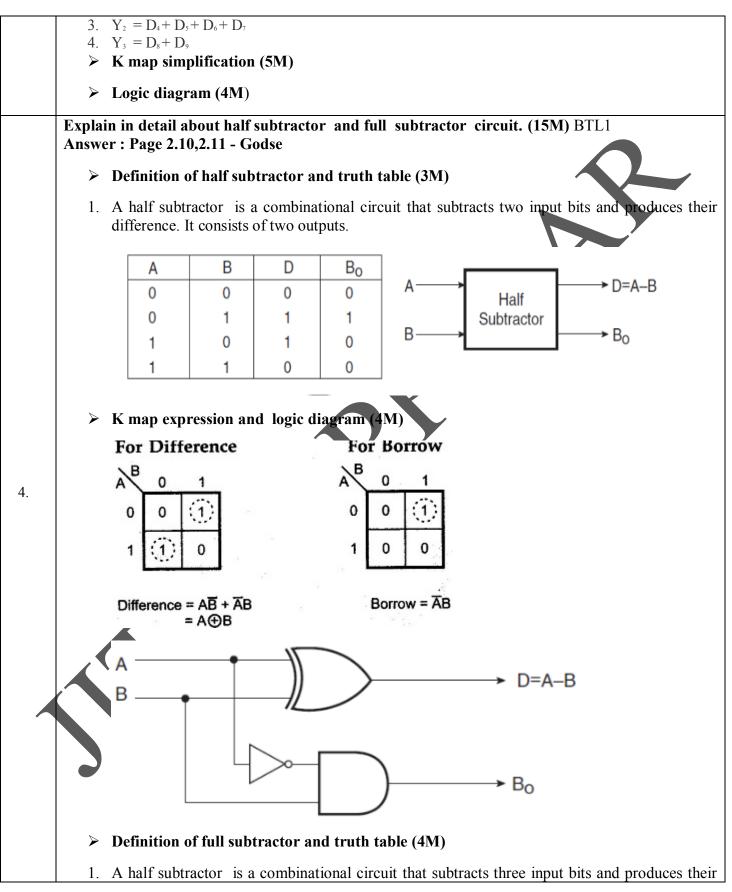

Binar	y Bits					Gray Bits		
B(:	1) ———					— G(1)		
в(;	2) ———			>		— <mark>G(2)</mark>		
B(3)			>-		— G(3)	R	
B(4)			>		— G(4)		
Design Prior	rity encoder	r. (13M)	BTL3		7		Y	
Answer : Pa	ge 2.28 - Go	odse			\checkmark			
	h table (4M)				Y		
▶ I rut	· · · · · · · · · · · · · · · · · · ·							
	n inputs as l	D0,D1,D2	2,D3.	\sim				
3. Assig				3				
3. Assig	n inputs as l	s Y1,Y2,V		<u>}</u>		Outputs		
 Assig Assig 	n inputs as l	s Y1,Y2,V	/.	D ₃	Y ₁	Outputs Y ₀	V	
3. Assig	gn inputs as l gn outputs as	s Y1,Y2,V Ing	v. Jouts	D ₃	Y ₁ ×			
 Assig Assig 	gn inputs as l gn outputs as D 0	s Y1,Y2,V Inp D ₁	Duts	2 Dates		Y ₀	V	
 Assig Assig 	gn inputs as l gn outputs as D ₀ 0	s Y1,Y2,V Ing D ₁ O	Duts D2 0	0	×	Y ₀ ×	V 0	
 Assig Assig 	gn inputs as l gn outputs as D ₀ 0 1	s Y1,Y2,V Ing D1 0 0	Duts D2 0 0 0	0	× 0	Y ₀ × 0	V 0 1	
 Assig Assig 	gn inputs as l gn outputs as D ₀ 0 1 ×	S Y1,Y2,V Ing D ₁ 0 0 1	Duts D2 0 0 0 0	0 0 0	× 0 0	Y ₀ × 0 1	V 0 1 1	
3. Assig 4. Assig	gn inputs as l gn outputs as D ₀ 0 1 × ×	S Y1,Y2,V Ing D1 0 1 × ×	Duts D2 0 0 0 1 ×	0 0 0 0	× 0 0 1	Y ₀ × 0 1 0	V 0 1 1 1	

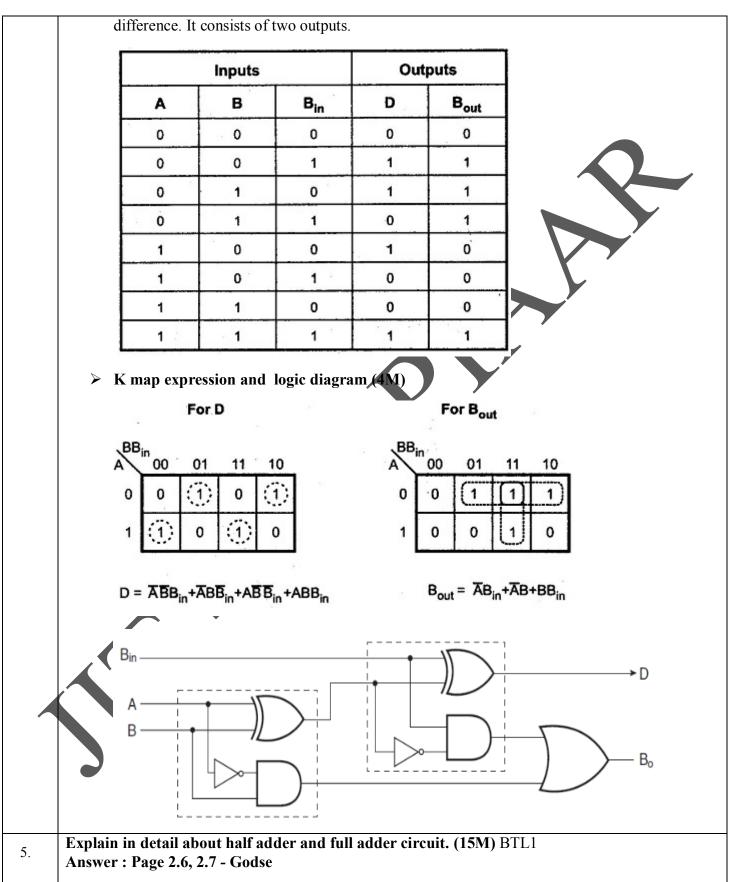

ACADEMIC YEAR: 2018-2019

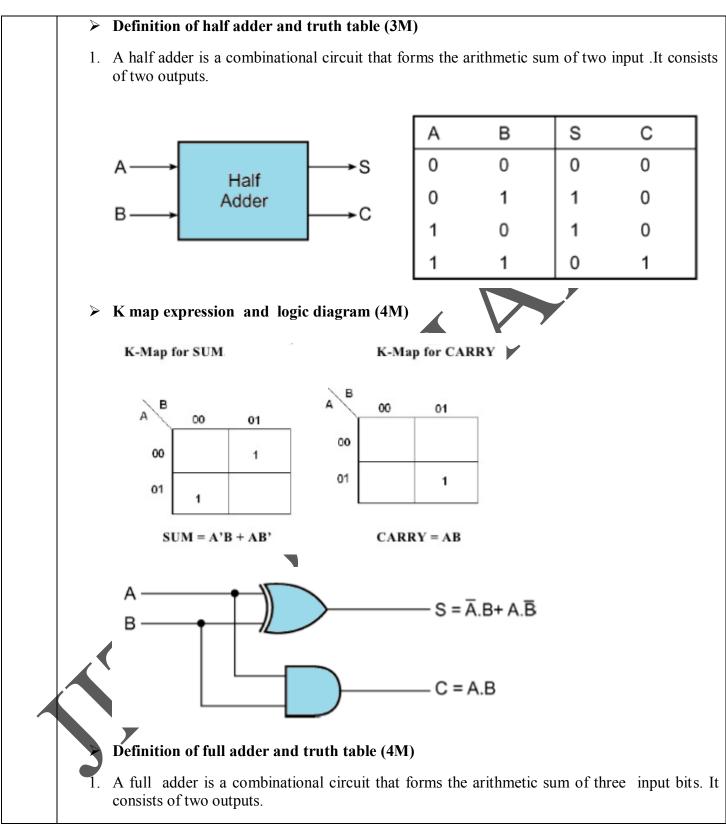


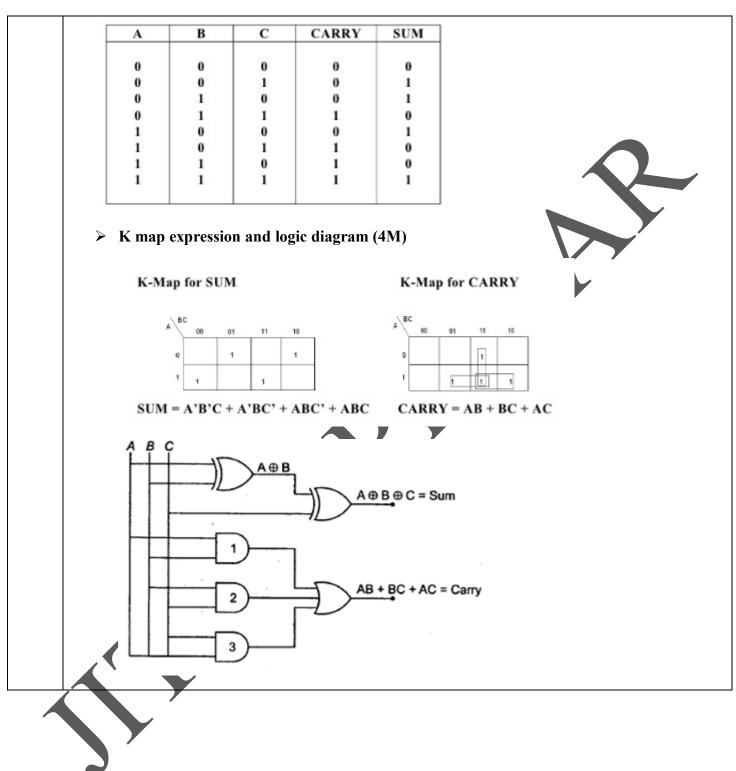


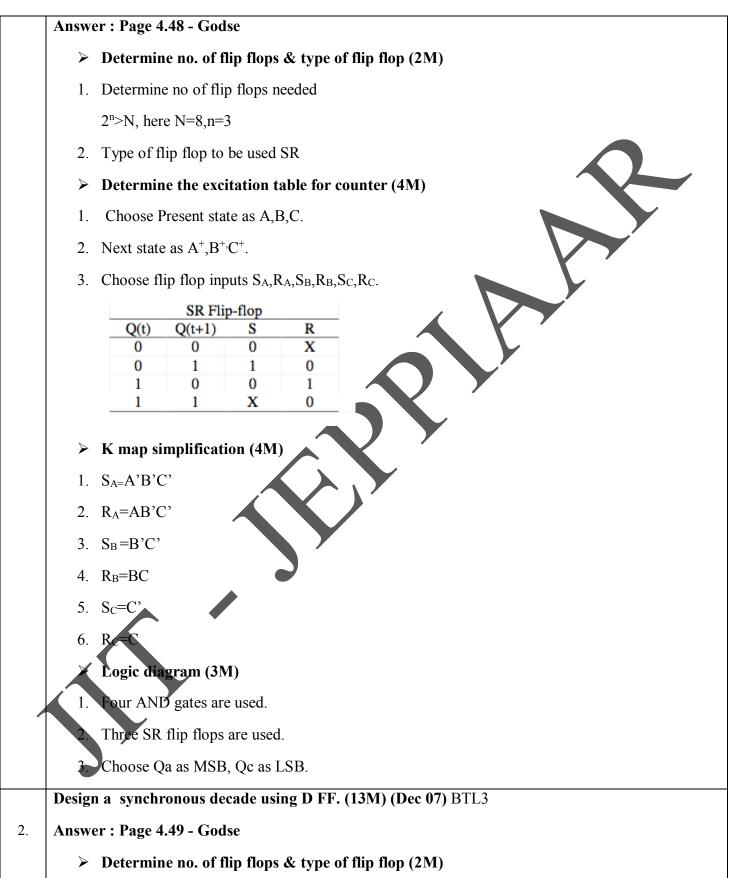


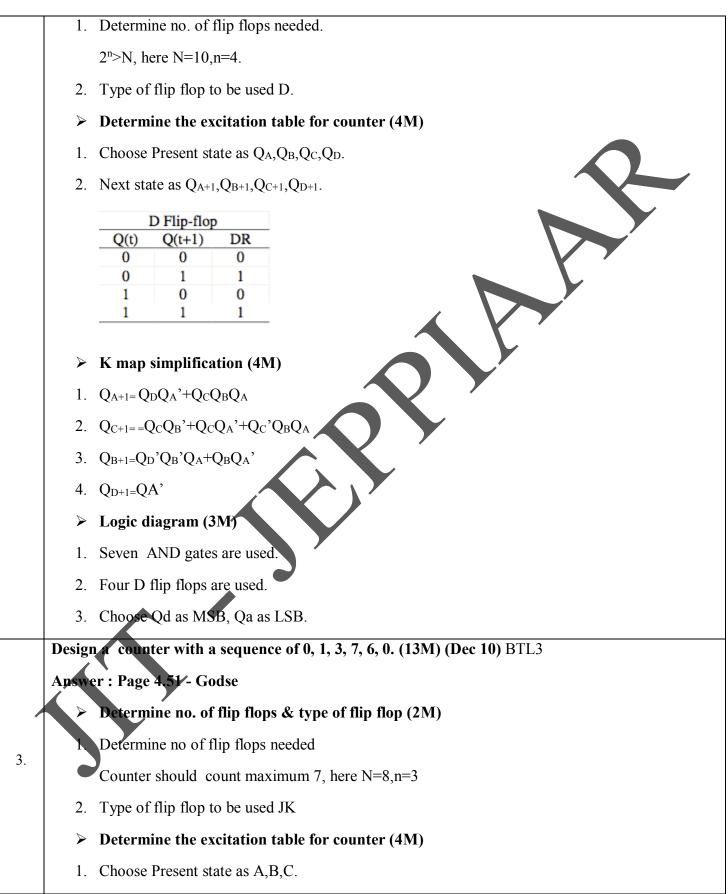


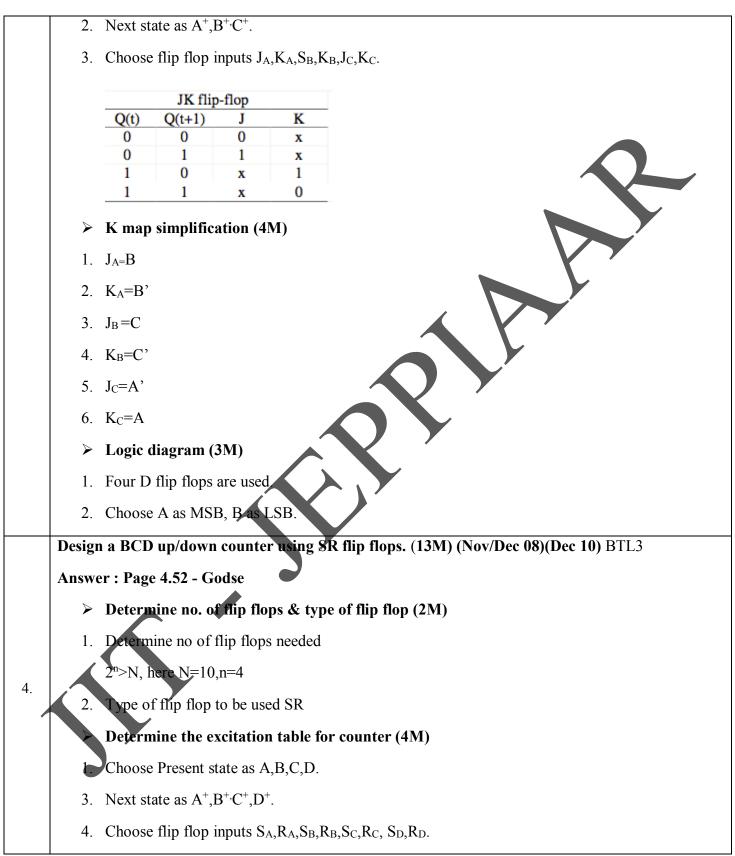




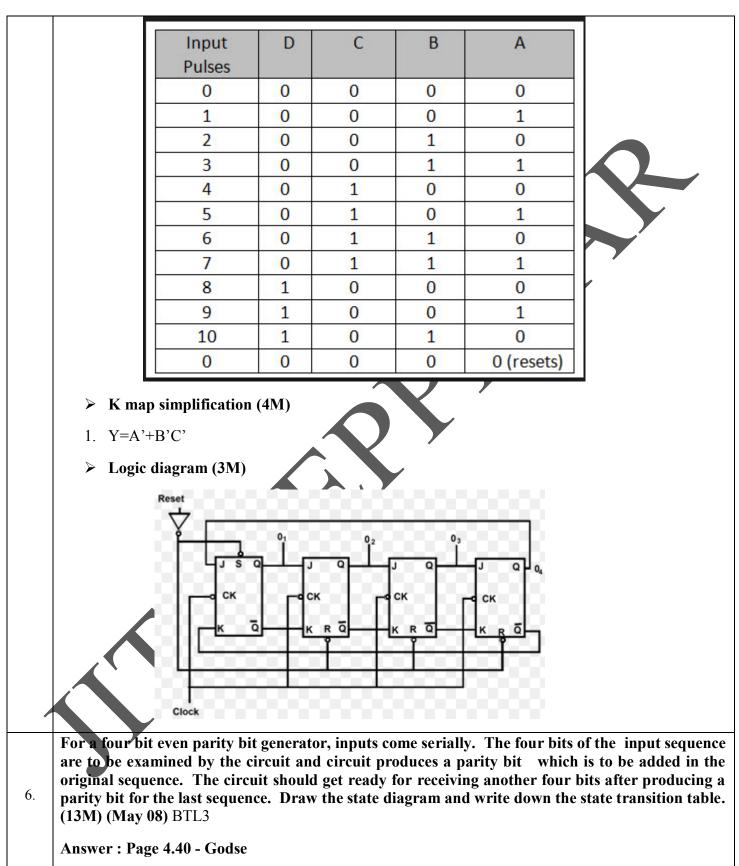


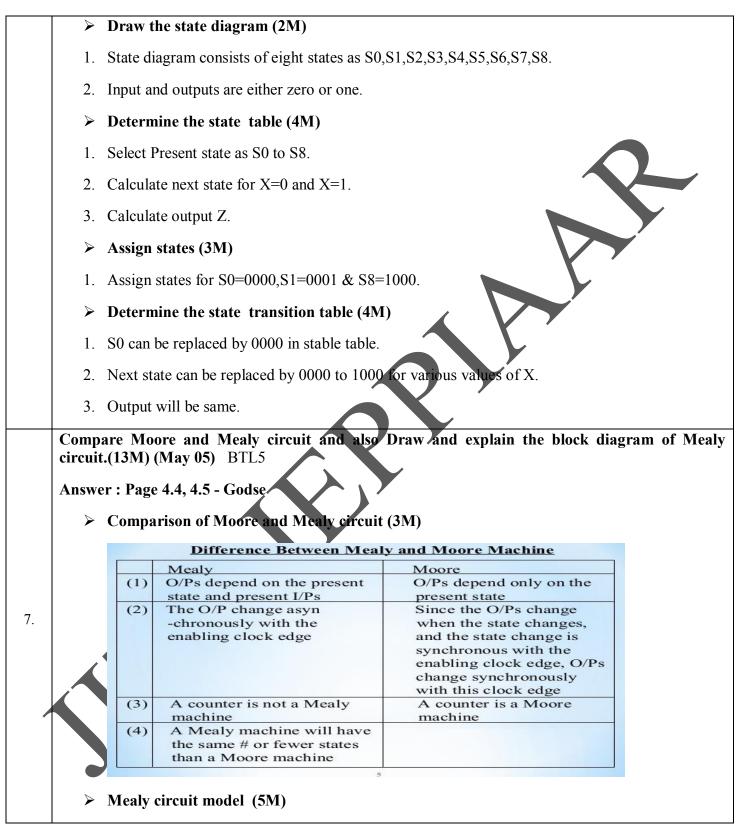

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

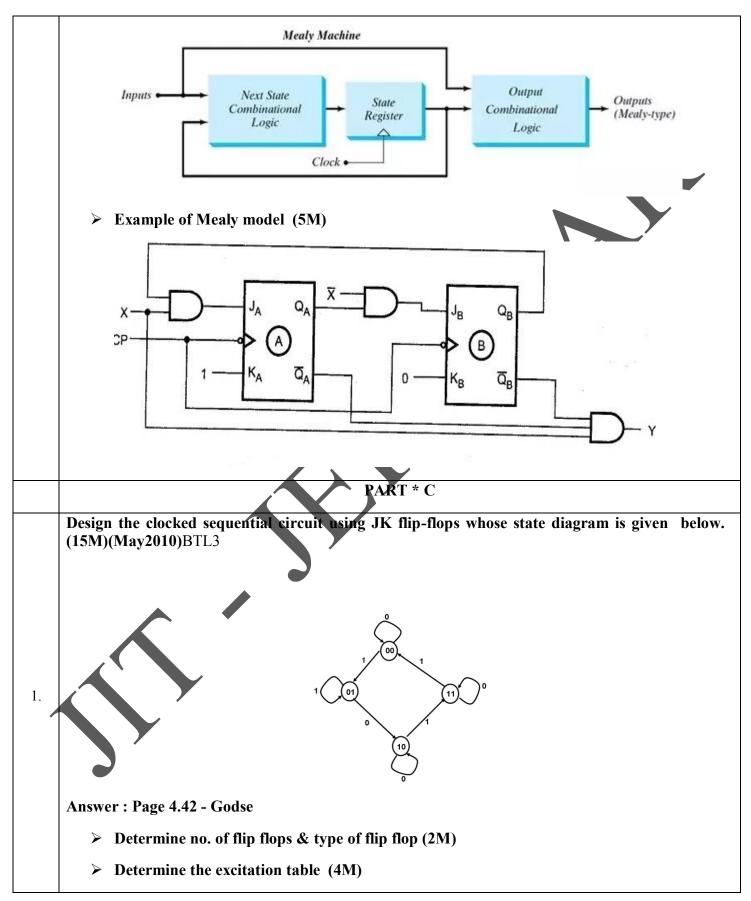

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters - asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous sequential circuits – Moore and Melay models- Counters, state diagram; state reduction; state assignment

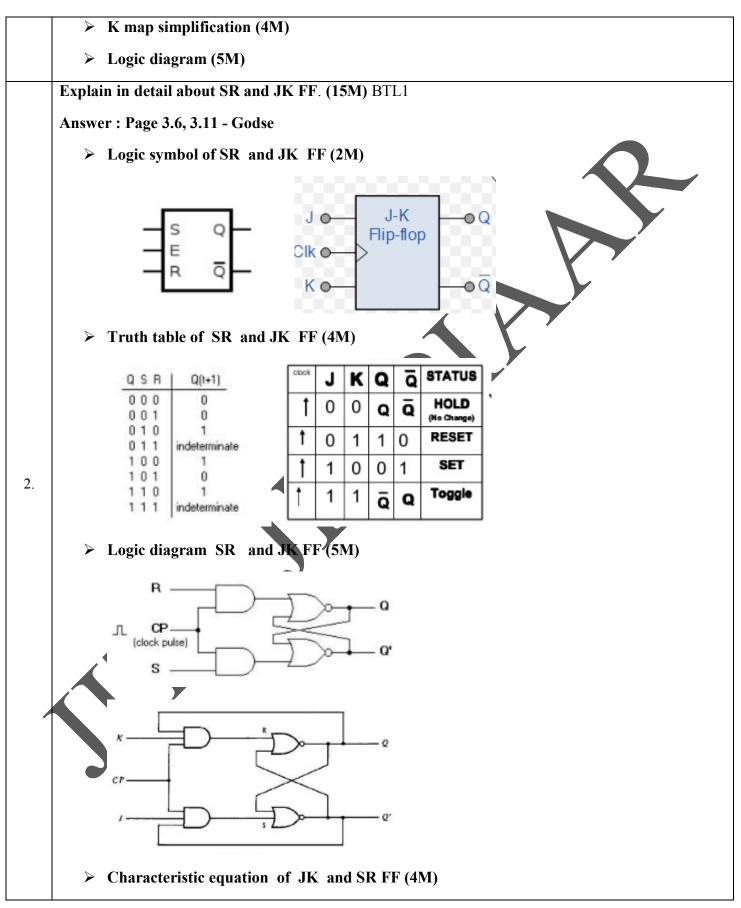

	PART * A
Q.No.	Questions
1.	Define synchronous sequential circuit. (A.U.DEC-2010) BTL1 In synchronous sequential circuits signals can affect the memory elements only at discrete instant of time
2.	Define cycle and merging. BTL1 When <i>a</i> circuit goes through a <i>un</i> ique sequence of unstable states, <i>i</i> is said to have a cycle. The grouping of stable states from separate rows into one common row is called merging.
3.	Give state – reduction procedure. BTL1 The state – reduction procedure for completely specified state tables is based on the algorithm that two states in a state table can be combined in to one if they can be shown to be equivalent.
4.	Does Hazard occur in sequential circuit? If so what is the problem caused? BTL1 Yes, Hazards occur in sequential circuit that is Asynchronous sequential circuit. It may result in a transition to a wrong state.
5.	 Give the procedural steps for determining the compatibles used for the purpose of merging a flow table. BTL1 The purpose that must be applied in order to find a suitable group of compatibles for the purpose of merging a flow table can be divided into 3 procedural steps. > Determine all compatible pairs by using the implication table. > Find the maximal compatibles using a Merger diagram > Find a minimal collection of compatibles that covers all the states and is closed.
6.	Define cycles. BTL1 If an input change includes a feedback transition through more than unstable state then such a situation is called a cycle.
7.	Define primitive flow table. BTL1 A primitive flow table is a flow table with only one stable total state in each row. Remember that a total state consists of the internal state combined with the input.
8.	Write a short note on pulse mode circuit. BTL1 Pulse mode circuit assumes that the input variables are pulses instead of level. The width of the pulses is long enough for the circuit to respond to the input and the pulse width must not be so long that it is still present after the new state is reached.
9.	Define secondary variables. BTL1 The delay elements provide a short term memory for the sequential circuit. The present state and next state variables in asynchronous sequential circuits are called secondary variables.

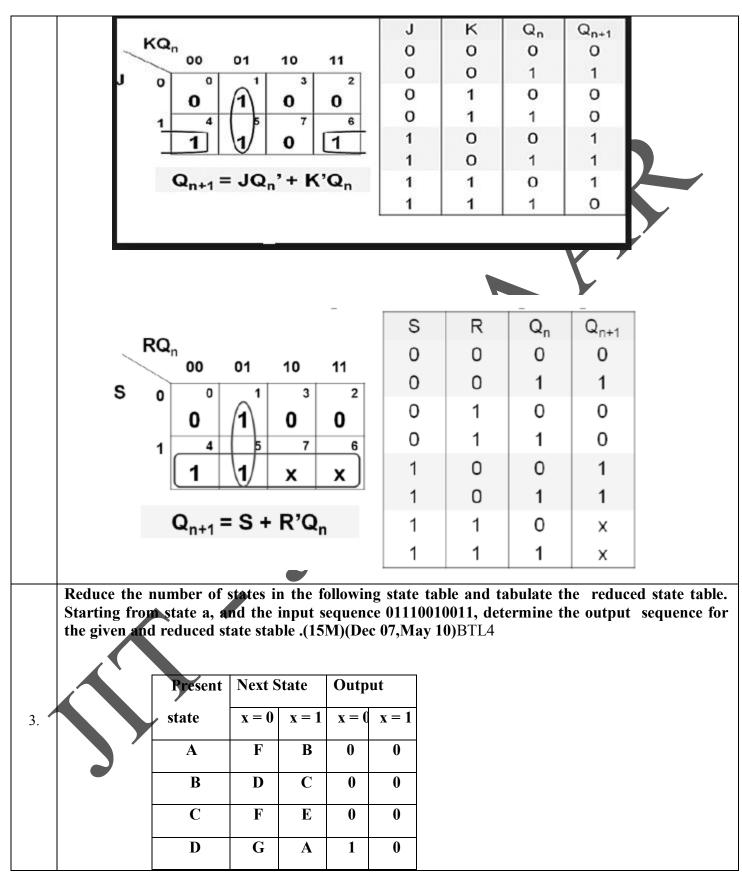
	Write a short note on shared row state assignme	nt. BTL1						
10.	Races can be avoided by making a proper binary assignment to the state variables. Here, the state variables are assigned with binary numbers in such a way that only one state variable can change at any one state variable can change at any one time when a state transition occurs. To accomplish this, it is necessary that states between which transitions occur be given adjacent assignments. Two binary are said to be adjacent if they differ in only one variable.							
	Write short note on one hot state assignment. B	TL1						
11.	only one variable is active or hot for each row in th	finding a race free state assignment. In this method, e original flow table, ie, it requires one state variable are introduced to provide single variable changes						
	How does the state transition diagram of (A.U.DEC-2011) BTL2	a Moore model differ from Mealy model?						
		Mealy módel						
12.		Its output is a function of present state as well as present input						
	Input changes does not affect the Output. Input changes may affect the output of the circuit							
		It requires less number of states for implementing same function						
	How does the operation of a synchronous inpu MAY-2012) BTL2	t differ from that of a asynchronous input? (AU						
	Synchronous sequential circuits	circuits						
13.	Memory elements are clocked							
	flip flops	unlocked flip-flops or time delay elements.						
	Easier to design	More difficult to design						
	determined by clocking signal.	BTL1 nples its inputs and changes its outputs only at times						
14.	 S.R. latch D latch 							
	Clocked J.K. flip-flop							
	➤ T flip-flop							
	What is race around condition in Flipflop? (A.U	.DEC-2011) BTL1						
15.		and therefore change in the output results change in ck pulse if J and K are both high then output toggles						

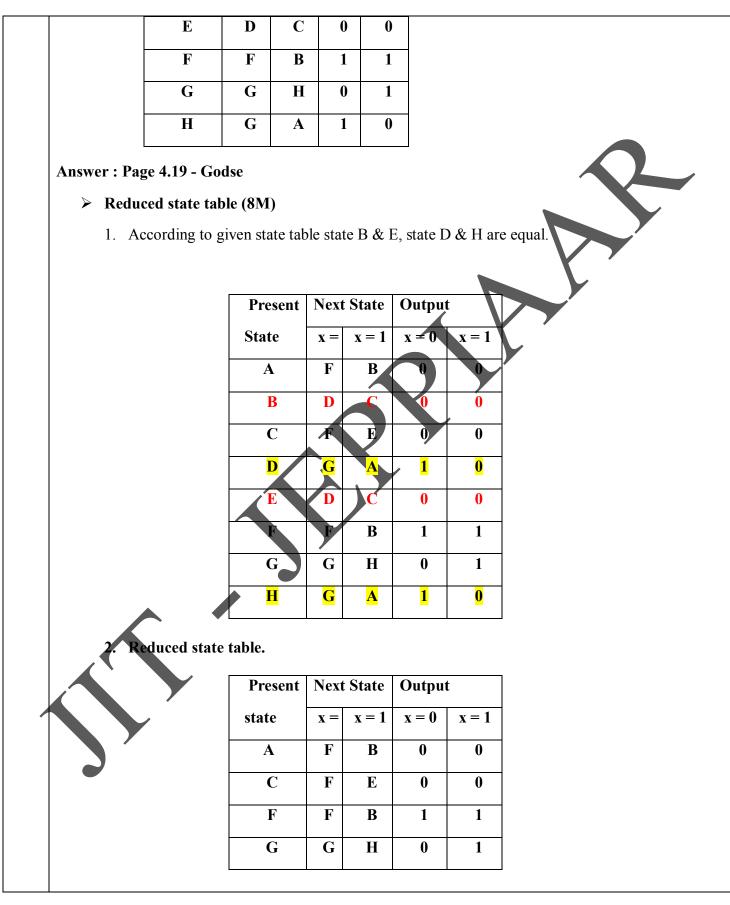

	continuously. This condition is known as race around condition.
16.	Define shift Registers. BTL1 The binary information in a register can be moved from stage to stage within the register or into or out of the register upon application of clock pulses. This type of bit movement or shifting is essential for certain arithmetic and logic operations used in microprocessors. This gives rise to a group of registers called shift registers
17.	What is moore circuit? BTL1 When the output of the sequential circuit depends only on the present state of the flip-flop, the sequential circuit is referred to as moore circuit.
18.	What is Mealy circuit? BTL1 When the output of the sequential circuit depends on both the present state of flip-flop and on the input, the sequential circuit is referred to as mealy circuit
19.	Name the different types of counter. BTL1 Synchronous counter Asynchronous counter 1.Up counter 2.Down counter 3.Modulo – N counter 4.Up/Down counter
20.	Qn Qn+1 S R 0 0 0 X 0 1 1 0 1 0 0 1 1 X 0 0
21.	Write the excitation table for JK flip flop. (A.U.MAY-2011) BTL1 $Q(t) < Q(t+1)$ J K 0 0 0 X 0 1 1 X 1 0 1 1 1 1 X 0
22.	What is an excitation table? BTL1 During the design process we usually know the transition from present state to next state and wish to find the flip-flop input conditions that will cause the required transition. A table which lists the required inputs for a given chance of state is called an excitation table
1.	PART * BUsing positive edge triggering SR flip flops design a counter which counts in the following sequence:000, 111, 110, 101, 100, 011, 010, 001, 000 (13M)(May 04) BTL3

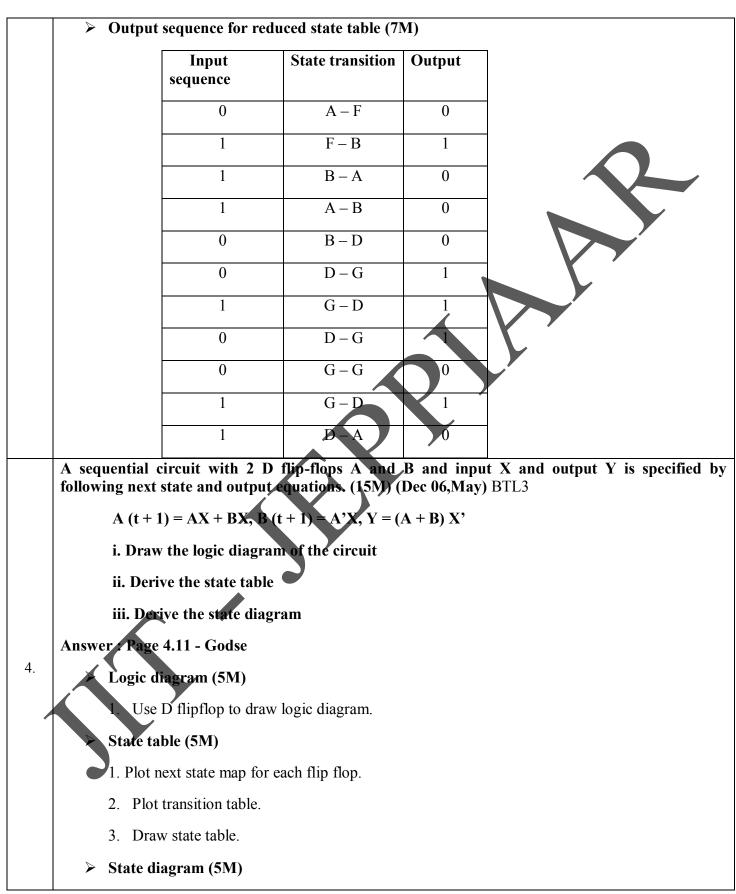


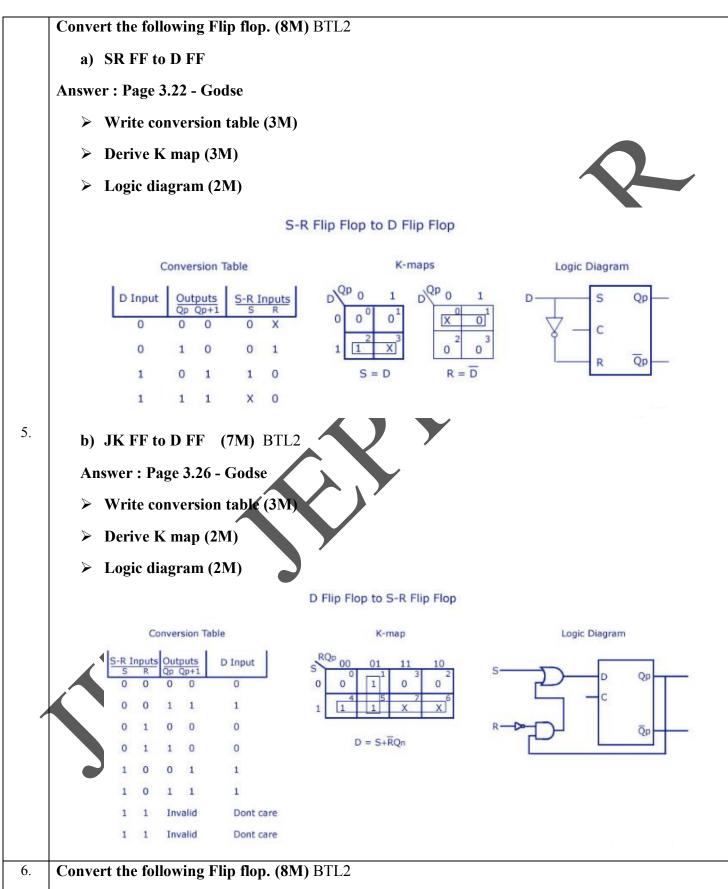


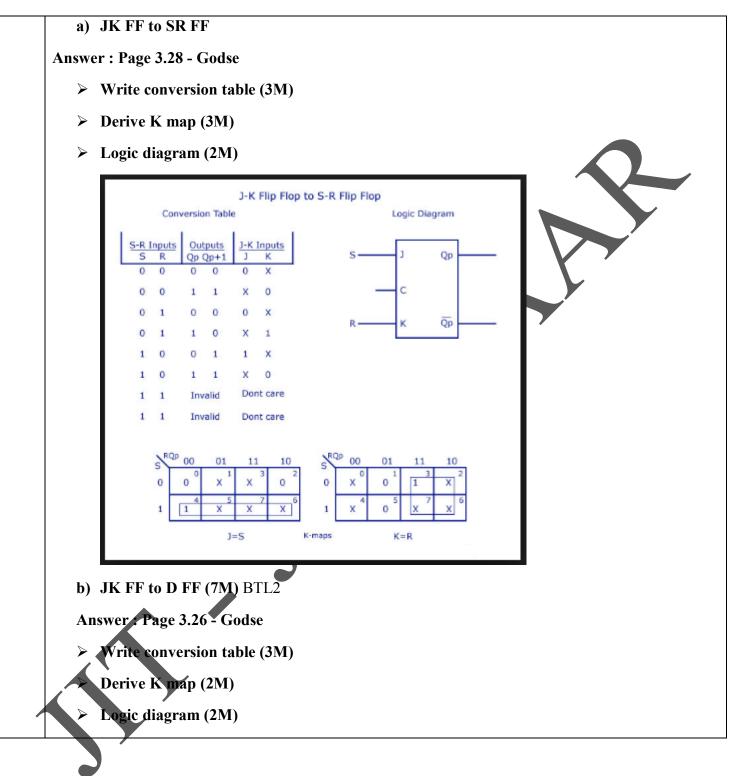


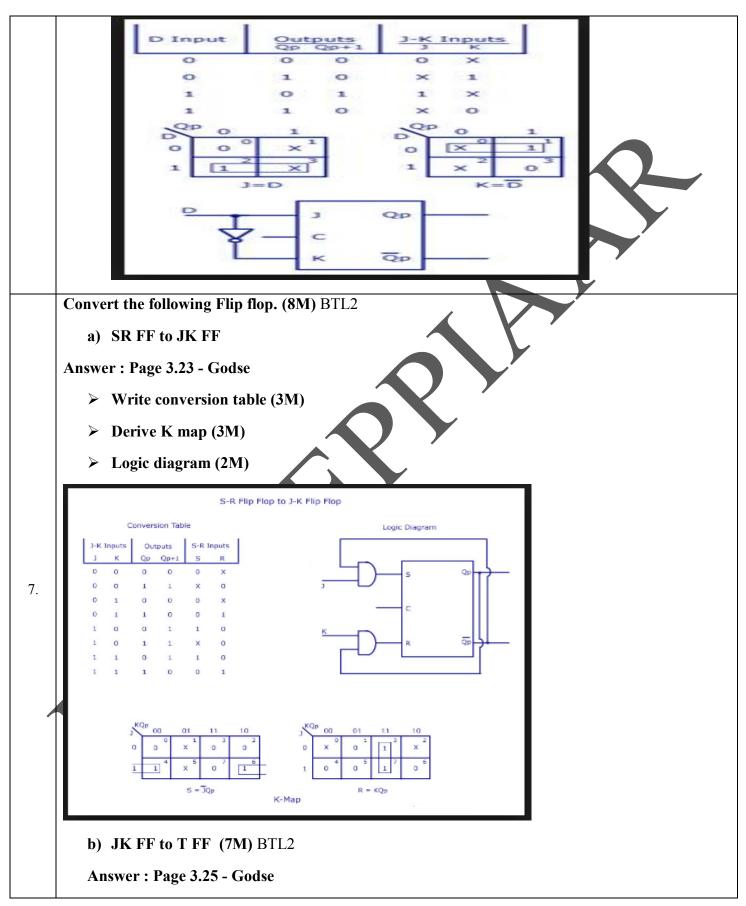

			SR Flip	-flop				
		Q(t)	Q(t+1)	S	R			
		0	0	0	X 0			
		1	0	1	1			
		1	1	x	0			
		K map si	mplificati	on (4M)				
	1.	S _{A=} M'A'	B'C'D'+M	BCD				
	2.	R _A =M'A	D'+MAD					
	3.	$S_B = M'A$	D'+MB'C)				
	4.	R _B =M'BO	C'D'+MBO	CD				P
	5.	S _C =M'BC	C'D'+MA'	C'D				
	6.	R _C =M'CI	D'+MCD					
	7.	S _D =D')	
	8.	R _D =D						
		Logic dia	ngram (3M	()		K		
	1.	12 AND	gates & 6 (OR gates	are used			
	2.	Three SR	flip flops	are used				
	3.	Choose Q	A as MSB,	Q _D as I	LSB.			
D	Design	a BCD 1	ripple cour	nter JK	flip flops	(13M) (M	ay 2010,	2011)
	nswei	r:Page 4	1.59 - Gods	se				
		Determir	ne no. of fl	ip flops	& type o	flip flop (2	2M)	
	1	Determin	e no of flip	flops n	eeded			
		Counter s	should cou	nt maxii	num as 0	9, here N=1	10,n=4	
l	2.	Type of f	lip flop to	be used.	JK			
		Determir	ne the trut	h table	for coun	er (4M)		
	1.	Reset inp	ut of each	flip flop	is active	ow input.		
	2.	By makin	ig clear inp	ut of all	flip flops	logic 0, res	et the co	unter.
	3.	Reset log		1.0	1.1	** 0		

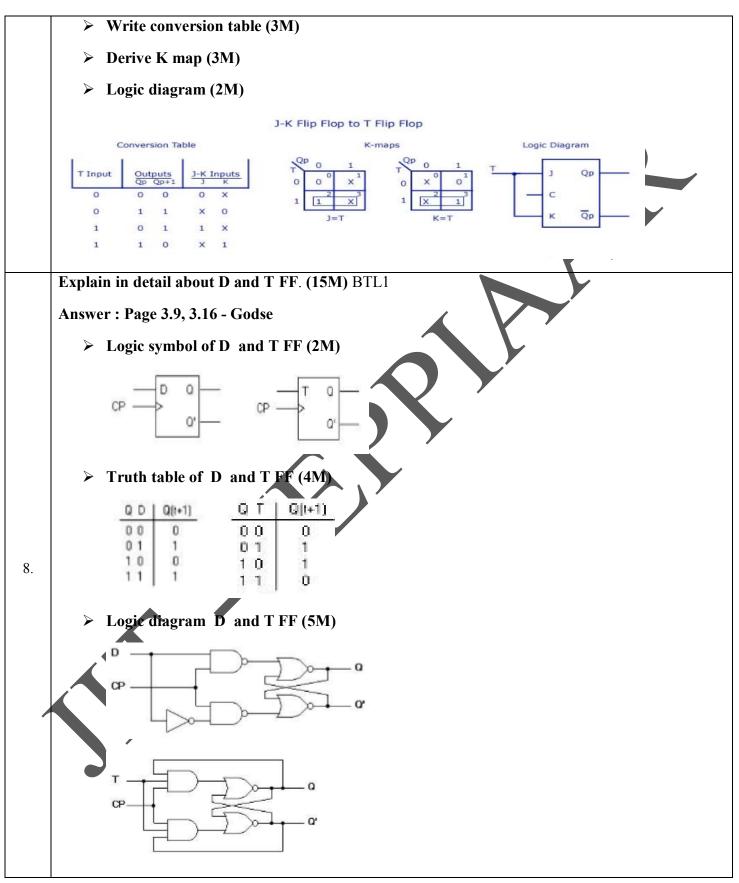


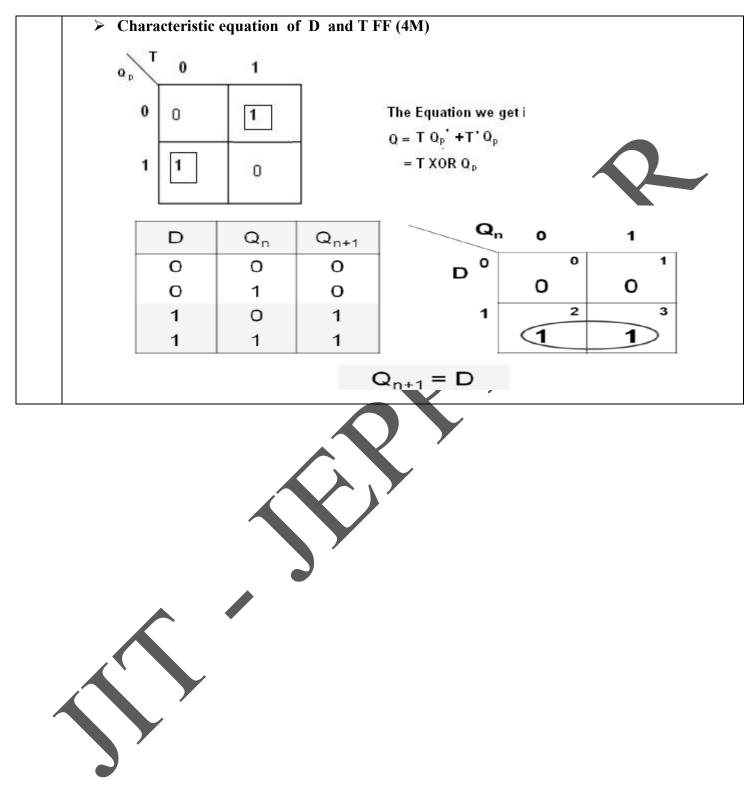




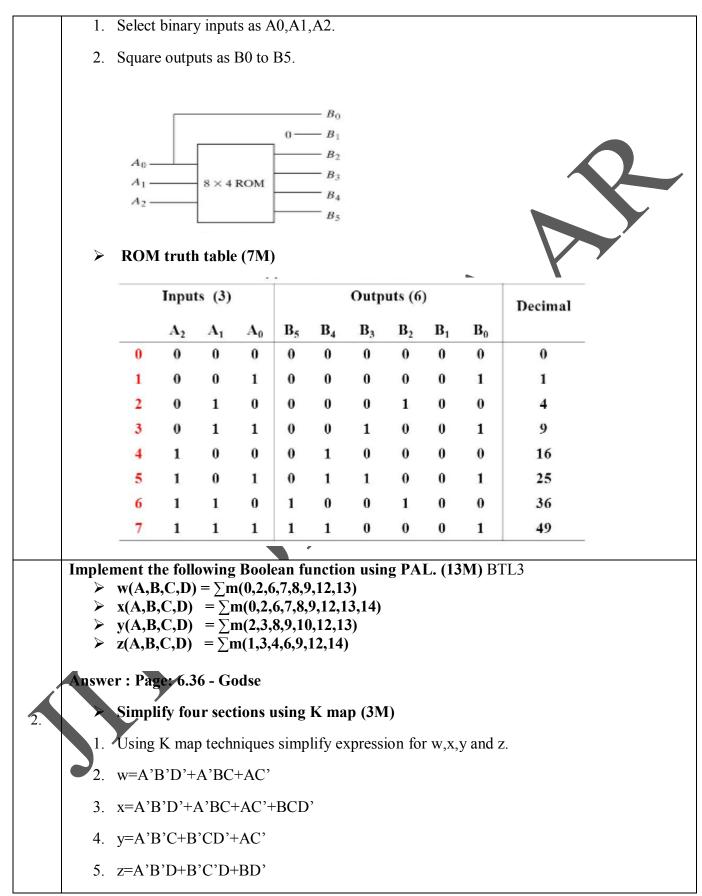


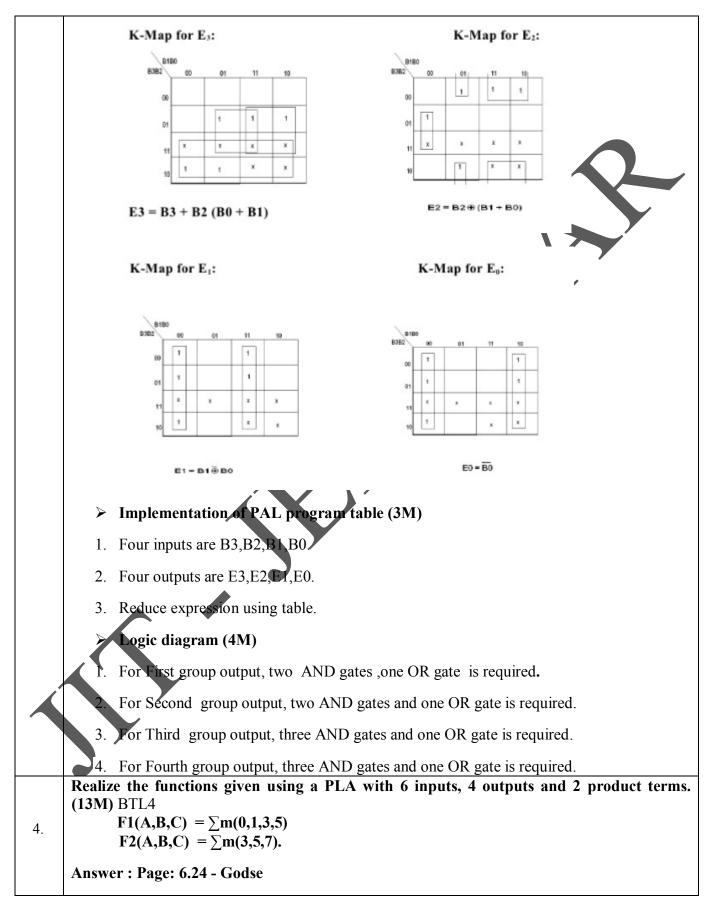






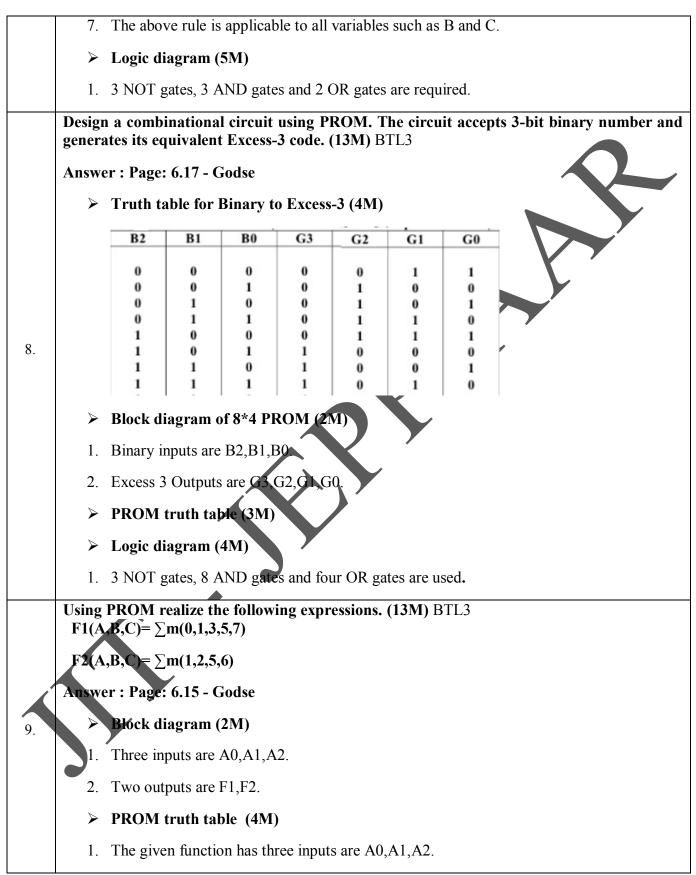
ACADEMIC YEAR: 2018-2019

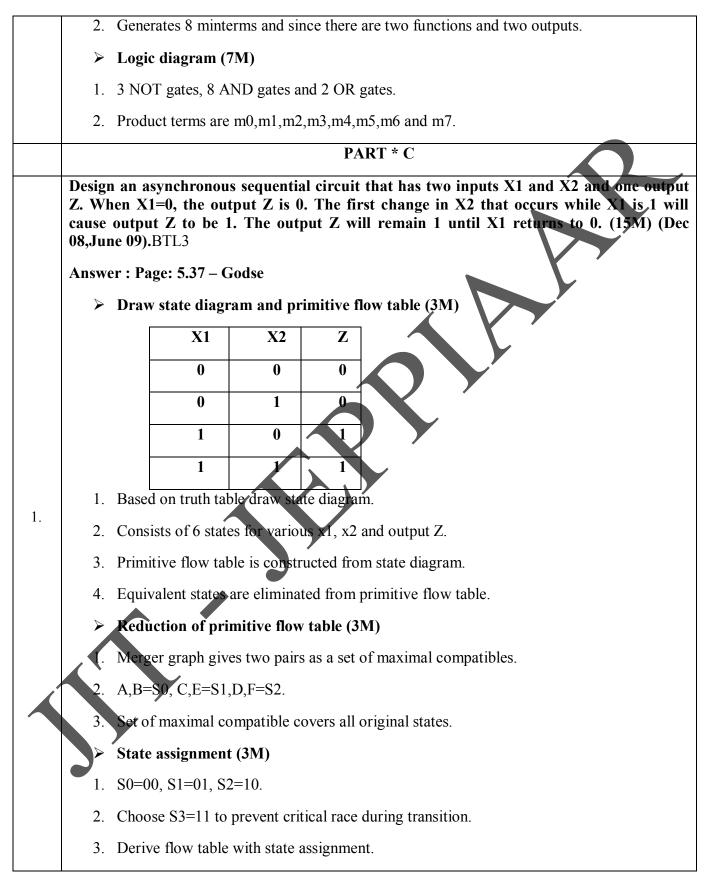



UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND **PROGRAMMABILITY LOGIC DEVICES** Asynchronous sequential logic circuits-Transition tability, flow tability -race conditions, hazards & errors in digital circuits; analysis of asynchronous sequential logic circuits-introduction to Programmability Logic Devices: PROM – PLA – PAL, CPLD-FPGA. PART * A Q.No. **Ouestions** List basic types of programmable logic devices. BTL1 Programmable Read only memory (PROM) Programmable logic Arrays (PLA) 1 Programmable Array Logic (PAL) ➢ Field Programmable Gate Array (FPGA) Complex Programmable Logic Devices (CPLD) What is the address and word of ROM? BTL1 A read only memory is a device that includes both the decoder and the OR gates within a single 2. IC package. In ROM, each bit combination of the input variable is called on address. Each bit combination that comes out of the output lines is called a word. Name the types of ROM. (AU MAY-2011) BTM ➢ Masked ROM. 3. Programmable Read only Memory Erasable Programmable Read only memory. > Electrically Erasable Programmable Read only Memory. What is programmable logic array(PLA)? How it differs from ROM? (AU MAY-2012) BTL1 In some cases the number of don't care conditions is excessive, it is more economical to use a 4. second type of LSI component called a PLA A PLA is similar to a ROM in concept; however it does not provide full decoding of the variables and does not generates all the minterms as in the ROM. What is mask - programmable? BTL1 5. With a mask programmable PLA, the user must submit a PLA program table to the manufacturer. Give the comparison between PROM and PLA. (AU MAY 2012) BTL4 6 **PROM** : AND array is fixed and OR array is programmable. Cheaper and simple to use. PLA: Both AND and OR arrays are Programmable .Costliest and complex than PROMS. What is field programmable logic array? BTL1 The second type of PLA is called a field programmable logic array. The EPLA can be 7. programmed by the user by means of certain recommended procedures. Differentiate ROM & PLD's. BTL3 ROM (Read Only Memory) PLD's (Programmable Logic Array) 8. 1. It is a device that includes both the 1. It is a device that includes both AND decoder and the OR gates with in a single and OR gates with in a single IC

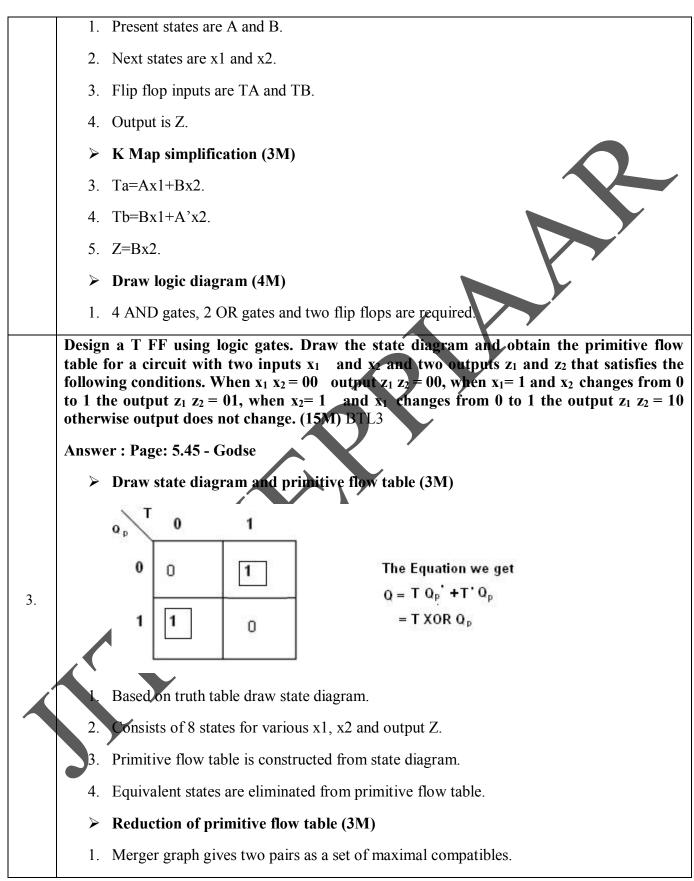
	IC package	package								
	2.ROM does not full decoding of the	2.PLD's does not provide full decoding								
	variables and does generate all the	of the variable and does not generate								
	minterms	all the minterms								
	Write different types of RAM. BTL1									
	The different types of RAM are									
	 NMOS RAM (Nitride Metal Oxide Semiconductor RAM) CMOS RAM (Complementary Metal Oxide 									
9.	 CMOS RAM (Complementary Metal Oxide Semiconductor RAM) 									
	 Schottky TTL RAM 									
	First Schottky I I L RAM									
	What are the types of arrays in RAM? B	TL1								
10.	RAM has two type of array namely,									
	 Linear array 									
	 Coincident array 									
	State DRAM. BTL1									
		res the binary information in the form of electric								
11.	charges on capacitors. The capacito	rs are provided inside the chip by MOS transistors.								
	The stored charges on the capacitors tend to discharge with time and the capacitors must be tending to discharge with time and the capacitors must be periodically recharged by									
	refreshing the dynamic memory.	and the capacitors must be periodically recharged by								
		sumption and larger storage capacity in a single								
	memory chip.	aniption and high storage capacity in a single								
	What is SRAM? BTL1									
10	> Static RAM (SRAM) consists of internal latches that store the binary information. The									
12.	stored information remains valid as long as the power is applied to the unit.									
	SRAM is easier to use and has shorter read and write cycle.									
	> The memory capacity of a static RA									
	Differentiate volatile and non-volatile me	emory. B1L3								
	Volatile memory	Non-volatile memory								
13.										
	They are memory units which lose	It retains stored information when								
	stored information when power is turned	power is turned off.								
Ĺ	off.	E.g. Magnetic disc and ROM								
	E.g. SRAM and DRAM									
	What are the advantages of RAM ? BTL									
	The advantages of RAM are Non-destructive read out									
14.										
	 Fast operating speed Low power dissipation 									
	 Compatibility 									
	 Economy 									
15.	What is FPGA? BTL1									
		A) is a programmable logic device that supports								

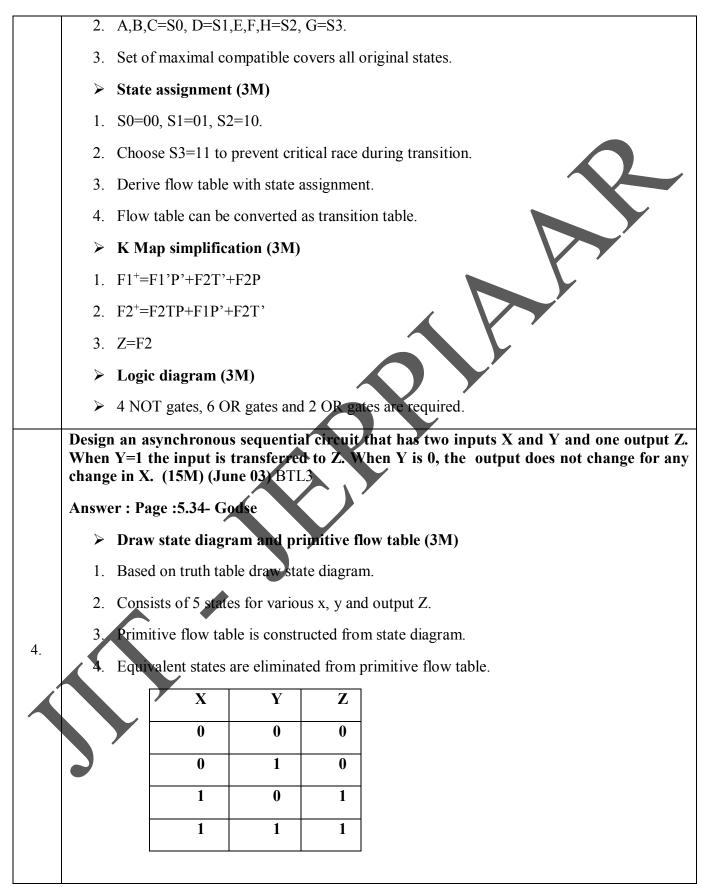
	implementation of relatively large logic circuits. FPGAs can be used to implement a logic circuit with more than 20,000 gates .
16.	 What are the terms that determine the size of a PAL? BTL1 The size of a PLA is specified by the Number of inputs Number of products terms Number of outputs
17.	Define flow table in asynchronous sequential circuit. (A.U.MAY-2012) BTL1 In asynchronous sequential circuit state table is known as flow table because of the behaviour of the asynchronous sequential circuit. The stage changes occur in independent of a clock, based on the logic propagation delay, and cause the states to flow from one to another.
18.	Define race condition. How can a race be avoided? BTL1 A race condition is said to exist in a synchronous sequential circuit when two or more binary state variables change, the race is called non-critical race. Races can be avoided by directing the circuit through intermediate unstable states with a unique state – variable change.
19.	 What are the types of hazards? What are hazards in Asynchronous sequential circuit? (A.U.MAY-2011,DEC-2011) BTL1 The 3 types of hazards are > Static - 0 hazards > Static - 1 hazard > Dynamic hazards Hazards are unwanted switching transients that may appear at the output of a circuit because different paths exhibit different propagation delays.
20.	Define critical & non-critical race with example. BTL1 The final stable state that the circuit reaches does not depend on the order in which the state variables change, the race is called non-critical race. The final stable state that the circuit reaches depends on the order in which the state variables change, the race is called critical race.
21.	What are hazards? Mention the causes of essential hazards. BTL1 The unwanted switching transients that may occur at the output of a circuit called Hazards. It is caused by unequal delays among two or more paths that originate from the same input. It can be eliminated by adjusting amount of delays in the affected path.
22.	Differentiate static and dynamic hazard. BTL2 Static hazard: If a signal is supposed to remain at particular logic value when an input variable changes its value, but signal undergoes change in its required value. Dynamic hazard: If output changes three or more times when it should change from 1 to 0 or from 0 to 1. PART * B
	D esign a combinational circuit using ROM. The circuit accepts 3-bit number and generates an output binary number equal to square of input number. (13M) BTL3
1.	Answer : Page: 6.18 - Godse > Block diagram (6M)

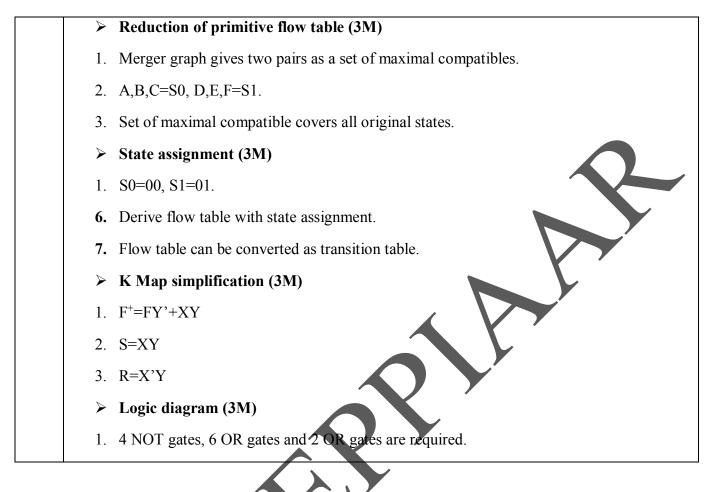

	\checkmark	Implem	entation	of PAI	L progra	am table	e (5M)				
	1.	Four gro	oups cons	sist of th	nree term	IS.					
	2.	A' is co	nsidered	as 0 an	d A is co	onsidered	d as 1.				
	3.	The abo	ve rule is	applica	able to a	ll variab	les such	as B, C,	D and w	V.	
	\triangleright	Logic di	iagram ((5M)							
	1.	For First	t group o	utput, tl	hree AN	D gates	one OR	gate ar	d one N	ot gate is required.	
		For Seco	•			-		-			
			-			-			- (
	3.	For Thir	d group	output,	three A	ND gate	s and on	e OR ga	te is requ	unred.	
	4.	For Fou	rth group	output	, three A	ND gate	es and or	ne OR ga	te is req	uired	
	0	n BCD to er : Page:			erter usi	ng PAL	. (13M)	BTL3	Υ		
	≻	Derive t	ruth tak	ole of B	CD to E	xcess 3	converte	er (3M)			
		D/	D innut			E.					
		B3	CD input B2	B1	BO	G3	ccess – 3 G2	G1	G0]	
		0	0	0	0	0	0	1	1		
		0	0	0	1	0	1	0	0		
		0	0	1	0	0	1	0	1		
		0	0	1	1	0	1	1	0		
		0	1	0	0	0	1	1	1		
		0	1	0	1	1	0	0	0		
3.		0	1	1	0	1	0	0	1		
		0	1	1	1	1	0	1	0		
		1	0	0	0	1	0	1	1		
		1	0	0	1	1	1	0	0		
		1	0	1	0	x	x	x	x		
		1	1	1	1	x	x	x	x		
			1	0	1	x	x	x	x		
		1	1	1	0	x	x	x	x		
		1	1	1	1	x	x	x	x		
1]	
		Simplify	y four se	ctions ı	ısing K	map (3N	A)				
		/									



	Simplify Boolean functions (3M)
	1. Find F1 and F2.
	2. To examine product terms by grouping 0's instead of 1.
	3. $F1=A'B'+A'C+B'C$
	4. F2=AC+BC
	5. F1'=AC;+BC'+AB
	6. $F2'=A'B'+BC'+AC'$
	Implementation of PLA program table (5M)
	1. PLA table consists of 3 inputs, 4 product terms and 2 outputs.
	2. Four groups consist of two terms.
	3. A' is considered as 0 and A is considered as 1.
	4. The above rule is applicable to all variables such as B and C.
	Logic diagram (5M)
	1. 3 NOT gates, 4 AND gates and 2 OR gates are required.
	2. EX-OR gate is programmed to invert function, to get the desired function outputs.
	An asynchronous sequential circuit has two internal states and one output. The excitation and output function describing the circuit are as follows. Draw the logic diagram, derive state transition table and output map. (13M) BTL1 > Y1=x1x2+x1y2+x2y1 > Y2=x2+x1y1y2+x1y1 > Z=x2+y1
	Answer : Page: 5.19 - Godse
	Logic diagram (2M)
5.	1. Draw logic diagram for given problem.
	2. 5 AND gates and 3 OR gates are required.
	> State table (5M)
	✔1. State table consists of PS,NS, stable state and output.
	2. Present state consists of Y1,Y2,X1 and X2.
	3. Next state consists of Y1,Y2,X1 and X2.
	4. If system is stable, mention state as YES otherwise NO.
L	1

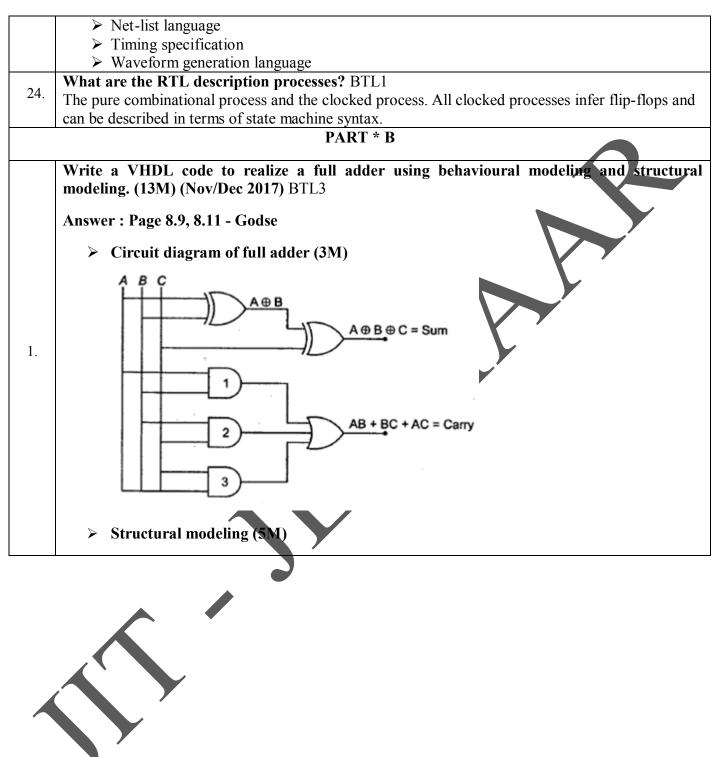

	Transition table (4M)
	1. Using K map substitute variables.
	2. Circle represents stable state.
	3. Remaining variables are considered as unstable states.
	> Output map (2M)
	1. Output is mapped for all stable states.
	2. For unstable states output is mapped unspecified.
	Illustrate the analysis procedure of asynchronous sequential circuit with an example. (13M) (MAY 2013) BTL4
	Answer : Page :5.10,5.16 - Godse
	> Types of asynchronous sequential circuits (2M)
	1. Fundamental mode:
	\checkmark Input variable can change only when system is stable.
	\checkmark Only one input variable can change at a given time.
	✓ Inputs are levels not pulses.
	2. Pulse mode:
	✓ Inputs are pulses instead of levels.
6.	\checkmark Width must be long enough for the circuit to respond to the input.
	✓ Pulse width must not be so long.
	Pulses should not occur on two or more input lines.
	Design procedure (5M)
	1. Define states and draw a state diagram of the circuit.
	2. Minimize state table.
	3. Do State assignment.
	4. Choose the type of flip flop to be used to determine excitation equations.
	5. Construct excitation table for the circuit.
	6. Determine the output equation and the flip flop input equations using K map simplification.

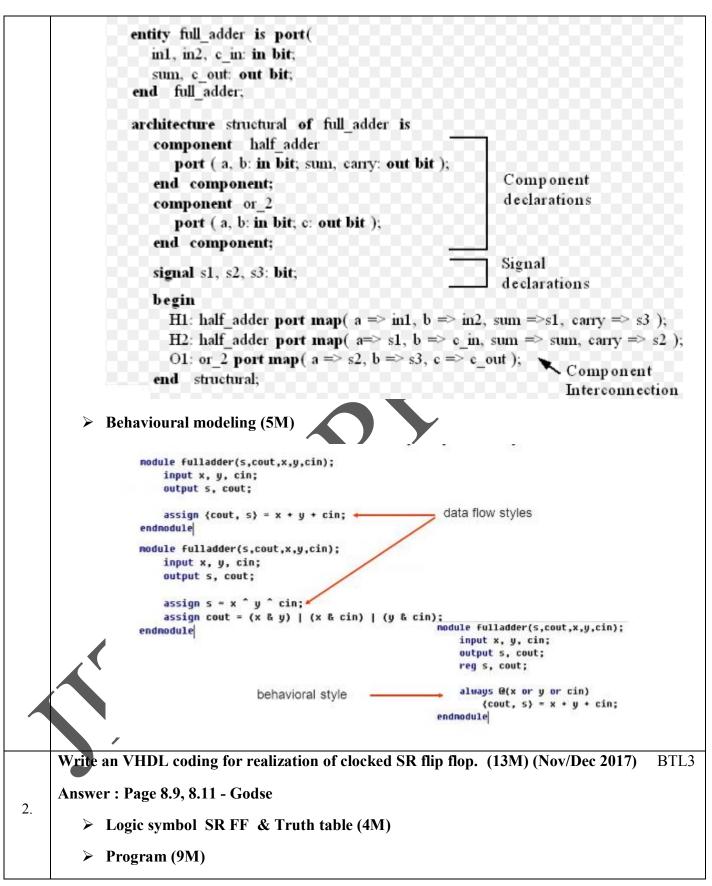

7. Draw logic diagram.
> Example (6M)
 Design a pulse mode circuit having two input lines x1,x2 and output line z. The circuit should produce an output pulse to coincide with the last input pulse in the sequence x1-x2-x2.No other input sequence should produce an output pulse.
➢ Select three present states s0,s1,s2.
➢ Next state as x1,x2.
Minimize state table.
➤ Assign state (00,01,10) for all present states.
➢ Flip flop to be used as T.
 Construct excitation table.
\succ Ta=Ax1+Bx2.
\succ Tb=Bx1+A'x2.
➤ Z=Bx2.
Draw logic diagram.
Implement the following two Boolean functions with a PLA. (13M) (MAY 2011).BTL5F1(A,B,C) = $\sum m$ (3,5,7)F2 (A,B,C) = $\sum m(4,5,7)$ Answer : Page: 6.22 - Godse
Simplify Boolean functions using K map (3M)
1. $F1=AC+BC$
2. <i>1</i> 2=AB'+AC
7. Implementation of PLA program table (5M)
1. PLA table consists of 3 inputs, 2 product terms and 2 outputs.
2. Each group consists of single terms.
3. Under each output variable write T/C.
4. Output inverter is to be bypassed, write T.
5. Function is to be complemented, write C.
6. A' is considered as 0 and A is considered as 1.



 4. Flow table can be converted as transition table. K Map simplification (3M) F1'=F2'F1X12X1' F2'=F1'X2X1+F1X2'X1+F2X1+F2F1'X2 Z=F2 Logic diagram (3M) 4 NOT gates, 6 OR gates and 2 OR gates are required. Design a pulse mode circuit having two input lines X1 and X2 and one sutput line Z. The circuit should produce an output pulse to coincide with the last input pulse in the sequence X1, X2, X2. No other input sequence should product an output pulse. (15M) (Ma 08) BTL3 Answer : Page :5.11 - Godse Select three present states s0,s1,s2 (2M) S0 indicates last input was x1. S1 indicates sequence x1-x2 ocentred. S2 indicates sequence x1-x2 ocentred. Next state as x1,x2. Minimize state table (2M) State table is minimum. 2. Next state as x1,x2. Sing states and choose FF (1M) S0=00, S1=01, S2=10. Flip flop to be used as T. Construct excitation table (3M) 		2017		neibi	
 F1*=F2'F1X1X2X1' F2*=F1'X2X1+F1X2'X1+F2X1+F2F1'X2 Z=F2 Logic diagram (3M) 4 NOT gates, 6 OR gates and 2 OR gates are required. Design a pulse mode circuit having two input lines X1 and X2 and one of tiput line Z. Th circuit should produce an output pulse to coincide with the last nput pulse in th sequenceX1, X2, X2. No other input sequence should produce an output pulse (15M) (Ma 08) BTL3 Answer : Page :5.11 - Godse Select three present states s0,s1,s2 (200) S0 indicates last input was x1. S1 indicates sequence x1-x2 openred. S2 indicates sequence x1-x2 openred. Next state as x1,x2. Minimize state table (2M) State table is minimum. 2. Assign states and choose FF (1M) S0=00, S1=01, S2=10. Flip flop to be used as T. 		4. Flow table can be conv	verted as transitio	n table.	
 2. F2[*]=F1[*]X2X1+F1X2[*]X1+F2X1+F2F1[*]X2 3. Z=F2 > Logic diagram (3M) 1. 4 NOT gates, 6 OR gates and 2 OR gates are required. Design a pulse mode circuit having two input lines X1 and X2 and one antiput line Z. The circuit should produce an output pulse to coincide with the last input pulse in the sequence X1, X2, X2. No other input sequence should produce an output pulse in the sequence X1, X2, X2. No other input sequence should produce an output rulse. (15M) (Ma 08) BTL3 Answer: Page :5.11 - Godse > Select three present states s0,s1,s2 (210) 1. S0 indicates last input was x1. 2. S1 indicates sequence x1-x2 optimed. 3. S2 indicates sequence x1-x2 optimed. 3. S2 indicates sequence x1/x2-x2 occurred. 4. Next state as x1,x2. > Minimize state fable (2M) 1. State table is minimum. 2. 2. Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Filp flop to be used as T. 		K Map simplification	(3 M)		
 3. Z=F2 > Logic diagram (3M) 1. 4 NOT gates, 6 OR gates and 2 OR gates are required. Design a pulse mode circuit having two input lines X1 and X2 and one output fulse. Th circuit should produce an output pulse to coincide with the last input pulse in th sequenceX1, X2, X2. No other input sequence should produce an output fulse. (15M) (Ma 08) BTL3 Answer : Page :5.11 - Godse > Select three present states s0,s1,s2 (2M) 1. S0 indicates last input was x1. 2. S1 indicates sequence x1-x2 optimed. 3. S2 indicates sequence x1-x2 optimed. 3. S2 indicates sequence x1-x2 optimed. 3. S2 indicates sequence x1-x2 optimed. 4. Next state as x1,x2. > Minimize state table (2M) 1. State table is minimum. 2. 2. Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Flip flop to be used as T. 		1. F1 ⁺ =F2'F1X1X2X1'			
 Logic diagram (3M) 4 NOT gates, 6 OR gates and 2 OR gates are required. Design a pulse mode circuit having two input lines X1 and X2 and one output pulse in the frequence X1, X2, X2. No other input sequence should produce an output pulse in the sequenceX1, X2, X2. No other input sequence should produce an output pulse. (15M) (Ma 08) BTL3 Answer : Page :5.11 - Godse Select three present states s0,s1,s2 (2)0 S0 indicates last input was x1. S1 indicates sequence x1-x2 openred. Next state as x1,x2. Minimize state table (2M) State table is minimum. 2. The resent states is \$0,00 \$1/0 \$2/1 \$2 \$0/0 \$2/1 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2 \$0/0 \$2/1 \$2/1 \$2 \$0/0 \$2/1 \$2/1 \$2 \$0/0 \$2/1 \$2/1 \$2/1 \$2/1 \$2/1 \$2/1 \$2/1 \$2/1		2. F2 ⁺ =F1'X2X1+F1X2'	X1+F2X1+F2F1	X2	
1. 4 NOT gates, 6 OR gates and 2 OR gates are required. Design a pulse mode circuit having two input lines X1 and X2 and one output line Z. Th circuit should produce an output pulse to coincide with the last input pulse in th sequence X1, X2, X2. No other input sequence should produce an output pulse. (15M) (Material OR) BTL3 Answer : Page :5.11 - Godse > Select three present states s0,s1,s2 (2)t) 1. 80 indicates last input was x1. 2. S1 indicates sequence x1-x2 optimed. 3. S2 indicates sequence x1-x2 optimed. 4. Next state as x1,x2. > Minimize state table (2M) 1. State table is minimum. 2. Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Flip flop to be used as T.		3. Z=F2			
Design a pulse mode circuit having two input lines X1 and X2 and one difput line Z. Th circuit should produce an output pulse to coincide with the last input pulse in th sequenceX1, X2, X2. No other input sequence should produce an output pulse. (15M) (Ma 08) BTL3Answer : Page :5.11 - Godse> Select three present states $s0,s1,s2$ (2)(1)1. S0 indicates last input was x1.2. S1 indicates sequence $x1-x2$ occurred3. S2 indicates sequence $x1-x2$ occurred4. Next state as $x1,x2$.> Minimize state table (2M)1. State table is minimum.2.2.Mainimize state table (2M)1. State table is minimum.2.5.Assign states and choose FF (1M)1. S0=00, S1=01, S2=10.2. Flip flop to be used as T.		Logic diagram (3M)			
circuit should produce an output pulse to coincide with the last input pulse in th sequenceX1, X2, X2. No other input sequence should produce an output pulse. (15M) (Ma 08) BTL3 Answer : Page :5.11 - Godse > Select three present states $s0,s1,s2$ (2M) 1. S0 indicates last input was x1. 2. S1 indicates sequence $x1-x2$ occurred. 3. S2 indicates sequence $x1-x2$ occurred. 4. Next state as $x1,x2$. > Minimize state table(2M) 1. State table is minimum. 2. Minimize state table(2M) 2. 2. Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Flip flop to be used as T.		1. 4 NOT gates, 6 OR gat	tes and 2 OR gate	es are required.	
Next statePresent stateX1X2S0S0/0S1/0S1S0/0S2S0/0S2/0	circ sequ 08) Ans	 wit should produce an uenceX1, X2, X2. No othe BTL3 swer : Page :5.11 - Godse Select three present sont in the sequence is sequence is sequence in the sequence is sequence is sequence in the sequence in the sequence in the sequence in the sequence in the	output pulse t er input sequence states s0,s1,s2 (2 was x1. x1-x2 occurred. x1-x2-x2 occurred. x1-x2-x2 occurred.	o coincide wit e should produ	h the last input pulse in
S0 S0/0 S1/0 S1 S0/0 S2/1 S2 S0/0 S2/0 Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Flip flop to be used as T.				tate	
S1 S0/0 S2/1 S2 S0/0 S2/0 Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Flip flop to be used as T.		Present state	X1	X2	
S2 S0/0 S2/0 Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Flip flop to be used as T.		S0	S0/0	S1/0	
 Assign states and choose FF (1M) 1. S0=00, S1=01, S2=10. 2. Flip flop to be used as T. 		S1	S0/0	S2/1	
 S0=00, S1=01, S2=10. Flip flop to be used as T. 		S2	S0/0	S2/0	
2. Flip flop to be used as T.		Assign states and cho	ose FF (1M)		
		1. S0=00, S1=01, S2=10.			
Construct excitation table (3M)		2. Flip flop to be used as	Т.		
		Construct excitation	table (3M)		

REGULATION :2017



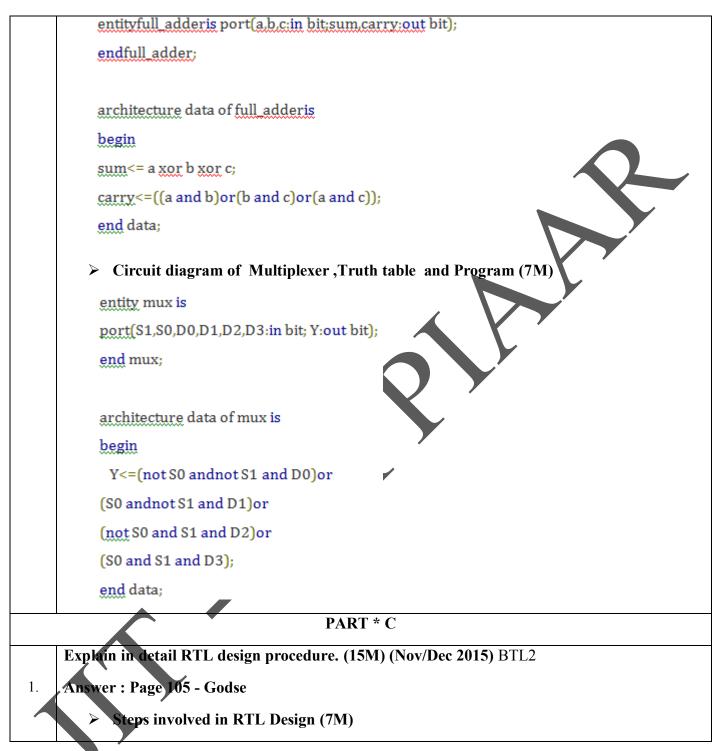

RTL Design - combinational logic - Sequential circuit - Operators - Introduction to P Subprograms - Test bench. (Simulation /Tutorial Examples: adders, counters, flip flops, Mu & De multiplexers). PART * A Q.No. Questions Write the VHDL code for AND gate.(Nov/Dec 2010) BTL2 LIBRARY ieee: USE ieee.std_logic_1164.all; Entity And1 is Port(x:in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators Write HDL for half adder. (Mat/June 2010/2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:outint); End half; Architecture half_adder of half is begin Subject Subject Subject End balf; Architecture half_adder of half is begin Subject Operators Port(a,b:in bit;s	ackages _
& De multiplexers). PART * A Q.No. Questions Write the VHDL code for AND gate.(Nov/Dec 2010) BTL2 LIBRARY ieee: USE ieee.std_logic_1164.all; Entity And1 is Port(x:in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 2. Vrite HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b: in bit;sum, cafry:outht); End half; Architecture half_adder 0(half js begin	
PART * AQ.No.QuestionsWrite the VHDL code for AND gate.(Nov/Dec 2010) BTL2 LIBRARY ieee: USE ieee.std_logic_1164.all; Entity And1 is Port(x:in std_logic;); END And1; architecture beha2 of And1 is begin $F<=x$ and y; End beha21.List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators > Operators2.Write HDL for half adder. (Mat/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half jis begin	ltiplexers
Q.No. Questions Write the VHDL code for AND gate.(Nov/Dec 2010) BTL2 LIBRARY ieee: USE ieee.std_logic_1164.all; Entity And1 is Port(x:in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 1. Y: in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 2. List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators 2. Write HDL for half adder. (May/June 2010/2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin	
Write the VHDL code for AND gate.(Nov/Dec 2010) BTL2 LIBRARY iece: USE iece.std_logic_1164.all; Entity And1 is Port(x:in std_logic;) Y: in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out htt); End half; Architecture half_adder of half js begin	
LIBRARY ieee: USE ieee.std_logic_1164.all; Entity And1 is Port(x:in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 2. Logical Operators > Logical Operators > Relational Operators > Relational Operators > Operators Write HDL for half adder. (Mat/June 2019,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:outPht); End half; Architecture half_adder of half js begin	
 USE ieee.std_logic_1164.all; Entity And1 is Port(x:in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 Logical Operators Arithmetic Operators Relational Operators Poperators Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:outPit); End half; Architecture half_adder of half is begin 	
I. Entity And1 is Port(x:in std_logic; Y: in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators Vrite HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin	
1. Port(x:in std_logic; Y: in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 2. List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Arithmetic Operators > Relational Operators > Operators 4 Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin	
 1. Y: in std_logic;); END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Relational Operators > Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin 	
 END And1; architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 Logical Operators Arithmetic Operators Relational Operators Relational Operators Operators Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half 1s begin 	
architecture beha2 of And1 is begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators > Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin	
begin F<=x and y; End beha2 List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators > Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin	
F<=x and y; End beha2 List the operators available in VHDL.BTL1 > Logical Operators > Arithmetic Operators > Relational Operators > Operators Vrite HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; 3. Architecture half_adder of half is begin	
 List the operators available in VHDL.BTL1 Logical Operators Arithmetic Operators Relational Operators Operators Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin 	
 2. > Logical Operators > Arithmetic Operators > Relational Operators > Operators > Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin begin Content of the state of the	
 2. > Arithmetic Operators > Relational Operators > Operators > Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; 3. Architecture half_adder of half is begin	
 Aritimetic Operators Relational Operators Operators Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin 	
 > Operators Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin 	
Write HDL for half adder. (May/June 2010,2012) BTL3 Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; 3. Architecture half_adder of half is begin	
 3. Entity half is Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin 	
3. Port(a,b:in bit;sum,cafry:out bit); End half; Architecture half_adder of half is begin	
3. End half; Architecture half_adder of half is begin	
3. Architecture half_adder of half is begin	
begin	
(Sum = a yor b)	
$(Sum \le a \text{ xor } b;)$	
Carry<=a and b);	
Endhalf_adder	
What are the various modeling techniques in HDL? (MAY 2010,2012,DEC 2012) BT	LI
4. Structural modeling	
 Dataflow modeling Behavioural modeling 	
When can RTL be used to represent digital systems?(MAY 2011) BTL3	
Designs using the Register-Transfer Level specify the characteristics of a circuit by oper	ations and
5. the transfer of data between the registers. An explicit clock is used. RTL design cont	
timing possibility, operations are scheduled to occur at certain times. Any code that is syr	
can used RTL.	
What are ASM?(MAY 2011) BTL1	
Algorithmic State Machine (ASM) method is a method for designing finite state mach	in a It is
6. used to represent diagrams of digital integrated circuits. The ASM diagram is like a sta	
but less formal and thus easier to understand. An ASM chart is a method of desc	e diagram
sequential operations of a digital system.	e diagram

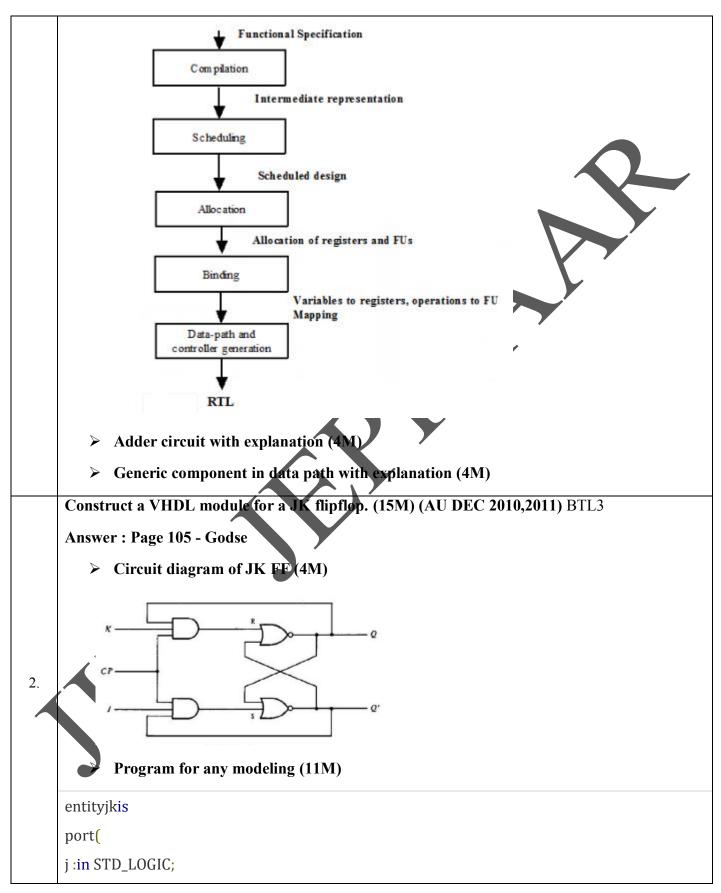
	Write the VHDL coding for a sequential statement (d-flipflop). BTL3
	entity dff is
	<pre>port(clk,d:in std_logic;</pre>
	q:out std_logic);
	end;
	architecture dff of dff is
7.	begin
	process(clk,d)
	begin
	if clk' event and clk=' 1' then
	q<=d;
	end process;
	end;
	What are the different kinds of the test bench? BTL1
	Stimulus only
	➢ Full test bench
8.	Simulator specific
	➢ Hybrid test bench
	➢ Fast test bench
	What is Moore FSM? BTL1
9.	The output of a Moore finite state machine(FSM) depends only on the state and not on its inputs.
	This type of behaviour can be modeled using a single process with the case statement that switches on the state value.
	What is packages and what is the use of these packages? BTL1
10	
10.	A package declaration is used to store a set of common declaration such as components, types, procedures and functions. These declaration can then be imported into others design units using a
	use caluse.
11.	What is variable class ?Give example for variable. BTL1
	An object of variable class can also hold a single value of a given type, However in this case

	different values can be assigned to a variable at different time.
	Ex: Integer
	What are the data types available in VHDL? BTL1
12.	 Scalar type Composite type Access type File type
13.	Write the VHDL code for 1 to 4 demultiplexer. BTL3 entity demux is port (D0 : in std_logic_vector(7 downto 0); D1 : in std_logic_vector(7 downto 0); D2 : in std_logic_vector(7 downto 0); SEL : in std_logic_vector(1 downto 0); Y : out std_logic_vector(7 downto 0)); end demux; architecture behave of demux is begin behave with SEL select Y <= D0 when "00", D1 when "01", D2 when "11", (others => 'X') when others; end behave;
14. 15.	<pre>Write the VHDL code for half adder.(MAY 2010,2012) BTL3 entity hal is Port (a : in STD_LOGIC; b : in STD_LOGIC; sum : out STD_LOGIC; carry : out STD_LOGIC); end hal; architecture Behavioral of hal is begin sum<= a xor b; carry<=a and b; end Behavioral; What are sequential statements? BTL1 While using these statements, the ordering of the statements is important because ordering may</pre>
16.	 affect the meaning of the code. As name suggests, the sequential statements are evaluated in the order in which they appear in the code. What are the features of sequential statement? BTL2 ➤ The sequential statements execute one after another as per the writing order. ➤ They must be placed inside a "process statement".

	 Variables are only used in sequential statements. Sequential statements do not generate sequential hardware.
	What is Process statement? BTL1
17.	Process is main concurrent statement in VHDL code which describe the sequential behaviour of design. All statements within process execute sequentially in zero time. Only one driver is placed on a signal. The signal is updated with the last value assigned to it within the process.
	Define CASE statement. BTL1
18.	The case statement selects one of the benches for execution based on the value of the expression. The expression value must be of a discrete type of a one dimensional array type. Choice may be expressed as a single values, as a range of values, by using "1"(vertical bar) represents an "OR" choice.
	What is Test Bench? BTL1
19.	A test bench is the stimulus that tests the functionality of the design, This is a test program in VHDL. Thus for the simulation of a digital logic system, the design is first described in HDL, it is then verified by simulating the design and then using a test bench which is written in HDL, it is tested and its response is observed.
	What is need for VHDL?(MAY 2013) BTL2
20.	When used for systems design, is that it allows the behaviour of the required system to be described (modelled) and verified (simulated) before synthesis tools translate the design into real
	hardware (gates and wires). VHDL allows the description of a concurrent system.
	Write a VHDL code for 2*1 MUX. BTL
	LIBRARY ieee ; USE ieee.std logic 1164.all ;
	USE leee.sid_logic_1104.all,
	ENTITY mux2to1 IS
	PORT (w0, w1, s : IN STD_LOGIC ;
0.1	f : OUT STD_LOGIC);
21.	END mux2to1;
	ARCHITECTURE Behavior OF mux2to1 IS
	BEGIN
	$f \le w0$ WHEN $s = 0'$ ELSE $w1$;
	END Behavior ;
	What are sequential and concurrent statements? BTL1
	> Sequential statements are executed one after other, like in software programming languages.
22.	Subsequent programs can override the effect of previous statements this way. The order of
<i>44</i> .	assignment must be considered when sequential statements are used.
	> Concurrent statements are active continuously. So the order of the statements is not relevant.
	Concurrent statements are especially suite demodel the parallelism of hardware.
22	What are the languages that are combined together to get VHDL language? BTL1
23.	Sequential language
	Concurrent language

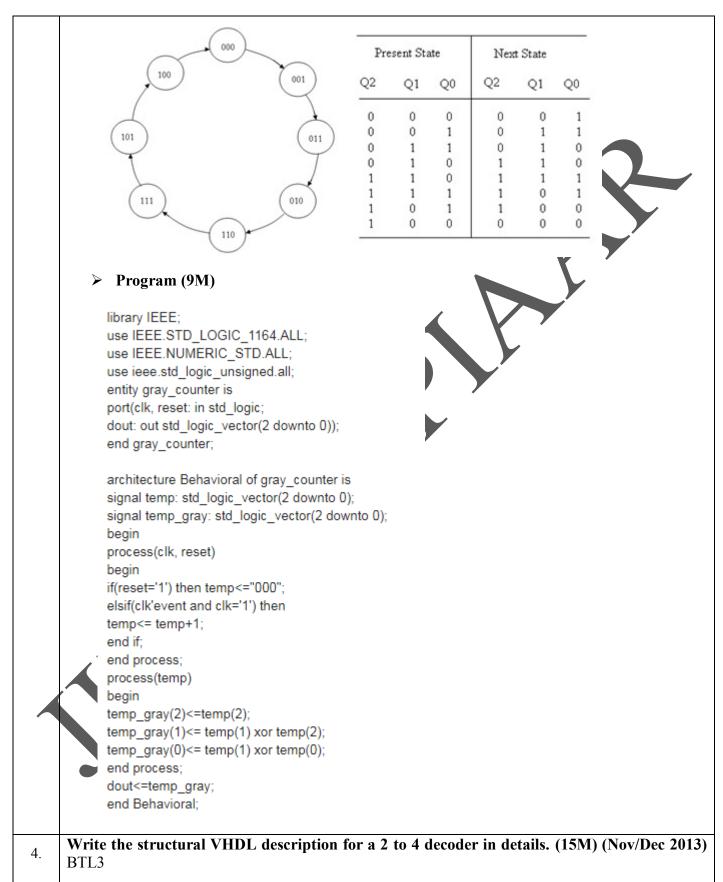
<pre>library icee; use icee. std_logic_1164.all; use icee. std_logic_arith.all; use icee. std_logic_unsigned.all; entity SR_FF is PORT(S,R,CLOCK: in std_logic; Q, QBAR: out std_logic); end SR_FF; Architecture behavioral of SR_FF is begin PROCESS(CLOCK) variable tmp: std_logic; begin if(CLOCK='1' and CLOCK'EVENT) then if(S='0' and R='1')then tmp:=tmp; elsif(S='1' and R='1')then tmp:='0'; else tmp:='1'; end if; Q <= tmp; QBAR <= not tmp; end FROCESS; end behavioral; - Design a 3 bit magnitude comparator and write the VHDL code to realize it using structural modeling(T3M) (April/May 2017) BTL6 3. Answer: thege 8.24. Godse * Circuit/Magram & truth table (5M) > trggram (8M) Write the VHDL code for decade counter. (May/June 2016) 4. Answer: Page 8.30 - Godse > Synchronous counter (7M) library iece; use iece std_logi_1164.all;</pre>		
<pre>PORT(`S,R,CLOCK: in std_logic; Q, QBAR: out std_logic); end SR_FF; Architecture behavioral of SR_FF is begin PROCESS(CLOCK) variable tmp: std_logic; begin if(CLOCK='1' and CLOCK'EVENT) then if(S='0' and R='0')then tmp:=tmp; elsif(S='1' and R='1')then tmp:='0; else tmp:='1'; end if; Q <= tmp; QBAR <= not tmp; end PROCESS; end behavioral;</pre> Design a 3 bit magnitude comparator and write the VHDL code to realize it using structural modeling.(T3M) (April/May 2017) BTL6 3. Answer: Page 8.24- Godse * Circuit/Magram & truth table (5M) > brogram (8M) While the VHDL code for decade counter. (13M) (Mar/June 2016) 4. Answer: Page 8.30- Godse > Synchronous counter (7M) library ieee;		<pre>use ieee. std_logic_1164.all; use ieee. std_logic_arith.all;</pre>
<pre>begin PROCESS(CLOCK) variable tmp: std_logic; begin if(CLOCK='1' and CLOCK'EVENT) then if(S='0' and R='0')then tmp:=tmp; elsif(S='1' and R='1')then tmp:='0'; else tmp:='0'; else tmp:='1'; end if; Q <= tmp; QBAR <= not tmp; end PROCESS; end Dehavioral;</pre> Design a 3 bit magnitude comparator and write the VHDL code to realize it using structural modeling (TSM) (April/May 2017) BTL6 Answer : lage 8.24- Godse Circuit diagram & truth table (SM) > trogram (8M) Write the VHDL code for decade counter. (13M) (Mmv/June 2016) Answer : Page 8.30 - Godse > Synchronous counter (7M) library icee;		<pre>PORT(S,R,CLOCK: in std_logic; Q, QBAR: out std_logic);</pre>
<pre>if(S='0' and R='0')then tmp:=tmp; elisif(S='1' and R='1')then tmp:='2'; elsif(S='0' and R='1')then tmp:='0'; else tmp:='1'; end if; Q <= tmp; QBAR <= not tmp; end PROCESS; end behavioral; Design a 3 bit magnitude comparator and write the VHDL code to realize it using structural modeling.(TSM) (April/May 2017) BTL6 3. Answer : Page 8.24- Godse Circuitulfigram & truth table (SM) Program (8M) Write the VHDL code for decade counter. (13M) BTL6 4. Answer : Page 8.30 - Godse Synchronous counter (7M) library icee;</pre>		<pre>begin PROCESS(CLOCK) variable tmp: std_logic;</pre>
<pre>elsif(S='0' and R='1')then tmp:='0'; else tmp:='1'; end if; end if; Q <= tmp; QBAR <= not tmp; end PROCESS; end behavioral; Design a 3 bit magnitude comparator and write the VHDL code to realize it using structural modeling (T3M) (April/May 2017) BTL6 Answer : Page 8.24- Godse Circuit dagram & truth table (5M) Circuit dagram & truth tabl</pre>		<pre>if(S='0' and R='0')then tmp:=tmp; elsif(S='1' and R='1')then</pre>
 and if; and if; Q <= tmp; QBAR <= not tmp; and PROCESS; and behavioral; Design a 3 bit magnitude comparator and write the VHDL code to realize it using structural modeling (13M) (April/May 2017) BTL6 3. Answer : Page 8.24- Godse Circuit diagram & truth table (5M) Vrogram (8M) Write the VHDL code for decade counter. (13M) BTL6 4. Answer : Page 8.30 - Godse Synchronous counter (7M) library ieee; 		<pre>elsif(S='0' and R='1')then tmp:='0'; else</pre>
 end PROCESS; end behavioral; Design a 3 bit magnitude comparator and write the VHDL code to realize it using structural modeling (I3M) (April/May 2017) BTL6 3. Answer : Page 8.24- Godse Circuit diagram & truth table (5M) Program (8M) Write the VHDL code for decade counter. (13M) (May/June 2016) 4. Answer : Page 8.30 - Godse Synchronous counter (7M) library ieee; 		<pre>end if; end if; Q <= tmp;</pre>
modeling. (13M) (April/May 2017) BTL6 3. Answer : Page 8.24- Godse Circuit diagram & truth table (5M) Program (8M) Write the VHDL code for decade counter. (13M) (May/June 2016) 4. Answer : Page 8.30 - Godse Synchronous counter (7M) library ieee;		end PROCESS; end behavioral;
 Circuit diagram & truth table (5M) Program (8M) Write the VHDL code for decade counter. (13M) (May/June 2016) Answer : Page 8.30 - Godse Synchronous counter (7M) library ieee; 		
 > Program (8M) Write the VHDL code for decade counter. (13M) (May/June 2016) BTL6 Answer : Page 8.30 - Godse > Synchronous counter (7M) library ieee; 	3.	
4. (May/June 2016) BTL6 Answer : Page 8.30 - Godse > > Synchronous counter (7M) Iibrary ieee;		
 4. ➤ Synchronous counter (7M) library ieee; 		
library ieee;	4.	Answer : Page 8.30 - Godse
		Synchronous counter (7M)

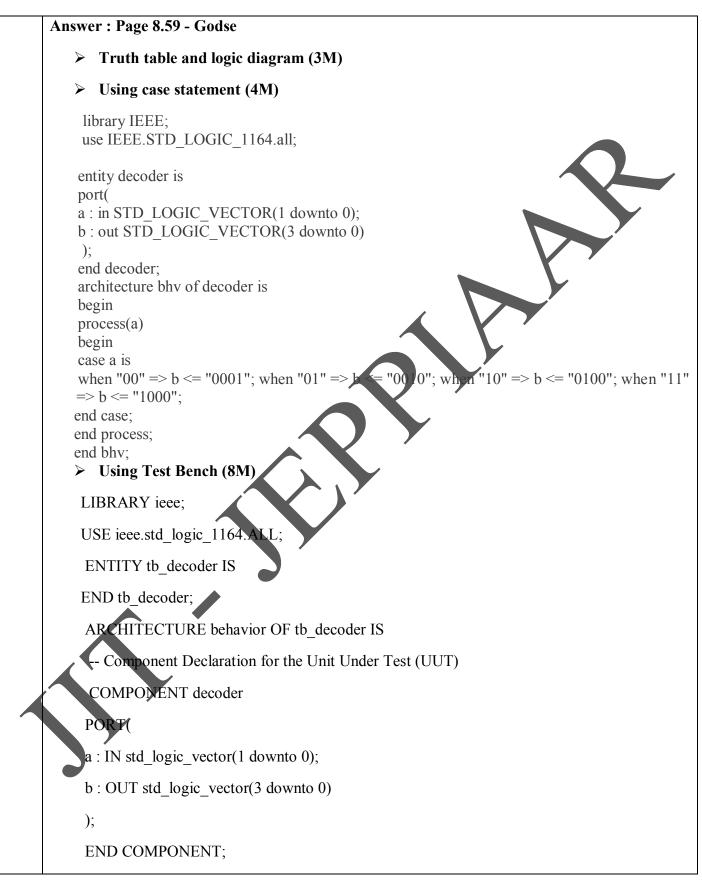

use work.pkgdecade.all; entity decade counter is port (clock : in std logic; clear L : in std logic; enable L : in std logic := '0'; en nxt : out std logic; DigOut : out natural range 9 downto 0); end decade counter; architecture behav of decade counter is begin process (clock, clear L, enable L) variable int count : integer range 0 to 9; begin if clock = '1' and clock'event then if clear L = 0' then int count := 0;elsif enable L = '0' then if int count = 9 then int count := 0; else int count := int count + 1; end if; --int count = 9end if; -- clear L = '0'end if; --clock transition if enable L = 0' and int count = 9 then en nxt <= '1'; else en nxt $\leq 0'$; end if: DigOut <= int count; end process; end behav; Asynchronous counter (6M) library ieee.sta ogic_1164.all; eee.std logic unsigned.all; use use sto textio.all; entity rmatrix is port (clock : in std logic; reset : in std logic; data out : out std logic vector(7 downto 0)); end rmatrix;

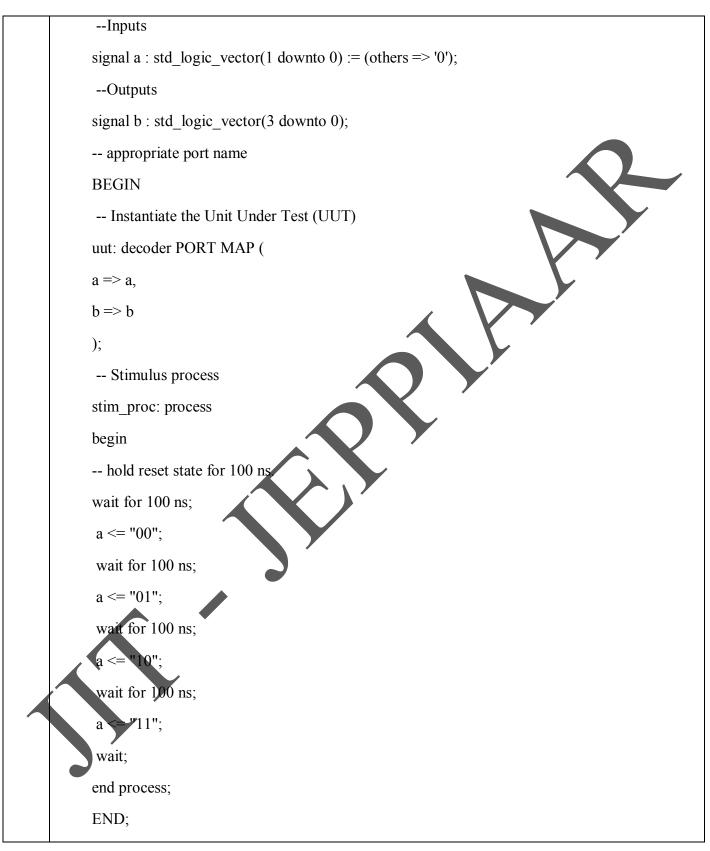

```
architecture behaviour of rmatrix is
    begin
    process
          file infile
                                : text is in
    "G:\QuartusPrograms\VHDL\File\ReadMatrix\a.txt";
          variable row
                                : line;
                              : bit vector(7 downto 0);
          variable element
          variable end of line : boolean := true;
       begin
          if(reset='1') then
              data out <= (others => '0');
          else
              while(not endfile(infile))loop
                 readline(infile, row);
                 read(row, element, end of line);
                 while(end of line)loop
                    data out <= to stdlogicvecto eleme
                    read(row, element, end of line
                    wait until rising edge (g
                 end loop;
                 end of line := true;
              end loop;
              wait;
          end if;
       end process;
     end behaviour;
    Write the VHDL code for 4 bit parallel adder. (13M) (May/June 2016) BTL6
    Answer : Page 8.36 - Godse
       Circuit diagram 4 bit parallel binary adder (5M)
       > Truth table (3M)
       > Program for any modeling (5M)
    entity pa is
7.
    portia :in STD_LOGIC_VECTOR(3downto0);
     in STD_LOGIC_VECTOR(3downto0);
    ca :out STD_LOGIC;
    sum :out STD_LOGIC_VECTOR(3downto0)
    );
    end pa;
    architecturevcgandhi of pa is
```

	Componentfais
	port(a :in STD_LOGIC;
	b :in STD_LOGIC;
	c :in STD_LOGIC;
	sum :out STD_LOGIC;
	ca :out STD_LOGIC
);
	end component;
	signal s :std_logic_vector(2downto0);
	signal temp:std_logic;
	begin
	temp<='0';
	u0 :fa port map (a(0),b(0),temp,sum(0),s(0));
	u1 :fa port map (a(1),b(1),s(0),sum(1),s(1));
	u2 :fa port map (a(2),b(2),s(1),sum(2),s(2)
	ue:fa port map (a(3),b(3),s(2),supr(3),ca);
	endvcgandhi;
	Explain various operators and subprograms in detail. (13M) (May/June 2016) BTL2
	Answer : Page 8.25 - Godse
	> Operators (7M)
	1. Every language has operators whose functions are to operate on operands and
	produce some results.
	Assignment Operators
4.	✓ Shift Operators
	✓ Logical Operators
	 Relational Operators Arithmetic Operators
	✓ Misc Operators
	ASSIGNMENT OPERATORS
	<= Signal assignment: <target_identifier> <= <expression></expression></target_identifier>
	Ex: $c \le a$ NAND b;
	To initialise the signal use '•=' ex:

	Signal Enable: Bit := '0';
:=	Constant and variable assignments:
	<target_identifier> := <expression></expression></target_identifier>
	Ex: Constant a: a_type := "1001";
	Variable temp_a : integer;
	$temp_a := a;$
	SHIFT OPERATOR
SLL	Shift left, right most bits replaced with zeros
	Shift right, left most bits replaced with zeros
SRL	Shift left arithmetic
	Shift right arithmetic
SLA	Rotate left
SRA	Rotate Right
ROL	Examples:
ROR	"1001" sll 2 => 0100, "1001" srl 2 => 0010
	"0101" sla 2 => 0111, "1010" sra 2 => 1110
	"0111" rol 2 => 1101, "1011" ror 2 => 1110
	LOGICAL OPERATORS
AND	Logical operators work on predefined types, either Bit or Boolean. The resul has the
OR	same type as the type of operand(s).
NAND	Ex: $z := x$ AND y; variables
NOR	$c \le a AND b; signals$
XOR	
XNOR	
NOT	
	RELATIONAL OPERATORS
= eq	Relational operators compare two operands of the same type and produce a Boolean
/= noteq	
<= lt or	Ex: $z \le x \le y;$
eq	If x less than or equal to y, the Boolean result will be assigned to the
>= gr or	signal z.
eq	Y
	ARITHMETIC OPERATORS
**	Exponentiation
rem	Remainder
mod	Modulus
1	Division
*	Multiplication
-	Subtraction
+	Addition
abs	Absolute Value
-	Unary Minus


+	Unary Plus
	MISCELLANEOUS OPERATORS
&	Concatenation operator Example: "ABC" & "DEF" => ABCDEF "1010" & "0101" => 10100101
	Sub program (6M)
1.	VHDL provides two kinds of subprograms: procedures and functions .
✓	Procedures are called as sequential statements. Functions are called within expressions, and return a result.
\checkmark	VHDL distinguishes between a subprogram declaration and a corresponding subprogram body.
\checkmark	The subprogram declaration contains only interface information, while the subprogram body contains.
\checkmark	Interface information
~	Local declarations
~	Statements
2. ✓	Functions: Functions are intended to be used strictly for computing values and not for changing t value of any objects associated with the function's formal parameters; therefore, parameters of functions must be of mode in and must be of class signal or constant .
✓	Procedures on the other hand, are permitted to change the values of the objects associat with the procedure formal parameters; therefore, parameters of procedures may be mode in, out and in out.
✓	If no mode is specified for a subprogram parameter, the parameter is interpreted having mode in. If no class is specified, parameters of mode in are interpreted as being of class constant, and parameters of mode out or in out are interpreted as being of class of class constant.
\checkmark	variable. It is possible to define a procedure or function with no parameters; in this case, t interface list is simply omitted from the subprogram specification.
Write a	VHDL program for Mux, full adder . (13M) (Nov/Dec 2015) BTL3
Answer	· : Page 8.57 - Godse
	Circuit diagram of full adder, Truth table and Program (6M)




	k :in STD_LOGIC;
	clk:in STD_LOGIC;
	reset :in STD_LOGIC;
	q :out STD_LOGIC;
	qb:out STD_LOGIC
);
	endjk;
	architecturevirat of jkis
	begin
	jkff: process (j,k,clk,reset)is
	variable m :std_logic:='0';
	begin
	if(reset ='1')then
	m :='0';
	elsif(rising_edge(clk))then
	if(j/= k)then
	m := j;
	elsif(j ='1'and k ='1')then
	m :=not m;
	endif;
	endif;
	q <= m;
	qb ≤=not m
	end process jklf,
	endvirat
	Write the VHDL code to realize a 3 bit gray code counter using case statement. (15M) BTL3
3.	Answer : Page 105 - Godse
	State diagram and state table (6M)

REGULATION :2017

REGULATION :2017

ME8792

POWER PLANT ENGINEERING

OBJECTIVES:

Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

UNIT I COAL BASED THERMAL POWER PLANTS

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

UNIT III NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), Canada Deuterium- Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

UNIT IV POWER FROM RENEWABLE ENERGY

Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, *Solar* Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS 9 Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

TOTAL : 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Discuss different power generation methods and boilers and estimate load curves and load duration curves (Unit I)
- CO2 Explain the layout, construction and working of the components inside a thermal power plant (Unit II)
- CO3 Explain the layout, construction and working of the components inside nuclear and hydro-electric power plants (Unit III)
- CO4 Explain the layout, construction and working of the components inside diesel and gas turbine power plants (Unit IV)
- CO5 Explain the applications of renewable energy on power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production (Unit V)

TEXT BOOK:

1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company Ltd., 2008. **REFERENCES:**

1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw – Hill Publishing Company Ltd., 2010.

2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.

3. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw – Hill, 1998.

ion

L T P C 3003

9

9

9

Q

Subject Code: ME8792 Subject Name: Power Plant Engineering

Year/Semester: II/03 Subject Handler: Mrs.A.Ramya

	UNIT I – COAL BASED THERMAL POWER PLANTS
	Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.
	PART*A
1	 Name the processes of Rankine Cycle. BTL1 Process 1-2 : Reversible adiabatic or isentropic expansion in the turbine Process 2-3 : Constant Pressure or isobaric heat rejection in the condenser Process 3-4 : Reversible adiabatic or isentropic pumping process in the feed pump Process 4-1 : Constant Pressure or isobaric heat supplied in the boiler.
2	List the four important circuits of Steam Power Plant. BTL1
	 Coal and ash circuit Air and flue gas circuit Water and steam circuit Cooling water circuit
3	Define steam rate and heat rate. AU DEC 2016 BTL2
	Steam rate (also called Specific Steam Consumption(SSC)) - It is defined as the rate of steam flow (kg/h) required for producing unit shaft output (1 kW)
	Steam rate indicates the capacity of a steam plant.
	Steam rate, SSC = Mass of steam / Work Output in kg/kWh
	➢ Heat rate – It is defined as the heat input needed to produce one unit of power output.
	It indicates the amount of fuel required to generate one unit of electricity.
	Heat rate = Heat supplied / Work output
4	Why thermal power plants are not suitable for supplying fluctuating loads? BTL4 Thermal plants are not suitable for supplying fluctuating loads because any change in load demand requires the corresponding change in the output energy. In thermal plants, the input energy is produced by burning the coal. So, there is always a large time lapse between change in energy output and input which is not desirable. Therefore, such power stations are used only as base load stations and it supplies the constant power.
5	 Define the function of boiler and turbine. BTL2 ➢ Boiler – A boiler is a closed vessel in which the steam is generated from water by applying
	heat.

	Turbine – Steam turbine is a device which is used to convert the kinetic energy of steam into mechanical energy.
6	Define superheated steam. BTL2
-	If the dry steam is further heated, then the process is called superheating and the steam is
	known as superheated steam.
	Uses:
	 It has more heat energy and more work can be obtained using it. Thermal afficiency increases as the temperature of superheated steem is high
	Thermal efficiency increases as the temperature of superheated steam is high.
7	Heat losses are due to condensation of steam and cylinder wall friction. What is sum as spitial beilars? ALL DEC 2015 DTL 2
7	What is super critical boilers? AU DEC-2015 BTL2
	 Boilers only with economizer and superheater are called super critical boilers.
	 It operates at supercritical pressure.
	The supercritical boilers are above 300 MW capacity.
	ightarrow Ex – Velox Boiler and Loeffler boiler
	Advantages:
	High thermal efficiency
	Heat transfer rate is high
	Erosion and corrosion are minimized.
8	Define the merits of pulverized fuel firing system. BTL1
	> Coal is pulverized to increase its surface exposure and complete combustion.
	➢ High combustion temperature can be obtained.
	It has more heating surface area.
	Low grade fuel can also be used.
	 Clean combustible gases can be produced.
	Fuel feed rate is increased.
9	What is stoker? Classify it. BTL2
	Stoker is a feeding device which feeds solid fuels into the furnace in medium and large size
	power plants.
	Types:
	\rightarrow Overfeed stoker
	> Underfeed stoker
10	What is the necessity of feed pump in thermal power plant? BTL2
	Feed pump is a pump which is used to deliver the feed water to the boiler. The quantity of
	water supplied should be at least equal to the amount of evaporation which is supplied to the engine.
11	Mention the various modern ash handling systems. BTL1
11	 Gravitational separator
	 Cyclone separator
	 Packed type scrubber
	 Spray type wet collector
	 Spray type wet conector Electrostatic precipitator(ESP)
	 Electrostatic precipitator(ESF)
12	List the methods used for handling of coal. BTL1
	> Out plant handling of coal done by sea or river, ropes, rail, road, pipeline etc
	➢ In plant handling of coal.

13	State the function of cooling tower. BTL2
	➢ Cooling tower discharges the warm water from the condenser and feed the cooled water
	back to the condenser.
	There are two types:
	(a)Wet type
	(b) Dry type
14	List the requirements of a modern surface condenser. BTL2
	\succ The steam should be evenly distributed over the whole cooling surface of the condenser
	with minimum pressure loss.
	> The deposition of dirt on the outer surface of tubes should be prevented. It is achieved by
	passing the cooling water through tubes and allowing the steam to flow over tubes.
	There should be no under cooling of condensate.
	> There should be no air-leakage into the condenser because it destroys the vacuum in the
	condenser. So, it reduces the work obtained per kg of steam.
15	Define the term boiler draught. AU DEC-2016 BTL2
	Draught is defined as the movement of air through full bed which produces a flow of hot
	gases through the boiler and the chimney, which requires a pressure difference between gas
	pressure and atmospheric pressure. This difference in pressure required to maintain the constant
16	flow of air and discharge the gases known as draught.
16	Define pulveriser and why it is used? AU DEC-2015 BTL2
	A pulveriser or grinder is a mechanical device for grinding many different types of
	materials. Pulveriser mill is used to pulverize the coal for combustion in the steam generating
17	furnaces of fossil fuel power plants. List the factors affecting cooling of water in cooling tower. BTL1
1/	First the factors affecting cooling of water in cooling tower. BTLT The exposing time
	 Amount of water surface exposed
	 Relative humidity of air
	 Velocity of air
	 Accessibility of air to various parts of cooling tower.
18	What is compounding of steam turbine? BTL2
10	Compounding is a method of absorbing the jet velocity in stages when the steam flows over
	moving blades.
	> It reduces the velocity of steam at the exit of turbine and also the speed of rotor.
19	Draw a neat sketch of basic principle of FBC. BTL5
	combustion gases
	fuel steam
	fluidised bed a second se
	water
	fluidising A J ash
20	What is Cogeneration systems? BTL4
	Cogeneration is also called combined heat power. Cogeneration works based on the concept
	of producing two different forms of energy by using a single source of fuel. Out of these two forms,
	one must be heat or thermal energy and other one is either electrical or mechanical energy.

21	What is reheat cycle? BTL2 In reheat cycle, the steam is extracted from a suitable point in the turbine and it is reheated with the help of flue gases in the boiler.
22	 List the advantages of reheat cycle. BTL1 ➢ The reheating reduces from 4 to 5% fuel consumption. ➢ The reheat cycle reduces the steam flow of 15% to 20% with corresponding reduction in boiler, turbine and feed heating equipment capacity.
23	Name the methods of reheating. BTL1 ➤ Gas reheating ➤ Live steam reheating ➤ Combined gas and live steam reheating
24	What is regenerative cycle? BTL2 The feed water is heated with the help of steam in a reversible manner. Steam temperature and water temperature are same at any section. Such type of heating is known as regenerative cycle.
25	Where is reheat-regenerative cycle used? BTL2 Reheat – regenerative cycle is used in the actual thermal power plant with high steam pressure (above 90kgf/cm ²), which increases the overall efficiency of the cycle. PART*B
1	Draw a general layout of thermal power plant and explain the working of different circuits. (13 M) AU DEC-2015/2016 BTL2 Answer: Page: 1.2 - Dr.G.K.Vijayaraghavan Principle: Heat Energy → Mechanical Energy → Electrical Energy (1 M) Layout: (4 M) Working: Steam power plant consists of four main circuits > Coal and Ash circuit (2 M) > Air and Flue gas circuit (2 M) > Water and steam circuit (2 M)
2.	 Cooling water circuit (2 M) Write short notes on: AU DEC-2015 BTL2 (i)Ash handling system (6 M) Answer: Page: 1.46 - Anup Goel The Disposal of ash and dumping it at a distance from the power plant is important for the following reasons: (2 M) 1). The ash is very hot when it comes out of the boiler furnace. 2). The ash is dusty, therefore it is irritating and annoying to handle. 3). When mixed with water, the ash produces poisonous gases and corrosive acids. Types of ash handling system: 1). Mechanical handling system. 2). Hydraulic system. 3). Pneumatic system. 1). Mechanical hand ling system: (1 M) This system is applied for low capacity power plants using coal as fuel.

	2). Hydraulic system: (1 M)
	In this system the ash is carried with the flow of water with high velocity through a channel and
	finally dumped in the sump.
	3). Pneumatic system: (1 M)
	This system can handle abrasive ash, fly-ash and soot.
	4). Steam jet system: (1 M)
	In this system, the high velocity steam is passed through a pipe.
	(ii)Different draught systems (7 M) Answer: Page: 1.52 - Anup Goel
	Draught is defined as the difference between absolute gas pressure at any point in a gas flow
	passage and the ambient (same elevation) atmospheric pressure.
	Necessity of Draught: (2 M)
	To supply required amount of air to the furnace for the combustion of fuel.
	The amount of fuel that can be burnt per square root of grate area depends upon the quantity
	of air circulated through fuel bed.
	To remove the gaseous products of combustion.
	Classification of Draught: (5 M)
	> Natural Draught: The draught is produced by this tall chimney due to temperature
	difference of hot gases in the chimney and cold external air outside the chimney.
	> Artificial Draught: The draught is produced by steam jet or fan.
	Steam jet draught: The draught is produced by steam.
	> Mechanical draught: The draught is produced by blowers or fan.
	> Induced draught: The flue is drawn(sucked) through the system by a fan or steam jet.
	 Forced draught: The air is forced into system by a blower or steam jet.
3.	Explain the following with neat diagram: AU DEC-2016 BTL2
5.	(i)Benson boiler (6 M)
	Answer: Page: 1.22 - Anup Goel
	Diagram: (3 M)
	Explanation: (3 M)
	The feed pump circulates the water to the evaporator through economizer.
	The drum is eliminated in this type of boiler
	The major portion of water is converted into the steam in radiant evaporator
	> The remaining portion of water is evaporated in the convective evaporator and pressure of
	steam rises up to 225 bar.
	Advantages:
	Easy and quick erection of boiler, require less floor space, lower explosion hazards
	(ii)Cogeneration plant (7 M)
	Answer: Page: 1.10 - Anup Goel
	Explanation: (3 M)
	A cogeneration system is the simultaneous generation of multiple forms of useful energy in
	a single integrated system.
	> The useful energy usually is in the form of mechanical/electrical and thermal(heat) energy.
	It is also known as combined Heat and Power (CHP) system.
	Classification of Cogeneration systems: (4 M)
	A cogeneration system can be classified on the basis of the sequence of energy use as follows:

	A tonning avala
	A topping cycle
	In a topping cycle, the fuel supplied is first used to produce power and thermal energy.
	<u>Types:</u> Combined avalatorning system Steep turking torning system Heat recovery tenning system
	Combined – cycle topping system, Steam – turbine topping system, Heat recovery topping system,
	Gas turbine topping system.
	A bottoming cycle
4	In a bottoming cycle, the primary fuel produces high temperature thermal energy.
4.	Explain the following: (13 M) BTL2
	(i) Types of Turbines
	(ii) Types of Condensers
	(i)Types of Turbines (7 M)
	Answer: Page: 1.110 – Dr.G.K.Vijayaraghavan
	Steam turbines are classified as follows.
	1.On the basis of method of steam expansion
	(a)Impulse turbine
	(b)Reaction turbine
	(c)Combination of impulse and reaction turbine
	2.On the basis of number of stages
	(a)Single stage turbines
	(b)Multi-stage turbines
	3.On the basis of steam flow directions
	(a)Axial turbine
	(b)Radial turbine
	(c)Tangential turbine
	(d)Mixed flow turbine
	4.On the basis of pressure of steam
	(a)High pressure turbine
	(b)Low pressure turbine
	(c)Medium pressure turbine
	(ii)Types of Condensers (6 M)
	Answer: Page: 1.157 – Dr.G.K.Vijayaraghavan
	1.Based on the contact shell and tube fluid
	(a)Direct Contact Condenser
	(b)Indirect Contact Condenser
	2.Based on the type of cooling
	(a)Water cooled condenser
	(b)Air cooled condenser
	3.Based on the type of flow
	(a)Down flow type
	(b)Central flow condenser
	(c)Evaporation condenser
5.	Analyze the following: BTL 4
5.	•
	(i) Coal Handling System (7 M) (ii) Food water treatment (6 M)
	(ii)Feed water treatment (6 M)
	(i) Cool Handling System (7 M)
	(i)Coal Handling System (7 M)
	Answer: Page: 1.172 – Dr.G.K.Vijayaraghavan

	<u>Two Types: (1 M)</u>
	Out plant handling of coal
	In plant handling of coal
	The out plant handling of coal is done by (3 M)
	Transportation by sea or river
	> Transportation by ropes
	> Transportation by rail
	> Transportation by road
	 Transportation by pipelines
	 In plant handling of coal
	Steps in Inplant handling of coal: (3 M)
	 Coal Delivery
	 Unloading
	 Transfer
	 Outdoor storage
	 Covered storage
	Ŭ
	In plant handling
	Weighing and measuring
	> Furnace
	(ii)Feed water treatment (6 M)
	Answer: Page: 1.238 – Dr.G.K.Vijayaraghavan
	Necessity to treat the Raw water: (3 M)
	> The deposition of dissolved salts and suspended impurities will form a scale on the inside
	wall of different heat exchangers. So, it will create excessive pressure and thermal stress
	inside heat exchangers. It may lead to the explosion and serious hazards to boilers.
	> The harmful dissolved salts may react with various parts of boilers. So, it might corrode the
	surfaces.
	Corrosion damage may occur to turbine blades.
	Two Types: (3 M)
	Demineralization Plant (DM plant) - It employs a chemical method to separate the dissolved
	salt in fresh water.
	Reverse Osmosis Plant (RO plant) - It employs a simple physical method to separate salts.
	PART*C
1.	Analyze the working of binary vapour cycle with a neat diagram. (15 M) BTL4
1.	Analyze the working of binary vapour cycle with a near diagram. (15 M) D124 Answer: Page: 1.245 - Dr.G.K.Vijayaraghavan
	Two working fluids – Mercury and water (2 M)
	Characteristics of working fluid & Diagram: (8 M)
	 High enthalpy of vaporization
	 Good heat transfer characteristics
	 High critical temperature with a low corresponding saturation temperature. High condensor temperature
	 High condenser temperature Erroging temperature should be below room temperature
	Freezing temperature should be below room temperature
	Types: (5 M)
	> Topping cycle - Condenser at the high temperature region

	Bottoming cycle – Con denser at the low temperature region
2.	(i) With a neat diagram explain the function of FBC boilers. (7 M) AU DEC-2017 BTL2
	Answer: Page: 1.17 - Anup Goel
	A fluidized bed may be defined as the bed of solid particles behaving as a fluid.
	Principle: (2 M)
	When a gas is passed through a packed bed of finely divided solid particles, it experiences a pressure d rop across the bed.
	At low velocity, this pressure drop is small and does not disturb the particles.
	But if the gas velocity is increased further, a stage will come when the particles are suspended in the gas stream and the packed bed becomes a fluidized bed.
	Types: (5 M)
	Pressurised FBC boilers – Double shell design is used
	Circulating FBC boilers – It has three zones of furnace – lower zone, upper zone, solid –separator zone
	Atmospheric fluidized bed combustor boilers – They are known as fully developed boiler and
	therefore are widely used.
	Two types – Underfeed and Overfeed.
	(ii) Super critical boilers (8 M)
	Answer: Page: 1.21 - Anup Goel
	Explanation: (5 M)
	> Generates steam above critical pressure are called super critical once through boilers.
	> At critical pressure latent heat vapourization becomes zero. In this case, the saturated liquid
	is directly converted into superheated steam.
	The separator vessel cannot be used in these boilers.
	They are also known as "drumless boilers".
	Advantages: (3 M)
	Rate of heat transfer is more
	Higher thermal efficiency
	\triangleright Pressure is more stable.
3.	Explain the working of Rankine cycle with a neat diagram. (15 M) BTL 2
	Answer: Page: 1.3 - Anup Goel
	Explanation: (5 M)
	Rankine cycle is a modified cycle of carnot.
	In Rankine cycle heat supplied and heat rejection occurs at constant pressure.
	> This cycle is practically used in steam power plant.
	Working principle: (5 M)
	Process 1-2: Reversible isentropic
	\blacktriangleright Process 2-3: Heat supplied (P=C)
	Process 3-4: Reversible isentropic
	\blacktriangleright Process 4-1: Heat rejection (P=C)
	Diagram: (5 M)

	Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.
	PART*A
1	List the applications of diesel engine power plant. BTL1
	> Peak load plant
	Mobile plants
	> Stand by units
	Emergency plant
	Starting station
	Nursery station
2	Analyze the purpose of air intake system in a diesel engine power plant. BTL4
	The purpose of air intake system conveys fresh air through pipes or ducts to
	Air intake manifold of four stroke engine
	Scavenging pump inlet of a two stroke engine
	Supercharge inlet of a supercharged engine
3	Name the commonly used fuel injection system in a diesel power station. BTL3
	Common rail injection system
	Individual pump injection system
	> Distributor
4	Write the processes of Otto cycle. BTL5
	Process 1-2: Isentropic Compression process
	Process 2-3: Constant Volume heat addition process
	Process 3-4: Isentropic Expansion process
	Process 4-1: Constant Volume heat rejection process
5	List the processes of dual cycle. BTL2
	Process 1-2: Isentropic Compression process
	Process 2-3: Constant Volume heat addition process
	Process 3-4: Constant pressure heat addition process
	Process 4-5: Isentropic Expansion process
	Process 5-1: Constant Volume heat rejection process
6	Name the various gas power cycle. BTL1
	Carnot cycle
	> Otto cycle
	Diesel cycle
	Brayton cycle
	Dual combustion cycle
_	> Atkinson cycle
7	Write the different types of Engines used in diesel power plants. BTL1
	Small size Diesel engine
	Medium size Diesel engine
	Large size Diesel engine

8	List the processes of diesel cycle. BTL5		
	Process 1-2: Isentropic Compression process		
	Process 2-3: Constant pressure heat addition process		
	Process 3-4: Isentropic Expansion	nsion process	
	Process 4-1: Constant Volum	e heat rejection	on process
9	List the various processes of Brayt	on cycle. BT	Ľ6
	Process 1-2: Isentropic Comp	pression proce	SS
	Process 2-3: Constant pressure		
	Process 3-4: Isentropic Expansion		
	 Process 4-1: Constant pressure heat rejection process 		
10	Classify the various types of coolin	g system use	d in diesel power plant. BTL4
	Air cooling		
	Liquid cooling		
	(a)Thermo – syphon coo	ling	
	(b)Forced or pump cooli		
	(c)Cooling with thermos	-	
	(d)Pressurised water coo		
	(e)Evaporative cooling	C	
11		ionary gas tu	rbine power plant for generation of electricity.
	BTL1	. 6	
	The part load efficiency is po	or	
			and pressure, so special metals are required to
	maintain the unit.	I	
		t 66%) develo	ped in the turbine is used to drive the compressor.
	The devices that are operated		
12	Name the Components of Gas Tur		
	> Air compressor		
	 Combustion chamber 		
	➢ Gas Turbine		
	➢ Generator	X	
13	Point out the major difference betw	ween Otto cy	cle and Diesel cycle. BTL4
	S.NO OTTO CYCLE		DIESEL CYCLE
	1 It consists of two adiaba	tic and two	It consists of two adiabatic, one constant
	constant volume processes.		pressure and one constant volume processes.
		· ·	
	2 Compression ratio is equal	to expansion	Compression ratio is not equal to expansion
	ratio.		ratio.
	3 Heat addition takes place	at constant	Heat addition takes place at constant pressure
	volume processes	at constant	processes
	volume processes		processes
	4 Efficiency depends on	compression	Efficiency depends on compression ratio and cut
	ratio only	1	off ratio
	-		
	5 Heat rejected is less		Heat rejected is more
11	Write the offect of inter seeling in	a god turking	nlant PTI 1
14	Write the effect of inter cooling in➢ Heat supply is increased	a gas turdine	
1	 Incar suppry is increased 		

	➢ It decreases the thermal efficiency
	➢ Work ratio will be increased
	Specific volume of air is reduced
15	List the advantages and disadvantages of a diesel power plant. BTL1
15	Advantages:
	\rightarrow The location of the plant is near the load center.
	 It has no stand by losses.
	 It provides quick starting and easy pick-up of loads. Shilled mean away is not required.
	Skilled manpower is not required.
	Disadvantages:
	 Noise is a serious problem.
	High operating cost
	The plant capacity is limited to about 50MW of power.
	The efficiency of the Diesel engine is about 33% only.
16	Analyze the process in combined cycle power plant. BTL4
	The combined power cycles are introduced by superposing a high temperature power plant
	as a topping unit and the low temperature power plant as a bottoming unit.
	It increases the efficiency and reduces the fuel consumption.
	Eg: Gas Turbine – Steam Turbine plant in which Gas turbine as bottoming unit and steam turbine as
	topping unit.
17	List the advantages of combined cycle power plants. BTL2
	It produces low environmental effect
	➢ It needs less amount of water
	Investment cost is low
	It gives high ratio of power output to fuel
	▶ It produces less smoke when compared with ordinary steam plant.
	➢ High efficiency than open cycle power plant.
18	Give examples of combined cycle power plant. BTL1
	Gas turbine – steam turbine power plant
	Thermionic – steam power plant
	Thermo electric-steam power plant
	M.H.D – steam power plant
	 Nuclear – steam combined power plant
	 MHD – gas turbine power plant
19	Illustrate the advantages of Integrated Gasifier based combined cycle power plants. BTL3
17	 It produces higher efficiencies and lower emissions
	 Improvements in efficiency dramatically reduce the emissions from coal combustion.
	 Product flexibility is ensured.
20	Define air standard efficiency of Diesel cycle. BTL1
20	Define di standard entelency et Dieser cycle. Di El
	Air standard efficiency is defined as the ratio of work done by the cycle to the heat supplied to the
	cycle.
21	What is Compression ratio? BTL1
	It is the ratio of volume when the piston is at BDC to the Volume when the piston is at TDC.
	The are faile of volume when the piston is at DDC to the volume when the piston is at TDC.

	PART*B
1	Explain the working of open cycle and closed cycle gas turbine power plant and discuss its advantages and disadvantages. (13 M) AU DEC-2015 BTL2
	Answer: Page: 2.31 - Anup Goel
	A simple gas turbine cycle consists of the following components (3 M)
	Compressor
	Combustion chamber
	> Turbine
	Open cycle gas turbine power plant: (5 M)
	Consists of air compressors, combustion chamber and turbine.
	Air is drawn from the atmosphere to compressor. The second size is a second size of the second se
	The compressed air is passed to combustion chamber where heat is added by spraying fuel into the air stream.
	The hot gases expand through the turbine and the product of combustion which is coming out of the turbine is exhausted to the atmosphere.
	Advantages:
	 Low maintenance
	Disadvantages:
	Turbine blades wear out earlier
	Closed cycle gas turbine power plant: (5 M)
	Consists of compressor, Combustion chamber, cooling chamber (cooler) and turbine.
	> The product of combustion which is coming out of the turbine is cooled in the cooling
	chamber and sent again to the compressor.
	Advantages:
	Improves the heat transmission and part load efficiency.
	Disadvantages:
	Large amount of cooling water is required.
2	 Requires the use of heater. (i) Explain in detail about the construction of LCCCC (7 M) All DEC 2015 DTL 1.
2	(i) Explain in detail about the construction and working of IGCC. (7 M) AU DEC-2015 BTL1 Answer: Page: 2.182 - Dr.G.K.Vijayaraghavan
·	 Answer: Fage: 2.162 - DI.G.K. vijayaragnavan One of the most promising technologies in power generation.
	 Extremely clean and more efficient than traditional coal-fired gasification systems.
	Construction of IGCC: (3 M)
	Consists of the following four major units.
	► ASU (Air separation Unit)
	> Gasification
	➢ Gas clean up
	Combined power block
	Working: (4 M)
	First coal is gasified either partially or fully.
	The synthetic gas is produced.
	> Then, it is cleaned.
	After that, it is burnt in the combustion chamber.
	(ii) Draw and explain PV and TS diagrams of Brayton cycle. (8 M) AU DEC-2015 BTL1
	Answer: Page: 2.76 - Dr.G.K.Vijayaraghavan
	Brayton cycle - theoretical cycle for gas turbine.

Four Processes: Two reversible adiabatic Processes and two constant pressure Processes. Therefore this cycle is also called constant pressure cycle. (4 M) Process 1-2: Isentropic Compression Process Process 2-3: Constant Pressure heat addition Process Process 3-4: Isentropic expansion process Process 4-1: Constant pressure heat rejection process. PV and TS diagram: (4 M) Discuss the essential components of the diesel power plant with neat layout. (13 M) BTL2 3 Answer: Page: 1.3 - Anup Goel Diagram: (5 M) **Components: (8 M)** The essential components of diesel power plant are Diesel Engine – Main component to generate the mechanical energy from the heat energy (i) which is obtained by burning diesel fuel. Air Intake system – It provides the air required for the combustion of fuel. (ii) (iii) Exhaust system – To reduce the noise produced by the exhaust gases coming out of the engine. Cooling system – To lower the temperature of the burning fuel (iv) (v) Fuel supply system – It supplies the fuel required for combustion. Lubrication system – To reduce the wear of the moving parts of the engine. (vi) Diesel engine starting system – To start the engine from cold condition with the help of (vii) an air compressor. Governing system – Used to control the flow of the fuel. (viii) PART*C (i)Derive an expression for the work ratio using Brayton cycle. (8 M) BTL4 1 Answer: Page: 2.79 - Dr.G.K.Vijayaraghavan Work Ratio: (3 M) It acts as useful parameter for power plant cycles. It is defined as the ratio of net work transfer in a cycle to the positive work transfer or turbine work in the cycle. Expression: (5 M) Work ratio = Net work transfer / Positive work transfer $= [mC_p(T_3 - T_4) - mC_p(T_2 - T_1) / mC_p(T_3 - T_4)]$ $= 1 - (T_1/T_3) (R_P)^{\gamma - 1} \gamma$ The work ratio depends not only on the pressure ratio but also on the ratio of the minimum and maximum temperatures. (ii)Discuss the working of any one type of combined cycle power plant. (8 M) BTL2 Answer: Page: 2.17 - Dr.G.K.Vijavaraghavan **Explanation:** (3 M) To increase the efficiency and reduce the fuel consumption, the combined power cycles are introduced by superposing a high temperature power plant as a topping unit and the low temperature power plant as a bottoming unit. Types: (2 M) ➢ Gas turbine − steam turbine power plant \blacktriangleright Thermionic – ste am power plant ➢ Thermo electric − steam power plant

	1			
	➢ M.H.D − steam power plant			
	Nuclear – steam combined power plant			
	MHD – gas turbine power plant			
	Gas Turbine – Steam Turbine plant: (3 M)			
	Bottoming Unit – Gas Turbine plant			
	Topping Unit – Steam Power plant			
	The efficiency of this combined unit is 45%.			
2	(i)Enlist the advantages and disadvantages of a dies	el engine power plant. (8 M) BTL1		
	Answer: Page: 2.31 - Anup Goel			
	Advantages: (4 M)			
	Very simple in design and also simple in install	ation.		
	Limited Cooling water requirement.			
	Standby losses are less as compared to the othe	r Power plants.		
	Low fuel cost.			
	Quickly started and put on load.			
	Disadvantages: (4 M)			
	High maintenance and operating cost			
	Fuel cost is more, since in India diesel is costly			
	The plant cost per KW is comparatively low.			
	The life of diesel power plant is small due to hi			
	Noise is a serious problem in diesel power plan			
	(ii)Compare the merits and demerits of open and ch	osed cycle gas turbine power plant.		
	(8 M) BTL4			
	Answer: Page: 2.162 - Dr.G.K.Vijayaraghavan			
	Answer: Page: 2.162 - Dr.G.K.Vijayaraghavan			
		Closed Cycle Cas Turbine Dower Plant		
	Answer: Page: 2.162 - Dr.G.K.Vijayaraghavan Open Cycle Gas Turbine Power Plant	Closed Cycle Gas Turbine Power Plant		
		Closed Cycle Gas Turbine Power Plant Merits:		
	Open Cycle Gas Turbine Power Plant Merits: (4 M)	Merits:		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required.	Merits:Efficiency is same throughout the		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine	 Merits: Efficiency is same throughout the cycle. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M)	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits:		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits: A separate pre-cooler 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the turbine and it is used to drive the compressor.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits: A separate pre-cooler arrangement is necessary. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the turbine and it is used to drive the compressor. > Turbine blades are fouled by combustion products.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits: A separate pre-cooler arrangement is necessary. The size and weight are more. Initial cost and maintenance are 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the turbine and it is used to drive the compressor. > Turbine blades are fouled by combustion products. > Starting of the plant is difficult.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits: A separate pre-cooler arrangement is necessary. The size and weight are more. Initial cost and maintenance are more. 		
	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the turbine and it is used to drive the compressor. > Turbine blades are fouled by combustion products.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits: A separate pre-cooler arrangement is necessary. The size and weight are more. Initial cost and maintenance are 		
3	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the turbine and it is used to drive the compressor. > Turbine blades are fouled by combustion products. > Starting of the plant is difficult.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits: A separate pre-cooler arrangement is necessary. The size and weight are more. Initial cost and maintenance are more. The response to load variation is less 		
3.	Open Cycle Gas Turbine Power Plant Merits: (4 M) > No pre-cooler is required. > Size and weight of the open cycle gas turbine unit are less. > Combustion efficiency is more. > Response to load variation is greater than closed cycle gas turbine. Demerits: (4 M) > Part load efficiency rapidly decreases for the considerable % of power developed by the turbine and it is used to drive the compressor. > Turbine blades are fouled by combustion products. > Starting of the plant is difficult. > Thermal stresses are high.	 Merits: Efficiency is same throughout the cycle. Starting of the plant is easy. Thermal stresses are low. There is no need for internal cleaning. Demerits: A separate pre-cooler arrangement is necessary. The size and weight are more. Initial cost and maintenance are more. The response to load variation is less 		

Four F	Processes: (4 M)
Two re	versible adiabatic or isentropic processes and
Two co	onstant volume processes
\succ	Process 1-2: Isentropic Compression Process.
\succ	Process 2-3: Constant Volume heat addition Process
\succ	Process 3-4: Isentropic expansion process
\succ	Process 4-1: Constant Volume heat rejection process.
Diagra	um: (4 M)
	This cycle is used in Diesel engines. processes: (4 M)
-	
	oversible adiabatic or isentropic
	Denstant Pressure processes. Process 1-2: Isentropic Compression Process.
	Process 2-3: Constant Pressure heat addition Process
	Process 3-4: Isentropic expansion process
	Process 4-1: Constant Volume heat rejection process.
	am: (4 M)

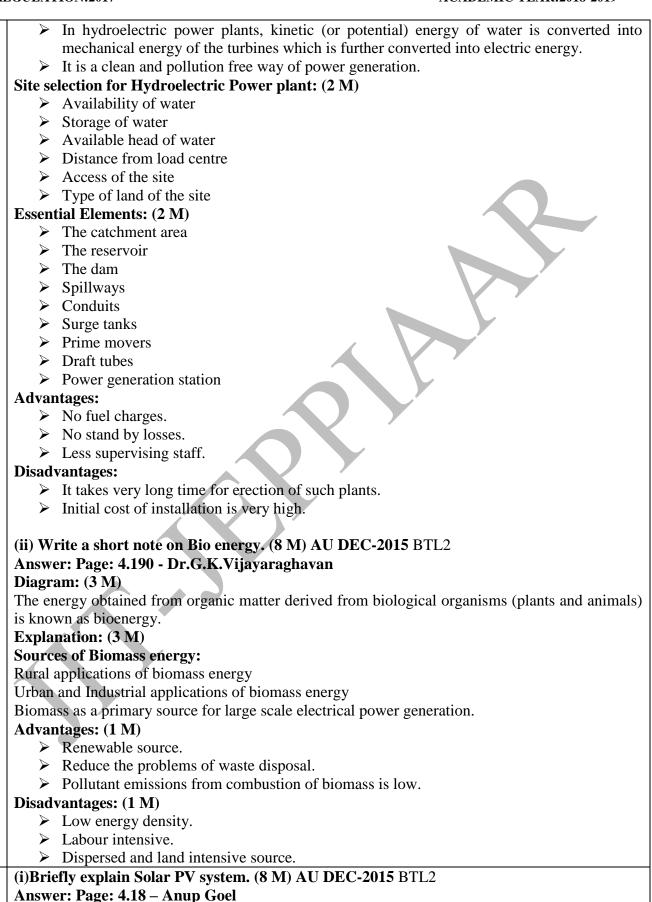
	UNIT III – NUCLEAR POWER PLANTS
	Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium- Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.
	PART * A
1	 Write the advantages of nuclear power plant. BTL1 There is no atmospheric pollution by combustion products. They are not affected by adverse weather conditions. Water requirement is very less. Space requirement is less as compared to other conventional power plants of equal size. It is well suited to meet large power demands. They give better performance at high load factors (80 to 90%)
2	Name the three moderators used in nuclear power plants. BTL1
	 Heavy water (D₂O) Water (H₂O) Beryllium (Be) Graphite (C)
3	Helium (He)Write the function of the moderator. BTL2
5	Moderator is a material which is used to slow down the neutrons from high velocities without capturing them. The fast moving neutrons are far less effective in causing the fission and for the escape from the reactor.
4	List the function of control rods. BTL1
	 To control the rate of fission. To start the nuclear chain reaction when the reactor is started from cold. To shut down the reactor under emergency condition.
5	What is nuclear fission? BTL2
	Nuclear fission is the process of splitting the nucleus into two almost equal fragments accompanied by the release of heat. In other words, it is the process of splitting the unstable heavy nucleus into two fragments of approximately equal mass when bombarded with neutrons.
6	Mention the fuels used in nuclear power plants. BTL1
	 U²³⁵ – Primary fuel U²³³ and PU²³⁹ – Secondary fuels
7	Write the conditions satisfied to sustain nuclear fission process (or) Requirements of Fission process. BTL2
	 The chain reaction should be self – sustaining or self – propagating only. At least one fission neutron becomes available for causing fission of another nucleus. The fission process must liberate the energy.
	> The neutrons emitted in fission must have adequate energy to cause fission of other nuclei.
	It must be possible to control the rate of energy liberation.
8	List down the basic factors those are to be considered for the design of a nuclear power reactor. BTL1
	 Proximity to load center Population distribution

	► L	and use			
	 Meteorology Geology 				
		ydrology			
0		eismology "half-life" of nuclear f	Seala 9 DTI 2		
9					was of the top dop on of an elong to
					ure of the tendency of nucleus to
10		or "disintegrate" and it ish between PHWR and			Ity.
10	S.NO.	PHWI		. <i>2</i> .	LMFBR
	5.NO.	111//1	Λ		LIVITBR
	1	A nuclear power rea	actor commonly	A nuclear react	tor is capable of generating
		uses enriched natural	•	Ti nucleur reuct	tor is capable of generating
				more fissile ma	aterial than it consumes.
		fuel which uses heav			
		its coolant and moder	ator.		
		DIWD	1 TT '	The	we die it. Die bewechen en d
	2	PHWR running on t		The conversion	n ratio is higher than 1.
		have a conversion rati	o of 0.8		X
	2				
	3	It is costly.		Its cost is comp	paratively less.
				×	
11	Define th	ne term "Breeding". B	TL2	•	
	In a fast	breeder reactor, the pro-	ocess of producin	g energy to self-	-sustain the nuclear fission chain
	reaction without using moderator is known as breeding. Enriched Uranium (U^{235}) or Plutonium is				
	used as fu	uels which are surround	led by a thick blan	nket of fertile Ur	anium (U^{238}).
12	Name th	e components of press	urized water rea	ctor nuclear po	wer plant. BTL1
		eactor			
	> P	ressurizer			
		leat exchanger			
	$\succ C$	oolant pump			
13		the nuclear reactors.			
	1.Accor	ding to the neutrons	2.According to	the fuel used	3.According to the type of
	energy.				as along used
					coolant used
		Fast reactors	Natural f	fuel reactor	Water cooled reactors
		Intermediate or	 For the second se		 Gas cooled reactors
				Orailluill	
		epithermal reactors	reactor		Liquid metal cooled
		Low energy or			reactors
		Thermal reactors			
L	<u>i l</u>				1

	4.According to the type of moderators used	5.According to the construction of core			
	> Graphite moderator	Cubical core reactor			
	reactor	 Cylindrical core reactor 			
	➢ Beryllium moderator	Spherical core reactor			
	reactor	Annulus core reactor			
	➢ Water moderator reactor	Slab core reactor			
14		ty cover the actions taken to preven			
	into the environment which could	The main safety concern is the end d cause harm to human both at the e safety and performance of react	reactor and off-site. The nuclear		
15		of fast breeders. BTL2 r system cooled with helium cooled with lead or lead – bismuth			
		or Fueled with molten salts	eulectic		
	 SFR: Sodium Fast React 				
	 SCWR: Super-Critical W 				
	-	perature Reactor cooled with helium	n at 1000°C at the core outlet for		
	efficient production of h				
16		of Nuclear Power Plant. BTL1			
		clear fuels are non-renewable energy			
		arge amounts of radioactive mat	erial could be released into the		
	environment.				
		ins radioactive and it is hazardous	to health for thousands of years.		
17		r reactor. BTL2 he furnace of a steam power plant tor, heat is produced due to nuclea	-		
18	What is known as moderating	*			
	as the ratio of the number of neu	multiplication ratio or reproduction trons in any particular generation t			
	the preceding generation.				
	$K = \frac{\text{Number of neutrons in any}}{\text{K}}$	particular generation			
	$\mathbf{K} = \frac{1}{\mathbf{N}}$ Number of neutrons in the	preceding generation			
19	What is four factor formula? BTL2				
		nown as Fermi's four factor formu			
	determine the multiplication of a	a nuclear chain reaction in an infin			
20	What do you mean by mass defect? BTL2				
	-	more particles to combine together	-		
	decrease and it will be less than	the sum of the masses of the indiv	vidual particles. The stronger the		

	interaction becomes and more the mass will decrease. It decreases the mass of the system called mass defect.
21	What is known as binding energy? BTL2
-1	The energy released at the moment of combination of two nucleons to form nucleus of an atom is
	called binding energy.
	PART*B
1.	Explain with a neat diagram the various parts of nuclear power plant and mention the function
1.	of each part. (13 M) AU DEC-2015 BTL2
	Answer: Page: 3.4 - Anup Goel
	Elements of Nuclear power plant: (3 M)
	Nuclear reactor
	Steam generator (Heat Exchanger)
	 Steam turbine
	 Steam Condenser
	Water and coolant feed pumps
	Electric generator
	Diagram: (5 M)
	Working: (5 M)
	The nuclear reactor works as a furnace that produces heat.
	> The heat generated in the reactor by the nuclear fission is absorbed by the circulating coolant
	through the reactor core.
	> The hot coolant leaving the reactor is passed to the heat exchanger.
	Steam is produced and is supplied to the turbine for expansion to produce work.
2.	(i) Explain CANDU reactor with neat sketch. Give its advantages and disadvantages. (8 M)
	AU DEC-2015 BTL2
	Answer: Page: 3.9 - Anup Goel
	Diagram: (3 M)
	Moderator – Heavy water
	Coolant – Heavy water
	Reflector – Heavy water
	Fuel – Natural Uranium
	Explanation: (5 M)
	> The Coolant heavy water is passed through the pressurized fuel tubes and then to the
	moderator heat exchanger through the primary circuit.
	> The steam is generated first in moderator heat exchanger and then passed to the secondary
	heat exchanger to improve its quality.
	> Control rods are not required because control can be achieved by controlling the flow of
	heavy water in primary circuit.
	Advantages:
	Less cost.
	Very short time period for construction. Disadvanta part
	Disadvantages:
	 Cost of heavy water is high.
	Low power density.
	(i) Fundain what is shain reaction in connection with a much survey (2.14) DTL 4
	(ii)Explain what is chain reaction in connection with a nuclear reactor. (8 M) BTL4
	Answer: Page: 3.2 - Anup Goel

	Diagram: (3 M)
	Diagram: (3 M) Explanation: (5 M)
	\succ It mainly includes splitting and recombining of neutrons and producing sub elements of
	Uranium.
	The elements whose nucleus easily fusions is ${}_{92}U^{235}$
	 All the other naturally available elements are stable and the nucleus of this cannot split easily.
	 If the neutrons enter the nucleus of U²³⁵, the nucleus splits into two sub elements and also
	releases two neutrons per fission.
	 The obtained neutrons are having high velocity and to control this velocity, moderators are
	used.
	 This process is continued step by step and product smaller fragments of Uranium by releasing
	large amount of heat energy.
	 This heat energy is used for power generation in power plants.
	PART*C
1.	Compare the working, merits and demerits of PWR and BWR. (15 M) BTL4
1.	Answer: Page: 3.6 - Anup Goel
	PWR – Pressurized Water Reactor (8 M)
	Diagram: (3 M)
	Explanation: (3 M)
	> PWR is a water cooled thermal reactor having special core design using natural and highly
	enriched fuel.
	Moderator – water
	Coolant – water
	► Reflector – water
	Fuel – Uranium Oxide
	Advantages: (1 M)
	Less quantity of control rods.
	Inspection and maintenance of the components used is easy.
	Reactor is compact in size.
	Power density is high.
	Disadvantages: (1 M)
	Thermal efficiency of the plant is low.
	Fabrication of fuel element is costly.
	Requires strong pressure vessel in primary circuit so the capital cost is high.
	BWR – Boiling Water Reactor (7 M)
	Diagram: (3 M)
	Explanation: (2 M)
	Moderator – water
	Coolant – water
	Reflector – water
	➢ Fuel – Enriched Uranium Adventages (1 M)
	Advantages: (1 M)
	 More stable than PWR. Lower program program he used for reactor
	 Lower pressure vessel can be used for reactor. Cost of PWP is also reduced compared to PWP
	Cost of BWR is also reduced compared to PWR. Disadvantages: (1 M)
	Disadvantages: (1 M)
	Power density is 50% of PWR.


	Desired output cannot be achieved with a single pass circuit.		
2.	2. (i)Discuss about the safety measures adopted in modern nuclear plants. (8 M) BTL2		
	Answer: Page: 3.81 – Dr.G.K.Vijayaraghavan		
	Components of Nuclear Safety: (3 M)		
	Technical Safety		
	Human Factors and Organizational Safety		
	Programmatic and cross-cutting Safety		
	Components of Technical Safety: (2 M)		
	Knowledge on the nuclear technology		
	Safety assessments of all changes and back fits are made during the life of the facility.		
	Radiological protection program		
	Components of Human Factors and Organizational Safety: (2 M)		
	Sufficient properly qualified, trained and fit-for-duty personnel		
	Strong Cooperative management organization		
	Facility management organization		
	Components of Programmatic and Cross-Cutting Safety: (1 M)		
	Programmes such as fire protection and surveillance testing		
	Programme of Operating experience analysis		
	Ageing management programme		
	(ii)Explain the working of Gas Cooled Reactor (GCR) with a neat sketch. (8 M) BTL2		
	Answer: Page: 3.8 - Anup Goel		
	Diagram: (3 M)		
	Explanation: (3 M)		
	Moderator – Graphite		
	Coolant – Gases like air, helium, CO_2 and H_2 .		
	Reflector – water		
	➢ Fuel – Uranium Oxide		
	Types: (2 M)		
	Gas cooled Graphite Moderator (GCGM) reactor – Uses Natural Uranium as fuel		
	→ High Temperature Gas Cooled (HTGC) reactor – Uses highly enriched Uranium fuel		
	graphite moderator		
	Advantages:		
	Simple fuel processing.		
	> Less corrosion.		
	Disadvantages:		
	Leakage of gas.		
	Fuel loading is very costly.		

	UNIT IV – POWER FROM RENEWABLE ENERGY			
	Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, <i>Solar</i> Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.			
S.NO	PART*A			
1	Mention the necessity of tall tower in horizontal axis wind turbine. BTL2			
	To withstand the power house during heavy wind			
	Supporting structure for energy house			
2	Write the advantages and disadvantages of hydropower plants. BTL2			
	Advantages:			
	There is no air pollution.			
	> Water is the renewable source of energy. It is neither consumed nor converted into			
	something else.			
	There is no problem of handling the fuel and ash.			
	> The running cost is low when compared to thermal or nuclear power stations.			
	Disadvantages:			
	Hydropower projects are capital-intensive with a low rate of return.			
	> Power generation is dependent on the quantity of water available which may vary season-			
	to-season and year-to-year.			
	 Initial cost of the plant is high. 			
2	▶ It takes considerably long time for its installation as compared with thermal power plants.			
3	Define the function of surge tank in hydro plants. BTL2			
	Surge tank is used to reduce the sudden rise of water in the penstock, stabilize the velocity			
4	and pressure in penstock and reduce water hammer effect.			
4	 Classify the hydro-electric turbines with respect to high medium and low head. BTL1 ➢ High head Turbine. 			
	 Medium head Turbine. 			
	 Low head Turbine. 			
5	List the three main factors of power output of hydroelectric plant. BTL1			
5	 Available head of water 			
	 Speed of the turbine 			
	 Pressure of the water flow 			
6	Give the main parts of pelton wheel. BTL1			
U	> Penstock			
	 Spear and nozzle 			
	 Runner with buckets 			
	 Break nozzle 			
	 Outer casing 			
	 Governing mechanism 			
7	What is the function of spear & nozzle? BTL2			
,	The nozzle is used to convert the whole hydraulic energy into kinetic energy. Thus, the			
	nozzle delivers the high-speed jet. To regulate the water flow through nozzle and to obtain a good			
	jet of water, spear or nozzle is arranged.			

8	Define water hammer. BTL2		
	If water is flowing through a channel and it is stopped abruptly i.e., its momentum is broken so a		
	pressure surge or wave results, this effect produced is called water hammer.		
	-	-	
9	List the	e essential factors which should be con	sidered while selecting a site for a hydroelectric
		plant. BTL1	
	\rightarrow	Water availability	
	\succ	Water Storage	
		Water head	
	\succ	Geological investigations	
		Environmental aspects	
		Consideration of water pollution effects	
10		the basis of classification of turbines. H	
		bines are classified according to the follo	
		According to the action of the water flow	-
		According to the main direction of flow	-
		According to head and quantity of water	
		According to the specific speed.	required.
11	List the	e difference between Francis and Kapl	lan turbine BTI 5
11	S.NO	FRANCIS TURBINE	KAPLAN TURBINE
	5.1.10	TRAILER TORDILE	
	1	Correct disposition of the guide and	Correct disposition of the guide and moving
	-	moving vanes is obtained at full load	Contest disposition of the galas and moving
			blades is obtained at any load.
		only.	
	2	System may have one or two	Two servomotors respective of the size of the
			I wo servolliotors respective of the size of the
		servomotors depending on the size of	unit always do governing.
		the unit.	unit always do governing.
	3	Since the guide vanes are only	Both guide and runner vanes are controlled and
		controlled and high efficiency is	
		obtained.	high efficiency is obtained even at partial loads.
	4	Servomotors are kept outside the	Both servomotors are kept inside the hollow shaft
		turbine shaft.	
			of the turbine runner.
12		the limitations of tidal power plant. B	
		v v .	therefore, turbines have to work on a wide range of
		head variation.	
	\succ	Construction in sea is found difficult.	
	\succ	The output is not uniform.	
	\succ	More corrosion will occur due to corros	ive sea water.
	\succ	Massive construction leads to more cons	sumption to start the plant.
13		e components of Tidal power plants. B	
		The dam or dyke	
		Sluice ways	

	The power house				
14	Define fuel cell and state its advantages. BTL4				
	A fuel cell is a device which uses hydrogen (or a hydrogen – rich fuel) and oxygen to create				
	 an electric current. In other words, it can be defined as an electrochemical device in which the chemical energy of a conventional fuel is converted directly and efficiently into low voltage direct current electrical energy. <u>Advantages:</u> ➤ Fuel cells have the potential to replace the internal combustion engine in vehicles. 				
	They can be used in transportation applications such as powering automobiles, buses, cycles and other vehicles.				
	 Many portable devices can be powered by fuel cells such as laptop computers and cell 				
	phones				
	 They can also be used for stationary applications such as providing electricity to power 				
	homes and businesses.				
1.5					
15	What is geothermal energy? BTL2				
	Geothermal energy is the heat energy from high pressure steam stored in deep earth. It is				
	a renewable source of energy derived from the rain water in the earth heated to over 180°C by				
	subterranean hot rocks.				
16	Write the applications of geothermal energy. BTL1				
	Generation of electric power				
	Space heating for buildings				
	Industrial process heat				
17	List the important criteria while selecting the geothermal energy. BTL1				
	Temperature of geothermal fluid, °C				
	\blacktriangleright Discharge rate, m ³ / day				
	Useful life of production well, years				
	\blacktriangleright Mineral contents gram / m ³				
18	Identify the different types of geothermal fluid and give its temperature range. BTL1				
	Dry steam – Steam-turbine cycle				
	\blacktriangleright Hot water, temperature > 180°C – Steam – Turbine cycle				
	\blacktriangleright Hot water, temperature > 150°C – Binary – cycle				
	Hot brine (pressurized) – Binary cycle				
	Hot brine (flashed) – Special turbines, Impact turbines, Screw expander, Bladeless turbine				
19	What is Solar cell? BTL2				
1/	A solar cell is a device which directly converts the energy of light into electrical energy				
	through the process of photovoltaic effect.				
20	List down the performance factors in wind energy generators. BTL2				
20	 Solidity 				
	 Tip speed ratio 				
	 Performance Coefficient 				
	➢ Torque				
	PART *B				
1	(i) Draw the schematic diagram of hydro plant and explain the operation. (7 M) AU DEC- 2015 BTL2				
	Answer: Page: 4.2 – Anup Goel				
	Diagram: (3 M)				
	> Hydroelectric power plant is a conventional renewable source of power generation.				

2.

Diagram: (3 M)

Explanation: (3 M)

- Converts energy from solar radiation directly into electricity using semiconductor materials.
- > No mechanical moving parts, so it lasts for decades and requires only minimal maintenance.
- Ranges from small-scale projects for lighting and pumping to large-scale projects for whole buildings and even utility-scale photovoltaic farms.

Working: (2 M)

- When light energy or photons strike a photovoltaic cell, electrons are knocked loose from a layer in the cell designed to give up electrons easily.
- The charge difference that is built into the cell pulls the loose electrons to another cell layer before they can recombine in their originating layer.
- > This migration of electrons creates a charge between layers in the photovoltaic cell.
- Electrically connecting the positively and negatively charged layers of a photovoltaic cell through a load will produce electricity.
- This energy is converted through the inverter to be used by electrical machines, appliances, lights, and so on.

(ii)What are the various kinds of fuel cell and explain the working of anyone? (7 M) AU DEC-2015 BTL2

Answer: Page: 4.245 - Dr.G.K.Vijayaraghavan

Types of Fuel cells: (3 M)

- Hydrogen-oxygen cell
- > Polymer Electrolyte Membrane (PEM) fuel cell
- Direct Methanol fuel cell
- Alkaline fuel cell
- Phosphoric acid fuel cell
- Molten Carbonate fuel cell
- Solid Oxide fuel cell
- Regenerative fuel cell

Hydrogen – Oxygen cell: (4 M)

- Anode: Hydrogen
- Cathode: Oxygen
- Electrolyte: Water

	F Electrolyte. Water
	Reactions:
	Anode: $2H_2 + 4(OH)^- \longrightarrow 4H_2O + 4e^-$
	Cathode: $O_2 + 2H_2O + 4e^- \longrightarrow 4(OH)^-$
	$4KOH \qquad \longrightarrow \qquad 4K^+ + 4(OH)^-$
	Cell reaction: $2H_2 + O_2 \longrightarrow 2H_2O$
	Two types:
	Low temperature cell
	➢ High pressure cell
3.	Explain the working of solar thermal power plant with a neat diagram. (13 M) BTL2
	Answer: Page: 4.13 – Anup Goel
	Diagram: (4 M)
	Explanation: (3 M)
	Solar energy:
	The energy liberated from solar radiation is known as solar energy.
	\succ If the electrical energy generated from solar energy by using solar collectors is known as

	solar power plant.
	Important components of Solar Power Plant: (3 M)
	 Solar collector
	 Heat exchanger
	 Steam turbine
	Condenser
	> Pump
	Cooling tower
	Solar Collectors – Device for collecting solar radiation and transfers the energy to a fluid passing
	in it.
	<u>Types</u> – Flat plate type, cylindrical parabolic collectors, Parabolloid collectors
	Solar Ponds – It combines solar energy collection and sensible heat storage
	Types of Solar power plant: (3 M)
	Low temperature solar power plant.
	(a) Using solar pond.
I	(b) Using flat plate collector.
	 Medium temperature solar power plant.
l	 High temperature solar power plant.
	PART*C
1.	(i)Explain the construction and working of fuel cell also mention its merits and demerits.
1.	(8 M) BTL2
	Answer: Page: 4.238 - Dr.G.K.Vijayaraghavan
	Principle: (1 M)
	A fuel cell is an electromechanical device in which the chemical energy of a conventional fuel is
	directly converted and efficiently into low voltage DC electrical energy.
	Diagram: (2 M) Ports of a fuel cell: (3 M)
	Parts of a fuel cell: (3 M)
	Membrane electrode assembly – Electrodes, catalyst and polymer electrolyte membrane
	together form the membrane electrode assembly.
	Anode – Negative side of the fuel cell
	Cathode – Positive side of the fuel cell
	> Polymer Electrolyte membrane – Specially treated material which looks similar to
	ordinary kitchen plastic wrap which conducts only positively charged ions and blocks
	electrons.
	Catalyst-All electromechanical reactions in the fuel cell consist of two separate reactions
	such as an oxidation half-reaction at the anode and a reduction half-reaction at the cathode.
	> Chemistry of a fuel cell - Anode, cathode and cell reaction.
	> Hardware-The backing layers, flow fields and current collectors are designed to maximize
	the current from a membrane/electrode assembly.
	Major sections of Fuel Cell Power Plants: (2 M)
	It consists of six major sections which are as follows:
	 Fuel processing section
	 Fuel cell power pack
	 Power conditioning section
	 Switchgear and supply section Control subsystem as stien
	Control subsystem section
	Heating section

Answer: Page: 4.8 – Anup Goel
Advantages: (3 M)
It is a renewable source of energy
Wind power systems are non-polluting, so it has no influence on the environment
Wind is economically free energy.
The wind blows day and night, which allows windmills to produce electricity throughout the day.
Disadvantages: (4 M)
Wind energy available is not consistent and steady, fluctuating in nature.
Wind energy requires expensive storage capacity because of its irregularity.
> Wind energy systems are noisy in operation; a large unit can be heard many kilomete
away.
Requires large open areas for setting up wind farms.
Explain the working of tidal power plant with a neat diagram. (15 M) BTL2
Answer: Page: 4.19 – Anup Goel
Diagram: (3 M)
Tidal power generators derive their energy from movement of the tides.
Explanation: (5 M)
Types of Tides: (3 M)
High tide or flood tide: the highest level of tidal water
Low tide or ebb tide: the lowest level of tidal water
The difference between high and low tides is known as tidal range.
The tidal range varies from season to season and location to location.
> The maximum tidal range occurs at the time of new moon called spring tide.
Types of Tidal Power Plant: (4 M)
(a)Single basin system or one-way system
<u>Components</u> – Dam, Power house, Basin, Sluice ways
The power house and turbine located between sea and basin
(b)Double basin system or two-way system
Components – Dam, Power house, Upper and lower basin, Sluice gate
The system contains two basins between these two power house
Advantages:
Renewable source, Pollution free
Disadvantages:
Expensive to build, Barrage has environmental effects.

	UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANT
	Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.
	PART*A
Q.No.	Questions
1	Define demand factor. BTL2 Demand factor is the ratio of actual maximum demand of the system to the total connected demand of the system. Demand factor = Actual maximum demand / Total connected demand
2	Define Load factor. BTL2 Load factor is the ratio of average load over a given time interval to the peak load during the same time interval. Load factor = Average load over a given time interval / Peak load during the same time interval.
3	Define demand for electricity. BTL2 It is defined as the electricity requirement during the period of time of high price or more stress.
4	Define diversity factor. BTL2 Diversity factor is defined as the ratio of sum of the individual maximum demands to the actual peak load of the system. Diversity factor = Sum of individual maximum demand / Actual peak load of the system.
5	 What are the main factors that decide the economics of power plants? BTL2 Connected load Demand Maximum demand Demand factor Load factor Capacity factor or plant capacity factor Utilisation factor Reserve factor Diversity factor Plant use factor
6	What do you understand by load duration curves? BTL2 Re-arrangement of all load elements of load curve is in the order of decreasing magnitude is called load duration curve.
7	 State the importance of load curves. BTL2 To obtain the average load on the power station and the maximum demand of the power station To know the incoming load thereby helping to decide the installed capacity of the power station To decide the economical sizes of various generating units.

 8 What is the significance of load curve? BTL2 The load curve gives full information about the incoming load and it helps to decide the capacity of the power station. It is also useful to decide the economical sizes of various gunits. 9 What are the various types of load? BTL2 > Residential load > Commercial load > Industrial load > Industrial load > Irrigation load > Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operation directly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
 capacity of the power station. It is also useful to decide the economical sizes of various gunits. 9 What are the various types of load? BTL2 Residential load Commercial load Industrial load Municipal load Irrigation load Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operation directly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
 units. 9 What are the various types of load? BTL2 Residential load Commercial load Industrial load Industrial load Municipal load Irrigation load Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operatidirectly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
 9 What are the various types of load? BTL2 > Residential load > Commercial load > Industrial load > Municipal load > Municipal load > Irrigation load > Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operatidirectly linked with the fuel cost. 11 What are fixed and operating costs? BTL2	
 Residential load Commercial load Industrial load Industrial load Municipal load Irrigation load Traction load Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operation directly linked with the fuel cost. 11 What are fixed and operating costs? BTL2	
 Commercial load Industrial load Municipal load Irrigation load Traction load Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operation directly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
 Industrial load Municipal load Irrigation load Traction load Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operatidirectly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
 Municipal load Irrigation load Traction load Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operatidirectly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
 > Irrigation load > Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operation directly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
 > Traction load 10 How does the fuel cost relate to the load and the cost of power generation? BTL2 The cost of power generation is directly proportional to the fuel cost because the operation directly linked with the fuel cost. 11 What are fixed and operating costs? BTL2 	
The cost of power generation is directly proportional to the fuel cost because the operationdirectly linked with the fuel cost.11What are fixed and operating costs? BTL2	
The cost of power generation is directly proportional to the fuel cost because the operationdirectly linked with the fuel cost.11What are fixed and operating costs? BTL2	
directly linked with the fuel cost.11What are fixed and operating costs? BTL2	ng cost is
11 What are fixed and operating costs? BTL2	U
Fixed costs are the cost required for the installation of complete power plant. This cost	includes
the cost of land, buildings, equipment, transmission and distribution lines, cost of plan	
designing the plant and many others. It also consists of interest, taxes, depreciation, insur	
Operating cost includes the cost of fuel, cost of lubricating oil, greases, cooling water	
maintenance and repairs, operating labour cost, supervision cost and taxes.	,
12 Define flat rate tariff. BTL2	
The charging of amount depending only on the connected load and fixed number of ho	urs of use
per month or year is called flat tariff.	
13 List the types of tariffs to calculate energy rate. BTL2	
 Flat demand rate 	
 Straight line meter rate 	
 Block-meter rate 	
Hopkinson demand rate or two-part tariff	
Doherty rate or three part tariff	
14 How the tariff for electrical energy is arrived? BTL2	
Tariff is calculated by the following equation.	
Z=ax+by+c	
Where, z- Total amount of bill for the period considered	
a- Rate per KW of maximum demand	
x- Maximum demand in KW	
b- Energy rate per KWh	
y- Energy consumed in KWh during the period considered	
c- Constant amount charged to the consumer during each billing period	
15 Mention any four methods for calculating depreciation. BTL2	
Straight line method	
Sinking fund method	
Diminishing value method	
Net percent value method	
Double sinking fund method	
16 List down the nuclear waste disposal methods. BTL2	
Disposal in sea	
Disposal in land	

	 Disposal by reduction process through chemical reaction
	Disposal by solidification process
17	What are the elements of fixed costs? BTL2
	Land, building and equipment cost
	> Interest
	Depreciation cost
18	What are the elements of operating costs? BTL2
	➢ Cost of fuel
	Lubricating oil, grease and water cost
	Cost of maintenance and repairs
	Cost of operating labour
	Cost of supervision and
	➢ Taxes
19	What is the significance of two-part tariff and three-part tariff? BTL2
	Two-part tariff:
	This method of charging depends on the maximum demand and energy consumption.
	Three-part tariff:
	This method is proposed by Henry L. Doherty. In this method of charging, the consumer has to pay
	some fixed amount in addition to charges for maximum demand and energy consumed. The fixed
	amount to be charged depends on the occasional increase in price and wage charge of workers etc.
20	Define depreciation. BTL2
-	It is the amount to be set aside per year from income to meet the depreciation caused by the age
	of service, wear and tear of machinery.
	PART * B
1	Explain the methods to control pollution in thermal and nuclear power plants. (13 M) BTL2
1	Dapiani die methous to control ponution in thermal and nuclear power plants, (15 M) D1L2
	Answer: Page: 5.42 & 5.46 - Anup Goel
	Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M)
	Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure:
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: ▶ Use of cooling ponds: Water is cooled by evaporation, convection and radiation.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: > Use of cooling ponds: Water is cooled by evaporation, convection and radiation. > Use of cooling towers: Heat from the water is transferred to the atmosphere through
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: > Use of cooling ponds: Water is cooled by evaporation, convection and radiation. > Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: > Use of cooling ponds: Water is cooled by evaporation, convection and radiation. > Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. > Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: > Use of cooling ponds: Water is cooled by evaporation, convection and radiation. > Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. > Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. > Use of spray ponds and artificial lakes.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: > Use of cooling ponds: Water is cooled by evaporation, convection and radiation. > Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. > Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. > Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M)
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: > Use of cooling ponds: Water is cooled by evaporation, convection and radiation. > Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. > Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. > Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) > The most reliable technique for disposal and long term storage of nuclear waste is
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: > Use of cooling ponds: Water is cooled by evaporation, convection and radiation. > Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. > Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. > Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) > The most reliable technique for disposal and long term storage of nuclear waste is vetrification.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed. The waste can be stored for long term in the containers free from air and water.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed. The waste can be stored for long term in the containers free from air and water. The most long lived radioactive wastes including spent nuclear fuel must be isolated from
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed. The waste can be stored for long term in the containers free from air and water. The most long lived radioactive wastes including spent nuclear fuel must be isolated from humans and environment in deep underground.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed. The waste can be stored for long term in the containers free from air and water. The most long lived radioactive wastes including spent nuclear fuel must be isolated from humans and environment in deep underground. The liquid waste is reprocessed continuously.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed. The waste can be stored for long term in the containers free from air and water. The most long lived radioactive wastes including spent nuclear fuel must be isolated from humans and environment in deep underground. The liquid waste is reprocessed continuously. Gases waste from low level radioactive waste is filtered, compressed and stored to allow
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed. The waste can be stored for long term in the containers free from air and water. The most long lived radioactive wastes including spent nuclear fuel must be isolated from humans and environment in deep underground. The liquid waste is reprocessed continuously. Gases waste from low level radioactive waste is filtered, compressed and stored to allow decay, diluted.
	 Answer: Page: 5.42 & 5.46 - Anup Goel Control of Thermal Pollution: (6 M) The industrial heated waste water can be controlled by using following measure: Use of cooling ponds: Water is cooled by evaporation, convection and radiation. Use of cooling towers: Heat from the water is transferred to the atmosphere through evaporation. Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes. Use of spray ponds and artificial lakes. Control of Nuclear Pollution: (7 M) The most reliable technique for disposal and long term storage of nuclear waste is vetrification. In this process, the waste is mixed with the glass forming chemicals in melter. After solidification the waste gets trapped inside the coating formed. The waste can be stored for long term in the containers free from air and water. The most long lived radioactive wastes including spent nuclear fuel must be isolated from humans and environment in deep underground. The liquid waste is reprocessed continuously. Gases waste from low level radioactive waste is filtered, compressed and stored to allow

2	(i)Explain site selection criterion of hydro power plant. (6 M) BTL2
	Answer: Page: 4.2 - Anup Goel
	The factors which can be considered for selection of site for a hydro-electric power plant are as follows:
	Availability of water: The design of Hydro-electric power plant and the amount of power generation depends upon the availability of water.
	 Storage of water: Water is stored in the catchment area for continuous power generation.
	 Availability head of water: To generate required quantity of power, the large quantity of
	water at sufficient head must be available.
	 Distance from the load centre: The plant must be commissioned near the load centre
	which reduces the cost of erection and maintenance of transmission lines.
	 Access of the site: The site of the plant should be easily accessible.
	 Type of land of the site: The site should be rocky and the rock must be strong enough to
	carry the stresses from the dam structures and thrust of water when reservoir is full.
	early the successes from the dam structures and thrust of water when reservoir is fun.
	(ii)A peak load on the thermal power plant is 75 MW. The loads having maximum demands
	of 85 MW, 20 MW, 15 MW and 18 MW are connected to the power plant. The capacity of
	the plant is 90 MW and annual load factor is 0.53. Calculate the average load on power plant,
	energy supplied per year, demand factor and diversity factor. (8 M) BTL3
	Answer: Page: 5.48 – Dr.G.K.Vijayaraghavan
	Formula: (4 M)
	Solution: (4 M)
	Load factor = Average load / Peak load
	Average load = 0.53 * 75 = 39.75 MW
	Energy supplied per year = Average load * 24 * 365
	= 39.75 * 8760
	= 348210 MWh
	Demand factor = Maximum demand / Connected load
	= 75 / (35 + 20 + 15 + 18)
	= 0.852
	Diversity factor = Sum of the individual maximum demand / Annual peak load of the system $(25, 20, 10)/(75, 10$
	=(35+20+15+18)/75
3.	= 1.173 (i)Explain the analysis of pollution from thermal power plants. (6 M) BTL4
5.	Answer: Page: 5.45 - Anup Goel
	The thermal pollution of water refers to the degradation of the water quality due to increase in its
	temperature.
	Sources of Thermal pollution: (2 M)
	 Nuclear power plants
	 Thermal power plants
	 Industrial effluents
	 Domestic sewage
	 Hydro-electric power plants
	> Human activities
	Effects of Thermal pollution: (2 M)
	Reduction in dissolved oxygen
	Increase in toxicity of water
	> Interference in biological activities of aquatic life such as metabolism, biochemical

	22 0202020
	processes.
	 Interference in reproduction of aquatic life.
	 Responsible for extinction of aquatic species.
	Responsible for food shortage for fish.
	Control of Thermal Pollution: (2 M)
	The industrial heated waste water can be controlled by using following measure:
	Use of cooling ponds: Water is cooled by evaporation, convection and radiation.
	\blacktriangleright Use of cooling towers: Heat from the water is transferred to the atmosphere through
	evaporation.
	> Cogeneration: Heat from the water is utilized for domestic or industrial heating purposes.
	 Use of spray ponds and artificial lakes.
	(ii)Elucidate the objectives and requirements to tariff and general form of tariff. (7 M) Answer: Page: 5.10 - Anup Goel
	The different methods of charging the consumers for electricity consumption is known as "Tariffs" or "Energy Pater"
	or "Energy Rates".
	Objective: (1 M)
	The electricity generated by the power plants is to be supplied to consumers. There-fore the total
	cost of generation has to be recovered from the consumers.
	General Tariff form:(4 M)
	Z=ax+by+c
	Where, z- Total amount of bill for the period considered
	c- Rate per KW of maximum demand
	x- Maximum demand in KW
	d- Energy rate per KWh
	y- Energy consumed in KWh during the period considered
	c- Constant amount charged to the consumer during each billing period
	Types: (2 M)
	Flat demand rate, Straight meter rate, Block meter rate, Hopkinson demand rate (two part tariff),
	Doherty rate (three part tariff), Wright demand rate.
	PART*C
1.	(i)Write short note on Nuclear Waste disposal. (7 M) BTL2
	Answer: Page: 5.42 - Anup Goel
	The nuclear power plant has an impact on surrounding environment from nuclear waste which
	comes from a number of sources.
	These sources are as follows: (3 M)
	Nuclear explosions performed while conducting nuclear tests.
	Operations performed by nuclear power plant produce radioactive waste.
	Mining and refining radioactive materials such as uranium and thorium.
	Nuclear fuel cycle used in industrial, medical and scientific processes.
	Radioactive waste: (2 M)
	Includes high level and low level waste.
	Radioactive Emission: (2 M)
	Consists of the radiation from the radioactive sources such as nuclear weapons, handled radioactive
	material, nuclear accidents.

	(ii)A central power station has annual factors as follows. Load factor = 60%, Capacity factor
	= 40% and Use factor = 45%. Power station has a maximum demand of 15000 KW. Determine annual energy production, reserve capacity over and above load and hours per
	year not in service. (8 M) BTL3
	Answer: Page: 5.38 - Anup Goel
	Formula: (4 M)
	Solution: (4 M)
	Load Factor = $60 \% = 0.6$
	Capacity Factor = $40 \% = 0.4$
	Use factor = $45 \% = 0.45$
	Maximum demand = 15000 KW
	Average load = Maximum demand * Load Factor
	= 15000 * 0.6 = 9000 KW
	Energy produced per year = Average load * 365 * 24
	=9000 * 365 * 24
	$= 78.84 * 10^{6} $ kWhr
	Reverse Capacity over and above peak load
	Capacity factor = Average load / Installed capacity
	Installed capacity = $9000 / 0.4 = 22500 \text{ Kw}$
	Reverse capacity = Installed capacity – Maximum demand
	= 22500 - 15000
	= 7500 Kw
2.	List various pollutants released by the coal based thermal power plants and detail the
	techniques adopted to mitigate them. (15 M) BTL2
	Answer: Page: 5.39 - Anup Goel
	Explanation: (5 M)
	The burning of coal in thermal power plant produces number of pollutants. They are as follows:
	\succ Carbon dioxide (CO ₂)
	Sulphur dioxide (SO ₂)
	Nitrogen Oxides (NOx)
	➤ Ash
	Particulate matter
	Control of Particulate matter: (3 M)
	The solid particulate matter can be separated from the gases by using settling chamber or a cyclone
	collector.
	Control of SO ₂ : (4 M)
	➢ Use of scrubbers.
	Reducing Sulphur content from the fuel.
	Froth floatation Process.
	Use of Fluidized Bed Combustion (FBC).
	Integrated Gasification Combined Cycle (IGCC).
	Control of Nitrogen Oxides (NO _x): (3 M)
	By altering temperature and oxygen content.
	 Modifying combustion process. Converting NO_x to N₂ Using any reducing agent or catalyst such as platinum – rhodium,

EGULA	IION:2017 ACADEMIC YEAR:2018-2019
(i) Dis BTL2	scuss any four methods adopted for the disposal of radioactive waste materials. (7 M)
	er: Page: 5.42 - Anup Goel
	nation: (3 M)
	Radioactive waste – Includes high level and low level waste
	High level waste – includes high level and low level waste High level waste consists of irritated spent fuel at reactor site including fission products and plutonium waste.
\triangleright	Low level waste is produced through chemical and volume control system. This includes gaseous, liquid and solid waste.
Techr	niques for the disposal of radioactive waste materials: (4 M)
	The most reliable technique for disposal and long term storage of nuclear waste is vetrification.
\triangleright	In this process, the waste is mixed with the glass forming chemicals in melter.
\succ	After solidification the waste gets trapped inside the coating formed.
\succ	The waste can be stored for long term in the containers free from air and water.
\triangleright	The most long lived radioactive wastes including spent nuclear fuel must be isolated from humans and environment in deep underground.
\triangleright	The liquid waste is reprocessed continuously.
	Gases waste from low level radioactive waste is filtered, compressed and stored to allow decay, diluted.
\triangleright	They can be discharged at the regulated rate.
\triangleright	Solid waste can be disposed off by placing it where it will not be disturbed for years.
7. Th	generating station supplies four feeders with maximum demands (in MW) 16, 10, 12 and e overall maximum demand of the station is 20 MW and the annual load factor is 45%.
	late the diversity factor and number of units generated annually. (8 M) BTL3
	ula: (4 M)
	ion: (4 M)
Divers	sity factor = sum of the individual maximum demand / peak load of the system = $(16+10+12+7)/20$
	= (16+10+12+7) / 20 = 2.75
Load	factor = Average load / Peak load
	ge load = 0.45 * 20 = 9 MW
	ge toad $= 0.43 \times 20 = 9$ M w er of units generated annually = Average load $* 24 * 365$
TAUIIIO	= 9 * 24 * 365 = 78840 MWh

9

EE8301ELECTRICAL MACHINES – I L T P C3 1 0 4

OBJECTIVES:

- To introduce techniques of magnetic-circuit analysis and introduce magnetic materials
- To familiarize the constructional details, the principle of operation, prediction of performance, the methods of testing the transformers and three phase transformer connections.
- To study the working principles of electrical machines using the concepts of electromechanical
- energy conversion principles and derive expressions for generated voltage and torque developed in all Electrical Machines.
- To study the working principles of DC machines as Generator types, determination of their no load/ load characteristics, starting and methods of speed control of motors.
- To estimate the various losses taking place in D.C. Motor and to study the different testing
- methods to arrive at their performance.

UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS 9

Magnetic circuits –Laws governing magnetic circuits - Flux linkage, Inductance and energy – Statically and Dynamically induced EMF - Torque – Properties of magnetic materials, Hysterisis and Eddy Current losses - AC excitation, introduction to permanent magnets-Transformer as a magnetically coupled circuit.

UNIT II TRANSFORMERS

Construction – principle of operation – equivalent circuit parameters – phasor diagrams, losses – testing – efficiency and voltage regulation-all day efficiency-Sumpner's test, per unit representation – inrush current - three phase transformers-connections – Scott Connection – Phasing of transformer– parallel operation of three phase transformers-auto transformer – tap changing transformers- tertiary winding.

UNIT III ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN ROTATING MACHINES 9

Energy in magnetic system – Field energy and co-energy-force and torque equations – singly and multiply excited magnetic field systems-mmf of distributed windings – Winding Inductances-, magnetic fields in rotating machines – rotating mmf waves – magnetic saturation and leakage fluxes.

9

9

UNIT IV DC GENERATORS

Construction and components of DC Machine – Principle of operation - Lap and wave windings-EMF equations– circuit model – armature reaction –methods of excitation-commutation and inter poles - compensating winding –characteristics of DC generators

UNIT V DC MOTORS

Principle and operations - types of DC Motors – Speed Torque Characteristics of DC Motors-starting and speed control of DC motors –Plugging, dynamic and regenerative braking- testing and efficiency – Retardation test- Swinburne's test and Hopkinson's test - Permanent magnet dc motors(PMDC)-DC Motor applications.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

> Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

1. Nagrath I. J and Kothari D. P. 'Electric Machines', Fourth Edition, Tata McGraw Hill Publishing Company Ltd, 2010.

2. M.N. Bandyo padhyay, Electrical Machines Theory and Practice, PHI Learning PVT LTD., New Delhi, 2009.

3. Fitzgerald. A.E., Charles Kingsely Jr, Stephen D.Umans, 'Electric Machinery', Sixth edition, Tata McGraw Hill Books Company, 2003.

REFERENCES:

1. P. C. Sen., 'Principles of Electrical Machines and Power Electronics', John Wiley & Sons, 1997.

2. Syed A. Nasar, Electric Machines and Power Systems: Volume I, Mcgraw-Hill College; International Edition, January 1995.

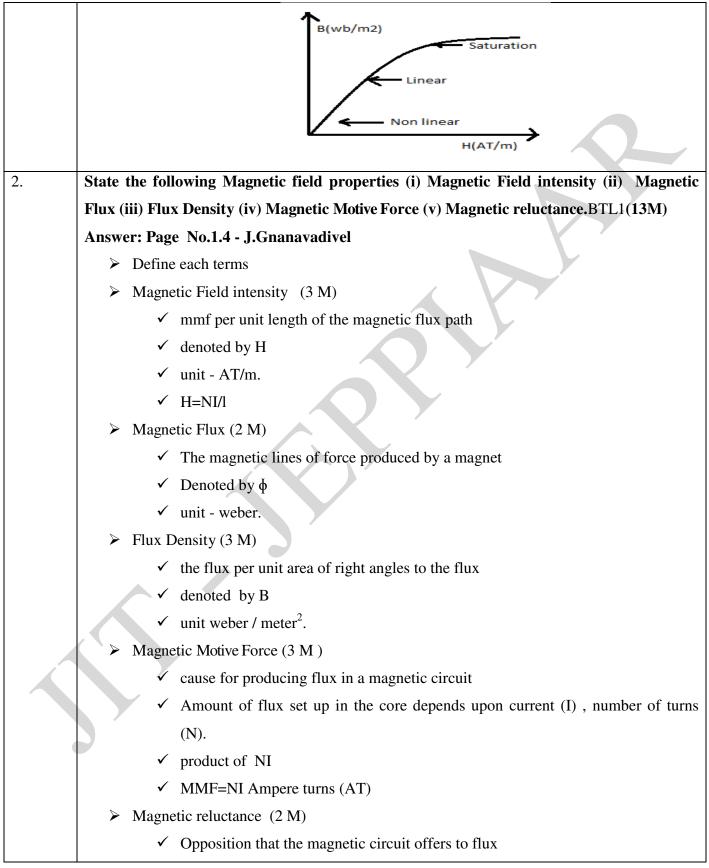
3. Desh pande M. V., "Electrical Machines" PHI Learning Pvt. Ltd., New Delhi, 2011.

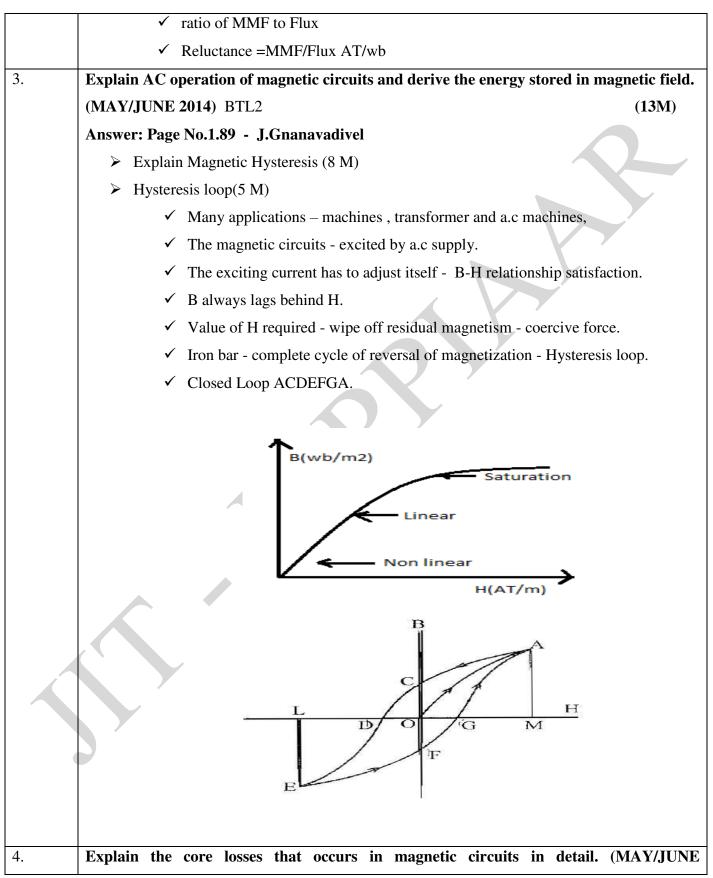
4. P.S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2003.

Subject Code:EE8301 Subject Name: ELECTRICAL MACHINES - I

Year/Semester: II /03 Subject Handler: Ms. P. Vinnarasi Ponnury

UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS

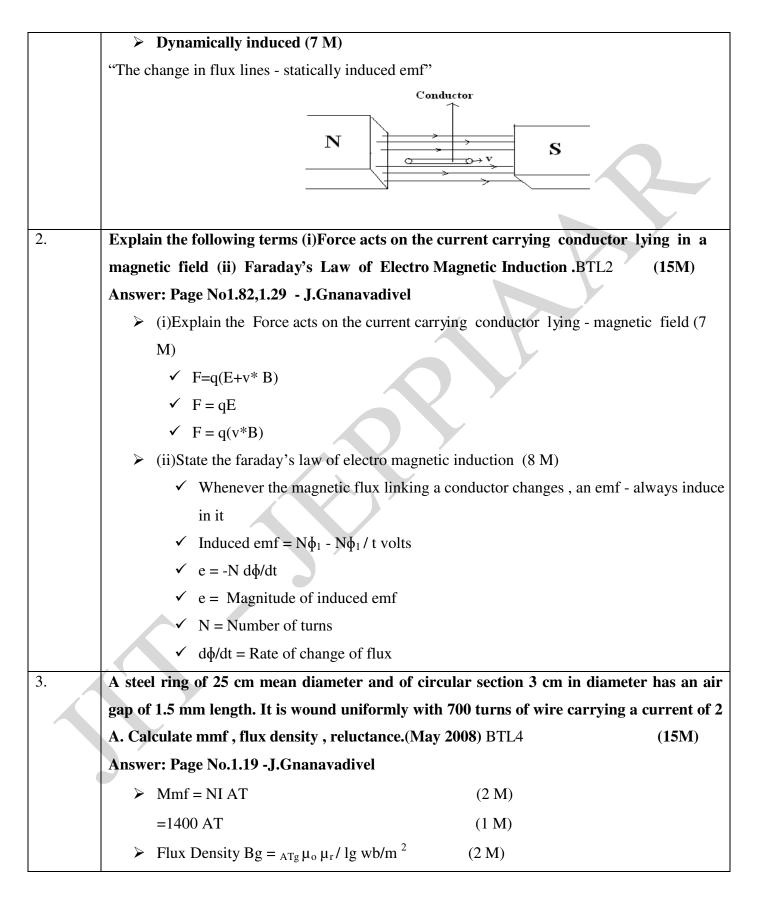

Magnetic circuits – Laws governing magnetic Circuits-Flux linkage, Induction and Energy-Statically and dynamically induced emf-Torque-Properties of magnetic materials, Hysteresis and Eddy current loss-AC Excitation, Introduction of Permanent magnets-Transformer as an magnetically coupled circuit.


	Part*A	
Q.No	Question	
1.	What is magnetic circuit? BTL1	
	The closed path followed by magnetic flux is called magnetic circuit	
2.	Mention the types of electrical machines. (MAY/JUNE 2013) BTL1	
	There are three basic rotating machines types, namely	
	a. The dc machines	
	b. the poly phase synchronous machine (ac)	
	c. Poly and single phase induction machine (ac)and a stationary machine, namely Transformer	
3.	Mention the magnetic materials with example. (APRIL/MAY 2015) BTL1	
	Dia Magnetic Materials –organic martial, light elements	
	Para Magnetic Materials – Alkali metals (Na,K)	
	Ferro Magnetic Materials – Fe, Ni, and Co	
	Antiferro Magnetic Materials - FeO	
	Permanent Magnet - Ferrous ferrite and Nickal ferrite	
4.	Relate magnetostriction and coercivity. (APRIL/MAY 2015) BTL1	
	When ferromagnetic materials are subjected to magnetizing mmf, these may undergo small	
	changes in dimension; this phenomenon is known as magnetostriction It is the measure of mmf	
	which, when applied to the magnetic circuit would reduce its flux density to zero, i.e., it	
	demagnetizes the magnetic circuit.	
5.	Why the core of an electrical machines are laminated? (NOV/DEC 2015) BTL1	

	When the core is laminated, it gets divided into thin laminations. The path of the eddy currents is
	broken due to the insulating sheets present between the laminations. This eddy current through the
	core and reduces the eddy current losses.
6.	Distinguish between leakage flux and fringing flux.(MAY/JUNE 2014,MAY/JUNE 2013)
0.	BTL2
	The small amount of flux always leak to the air gap that flux is called as leakage flux. The Flux
	spread out the edge of the air gap that flux is called as fringing flux
7.	Write a notes on quasi static fields.(NOV/DEC 2015,MAY/JUNE 2014) BTL1
/.	All the electromechanical energy conversion devices are slow moving devices because of inertia
	associated with the moving parts. Therefore, the fields in the device are also slow in nature.
8.	Correlate core loss and eddy current loss. (NOV/DEC 2015) BTL1
0.	
	When a magnetic material undergoes cyclic magnetization, two kinds of power losses occur on it
	is called Hysteresis loss. Hysteresis and eddy current losses are called as core loss. It is important
	in determining heating, temperature rise, rating & efficiency of transformers, machines & other
	A.C run magnetic devices. when a magnetic field is varied are known as eddy current and have
	power loss known as eddy current loss.
9.	How will you find the direction of force produced using Fleming's left hand rule?
	(NOV/DEC 2015) BTL2
	The thumb, forefinger & middle finger of left hand is held so that these fingers are mutually
	perpendicular to each other, then forefinger gives the direction of magnetic field, middle finger
	gives the direction of the current and thumb gives the direction of the force experienced by the
	conductor.
10.	How hysteresis and eddy current losses are minimized? (APRIL/MAY 2015) BTL2
	Hysteresis loss can be minimized by selecting materials for core such as silicon steel & steel
	alloys with low hysteresis co-efficient and electrical resistivity. Eddy current losses are minimized
	by laminating the core.
11.	Draw the typical normal magnetization curve of ferromagnetic material.(MAY/JUNE 2013)
	BTL6

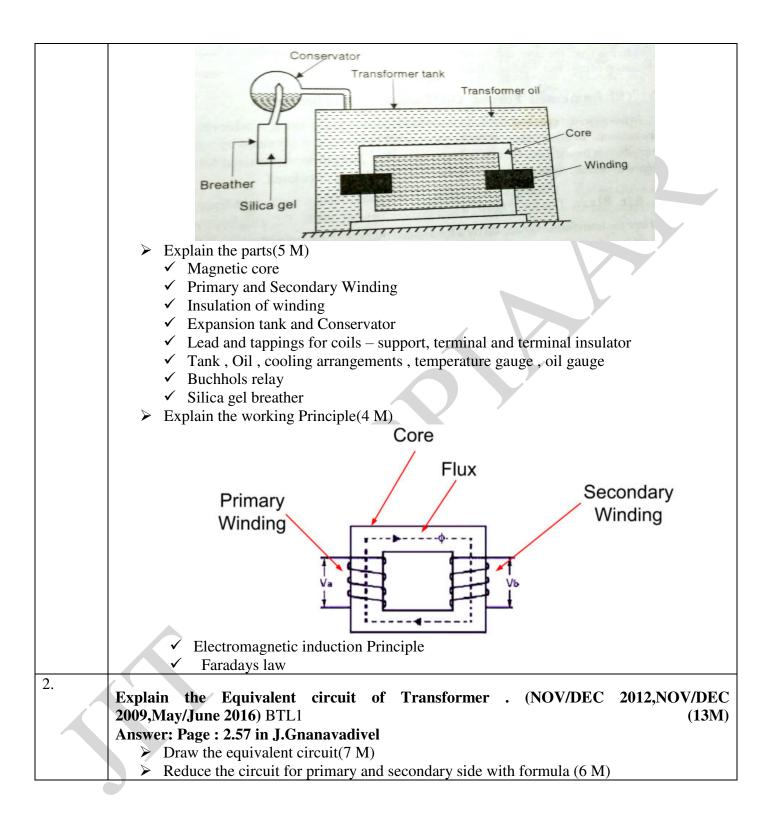
	L B F F
12.	Define stacking factor.(NOV/DEC 2015) BTL1
	The stacking factor is defined as the ratio of the net cross section area of magnetic core to gross
	cross section area of magnetic core. Due to laminations net cross section area will be always less
	than gross cross section area.
13.	State faradays law of electromagnetic induction. (NOV/DEC 2008) BTL1
	Whenever the current carrying conductor placed in a magnetic field the flux cut by the conductor
	it produces torque and dynamically induced emf. The magnitude of induced emf is proportional to
	rate of change flux linkage.
14.	Define relative permeability. (May 2011) BTL1
	Relative permeability of a material is equal to the ratio of flux density produced in that material to
	the flux density produced in air by the same magnetizing force.
	$\mu_r = \mu/\mu_0$
15.	What are the magnetic losses? (April/May 2018) BTL1
	Eddy Current losses and Hysteresis losses
16.	Write a note on statically induced emf. (April/May 2015) BTL1
	Conductor is stationary and the magnetic field is moving or changing the induced emf is called
	stationary induced emf
17.	
	State self inductance. BTL1
	The property of a coil that opposes any change in the amount of current flowing through it is
	called self inductance
18.	State Lenz law. BTL1
	The law states that induced emf always opposite to applied voltage source.

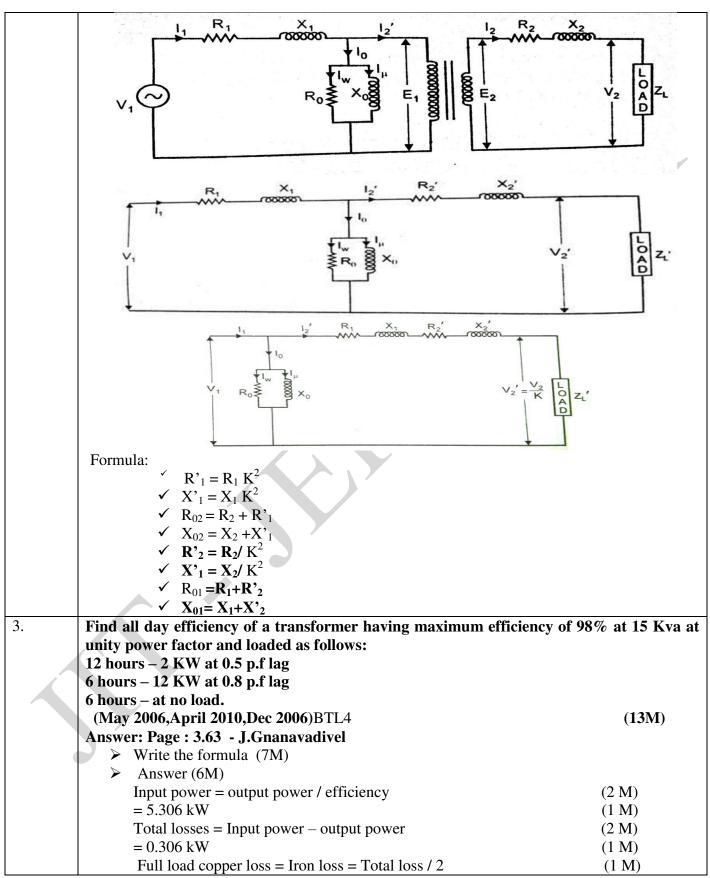
19.	State faraday's law of electromagnetic induction. BTL1						
	Whenever a flux linking in the coil changes emf always induced in the conductor the						
	magnitude of induced emf is proportional to rate of change flux linkage						
	$e=Nd\Phi/dt$						
20.	Define co-efficient of coupling. (May 2008) BTL1						
	Co-efficient of coupling between two coils is defined as the fraction of of magnetic flux produced						
	by the current in one coil that links other coil.						
Part*B							
Q.No	Question						
1.	Explain in detail about magnetic circuit. (MAY/JUNE 2014, MAY/JUNE						
	2013)BTL2(13M)						
	Answer: Page No.1.4 - J.Gnanavadivel						
	Explanation Magnetic circuit (3 M)						
	Closed path followed by the flux lines.						
	F=I N(AT)						
	I=Current through the coil.						
	N=Number of turn in the coil.						
	Simple Magnetic (2 M)						
	 Composite Magnetic (3M) 						
	Parallel Magnetic circuits (3 M)						
	Diagram (2 M)						



2015,NOV/DEC 2015,NOV/DEC 2012) (BTL2) (13	3M)			
 Answer: Page No.1.92 - J.Gnanavadivel Losses occur - the armature , d.c. machine 				
✓ Hysteresis loss				
✓ Eddy current loss.				
Explain Hysteresis Loss(7 M)				
✓ Hysteresis loss, Ph=B ¹⁶ maxfV watts				
✓ Bmax = Maximum flux density in arma	ature			
✓ $f =$ Frequency of magnetic reversals				
✓ V = Volume of armature in m3				
✓ h = Steinmetz hysteresis co-efficient				
Explain Eddy current Loss(6 M)				
✓ Eddy current loss, $Pe = KeB^2maxf^2t^2V$	watts			
\checkmark Ke = Constant				
✓ Bmax = Maximum flux density in Wb/	/m ²			
✓ $f =$ Frequency of magnetic reversals in	Hz			
\checkmark t = Thickness of lamination in m				
\checkmark V = Volume of core in m ³				
5. List the properties of magnetic material suitable	e for Fabrication Permanent Magnet.			
(April/May 2015,May /June 2016) BTL2	(13M)			
Answer: Page No.1.95 - J.Gnanavadivel				
 Introduction of magnetic materials (4 M) 				
Attracted by a magnet used in electrical design - equi	ipment must have following properties.			
Different types of magnetic materials (9 M)				
✓ High permeability				
✓ High Electrical resistivity				
 ✓ Narrow hysteresis loop 				
✓ Energy stored				
✓ Role of B-H curve				
\checkmark Hard material and soft material				

	✓ Special purpose alloy			
6.	The total core loss of a specimen of silicon steel is found to be 1500W at 50 Hz, keeping			
	the flux density to be constant, the loss become 3000W. When the frequency is raised to 75			
	Hz. Calculate the separately hysteresis loss and eddy current losses at each frequency.			
	(Dec 2008,May 2010,Dec 2010,Non/Dec 15)(BTL5) (13M)			
	Answer: Page No.1.93 - J.Gnanavadivel			
	➢ Write the formula(5 M)			
	> Hysteresis loss = $(BM)^{1.6}$ VkHf			
	✓ Wh=Af			
	✓ Eddy current Loss = Ke(BM) ² t^2Vf^2			
	\checkmark W _e = Bf ²			
	Substitution steps with answer (8 M)			
	➤ At 50 Hz			
	✓ Hysteresis loss = $Af = 10*50=500W$			
	✓ Eddy current loss= $Bf^2=0.4*(50)^2=1000W$			
	> At 75 Hz			
	✓ Hysteresis loss = $Af = 10*75=750W$			
	✓ Eddy current loss= $Bf^2=0.4*(75)^2=2250W$			
7.	Explain the eddy current and eddy current losses in the magnetic circuit. (April/may			
	2015,May/June 2016) BTL2(13M)			
	Answer:Page No.1.93 - J.Gnanavadivel			
	Explain Eddy current with expression(6 M)			
	✓ Due to change of magnetic field eddy current loss will occur			
	✓ It will increase the temperature			
, i	✓ Laminating a core increases the core resistance which decreases the eddy current			
	loss.			
	\blacktriangleright Eddy current loss, Pe = KeB ² maxf ² t ² V watts (7 M)			
	\checkmark Ke = Constant			
	✓ Bmax = Maximum flux density in Wb/m ²			
	\checkmark f = Frequency of magnetic reversals in Hz			
	\checkmark t = Thickness of lamination in m			

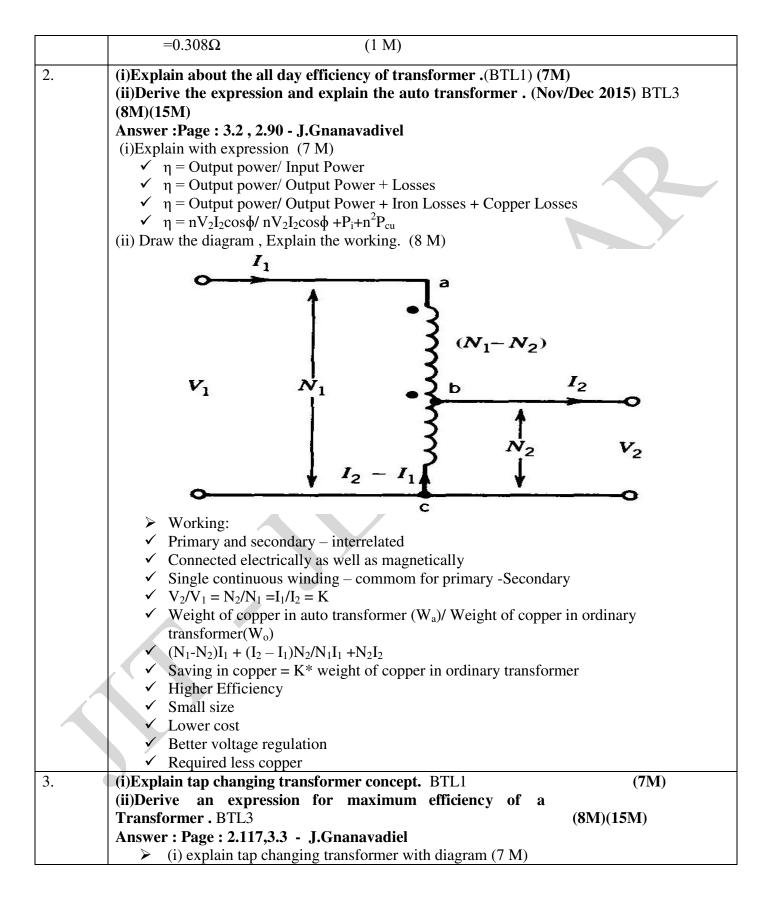

	\checkmark V = Volume of core in m ³						
8.	Compare the similarities and dissimilarities between electric and magnetic						
	circuits.BTL2 (13M)						
Answer: Page No.1.13 - J.Gnanavadivel							
	Tabulate and compare magnetic and electric circuit .Each point (2 M)						
	Electric Circuit : (5M)						
	✓ Current						
	✓ Resistance						
	✓ Conductance						
	✓ Many insulators						
	✓ Current density						
	Magnetic circuit: (6M)						
	✓ Flux						
	✓ Reluctance						
	✓ Permeance						
	✓ Flux density						
	✓ No insulators						
	Part*C						
Q.No	Question						
1.	Explain in detail about statically and dynamically induced emf. (NOV/DEC 2015) BTL2						
	(15M)						
	Answer: Page No.1.33 - J.Gnanavadivel						
	> induced EMF(2 M)						
	Magnitude of the induced emf - directly proportional to the rate of change of flux linkages						
	> Statically induced(6 M)						
	"The flux produced by one coil - getting linked with another coil and due to change in flux						
	Statically e.m.f. G						
	Gets induced in this coil Gets Coil in viscinity of alternating flux Alternating						
	t ==== the definition of the second s						
	produced Alternating Alternating voltage time						

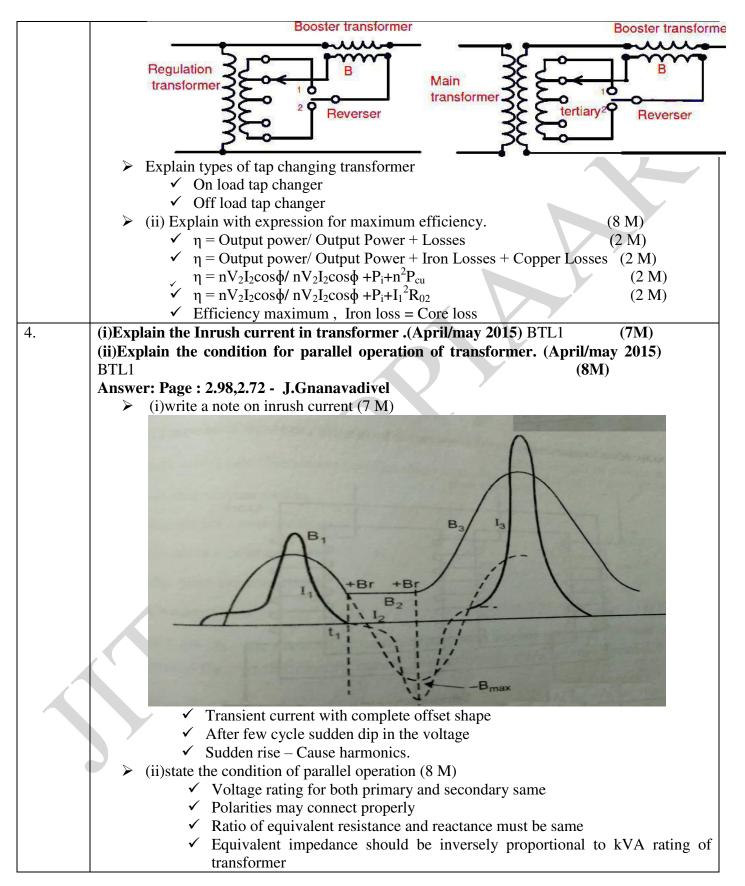


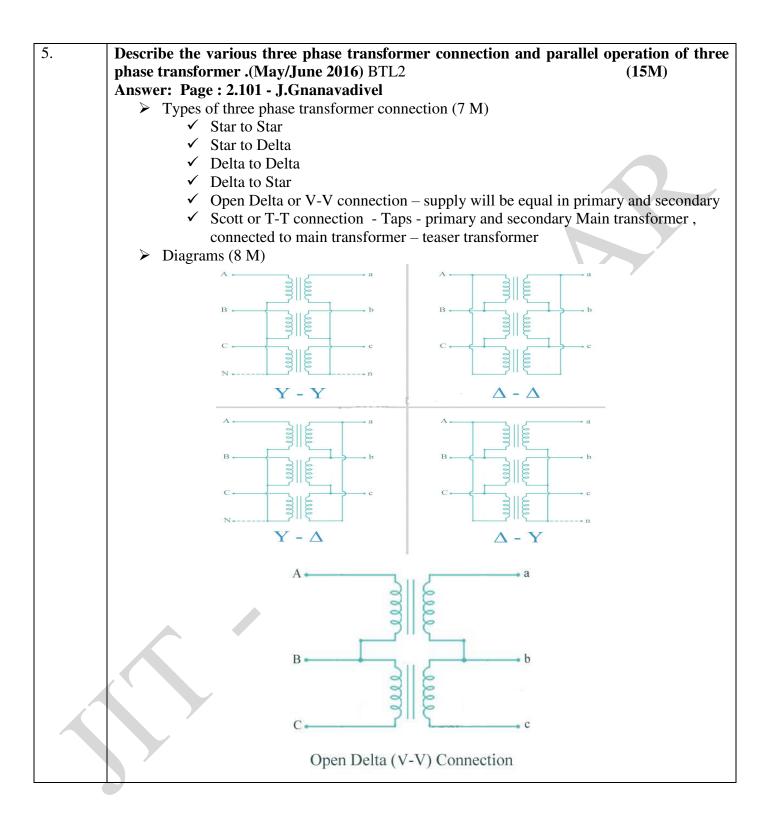
	=1.172	wb/m ²	(1 M)			
			(1 111)			
	Magnetie	c Flux φ				
	= Bg a		(2 M)			
	$a = \frac{\Pi}{4} d^2$		(2 M)			
	= 0.828	mwb	(2 M)			
	Reluctan	ce = mmf/flux	(2 M)			
	=1.69*1	0 ⁶ AT/wb	(1 M)			
		UNIT-II TRANSFO	ORMERS	Y		
Efficiency three phas	and voltage regulated transformer-contracts	lation-all day Efficiency - sum	arameters- phasor diagram , pner test, per unit representation -phasing of transformers - para nsformer-tertiary winding	n-inrush current-		
1		Part*A				
Q.No			stions			
1.	 What are the typical uses of auto transformer? (NOV/DEC 2012) BTL1 To give small boost to a distribution cable to correct for the voltage drop. As induction motor starters. As furnace transformers As interconnecting transformers In control equipment for single phase and 3 phase elective locomotives 					
2.	Write the Com	parison of Core and Shell type	e transformers. (MAY/JUNE	2014) BTL2		
		CORE TYPE	SHELL TYPE			
		The winding encircles the	The core encircles most part			
		core	of the winding			
		It has single magnetic	It has double magnetic			
		circuits	circuits			
		The cylindrical type of coil	Multilayer dick type or			
		are used The construction preferred	sandwich coil are used The construction preferred			
		for low voltage transformer	for High voltage transformer			
		In single phase type, the core	In single phase type, the core			
		has two limbs	has three limbs			
3.	Why the SC test on transformer is performed on HV side?(May 2009, June 2007) BTL4 The Short Circuit test is normally conducted on HV side of the transformer and LV side is short circuited, because on the high voltage side the current rating is low .So we can use normally available meter range					
4.	Give the emf equation of a transformer and define each term. BTL2 Emf induced in primary coil E_1 =4.44f Φ_mN_1 volt					

	Emf induced in secondary Coil E ₂ = $4.44f\Phi_mN_2$.	
	ffreq of AC input	
	Φ maximum value of flux in the core	
	N1,N2Number of primary & secondary turns.	
5.	Does transformer draw any current when secondary is opened? Why? BTL2 Yes, it (primary) will draw the current from the main supply in order to magnetize the core and to supply for iron and copper losses on no load .There will not be any current in the secondary since secondary is open.	
6.	Define voltage regulation of a transformer. BTL1 When a transformer is loaded with a constant primary voltage, the secondary voltage decreases for lagging PF load, and increases for leading PF load because of its internal resistance and leakage reactance. The change in secondary terminal voltage from no load to full load expressed as a percentage of no load or full load voltage is termed as regulation.	
7.	What happen when a DC supply is applied to a transformer? (NOV/DEC 2015) BTL1 Due to saturation of magnetic core a large current flows through the windings, without induced any emf. This large current burns the windings of the transformer.	
8.	Why transformers are rated in kVA? (NOV/DEC 2015,MAY/JUNE 2009)BTL4 Copper loss of a transformer depends on current &iron loss on voltage. Hence total losses depend on Volt-Ampere and not on PF. That is why the rating of transformers is in kVA and not in kW.	
9.	Mention the applications of single phase auto transformer. (APRIL/MAY 2015) BTL2 Variable voltage regulators, variable voltage rectifiers and laboratories.	
10.	What are the applications of step-down transformer?BTL1 Step-down transformers are used in receiving stations. The voltage are stepped down to11kV or 22kV are stepped down to 3 phase 400V by means of a distribution transformer and made available at consumer premises. The transformers used at generating stations are called power transformers.	
11.	What are the applications of step-up transformer?BTL1 Step-up transformers are used in generating stations. Normally the generated voltage will be either 11kV. This voltage (11kV) is stepped up to 110kV or 220kV or 400kV and transmitted through transmission lines (simply called as sending end voltage).	
12.	 How transformers are classified according to the construction?BTL2 Core type. Shell type. In core type, the winding (primary and secondary) surround the core and in shell type , the core surround the winding. 	
13.	Explain on the material used for core construction. BTL2 The core is constructed by sheet steel laminations assembled to provide a continuous magnetic path with minimum of air gap included .The steel use is of high silicon content sometimes heat treated to produce a high permeability and allow hysteresis loss at the usual operating flux densities. The eddy current loss is minimized by laminating the core, the	

	laminations being used from each other by light coat of core – plate vanish or by oxide layer on the surface. The thickness of lamination varies from 0.35mm for a frequency of 50Hz and 0.5mm for a frequency of 25H	
14.	How frequency affect the operation of a given transformer? BTL2 With a change in frequency ,iron and copper loss, regulation, efficiency & heating varies so the operation of transformer is highly affected.	
15.	What is the angle by which no –load current will lag the ideal applied voltage?BTL1 In an ideal transformer, there are no copper &core loss i.e. loss free core. The no load current is only magnetizing current therefore the no load current lags behind by angle 90. However the winding possess resistance and leakage reactance and therefore the no load current lags the applied voltages lightly less than 90.	
16.	Why are breathers used in transformers?BTL1 Breathers are used to entrap the atmospheric moisture and there by not allowing it to pass on to the transformer oil . Also to permit the oil inside the tank to expanded contract as its temperature increases and decreases.	
17.	Distinguish between power transformers & distribution transformers. (MAY/JUNE 2012) BTL2 Power transformers have very high rating in the order of MVA. They are used in generating and receiving stations. Sophisticated controls are required. Voltage ranges will be very high. Distribution transformers are used in receiving side. Voltage levels will be medium. Power ranging will be small in order of kVA. Complicated controls are not needed.	
18.	 Name the factors on which hysteresis loss depends.BTL2 Frequency volume of the core and Maximum flux density 	
19.	What is the purpose of providing Taps in transformer and where these are provided?BTL1 In order to attain the required voltage, taps are provided, normally at high voltages side (low current).	
20.	State all day efficiency of a transformer. (NOV/DEC 2012, MAY/JUNE 2009) BTL1 It is computed on the basis of energy consumed during a certain period, usually a day of 24 hrs. all day efficiency = output in kWh/input in kWh tor 24 hrs.	
Part*B		
Q.No	Question	
1.	Describe the Construction and working principle of a transformer. (MAY/JUNE 2014, MAY/JUNE 2013,MAY/JUNE 2011) BTL2 (13M) Answer: Page :2.2 - J.Gnanavadivel	
	➢ Draw the diagram(4 M)	





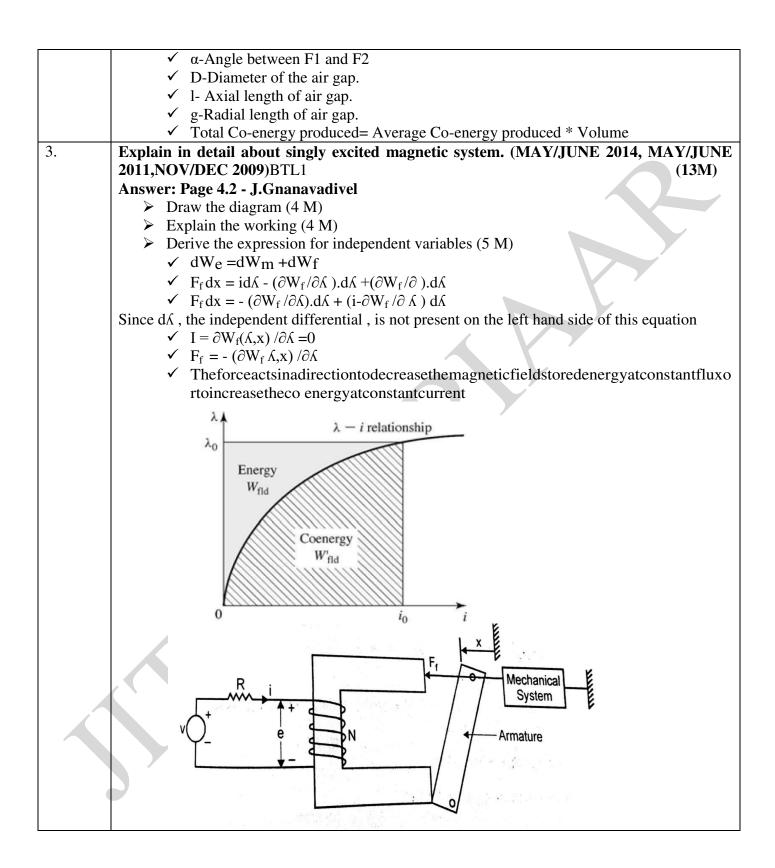

	= 0.153 kW	(2 M)		
	η all-day = Output power in Kwh/Input power in kWh *100	(2 M) (2 M)		
	=95.31%	(2 M)		
4.	Explain parallel operation of single phase transformer. and d transformers. (APRIL/MAY 2015,MAY/JUNE 2014,NOV 2011)BTL1 (13M) Answer: Page : 2.72 - J.Gnanavadivel > Draw the parallel 1 phase transformer connection (5 M) > State the condition (4 M) > Explain the working with diagram (4 M) V (APRIL/MAY 2015,MAY/JUNE 2014,NOV 2011)BTL1 (13M) Answer: Page : 2.72 - J.Gnanavadivel > Draw the parallel 1 phase transformer connection (5 M) > State the condition (4 M) > Explain the working with diagram (4 M)			
	Condition:			
	Voltage rating : Primary = secondary			
	✓ Polarities – connection proper			
	\checkmark Ratio: equivalent resistance = Equivalent reactanc			
	\checkmark Equivalent impedance = 1/respective KvA rating			
	Working:			
	✓ Withstand more than rated power – parallel operation			
	✓ Power handling capacity – more			
5.	The maximum efficiency of a single phase 250 kVA,2000/250 $\frac{200}{250}$ of full load and is acrual to 0.75% at 0.8 m f. Determine the			
	80% of full load and is equal to 97.5% at 0.8 p.f .Determine the on full lad at 0.8 pf lagging if the impedance of the transformer			
	2010) BTL4	(13M)		
	Answer: Page : 3.37 - J.Gnanavadivel			
	\rightarrow Write the formula (5M)			
	\rightarrow Answer (8 M)			
	$\eta_{\rm max} = 97.5\%$	(1 M)		
	Output power at $\eta_{max} = (250*0.8)*0.8$	(1M)		
	=160 kW	(1M)		
	Input power = output power/ η	(2 M)		
(=160/0.975			
	=164.10 kW	(1 M)		
	Total loss = 164.10-160			
	= 4.10 kW	(1 M)		
	% R= copper loss $/V_2I_2 *100 = 2.05/250*100 = V_r = 0.82\%$	(2 M)		
	11			

	= 2.42% (2 M)
6.	Explain the working and construction of auto (NOV/DECV2015,MAY/JUNE 2012,NOV/DEC 2009) BTL2transformer (13M)Answer: Page : 2.90 - J.Gnanavadivel(13M) \succ Draw the diagram (5 M)Explain the working (8 M) I_1 Image: Image and the second seco
	$V_1 \qquad N_1 \qquad \qquad$
	 ➢ Working: ✓ Primary and secondary – interrelated ✓ Connected electrically as well as magnetically ✓ Single continuous winding – common for primary -Secondary ✓ V₂/V₁ = N₂/N₁ =I₁/I₂ = K ✓ Weight of copper in auto transformer (W_a)/ Weight of copper in ordinary transformer(W_o) ✓ (N₁-N₂)I₁ + (I₂ - I₁)N₂/N₁I₁ +N₂I₂ ✓ Saving in copper = K* weight of copper in ordinary transformer ✓ Higher Efficiency
7	 ✓ Small size ✓ Lower cost ✓ Better voltage regulation ✓ Required less copper
7.	A 2000/200 V transformer has primary resistance and reactance of 2Ω and 4Ω respectively. The corresponding secondary values are 0.025Ω and 0.04Ω . Determine (1) equivalent resistance and reactance of primary referred to secondary (2)total resistance and reactance referred to secondary (3) Equivalent resistance and reactance of secondary referred to primary (4) Total resistance and reactance referred to primary. (June 2007)BTL4 (13M)
	Answer: Page : 2.47 -J.Gnanavadivel \checkmark Write the formula \succ Answer $K = V_1/V_2$ (1 M) $=0.1$ (1 M)(1) R'_1 = R_1 K^2 $=0.02 \Omega$ (1 M) $X'_1 = X_1 K^2$ (1 M) $=0.04 \Omega$ (1 M)

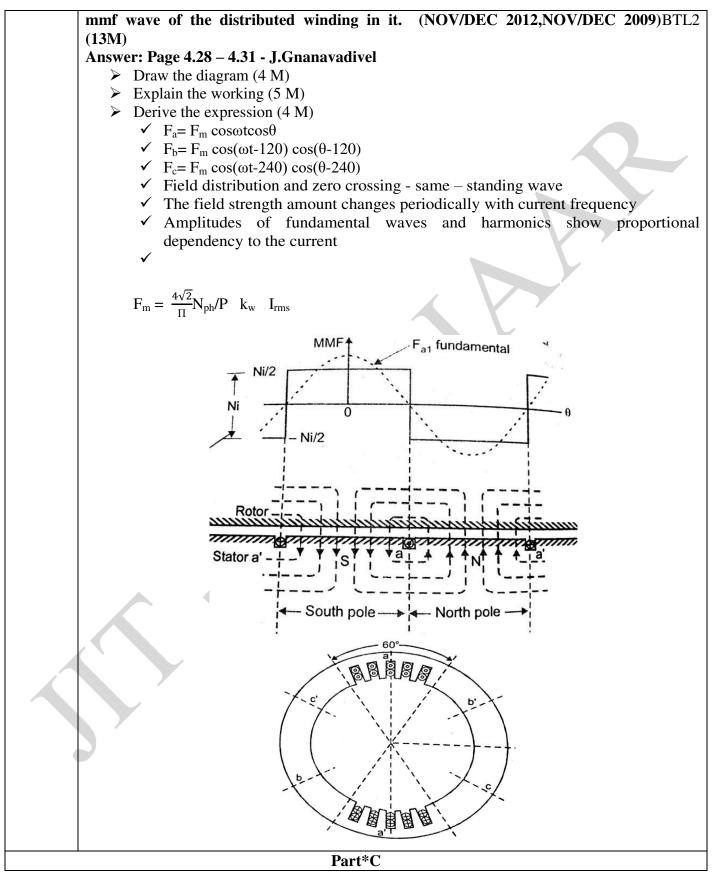
	(2) D D (2) D		
	(2) $R_{02} = R_2 + R'_1$		
	=0.045 Ω	(1 M)	
	$X_{02} = X_2 + X'_1$	(1 M)	
	$=0.08 \Omega (1 M)$		
	(3) $\mathbf{R'}_2 = \mathbf{R}_2 / \mathbf{K}^2$	(1 M)	
	=2.5 Ω	(1 M)	
	$\mathbf{X'}_1 = \mathbf{X}_2 / \mathbf{K}^2$		
	=4 Ω	(1M)	
	(4) $R_{01} = R_1 + R'_2(1 M)$		
	=4.5 Ω		
	$X_{01} = X_1 + X'_2$		
	=8 Ω	(1 M)	
		D (*C	
		Part*C	
Q.No		Question	
1.			4 Kv,200/400 V and 50 Hz. The open
			The short circuit readings are I=10 A,
		the equivalent circuit	parameters.(Dec 2005,Dec 2006)BTL4
	(15M)		
	Answer: Page : 3.27 - J.Gna	navadivel	Y
	Write the formula		
	Answer		/
	• O.C Test		
	$\mathbf{W}_0 = \mathbf{V}_1 \mathbf{I}_0 \cos \phi_0$		
	$\cos \phi_0 = W_0 / V_1 I_0$	(1 M)	
	=0.5	(1 M)	
	$\cos \phi_0 = 0.5$		
	$\sin \phi_0 = 0.866$		
	$I_w = I_0 \cos \phi_0$	(1 M)	
	= 0.5 A	(1 M)	
	$R_0 = V_1/I_w$	(1111)	
	$=400\Omega$		
	$I_{\mu} = I_0 \sin \phi_0$	(1 M)	
	$f_{\mu} = 10 \sin \phi_0$ = 0.866 A	(1 M) (1 M)	
	$X_0 = V_1 / I_{\mu}$	(1 M) (1 M)	
	$= 231 \Omega$, ,	
		(1 M)	
	• S.C. Test		
	$Z_{02} = V_{sc}/I_{sc}$	(1 M)	
	$=1.5 \Omega$	(1 M)	
	$W_{sc} = I_{sc}^2 R_{02}$		
	$\mathbf{R}_{02} = \mathbf{W}_{sc} / \mathbf{I}^2_{sc}$	(1 M)	
	=0.85 Ω	(1 M)	
	$\mathbf{K} = \mathbf{V}_2 / \mathbf{V}_1$		
	=2		
	$Z_{01} = Z_{02} / K^2$		
	$R_{01} = R_{02}/K^2$	(1 M)	
	$X_{01} = root of (Z_{01}^2 - R)$	$_{01}^{2}$) (1 M)	
	AAD/EEE/Miss Vinneresi Donnury D/II nd		AL MACHINES J/UNIT 1 5/OB Keys/Vor1 0 4 20

	A B D C Scott (T-T) Connection	a b c
6.	A 100 KVA, 6.6 kV/415 V ,single phase transformer has an ereferred to HV side. Estimate the full load voltage regulation 0.8 pf leading. (Dec 2007, june 2007) BTL5	-
	Answer: Page : 2.101 - J.Gnanavadivel	
	➤ 0.8 pf lagging	
	% Regulation = $I_1 R_{01} \cos \phi + I_1 X_{01} \sin \phi / V_1 * 100$	(3M)
	$I_1 = kVA rating / V_1$	(3M)
	= 15015 A	(2M)
	% Reg = 1.653 %	(2M)
	\succ 0.8 pf leading	
	% Regulation = $I_1 R_{01} \cos \phi - I_1 X_{01} \sin \phi / V_1 * 100$	(3M)
	=-0.55%	(2M)

UNIT 3 ELECTRO MECHANICAL ENERGY CONVERTION AND CONCEPT IN ROTATING MACHINE

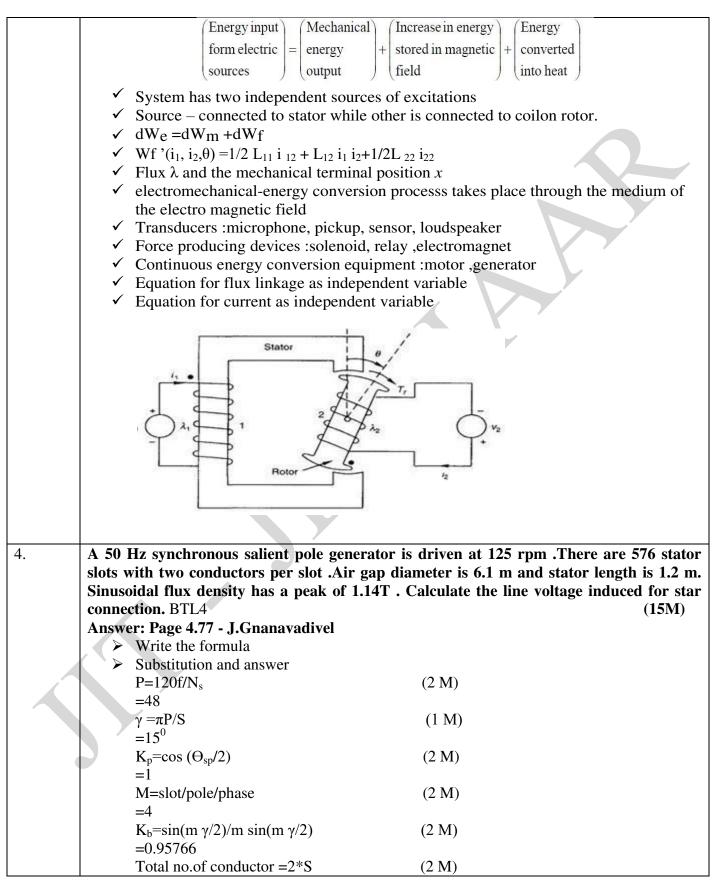

Energy in magnetic System-Field energy and co energy-Force and torque equation-Singly and multiply excited magnetic field system - mmf of distributed Winding-winding inductance-magnetic field in rotating machine-rotating mmf wave-magnetic saturation and leakage flux.

Part*A			
Q.No	Question		
1.	What is the significance of winding factor? (NOV/DEC 2012) BTL1		
	Winding factor gives the net reduction in emf induced due to short pitched coil wound in		
	distributed type Winding factor kw=kp kd		
	kp= pitch factor		
	kd= distribution factor		
	$kp = cos(\alpha/2)$		
	$kd = sin(m\gamma/2)/msin(\gamma/2)$		
2.	Write the application of single and doubly fed magnetic systems. (MAY/JUNE 2013)		
	BTL2		
	Singly excited systems are employed for motion through a limited distance rotation through a		
	prescribed angle. Whereas multiply excited systems are used where continues energy		

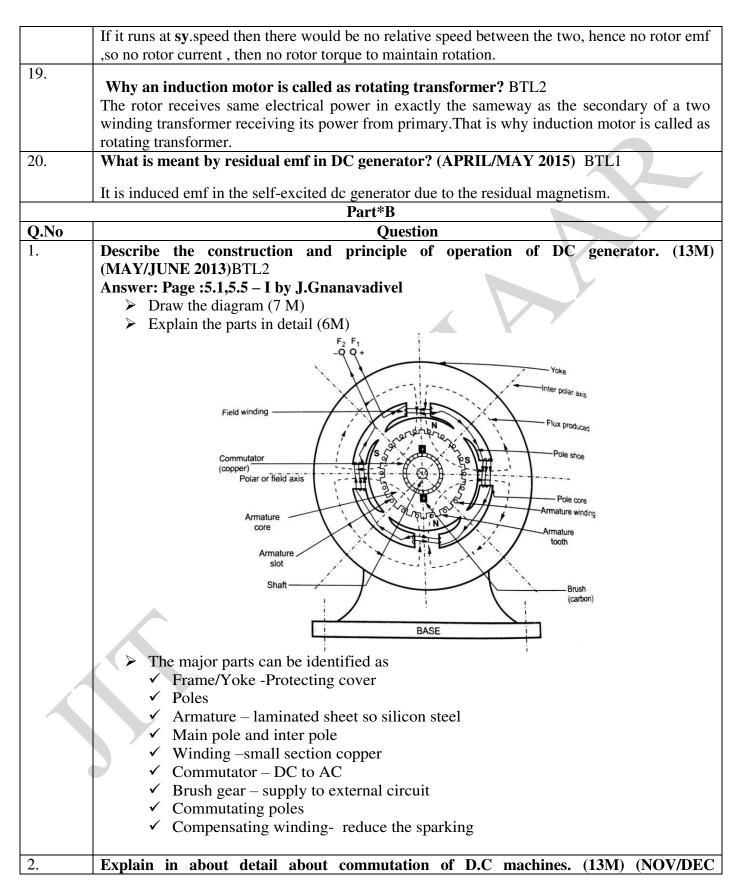

	conversion take place and in ease of transducer where one coil when energized the care of setting up of flux and the other coil when energized produces a proportional signal either
	electrical or mechanical
3.	What is meant by SPP? What is its significance ? (NOV/DEC 2015) BTL1
	SPP = Slots/Pole /Phase The parameter is used to design the poles and inter poles of a machine
	core.
4.	Give example for single and multiple excited systems. (MAY/JUNE 2013,MAY/JUNE 2009) BTL2
	Single excited system-reluctance motor, single phase transformer, relay coil Multiply excited system-alternator, electro mechanical transducer.
5.	Why do all practical energy conversion devices make use of the magnetic field as a coupling medium rather than electric field?(APRIL/MAY 2015,MAY/JUNE 2014) BTL5 When compared to electric field energy can be easily stored and retrieved form a magnetic
	system with reduced losses comparatively. Hence most all practical energy conversion devices
	make use of magnetic medium as coupling
6.	State necessary condition for production of steady torque by the interaction of stator and rotor field in electric machines.BTL1
	• The stator and rotor fields should not haveany relative velocity or speed between each other
	• Air gap between stator and rotor should be minimum
	Reluctance of iron path should be negligible
	 Mutual flux linkages should exist between stator and rotor windings
7.	Why the open circuit test of the transformer is conducted with rated voltage?BTL2 The open circuit test of the transformer is conducted with rated voltage because the core loss depends on the voltage. The open circuit test gives only the core loss and iron loss of the transformer.
8.	What is meant by Pole pitch and Chording angle?(NOV/DEC 2008) BTL1
	 Pole pitch: The distance between the centers of two adjacent poles is called pole pitch. One pole pitch is equal to 180 electrical degrees. It is also defined as the number of slots per pole. Chording angle: It is defined as that angle by which the coil pitch departs from 180 electrical degrees.
9.	Why energy stand in a magnetic motorial always accur in air car? DTL 2
	Why energy stored in a magnetic material always occur in air gap? BTL2
	In iron core or steel core the saturation and aging effects form hindrance to storage. Built in air
	gap as reluctance as well permeability is constant, the energy storage takes place linearly without any complexity. Hence energy is stored in air gap in a magnetic medium.
10.	
10.	What is the significance of co energy? (MAY/JUNE 2014,MAY/JUNE 2013) BTL1 When electrical energy is fed to eail not the whole energy is stored as magnetic energy, the co
	When electrical energy is fed to coil not the whole energy is stored as magnetic energy, the co energy gives a measure of other energy conversion which takes place in coil then magnetic
	energy gives a measure of other energy conversion which takes place in con their magnetic energy storage are field energy and Co energy
11.	Write the relation between electrical mechanical degrees. (APRIL/MAY 2015) BTL2
11.	$\Theta e = \Theta m$ for two pole machine
	$\Theta e = \Theta P / 2^* \Theta m$ for 4 pole a.c machines
12.	Define pitch factor. BTL1
12.	It is defined as the ratio of resultant emf when coil is short pitch to the resultant emf
	It is defined as the fatto of resultant entry when con is short plich to the resultant entry

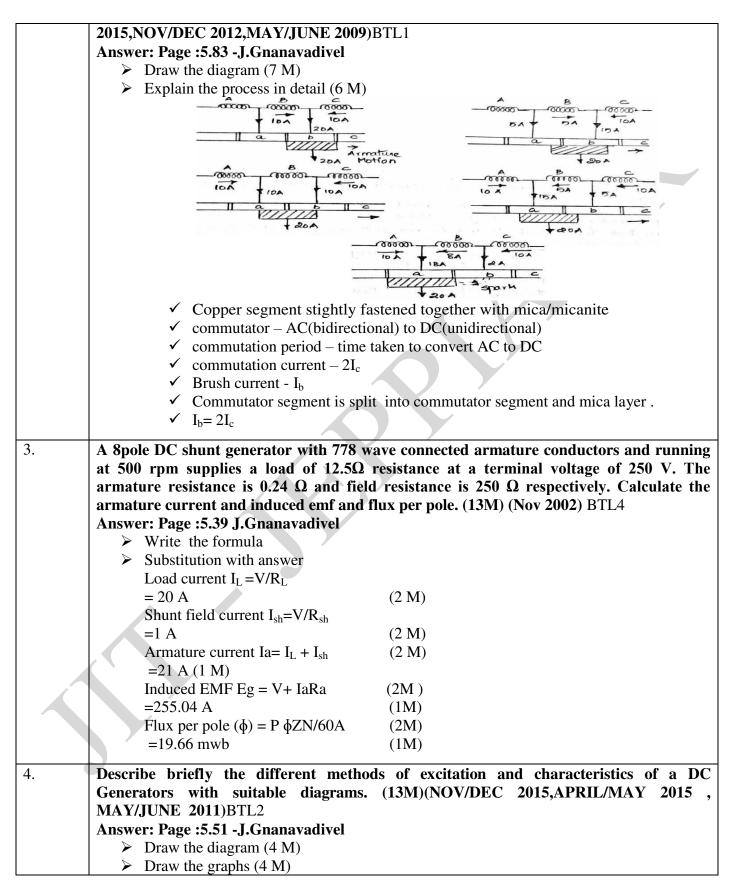
	when coil is full pitched. It is always less than one. Pitch factor is always termed as
	coil span (Kc) factor
	$kc = cos\alpha/2$
	where
	α =angle of short pitch
14.	Define the term breadth factor. BTL1
	The breadth factor is also called distribution factor or winding factor. The factor by
	which there is a reduction in the emf due to distribution of coil is called distribution
	Factor denoted as kd.
15.	Write down the advantages of short pitched coil. BTL2
10.	(i)The length required for the end connection of coils is less i.e., inactive length of
	winding is less . So less copper is required. Hence economical.
	(ii)Short pitching eliminated high frequency harmonics which distort the V sinusoidal
	nature of emf. Hence wave form of an induced emf is motor sinusoidal due to short
	pitching.
	(iii)As high frequency harmonics get eliminated, eddy current and hysteresis losses
16.	which depend on frequency also get minimized. This in creases the efficiency.
10.	Why fractional pitched winding is required than full pitched winding? (NOV/DEC 2015) BTL2
	Fractional pitch winding require less copper compare to full pitch coil. It improves the commutation, and the mutual inductance of fractional pitch coil is smaller than full pitch coil.
17.	
17.	Define field energy. BTL1
	The energy drawn by virtue of change in the distance moved by the rotor in electrical
18.	machines in field configuration is known as field energy.
18.	Describe multiply excited magnetic field system. (MAY/JUNE 2011) BTL2 The specially designed transducers have the special requirement of producing on electrical
	The specially designed transducers have the special requirement of producing an electrical
	signal proportional to forces or velocities of producing force proportional to electrical signal.
	Such transducers require two or more excitation called as multiply excited magnetic field
10	system.
19.	What is an electro mechanical system? BTL1
	The system in which the electro mechanical energy conversion takes palace via the
20	medium of a magnetic or electric field is called electro mechanical system.
20.	What are the two components in transformer no load current? BTL1
	\rightarrow Active or working component (I _w)
	$\Rightarrow passive or magnetizing component (Iu)$
	$\mathbf{Part*B}$
Q.No	Question
1.	Explain in detail doubly excited magnetic system . (APRIL/MAY 2015,NOV/DEC 2015,
1.	MAY/JUNE 2013,NOV/DEC 2012,NOV/DEC 2009,May/June 2016)BTL1 (13M)
	Answer: Page 4.20 - J.Gnanavadivel
	 Answer: Fage 4.20 - J.Ghanavauiver Draw the diagram (4 M)
	 Explain the working (4 M)
	 Derive the expression for independent variables (5 M)
	 Derive the expression for independent variables (3 1vi)

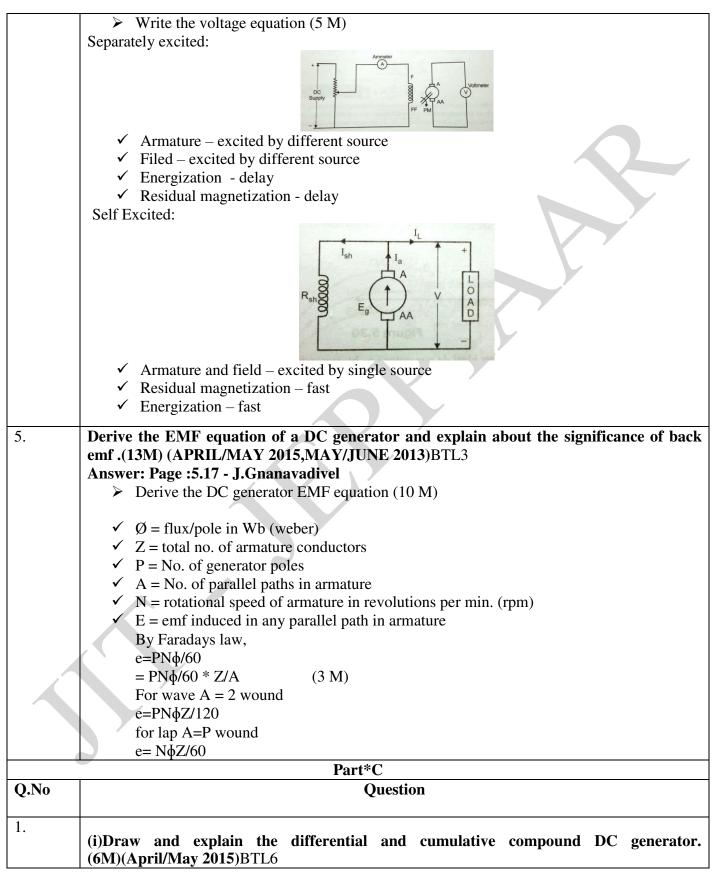
	(Energy input) (Mechanical) (Increase in energy) (Energy)		
	form electric = energy + stored in magnetic + converted		
	sources output field into heat		
	✓ System has two independent sources of excitations		
	 System has two independent sources of excitations Source is connected to coil on stator while other is connected to coil on rotor. 		
	✓ source is connected to con on stator while other is connected to con on rotor. ✓ $dW_e = dW_m + dW_f$		
	$\checkmark \text{ Wf } (\lambda_1, \lambda_2, \theta) = \beta_{11} \lambda_1^2 + \beta_{12} \lambda_1 \lambda_2 + \beta_{22} i_2^2$		
	$\checkmark \text{ Wf}(\lambda_1, \lambda_2, 0) = \beta_{11} \lambda_1 + \beta_{12} \lambda_1 \lambda_2 + \beta_{22} \lambda_2^2$ $\checkmark \text{ Wf}'(\lambda_1, \lambda_2, 0) = L_{11} \lambda_1^2 + L_{12} \lambda_1^2 \lambda_2 + \beta_{22} \lambda_2^2$		
	Stator 0		
	*•		
	A PT		
	250 -		
	$\gamma \gamma $		
	Rotor		
	\checkmark Flux λ and the mechanical terminal position x		
	 First x and the incentanceal terminal position x electromechanical-energy conversion processs takes place through the medium of 		
	the electro magnetic field		
	✓ Transducers :microphone, pickup, sensor, loudspeaker		
	✓ Force producing devices :solenoid, relay ,electromagnet		
	✓ Continuous energy conversion equipment :motor ,generator		
	 Equation for flux linkage as independent variable 		
	 Equation for current as independent variable 		
2.	Formulate the torque equation of around rotor machine. Also clearly state the		
	assumptions made. (Nov/Dec 2015) (April/May 2015) BTL6 (13M)		
	Answer: Page 4.45 - J.Gnanavadivel		
	\blacktriangleright Derive the expression with assumption (10 M)		
	Consider a two pole machine i.e stator and rotor has two poles		
	✓ F1=MMF produced by stator		
	✓ F2=MMF produced by rotor.		
	✓ FR=Resultant MMF		
	Assumptions: (3 M)		
	\checkmark The rotor - assumed to be smooth cylindrical, so that the air gap is unifom.		
	✓ The MMF produced by stator and rotor is assumed to be sinusoidal.		
	The radial length of air gap(g) is very small when compared to the radius of stator.		
	$\checkmark MMF in air gap, Fr= Hr * g$		
	$\checkmark Hr = Fr/g.$		
	✓ The reluctance of air gap is negligible.		
	\checkmark The sinusoidal MMF space wave produces sinusoidal flux density wave is in phase with it		
	with it.		
1	\succ Let,		

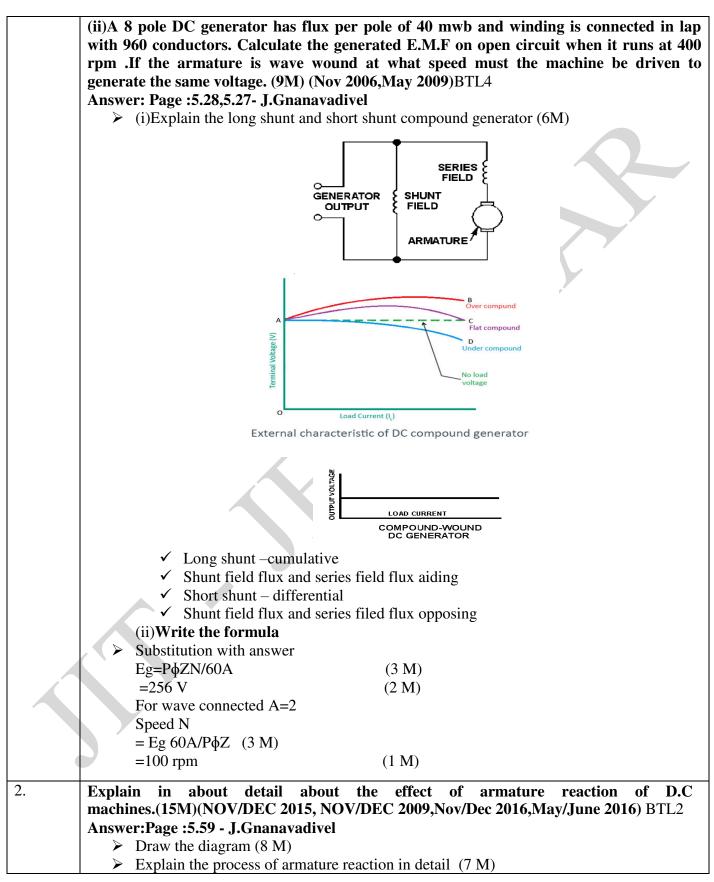


JIT-JEPPIAAR/EEE/Miss.Vinnarasi Ponnury .P/IIndYr/SEM 03 /EE8301/ELECTRICAL MACHINES - I/UNIT 1-5/QB+Keys/Ver1.0 4.30

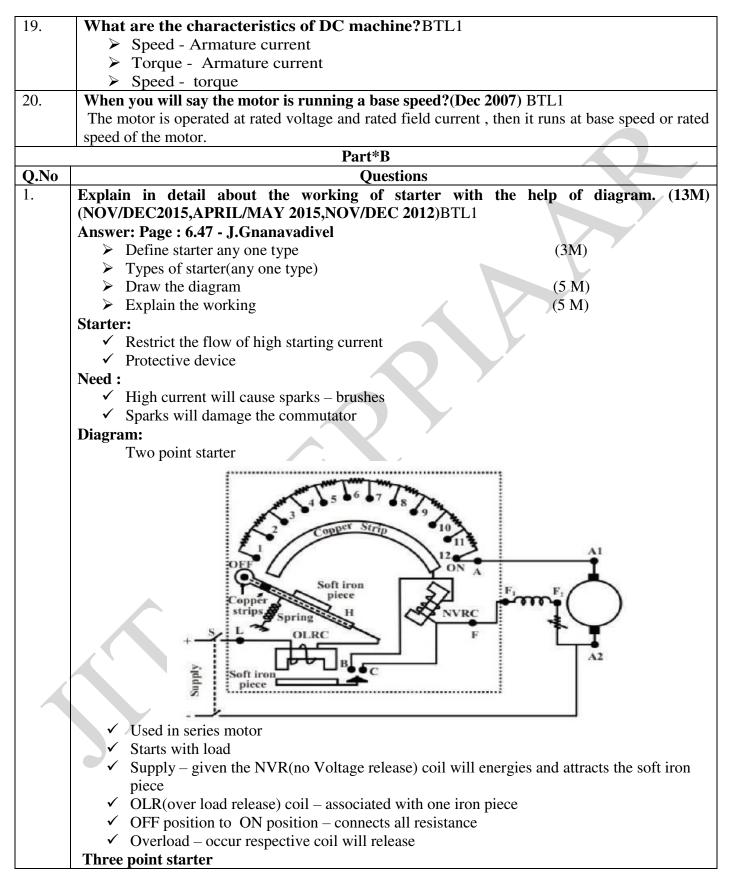

Q.No	Question	
1.	Derive the expression of energy through in magnetic field. (May/June 2014,May/June 2016)BTL5 (15M)	
	Answer: Page 4.2 - J.Gnanavadivel	
	 Draw the diagram (5 M) Explain the working (4 M) 	
	 ▷ Derive the expression for independent variables (6 M) ✓ F_f dx = idλ - (∂W_f/∂λ).dλ + (∂W_f/∂).dλ ✓ F_f dx = - (∂W_f/∂λ).dλ + (i-∂W_f/∂λ) dλ ✓ Since dλ, the independent differential, is not present on the left hand side of this equation 	
	$\checkmark I = \partial W_f(\Lambda, x) / \partial \Lambda = 0$	
	$\checkmark \mathbf{F}_{f} = -\left(\partial \mathbf{W}_{f} \boldsymbol{\Lambda}, \mathbf{x}\right) / \partial \boldsymbol{\Lambda}$	
	Fr Fr	
	V + e N Armature	
	$\checkmark dW_e = dW_m + dW_f$	
	✓ $F_f dx = id\Lambda - (\partial W_f / \partial \Lambda) . d\Lambda + (\partial W_f / \partial) . d\Lambda$	
	$\checkmark \mathbf{F}_{\mathbf{f}} d\mathbf{x} = -(\partial \mathbf{W}_{\mathbf{f}} / \partial \mathbf{A}) \cdot d\mathbf{A} + (\mathbf{i} - \partial \mathbf{W}_{\mathbf{f}} / \partial \mathbf{A}) \cdot d\mathbf{A}$	
	Since $d\Lambda$, the independent differential, is not present on the left hand side of this equation $\checkmark I = \partial W_f(\Lambda, x) / \partial \Lambda = 0$	
	✓ $F_f = -(\partial W_f \Lambda, x) / \partial \Lambda$	
	✓ The for a direction to decrease the magnetic field stored energy at constant flux	
	or to increase the co energy at constant current	
2.	With neat sketch explain multiple excited magnetic field system in electro mechanical	
	energy conversion systems. Also obtain the expression for field energy in the	
	system.(April/May 2015) BTL2	
	(15M) Answer: Page 4.20 I Chenevedivel	
	Answer: Page 4.20 - J.Gnanavadivel → Draw the diagram (4 M)	
	 Explain the working (5 M) 	
	 Derive the expression for independent variables (6 M) 	



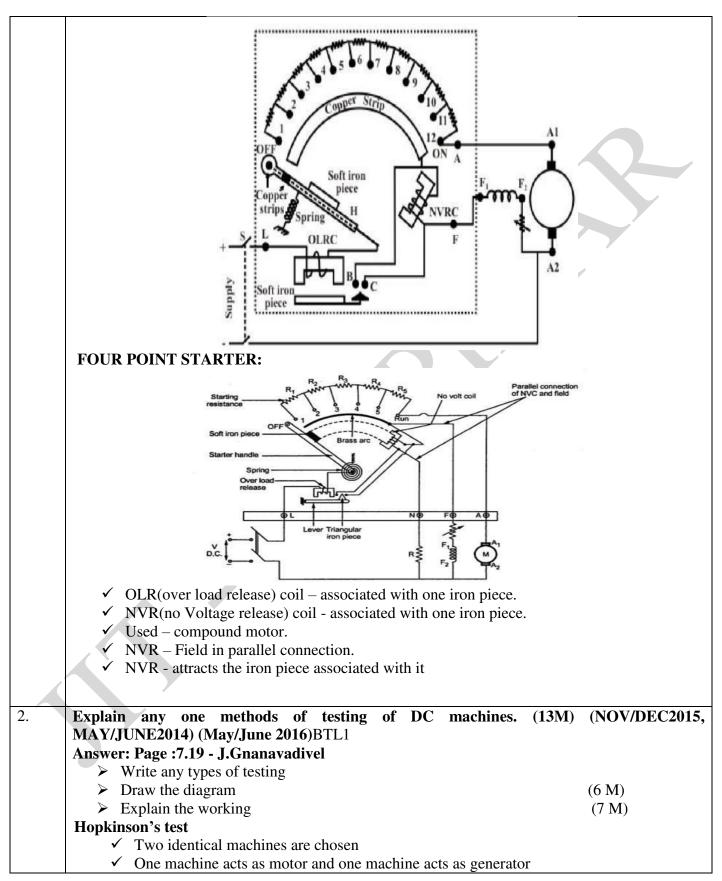

(2 M)
(2 M)

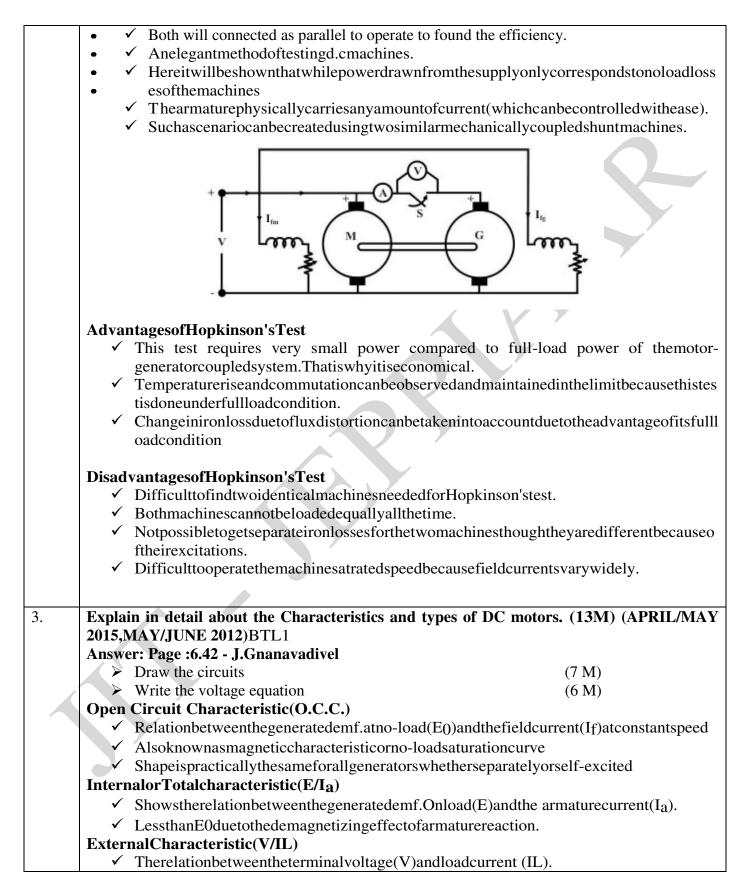

	UNIT –IV DC GENERATOR		
	ion and components of DC Machine- Principle of operation -Lap and wave windings- EMF		
-	- circuit model-armature reaction-methods of excitation-commutation and inter poles -		
compensa	ting winding-characteristics of DC generators		
	Part*A		
Q.No			
1. Why the armature core in dc machines is constructed with laminated steel sh			
	of solid steel sheets? (MAY/JUNE 2013) BTL2		
	Lamination highly reduces the eddy current loss and steel sheets provide low reluctance path to magnetic field.		
2. Write down the emf equation for DC generator. (MAY/JUNE 2015,MAY/JUN			
2.	BTL2		
	$e = \frac{PN\phi Z}{60A}$		
	P-No of poles: Z-Total no of conductor		
	Φ-flux per pole, N-speed in rpm.		
3.	Why commutator is employed in d.c. machines? (MAY/JUNE 2011,MAY/JUNE 2009)		
	BTL2		
	Conduct electricity between rotating armature and fixed brushes, convert alternating emf into		
	unidirectional emf (mechanical rectifier).		
4.	What are the major parts of DC generator? BTL1		
	Magnetic frame or yoke		
	> Poles		
	> Armature		
Commutator, pole shoes , armature winding , inter poles			
5	Brushes, bearings and shaft		
5.	Why pole shoe has been given a specific shape? (MAY/JUNE 2013) BTL2 It is necessary that maximum area of the armature comes across the flux produced by the field		
	winging. Pole shoe enlarges the area of armature core to come across flux, which is necessary		
	to produce larger induced emf.		
6.	What is prime mover?BTL1		
0.	The basic source of mechanical power, which drives the armature of the generator, is		
	called prime mover.		
7	How will you change the direction of rotation of a DCmotor?BTL1		
	Either the direction of the main field or the direction of current through the armature		
	conductors is to be reserved by reversing the supply polarity.		
8.	How does DC motor differ from DC generator in construction? (MAY/JUNE 2013) BTL1		
	Generators are normally placed in closed room and accessed by skilled operators only.		

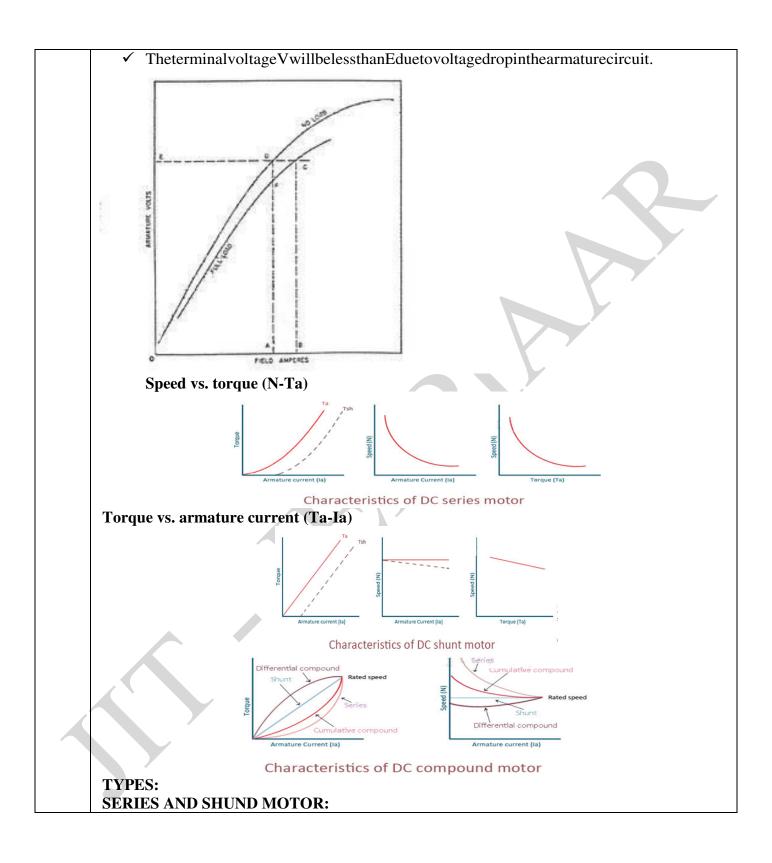
	Therefore, on ventilation point of view they may be constructed with large opening in the			
	frame. Motors have to be installed right in the place of use which may have dust, dam			
	inflammable gases, chemical.etc.to protect the motors against these elements, the motor fram			
	are made either partially closed or totally closed or flame proof.			
9.	List the advantages and disadvantages of Hopkinson's test.(MAY/JUNE 2014) BTL1			
	Advantages:			
	> Power required for the test is small as compared to full load powers of the two			
	machines.			
	> The machines can be tested under full load conditions for long duration, the			
	performance of the machines grading commutation and temperature rise can be			
	studied.			
	Disadvantage:			
	➤ Two identical machines are required.			
	> Two machines should have same rating.			
10.	What is the purpose of yoke in d.c machine? (MAY/JUNE 2013) BTL1			
	> It acts as a protecting cover for the whole machine and provides mechanical support for			
	the poles.			
	It carries magnetic flux produced by the poles			
11.	Why is Swinburne's test preferred to determine the efficiency of a dc machine?			
	(MAY/JUNE 2012,NOV/DEC 2009) BTL2			
	This method involves purely electrical measurements which are capable of being carried out			
	with a high degree of accuracy. This method requires only a small fraction of the rated output			
	the motor.			
12.	Name any 2 non-loading method of testing dc machines. BTL2			
	Swinburne's test			
	Hopkinson's test			
13.	What is the necessity of starter in D.Cmotors?BTL1			
	When a dc motor is directly switched on ,atthe time of starting ,the motor back emf is zero .Due			
	to this, the armature current is very high. Due to the very high current, the motor gets damaged.			
	To reduce the starting current of the motor a starter is used.			
14.	Harry date a series motor develop high starting tanguag DTI 2			
	How does a series motor develop high starting torque? BTL2			
	A dc series motor is always started with some load. Therefore the motor armature current			
15	increases .Dueto this, series motor develops high starting torque.			
15.	If speed is decreased in a DCmotor , what happens to the back emf decreases and			
	armature current. BTL2			
	If speed is decreased in a dc motor, the back emf decreases and armature current increases.			
16.				
	When is a four point DC starter required in DC motors? BTL1			
	A four point DC starter is required for dc motor under field control			
17.	Specify the role of inter-poles in DC machines . (APRIL/MAY 2015)BTL2			
In modern DC machines inter-poles are provided to improve the commutation and to				
	spark			
18.				
	Why an induction motor never runs at its synchronous speed?BTL2			

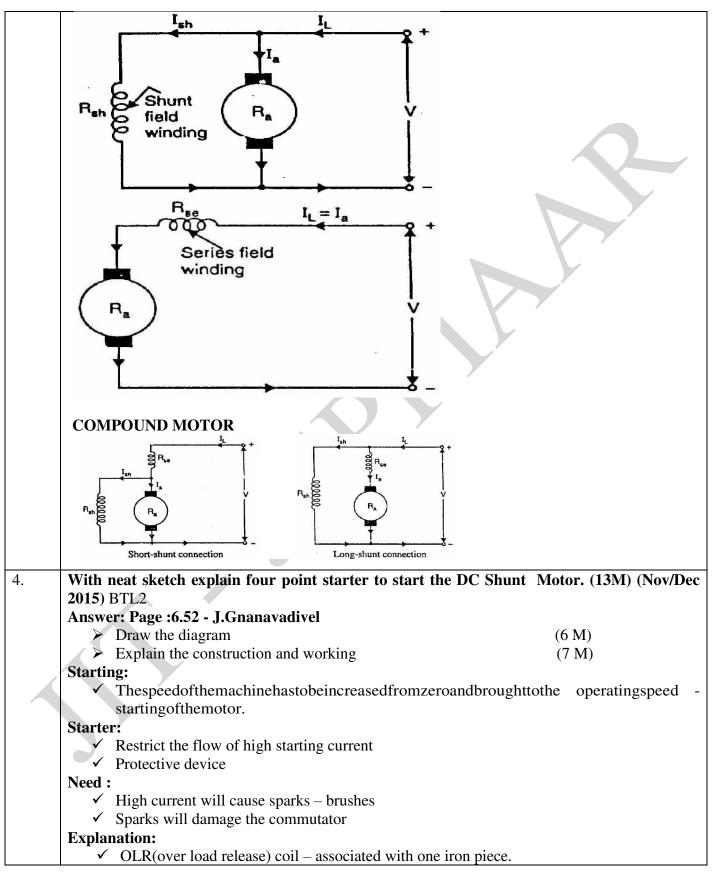

	G.N.A. D. MNWA. O.M.N.A. D.M.N.A. S S S S S S S S S S S S S	Rotation G.N.A. 9.9 Here N (9.9 Here) S S S	
	G.N.A-B B G.N.A-B B G.N.A-B B F F F F F F F	Fa Fo Fo	
	 At no load condition – Main field flux At loaded condition – Armature field flux Interaction between main field flux and armature field flux – armature reactio 		
	 Demagnetization – opposes the main field Cross magnetization – One side more flux Armature reaction – causes shifting of bru Continuous rotation 	and one side less flux	
3.	(i)Write the EMF equation of DC generator.(5M) (Ap (ii)A Dc compound generator the resistance of arma 0.10,0.05 and 100 ohms respectively. Supplies 5 kW a and armature current, when the generator is connected	ture, series and shunt windings are at 230 V. Calculate the induced emf	
	 (1) Short shunt (2) Long shunt. Allow brush contact drop of 2V per brush. (10M) (Dec 2004) BTL4 Answer: Page :5.17,5.47 -J.Gnanavadivel 		
	(i)write the emf equation (5 M) $\emptyset = \text{flux/pole in Wb (weber)}$		
	Z = total no. of armature conductors P = No. of generator poles		
	 A = No. of parallel paths in armature N = rotational speed of armature in revolutions per min. (rpm) E = emf induced in any parallel path in armature 		
	By Faradays law, e=PNφ/60 * Z/A For wave A = 2 wound		
	$e=PN\phi Z/120$ for lap A=P wound $e=N\phi Z/60$		
	 (ii)write the formulae Substitution with answer Shunt field current I_{sh}=V/R_{sh}=4.6A 	(2 M)	
	Load current $I_L=P_0/V = 21.74A$ Armature current $Ia=I_{sh} + I_L = 26.34A$ Eg= V+Ia($R_{se} + R_a$) + brush drop = 256.34V	(2 M) (2 M)	
	$I_{sh} = V + I_L R_{se}/R_{sh} = 4.68 \text{ A}$ $Ia = I_{sh} + I_L = 26.42 \text{ A}$	(2 M)	
	$Eg = V + IaR_a + I_{se}R_{se} = 255.48 V$	(2 M)	

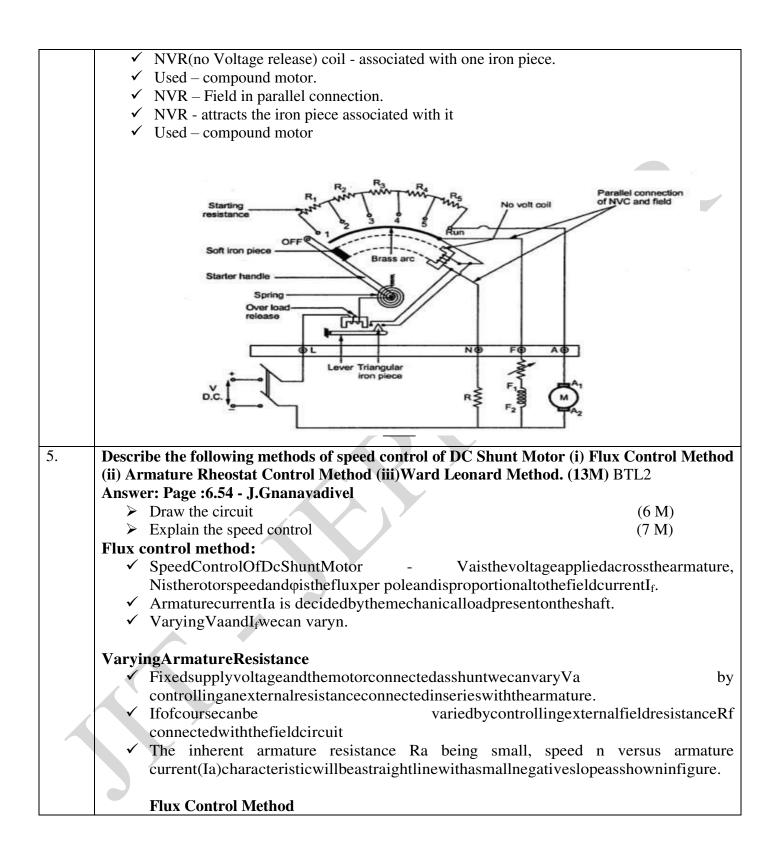
4.	A 240 kW,500 V,6-pole,lap wound DC generator has 63 slots with 10 conductors/slot. The brushes are advanced through 4 mechanical degrees. Ignoring shunt field current, find i)Demagnetizing ampere turns / pole		
	ii)Cross magnetizing ampere turns / pole.(15M)(May 2009)BTL4		
	Answer: Page :5.79 - J.Gnanavadivel		
	write the formulae		
	Substitution with answer		
	$I_L = P_0 / V$	(2M)	
	=480A	(2 M)	
	$I_a = I_L = 480A$	(2 M)	
	$I = I_a / A (2 M)$		
	=80A	(2M)	
	Demagnetization ampere turns/pole = $ZI\Theta_m/360$	(2M)	
	=560	(1 M)	
	Cross magnetization ampere turns/pole = $ZI(1/2P - \Theta_m/360)$	(2M)	
	=3640	(2 M)	

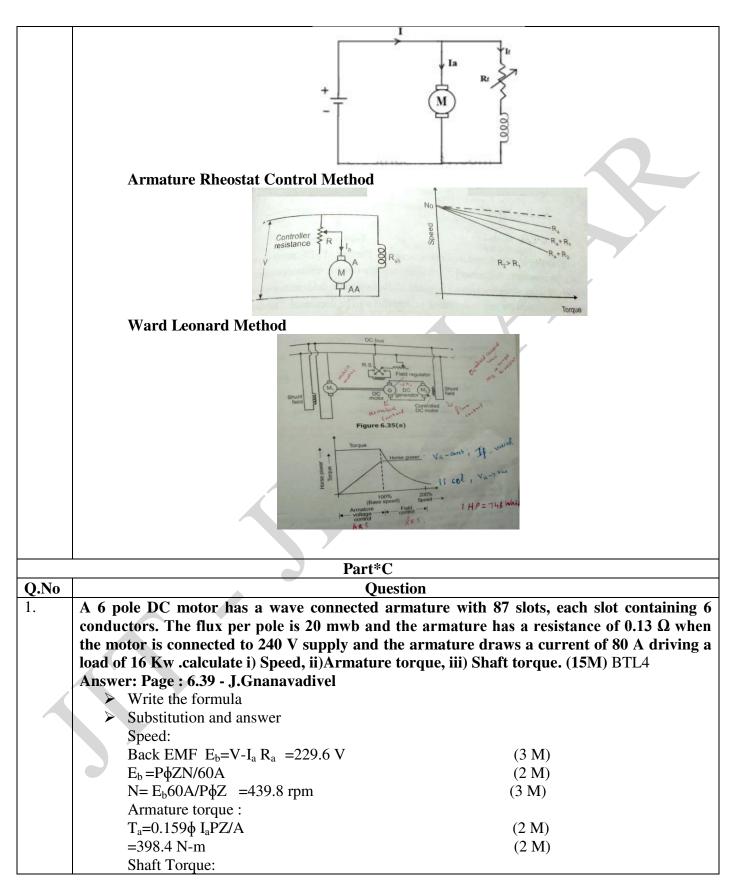

UNIT VDCMOTORSPrinciple and operations- types of DC Motors – Speed Torque Characteristics of DC Motors- starting and
speed control of DC motors–Plugging, dynamic and regenerative braking-testing and efficiency-
Retradation Test-Swinburne's test and Hopkinson's test-permanent magnetic DC motors (PMDC)-DC
motor application


	Part*A			
Q.No	Question			
1.	What is back emf in d.c. motor? (MAY/JUNE 2012,MAY/JUNE 2009) BTL1			
	\succ As the motor armature rotates, the system of conductor come across alternate north and			
	south pole magnetic fields causing an emf induced in the conductors.			
	> The direction of the emf induced in the conductor is in opposite to current. As this emf			
	always opposes the flow of current in motor operation it is called as back emf.			
2.	Why DC motors are not operated to develop maximum power in practice? BTL2			
	The current obtained will be much higher than the rated current . The efficiency of operation will be below 50%			
3.	What is the function of no-voltage release coil in D.C. motor starter? (NOV/DEC 2015)			
1	BTL1			
	As long as the supply voltage is on healthy condition the current through the NVR coil produce			
	enough magnetic force of attraction and retain the starter handle in ON position against spring			
	force. When the supply voltage fails or becomes lower than a prescribed value then			
	electromagnet may not have enough force to retain so handle will come back to OFF position due			
	to spring force automatically.			
4.	Name any four applications of DC series motor.(MAY/JUNE 2013) BTL2			
	Electric traction			
	> Mixies			
	> Hoists			
	Drilling machines			


5.	What are the conditions to be fulfilled by for a dc shunt generator to build back emf? (MAY/JUNE 2012,MAY/JUNE 2009) BTL1	
	The generator should have residual flux, the field winding should be connected in such a manne	
	that the flux setup by field in same direction as residual flux, the field resistance should be	
	than critical field resistance, load circuit resistance should be above critical resistance.	
6.	What are the modification in ward Leonard linger system? BTL1	
	Ward Leonard linger system has smaller motor and generator set. Addition offwhee	
	whose function is to reduce fluctuations in the power demand from the supply circuit.	
7.	What is the necessity of starter in dc motors?(NOV/DEC 2015) BTL1	
	When a dc motor is directly switched on, at the time of starting, the motor back emf is zero. Due	
	to this, the armature current is very high. Due to the very high current, The motor gets damaged.	
	To reduce the starting current of the motor a starter is used.	
8.	To what polarity are the inter poles excited in dc generators. BTL1	
	The polarity of the inter poles must be that of then ext main pole along the direction of	
	rotation in the case of generator.	
9.	Why are carbon brushes preferred for dc machines? BTL2	
	The high contact resistance carbon brushes help the current in the coil under	
	going commutation to attain its full value in the reverse direction at the end of	
	commutation. The carbon brushes also lubricate and give less wear and tear on	
	commutator surface.	
10.	Name the two methods of improving commutation. BTL2	
	Emf commutation.	
	Resistance commutation	
11.	Why DC series motor is suited for traction applications? (APRIL/MAY 2015,NOV/DEC	
	2015) BTL2	
	DC series motor provides high starting torque. So DC series motor is suited for traction	
	applications	
12.	Define the term commutation in dc machines. BTL1	
	The changes that take place in winding elements during the period of short circuit by a	
	brush is called commutation.	
13.	Howandwhythecompensatingwindingindcmachineexcited? BTL2	
	Asthecompensationrequiredisproportionaltothearmaturecurrentthecompensatingwindingi	
	sexcitedbythearmaturecurrent.	
14.	What is an electric motor? BTL1	
	Electric motor is a machine which converts the electrical energy to mechanical energy.	
15.	What is DC motor? BTL1	
	DC motor will convert DC input into mechanical output.	
16.	What is the nature of the current flowing in the armature conductor of a DC	
	motor? BTL1	
Alternating current is flowing through the armature this direct current is c		
	commutator.	
17.	What is the compound motor? BTL1	
	A DC motor consisting of both series and shunt field winding is called compound motor	
	They are two types long shunt and short shunt compound motors.	
18.	List out different parts of DC Motor. BTL1 Yoke, Armature ,Poles ,Field winding ,Armature winding ,commutator and brushes	




JIT-JEPPIAAR/EEE/Miss.Vinnarasi Ponnury .P/IIndYr/SEM 03 /EE8301/ELECTRICAL MACHINES - I/UNIT 1-5/QB+Keys/Ver1.0 4.42



	T _{sh} =9.55 P _{out} /N	(2 M)
	=347.43 N-m	(1 M)
2.	A 200 V DC shunt motor running	at 1000 rpm takes an armature current of 17.5 A. It is
	required to reduce the speed to 600) rpm. What must be the value of resistance to be inserted
	in the armature circuit if the origina	al armature resistance is 0.4Ω ? take armature current to
	be constant during this process. (15)	M) (May 2009) BTL4
	Answer: Page :6.64 - J.Gnanavadive	el
	Write the formula	
	Substitution and answer	
	$E_{b1}=V-I_aR_a$	(2 M)
	=193 V	(1 M)
	$E_{b2}=200-I_{a}R_{t}$	(2 M)
	$=200-17.5 R_{t}$	$(1 \mathrm{M})$
	$N1/N2 = E_{b2}/E_{b1}$	(2 M)
	$600/1000 = 200 - I_a R_t / 193$	(1 M)
	=4.81Ω	(2 M)
	Additional resistance required	
	$=4.41 \Omega$	(2 M)
3.		
	Answer: Page :6.26,5.59,6.111 - J.Go > (i)write the equation > Any two application of each ty > (ii)Explain with example	(6 M)
	Machine operates as	Machine operates as
	motor	generator during braking (plugging).
	 Weknowthatanymovingorrota Howfastwecanbringtheobject Itskineticenergyandmakearra 	cationstostoparunningmotorratherquickly. tatingobjectacquireskineticenergy. ttorestwilldependessentiallyuponhowquicklywecanextract angementtodissipatethatenergysomewhereelse. le,itwilleventuallycometoastopeventuallyaftermovingquite

	somedistance.
\checkmark	The initial kinetic energy stored, in this case dissipates a sheat in the friction of the road. Howeve the initial kinetic energy stored is the state of the st
	r, to make the stopping faster, brake is applied with the help of rubber brakes hoe sonther imof the
	wheels.
\checkmark	ThusstoredK.Enowgetstwowaysofgettingdissipated,oneatthewheel-
	brakeshoeinterface(wheremostoftheenergyisdissipated)andtheotherattheroad-
	tier interface. This is a good method nodoubt, but regular maintenance of brakes hoe sdue to we a standard the standard term of t
	randtearisnecessary
\checkmark	Ifamotor-
	simply disconnected from supply it will eventually come to stop nodoubt, but will take longer time to stop the stop of the s
	meparticularlyforlargemotorshavinghighrotationalinertia.
\checkmark	Because here the stored energy has to dissipate mainly through be aring friction and wind frictin an
	n.
\checkmark	Thesituation can be improved, by forcing the motor to operate as a generator during braking.
\checkmark	
	gthedirectionofrotationwhileingeneratortheelectromagnetictorqueactsin
	theoppositedirectionofrotation.
\checkmark	Thusbyforcingthemachinetooperateasgeneratorduringthebrakingperiod, atorque opposit
	eto the direction of rotation will be imposed on the shaft, there by helping the machine to come to the shaft of the sha
	stopquickly.
\checkmark	During braking action, the initial K. Estored in the rotor is either dissipated in an external resistance of the standard stand
	nceorfedbacktothesupplyorboth.

OBJECTIVE TYPE QUESTIONS

UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS

1) Iron losses are considered to be the constant losses. It depends on

- a. Voltage
- b. Frequency
- c. Both (a) and (b)
- d. None of these

ANSWER: Both (a) and (b)

2) Copper losses in a rotating machine are

- a. Variable losses
- b. Constant losses

- c. Both (a) or (b)
- d. None of these

ANSWER: Variable losses

3) For low reluctance path for the flux in armature, the permeability of the material should be

- a. High
- b. Low
- c. Both (a) and (b)
- d. None of these

ANSWER: Low

4) When we plot the magnitude of the induced emf against the time, the nature of the induced emf will be

- a. Sinusoidal
- b. Square
- c. Triangular
- d. Parabolic

ANSWER: Sinusoidal

- 5) Due to short pitching, the induced emf gets
- a. Reduced
- b. Increased
- c. Remains same
- d. None of these

ANSWER: Reduced

6) Mention the magnetic materials

a. Dia Magnetic Materials

- b. Para Magnetic Materials
- c. Ferro Magnetic Materials
- d. All the above

ANSWER: All the above

7) Relative permeability is

a. $\mu_r = \mu^* \mu_0$

 $_{b.} \mu_{r} = \mu + \mu_{0}$

c. $\mu_r = \mu - \mu_0$

d. $\mu_{r} = \mu / \mu_0$

ANSWER: $\mu_r = \mu/\mu_0$

8)Faraday's law of electromagnetic induction is

a. e=NdΦ

b. $e=Nd+\Phi$

c. e= - $Nd\Phi/dt$

d. $e=Nd\Phi/dt$

ANSWER: e=NdΦ/dt

9)Unit of Magnetic Field intensity is

- a. AT/m.
- b. m/AT.
- c. m².
- d. AT.

ANSWER: AT/m.

10)Unit of Magnetic Flux is

a. AT/m.

b. m/AT.

c. m².

d. weber.

ANSWER: weber

11)Unit of Flux Density is

a. weber / meter².

b. weber

c. meter² / weber .

d. meter²

ANSWER: weber / meter².

12)Unit of Magnetic Motive Force is

a. AT/m.

b. m/AT.

c. m².

d. AT.

ANSWER: AT.

13) Magnetic Field intensity is

a. H = NI + l AT/m.

- b. H=NI-l AT/m.
- c. H=NI/l AT/m.
- d. H=NI*l AT/m.

ANSWER: H=NI/I AT/m.

14) Magnetic Motive Force is

a. MMF=N Ampere turns (AT)

- b. MMF=I Ampere turns (AT)
- c. MMF=N/I Ampere turns (AT)
- d.MMF=NI Ampere turns (AT)

ANSWER: H= MMF=NI Apere turns (AT)

15) Hysteresis loss is

- a.Ph=B¹⁶maxfV watts
- b. Ph=B¹⁸maxfV watts
- c. Ph=B¹⁶maxf/I watts
- d. Ph=B¹⁶maxV watts
- ANSWER: Ph=B¹⁶maxfV watts

UNIT II TRANSFORMERS

- 1) The hysteresis motor are mainly used in tape recorders because
- a. Of its extremely steady torque
- b. Constant speed
- c. Reduced initial current
- d. None of these

ANSWER: Of its extremely steady torque

2) If % ηm is the mechanical efficiency of a DC machine and % ηe is the electrical efficiency. Then the overall efficiency of DC machine is given by

- a. $\% \eta m + \% \eta e$
- b. % η m X % η e
- c. $(\% \eta m + \% \eta e) / \% \eta m$
- d. $(\% \eta m + \% \eta e) / \% \eta e$

ANSWER: % η m X % η e

3) Name the factors on which hysteresis loss depends?

- a. Frequency
- b. volume of the core and
- c. Maximum flux density
- d.All the above

ANSWER: All the above

4)All day efficiency is

- **a.** η all-day = Output power in Kwh + Input power in kWh *100 %
- b. η all-day = Output power in Kwh/Input power in kWh *100 %
- c. η all-day = Output power in Kwh * Input power in kWh *100 %
- d. η all-day = Output power in Kwh Input power in kWh *100 %

ANSWER: η all-day = Output power in Kwh/Input power in kWh *100 %

5)Regulation of transformer is

- a. % R= copper loss $/I_2$
- b.% R= copper loss $/V_2$
- c. % R= $V_2 I_2 / V_2 I_2$
- d. % R= copper loss $/V_2I_2$

ANSWER: % R= copper loss /V₂I₂

6)transformation ratio is

- a. $K = V_1 + V_2$
- b. $K = V_1 V_2$
- c. $K = V_1/V_2$
- d. $K = V_1 * V_2$
- ANSWER: $K = V_1/V_2$

7)Power factor Cos ϕ_0 =

- a. Cos $\phi_0 = W_0 / V_1 I_0$
- b. Cos $\phi_0 = W_0/I_0$
- c. Cos $\phi_0 = W_0 / V_1$
- d. Cos $\phi_0 = W_0/V_2I_1$

ANSWER:Cos $\phi_0 = W_0/V_1I_0$

8) When $\cos \phi_0 = 0.5$ find the value of $\sin \phi_0$

a. $\sin \phi_0 = 0.866$

b. $\sin \phi_0 = 0.967$

c. $\sin \phi_0 = 0.428$

d. $\sin \phi_0 = 0.849$

ANSWER: $\sin \phi_0 = 0.866$

9)Three Phase transformer connections are

a.Star to Star

b.Star to Delta

c.Delta to Star

d.Delta to Delta

ANSWER: a,b,c,d

10)Total loss in the machine is

- a. Total losses = Input power + output power
- b. Total losses = Input power /output power
- c. Total losses = Input power * output power
- d. Total losses = Input power output power

ANSWER: Total losses = Input power – output power

11)Input power of the AC machine is

- a. Input power = output power / efficiency
- b. Input power = output power efficiency
- c. Input power = output power +efficiency
- d. Input power = output power * efficiency

ANSWER:Input power = output power / efficiency

12)How transformers are classified according to the construction

- a. Core type
- b. Shell Type
- c. both a and b
- d. only a

ANSWER:both a and b

13)What is a step up transformer

a.N₁> N₂

 $b.N_1 \le N_2$

- $c.N_1 = N_2$
- d. All the above
- ANSWER: $N_1 < N_2$

14)What is a step down transformer

a.N₁> N₂

b.N₁ < N₂

 $c.N_1 = N_2$

d. All the above

ANSWER: N₁> N₂

15)Give the emf equation of a transformer is

a. E₁=1.11 Φ mN₁

b. E1=4.44fN1

- c. E1=4.44f Φ_m
- d. E1=4.44f Φ_m N1

ANSWER: E1=4.44fΦmN1

UNIT III ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN ROTATING MACHINES

1) The rotational or stray losses includes

a. Iron losses only

- **b.** Iron losses, friction and windage losses
- c. Iron losses, copper losses, friction and windage losses

d. None of these

ANSWER: Iron losses, copper losses, friction and windage losses

2) If A is the number of parallel paths and P is the number of poles, then the number of parallel path in lap winding and in wave winding is

a. A = P, A = 2
b. A = 2P, A = P
c. A = 2, A = P
d. A = P, A = 2P

ANSWER: A = P, A = 2

3) In a three phase induction motor, the direction of rotation of rotating magnetic field can be reversed by

- a. Interchanging any two terminals of three phase winding while connecting it to ac supply
- b. by reversing the direction of rotating magnetic field
- c. Cannot be changed
- d. None of these

ANSWER: Interchanging any two terminals of three phase winding while connecting it to ac supply

- 4) For connecting the rotating member of machine to the external stationary circuit,
- a. Slip rings and brush assembly is used
- b. Only slip ring is used
- c. Only brushes are used
- d. Directly connected to the external stationary circuit

ANSWER: Slip rings and brush assembly is used

5) If coil side in one slot is connected to a coil side in another slot which is one

pole pitch distance away from first slot, the winding is said to be

- a. Short pitched
- b. Full pitched
- c. Concentrated
- d. Distributed

ANSWER: Full pitched

6) Among the following sentences which is/are true about short pitch coils

- a. Less amount of copper is required
- b. Eliminates high frequency harmonics
- c. Minimizes eddy current and hysteresis losses
- d. All of the above

ANSWER: All of the above

7) In practice, which combination of armature winding is preferred for the alternators?

- a. Single layer, full pitched and concentrated type
- b. Single layer, short pitched and distributed type
- c. Double layer, full pitched and concentrated type
- d. Double layer, short pitched and distributed type

ANSWER: Double layer, short pitched and distributed type

8) Due to short pitching, the induced emf gets

- a. Reduced
- b. Increased
- c. Remains same
- d. None of these

ANSWER: Reduced

9) The factor by which there is reduction in the emf due to distribution of coils is called distribution factor. It is given by

a. sin $(\beta / 2m) / msin(\beta / 2)$

- b. $\sin(\beta / m) / msin(m\beta / 2)$
- c. $sin(m \beta/2) / msin(\beta / 2)$
- d. msin(β / 2) / sin(m β / 2)

ANSWER: $sin(m \beta/2) / msin(\beta / 2)$

10) In a 4 pole, 3 phase alternator, armature has 40 slots. It is using an armature winding which is short pitched by one slot. Its coil span factor is

- a. 0.9
- b. 0.9243
- c. 0.9476

d. 0.9876

ANSWER: 0.9876

11) The generalized expression for emf equation of an alternator is

- a. Eph = $4.44f \phi$ Tph
- b. Eph = 4.44 KcKdf ϕ E
- c. Eph = $4.44 \text{ KcKdf}\varphi\text{Tph}$
- d. Eph =4 KcKdf ϕ Tph

ANSWER: Eph = 4.44 KcKdfqTph

12) For a short pitch and distributed winding, the value of coil span factor and distributed factor

- a. Both are less than unity
- b. Less than unity, greater than unity
- c. Greater then unity, less than unity
- d. Both are greater than unity

ANSWER: Both are less than unity

13) For reducing the slot harmonics in an alternator, the length of air gap is

- a. Reduced
- b. Increased
- c. Not related to harmonics
- d. None of these

ANSWER: Increased

14)If Øf is the main flux produced by the field winding of alternator is responsible for producing Eph, then

- a. Eph leads Øf by 90 degree
- b. Eph leads Øf by 45 degree
- c. Eph lags Øf by 45 degree
- d. Eph lags Øf by 90 degree

ANSWER: Eph lags Øf by 90 degree

15) To minimize the harmonics from the voltage waveform, the suitable steps is / are

- a. Using distributed type of winding instead of concentrated type
- b. Using fractional slot windings
- c. Skewing the pole face
- d. All of these
- e. None of these

ANSWER: All of these

UNIT IV DC GENERATORS

1) Stray losses are the losses which vary with the load but their relationship with load current cannot be identified. Stay losses is maximum in

- a. Synchronous machines
- b. D.C. machines
- c. Induction machines
- d. Equal in all types of machines

ANSWER: D.C. machines

2) The brush contact losses in a d.c. Machine is

a. Inversely proportional to the square of current

- b. Directly proportional to the square of current
- c. Inversely proportional to the current
- d. Directly proportional to the current

ANSWER: Directly proportional to the current

3) Electrical power output in a d.c. generator is equal to

- a. Electrical power developed in armature copper losses
- b. Mechanical power input iron and friction losses
- c. Electrical power developed in armature iron and copper losses
- d. Mechanical power input iron and friction losses copper losses

ANSWER: Mechanical power input - iron and friction losses - copper losses

4) A 120 V shunt generator running at 850 rpm has its armature and shunt field resistance of 0.15 ohm and 50 ohm respectively. It supplies 200 lamps each rated at 60 W, 100 V. The friction and windage and core loss of the machine is 400 W. its armature copper loss on full load and shunt field loss is

a. 2156.7 W, 200 W
b. 2232.6 W, 200 W
c. 2156.7 W, 240 W
d. 2232.6 W, 240 W

ANSWER: 2232.6 W, 200 W

5) A d.c. shunt generator delivers 190 A at a terminal voltage of 220 V. The copper losses and stray losses are 2000 W and 1000 W respectively. The efficiency of the

Generator is

a. 91.35 %

b. 92.60 %

- c. 93.30 %
- d. 94.23 %

ANSWER: 93.30 %

6) A 4 pole d.c. shunt generator having a wave winding supplies 45 lamps, each of

50

W at 100 V. The armature and field resistance are 0.15 ohm and 50 ohm respectively

. The current in armature conductor is

- a. 11.25 A
- b. 11.50 A
- c. 12.25 A
- d. 13.50 A

ANSWER: 12.25 A

- 7) The speed in d.c. machine can be measured by using
- a. Anemometer
- b. Tachometer
- c. Voltmeter
- d. Ammeter

ANSWER: Tachometer

8) The rotational losses in d.c. machines is equal to the

- a. Kinetic energy of armature
- b. Half of the kinetic energy of armature
- c. Square of the kinetic energy of armature
- d. Rate of change of kinetic energy

ANSWER: Rate of change of kinetic energy

9) To have an induced emf in the d.c. generator, there should be relative motion between the conductor and flux. The plane of rotation and plane of flux

- a. Should be parallel to each other
- b. Should not be parallel to each other
- c. Both (a) & (b)
- d. None of these

ANSWER: Should not be parallel to each other

10) To have d.c. voltage, a device is used in a d.c. generator to convert

alternating

emf to unidirectional emf. This device is called

- a. Armature
- b. Commutator
- c. Brushes
- d. All of these

ANSWER: Commutator

11) Yoke in d.c. machine serves the outermost cover. For magnetic flux it

provides

- a. A low reluctance path
- b. A high reluctance path
- c. Both (a) & (b)
- d. Does not provide path for magnetic flux

ANSWER: A low reluctance path

12) Functions of commutator in d.c. machines are

- a. To facilitate the collection of current from armature conductors
- b. To convert internally developed induced emf to unidirectional emf
- c. To produce unidirectional torque in case of motors
- d. All of these
- e. None of these

ANSWER: All of these

13) Brushes in d.c. machines are made up of

a. Cast iron

- b. Mild steel
- c. Copper
- d. Carbon

ANSWER: Carbon

14) A 4 pole, d.c. generator has a wave wound armature with 812 conductors.The flux per pole is 0.014 Wb. The speed at which it should be run to generate240 V on no load is

- a. 623.23 rpm
- b. 633.35 rpm
- c. 643.36 rpm
- d. 645.53 rpm

ANSWER: 633.35 rpm

15) A 4 pole, lap wound d.c. generators has 40 coils with 8 turns per coils. It is

driven at 1200 rpm. If the flux per pole is 0.022 Wb, then the generated emf is

- a. 265.8 V
- b. 276.3 V
- c. 281.6 V
- d. 287.9 V

```
ANSWER: 281.6 V
```

16) Practically in d.c. machines, it may happen that the emf induced in different

parallel paths may not be same. This will cause inequality in brush arm

currents and will give rise to copper losses. These effects can be avoided by using

- a. Compensating windings
- b. Interpoles
- c. Equalizer rings
- d. All of these

ANSWER: Equalizer rings

17) In d.c. machines, the interpoles have tapering shape which results in

- a. Simpler design
- b. Reduction in the weight
- c. Increase in acceleration of commutation
- d. All of these

ANSWER: Increase in acceleration of commutation

18) The generating action and motoring action in d.c. motor is determined by

- a. Fleming's left hand rule, Fleming's right hand rule
- b. Both by Fleming's left hand rule
- c. Both by Fleming's right hand rule
- d. Fleming's right hand rule, Fleming's left hand rule

ANSWER: Fleming's right hand rule, Fleming's left hand rule

UNIT V DC MOTORS

1) Mechanical power developed in armature of a d.c. motor is given by

- a. Electrical power input to motor copper losses
- b. Motor output + iron and friction losses
- c. Both (a) & (b)
- d. None of these

ANSWER: Both (a) & (b)

2) Out of electrical, mechanical and magnetic losses, the losses which is

minimum is

- a. All are equal
- b. Electrical losses
- c. Magnetic losses
- d. Mechanical losses

ANSWER: Mechanical losses

3) The current flowing through the armature of a d.c. shunt machine at maximum efficiency is given by

a. √(Pi / Ra) b. √(Ra / Pi) c. √(Pi / R2a) d. √(Ra / P2i)

ANSWER: $\sqrt{(\text{Pi} / \text{Ra})}$

ACADEMIC YEAR : 2018-2019

4) A 120 V d.c. shunt motor runs at speed of 1200 rpm. When the motor is operated

unloaded but an additional resistance of 4 ohm is connected in series with the shunt field, then the speed increases and reaches to 1370 rpm with the same terminal voltage. The value of series resistance is

a. 28.23 ohm

b. 32.48 ohm

c. 35.72 ohm

d. 36.82 ohm

ANSWER: 28.23 ohm

5) A 240 V, 17 kW d.c. shunt motor draws an armature current of 80 A at full load. The armature and shunt field resistances are 0.2 ohm and 195 ohm respectively. The rotational losses and efficiency of motor at full load is

a. 87.20 %

b. 89.32 %

c. 89.67 %

d. 90.03 %

ANSWER: 87.20 %

6) Out of different methods available for testing of d. c. motors, Swinburne's test and Hopkinson's test are commonly used in practice on

a. Shunt generators

- b. Series motors
- c. Shunt motors
- d. All of these

ANSWER: Shunt motors

- 7) Swinburne's test and brake tests
- a. Both are direct method of testing
- b. Direct method of testing, indirect method of testing
- c. Indirect method of testing, direct method of testing
- d. Both are indirect method of testing

ANSWER: Indirect method of testing, direct method of testing

8) Swinburne's test can be performed at

- a. Any load
- b. Only no load
- c. Only full load
- d. Only half load

ANSWER: Only no load

- 9) While performing Swinburne's test, the iron losses are assumed to be
- a. Constant
- b. Absent

- c. Variable
- d. None of these

ANSWER: Constant

10) While performing retardation tests, the machine whose test is to be taken is run at a speed which is

- a. Slightly less than its rated speed
- b. Equal to its rated speed
- c. Slightly greater than its rated speed
- d. All of these

ANSWER: Slightly greater than its rated speed

11) The starting torque developed in the d.c. series motor and in d.c. shunt motor is

a.High, low

- b. High, moderate
- c. Moderate, low
- d. Moderate, high

ANSWER: High, moderate

12) The speed of a d.c. series motor is

a. Directly proportional to the both armature current and torque developed

b. Inversely proportional to the armature current and square root of torque

developed

c. Directly proportional to the square of the armature current and square root of torque developed

d. Inversely proportional to the square of the armature current and square of torque developed

ANSWER: Inversely proportional to the armature current and square root of torque developed

13) The speed armature current characteristics of a d.c. series motor is

- a. Rectangular hyperbola
- b. Linear
- c. Parabolic
- d. Parabolic till saturation and then linear

ANSWER: Rectangular hyperbola

14) If a d.c. series motor is started on very light load or on no load then

a. It will run at dangerously high speed which may damage the motor mechanically

- b. It will run at very low speed
- c. Load does not effect the speed of d.c. series motor
- d. None of these

15) A long shunt compound motor and a short shunt compound

motor can be

- a. Cumulative type, differential type
- b. Differential type, cumulative type
- c. Both can be either cumulative or differential type
- d. None of these

ANSWER: Both can be either cumulative or differential type

16) In electric traction, which type of motor is generally used?

- a. Shunt motor
- b. Series motor
- c. Cumulative compound motor
- d. Differential compound motor

ANSWER: Series motor

17) Differential compound motors are mainly used in

- a. Drilling machines
- b. Elevators
- c. Electric traction
- d. Not suitable for any practical application

ANSWER: Not suitable for any practical application

18) Which motor is not suitable for the application of centrifugal pumps?

- a. Shunt motor
- b. Series motor
- c. Cumulative compound motor
- d. Differential compound motor

ANSWER: Series motor

19) Ward-Leonard system is used for

- a. Wide range of speed control
- b. Very sensitive speed control
- c. Both (a) & (b)
- d. None of these

ANSWER: Both (a) & (b)

20) For frequent starting, stopping and reversals, which motor is commonly used?

- a. Permanent d.c. motor
- b. Ward-Leonard system
- c. Brushless d.c. motor
- d. All of these

ANSWER: Ward-Leonard system

EC8351

ELECTRONIC DEVICES AND CIRCUITS

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand the structure of basic electronic devices.
- Be exposed to active and passive circuit elements.
- Familiarize the operation and applications of transistor like BJT and FET.
- Explore the characteristics of amplifier gain and frequency response.
- Learn the required functionality of positive and negative feedback systems.

UNIT I PN JUNCTION DEVICES

PN junction diode –structure, operation and V-I characteristics, diffusion and transition capacitance -Rectifiers – Half Wave and Full Wave Rectifier,– Display devices- LED, Laser diodes, Zener diodecharacteristics- Zener Reverse characteristics – Zener as regulator

UNIT II TRANSISTORS AND THYRISTORS

BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristors and IGBT - Structure and characteristics.

UNIT III AMPLIFIERS

BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET small signal model– Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET input stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers –Types (Qualitative analysis).

UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS

Advantages of negative feedback – voltage / current, series , Shunt feedback – positive feedback – Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

TOTAL : 45 PERIODS OUTCOMES:

Upon Completion of the course, the students will be ability to:

- Explain the structure and working operation of basic electronic devices.
- Able to identify and differentiate both active and passive elements
- Analyze the characteristics of different electronic devices such as diodes and transistors
- Choose and adapt the required components to construct an amplifier circuit.
- Employ the acquired knowledge in design and analysis of oscillators

TEXT BOOKS:

1. David A. Bell ,"Electronic devices and circuits", Oxford University higher education, 5th edition 2008.

JIT-JEPPIAAR/EEE/Mrs.R.DURGA/IInd Yr/SEM 03 /EC8351 /ELECTRONIC DEVICES AND CIRCUITS /UNIT 1-5/QB+Keys/Ver1.0

9

9

9

9

9

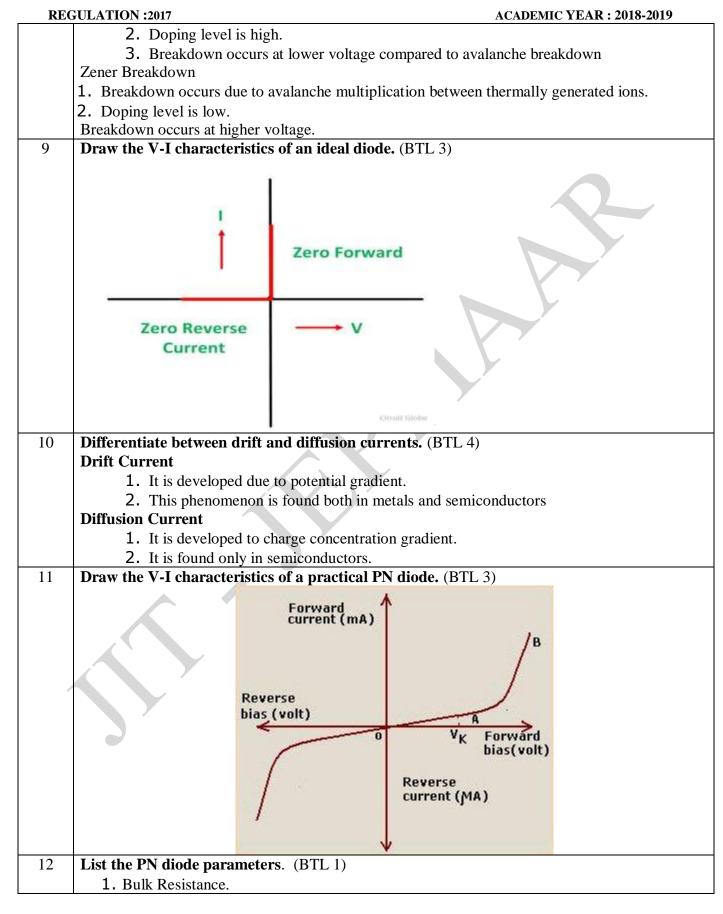
2. Sedra and smith, "Microelectronic circuits", 7th Ed., Oxford University Press

:ENCES:

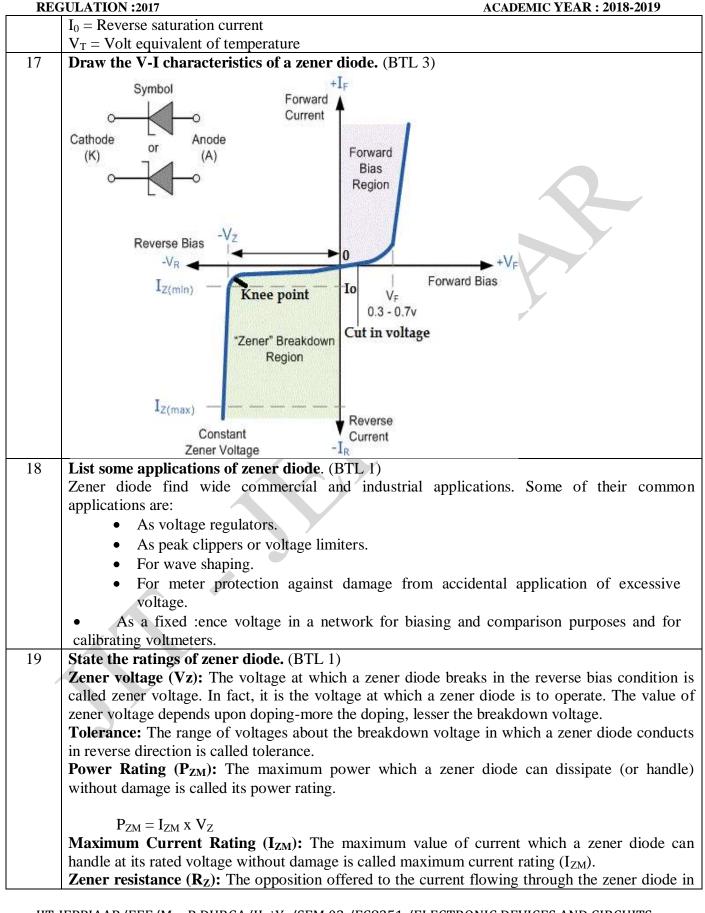
Balbir Kumar, Shail.B.Jain, "Electronic devices and circuits" PHI learning private limited, 2nd edition 2014.
 Thomas L.Floyd, "Electronic devices" Conventional current version, Pearson prentice hall, 10th Edition, 2017.

3. Donald A Neamen, "Electronic Circuit Analysis and Design" Tata McGraw Hill, 3rd Edition, 2003.

4. Robert L.Boylestad, "Electronic devices and circuit theory", 2002.

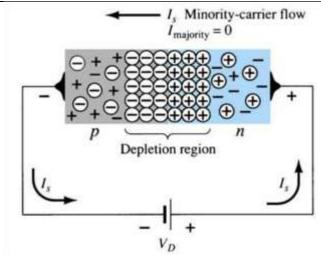

5. Robert B. Northrop, "Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation", CRC Press, 2004.

Subject Code:EC8351 Year/Semester: II/03 Subject Name: ELECTRONIC DEVICES AND CIRCUITS Subject Handler: Mrs.R. Durga

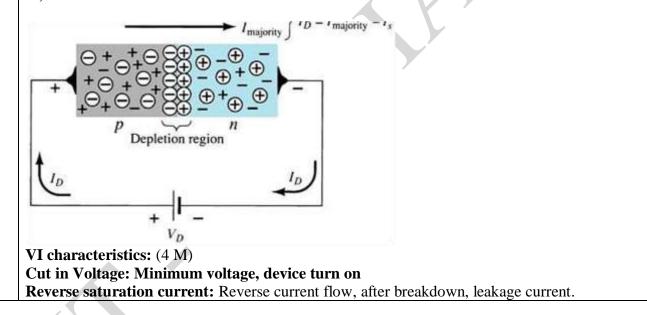

	UNIT I	PN JUNCTION DEVICES
--	--------	----------------------------

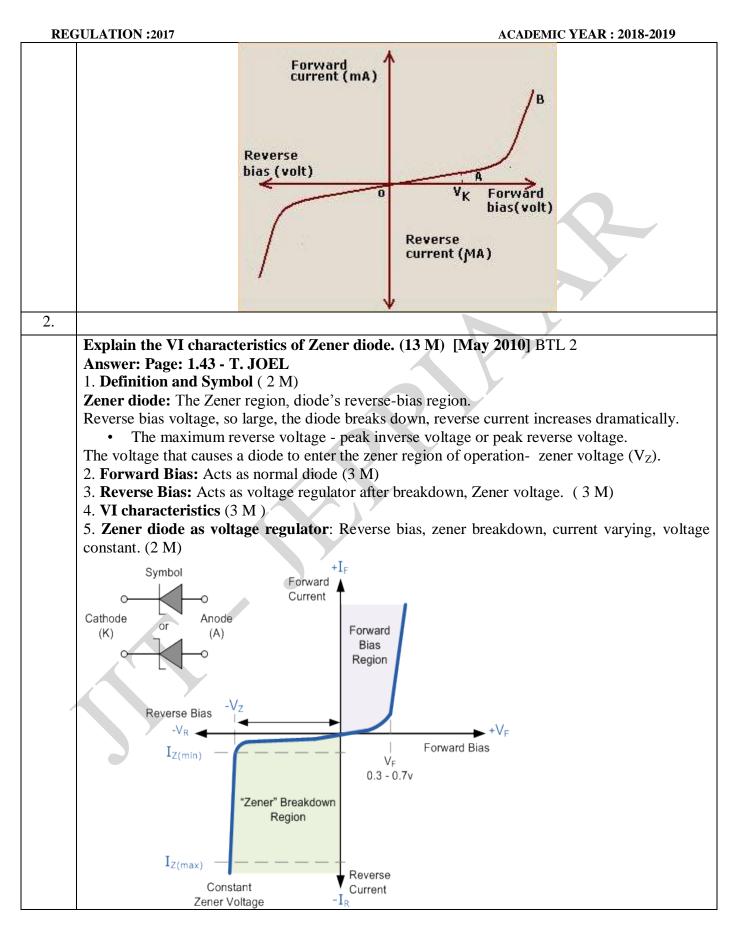
PN junction diode –structure, operation and V-I characteristics, diffusion and transition capacitance -Rectifiers – Half Wave and Full Wave Rectifier,– Display devices- LED, Laser diodes, Zener diode characteristics- Zener Reverse characteristics – Zener as regulator

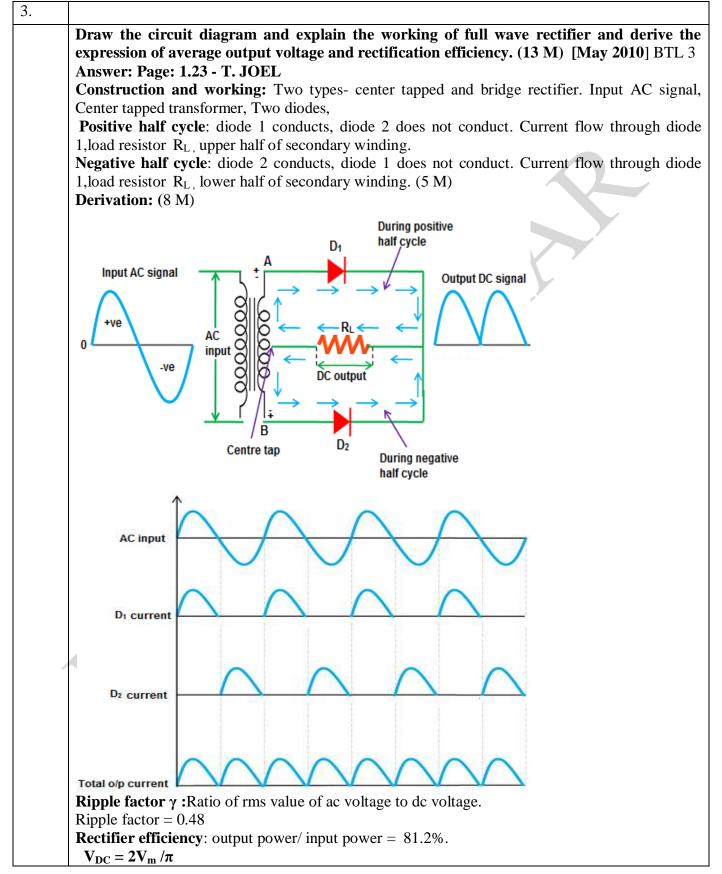
	PART * A
Q.No	Questions
1	What is an ideal diode? (BTL 1) An ideal diode is one which offers zero resistance when forward biased and infinite resistance when reverse biased.
2	Compare ideal diode as a switch. (BTL 4)
	An ideal diode when forward biased is equivalent a closed (ON) switch and when reverse biased, it is equivalent to an open (OFF) switch.
3	State the mathematical equation which relates voltage applied across the PN junction diode
	and current flowing through it. (BTL 2)
	$I = I_0 (e^{\nu/\eta} v_T - 1)$
4	Define knee/cut-in/threshold voltage of a PN diode. (BTL 1)
	It is the forward voltage applied across the PN diode below which practically no current flows.
5	What is the effect of junction temperature on cut-in voltage of a PN diode? (BTL 2)
	Cut-in voltage of a PN diode decreases as junction temperature increases.
6	What is the effect of junction temperature on forward current and reverse current of a PN diode? (BTL 2)
	For the same forward voltage, the forward current of a PN diode increases and reverse saturation current increases with increase in junction temperature.
7	Differentiate between breakdown voltage and PIV of a PN diode. (BTL 4)
	The breakdown voltage of a PN diode is the reverse voltage applied to it at which the PN
	junction breaks down with sudden rise in reverse current. Whereas, the peak inverse voltage
	(PIV) is the maximum reverse voltage that can be applied to the PN junction without damage
	to the junction.
8	Differentiate between avalanche and zener breakdowns. (BTL 4)
	Avalanche Breakdown
	1. Breakdown occurs due to heavily doped junction and applied strong electric field.


REC	GULATION :2017 ACADEMIC YEAR : 2018-2019
	2. Static Resistance/Junction Resistance (or) DC Forward Resistance
	3. Dynamic Resistance (or) AC Forward Resistance
	4. Reverse Resistance
	5. Knee Voltage
	6. Breakdown Voltage
	7. Reverse Current (or) Leakage Current
13	State the PN diode ratings. (BTL 1)
15	Even PN-Junction has limiting values of maximum forward current, peak inverse voltage and
	maximum power rating.
14	Define reverse recovery time. (BTL 1)
14	It is maximum time taken by the device to switch from ON to OFF stage.
15	Define transition capacitance of a diode. (BTL 1)
15	Transition Capacitance (C_T) or Space-charge Capacitance: When a PN-junction is reverse-biased,
	the depletion region acts like an insulator or as a dielectric.
	The P- and N-regions on either side have low resistance and act as the plates. Hence it is similar
	to a parallel-plate capacitor. This junction capacitance is called transition or space-charge
	capacitance (C_T) .
	It is given by
	$C_T = \frac{\varepsilon A}{d}$
	Where, $A = Cross$ -sectional area of depletion region. $D = Width$ (or) thickness of depletion
	region.
	Its typical value is 40 pF.
	Since the thickness of depletion layer depends on the amount of reverse bias, C_T can be
	controlled with the help of applied bias.
	This property of variable capacitance is used in varicap or varactor diode. This capacitance is is
	voltage dependent and is given by
	$(v_R + v_R)$
	Where, V_{K} = Knee voltage, V_{R} = Applied reverse voltage,
	K = Constant depending on semiconductor material, $n = 1/2$ for alloy junction,
	= 1/3 for diffused junction.
16	Define diffusion capacitance of a diode. (BTL 1)
	Diffusion or Storage Capacitance (CD): This capacitive effect is present when the junction is
	forward-biased.
	It is called diffusion capacitance due to the time delay in minority charges across the junction
	by diffusion process. Due to this fact, this capacitance cannot be identified in terms of a
	dielectric and plates. It varies directly with forward current. When a forward-biased PN-
	junction is suddenly reverse biased, a reverse current flows which is large initially, but
	gradually decreases to the level of saturation current, IO.
	This effect can be likened to the discharging, of a capacitor and is, therefore called diffusion
	capacitance, CD. Its typical value is 0.02 F
	It is given by: $dO = \tau I_0 = u t_0 u$
	$C_{\rm D} = \frac{m_{\rm e}}{m_{\rm e}} = \frac{\pi n_{\rm o}}{m_{\rm e}} e^{V/\eta V_T} \approx \frac{\pi n_{\rm e}}{m_{\rm e}}$
	$C_D = \frac{dQ}{dV} = \frac{\tau I_0}{\eta V_T} e^{V/\eta V_T} \approx \frac{\tau I}{\eta V_T}$
	Where, $z =$ Mean life time of carrier $\eta =$ Constant =2 for Si and 1 forGe I = Forward current

REGULATION :2017

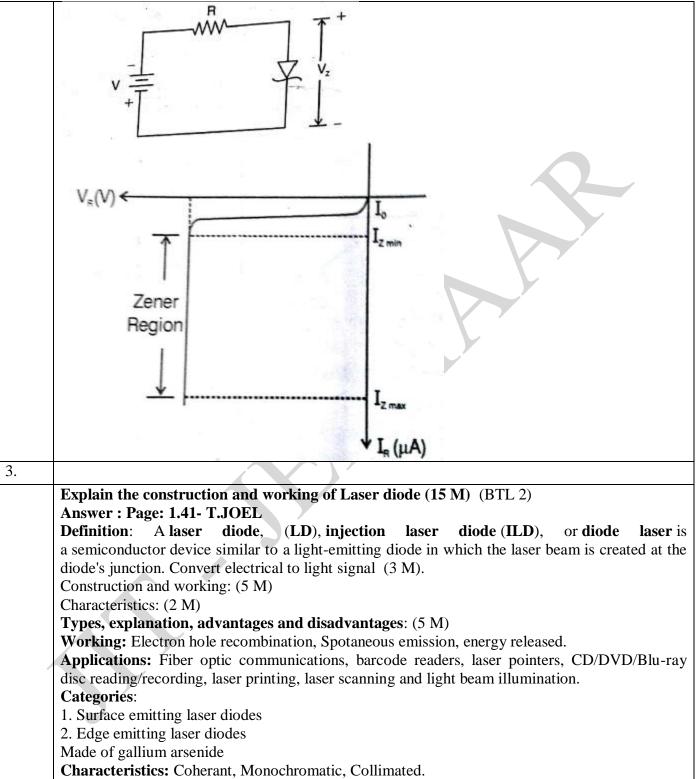

KE	GULATION :2017 ACADEMIC YEAR : 2018-2019
	the operating region is called zener resistance (R_Z) or zener impedance (Z_Z) .
20	State the principle of operation of an LED. (BTL 1)
	When a free electron from the higher energy level gets recombined with the hole, it gives out the
	light output. Here, in case of LEDs, the supply of higher level electrons is provided by the battery
	connection.
21	State any four advantages of LED. (BTL 1)
	• They are small in size.
	• Light in weight.
	 Mechanically rugged.
	 Low operating temperature.
	 Switch on time is very small.
	 Available in different colours.
	They have longer life compared to lamps.
	• Linearity is better.
	• Compatible with ICs.
	• Low cost.
22	Define ripple factor of a rectifier. (BTL 1)
	The purpose of a rectifier is to convert AC into DC. But the pulsating output of a
	rectifier contains a DC component and an AC component, called ripple.
	The ratio of RMS value of AC components to the DC component in the rectifier output
	is called 'ripple factor'.
	The ripple factor is very important in deciding the effectiveness of a rectifier. It
	indicates the purity of the DC power output. The smaller the ripple factor, the lesser the
	effective AC component and hence more effective is the rectifier.
23	Define TUF of a rectifier. (BTL 1)
	Most of the rectifier circuits make use of transformer whose secondary feeds the AC power. The
	transformer rating is necessary to design a power supply.
	Transformer utilization factor (TF) id defined as the ratio of DC power delivered to the load to
	the AC power rating of transformer secondary.
24	Give the advantages and disadvantages of HWR .(BTL 1)
	Half Wave Rectifier (HWR)
	Advantages
	Simple circuit.
	low cost.
	Disadvantages.
	Rectification efficiency is low (40.6%).
	Very high amount of ripple ($\gamma = 1.21$)
	Low TUF (0.287)
	Saturation of transformer core occurs.
25	Define (i) Voltage regulation (ii) Minimum load resistance . (BTL 1)
	The variation of output voltage with respect to the amount of load current drawn from the power
	supply is called voltage regulation.
	The change in DC output voltage from no load to full load with respect to full load voltage of a
	power supply is called its voltage regulatin.
	% voltage regulation = $\frac{V_{NL} - V_{FL}}{V} X 100$
	V_{FL}

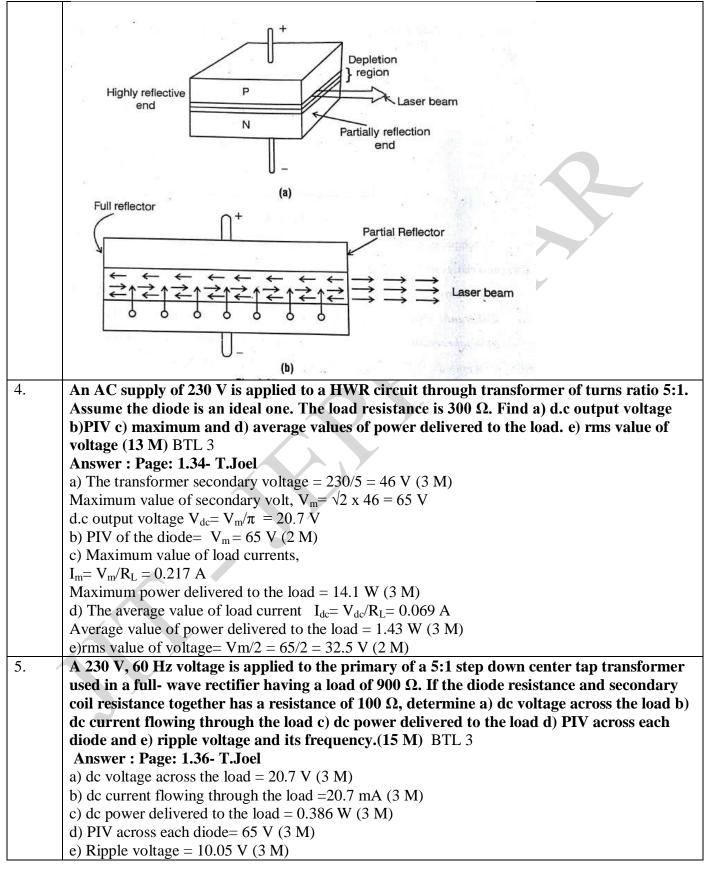

	GULATION :2017 ACADEMIC YEAR : 2018-2019
	Where, VNL = DC output voltage at no load VFL = DC output voltage at full load
	Smaller the percentage regulation better is the power supply.
	For a well-designed power supply, the percentage regulation should be less than 1%.
26	Define static resistance of a diode. (BTL 1)
	The resistance offered by a p-n junction diode when it is connected to a DC circuit is called
	static resistance.
	$R_f = V/I$
27	Define dynamic resistance of a diode (BTL 1)
	The dynamic resistance is the resistance offered by the p-n junction diode when AC voltage is
	applied. Dynamic resistance is also defined as the ratio of change in voltage to the change in
	current. It is denoted as r _f .
	r_f = change in voltage/ change in current.
28	Define reverse resistance of a diode (BTL 1)
	It is the resistance offered by the PN junction diode under reverse bias condition. It is very large
	compared to the forward resistance, which is in the range of several M Ω .
	PART * B
1.	
	With a neat diagram, explain the construction, working of a PN junction diode in forward bias and reverse bias and explain its VI characteristics. (13 M) [May 2010, Nov 2012] BTL 2 Answer: Page: 1.1- T. JOEL
	bias and reverse bias and explain its VI characteristics. (13 M) [May 2010, Nov 2012] BTL 2 Answer: Page: 1.1- T. JOEL Diagram: (2 M) $\begin{array}{c} & & & \\ & & & & \\ & & & \\ &$
	bias and reverse bias and explain its VI characteristics. (13 M) [May 2010, Nov 2012] BTL 2 Answer: Page: 1.1- T. JOEL



Forward Bias:

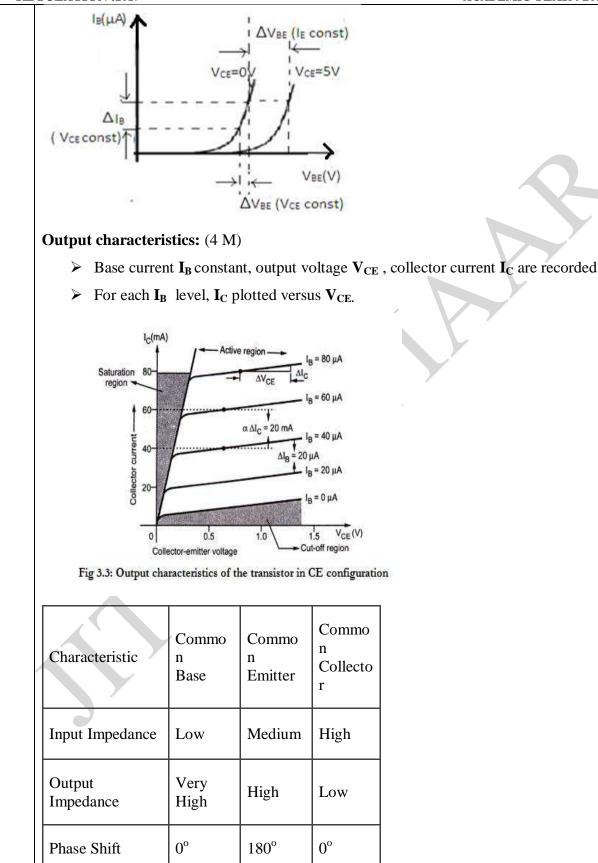
External voltage, applied across the p-n junction, same polarity as the p- and n-type materials. (2 M)

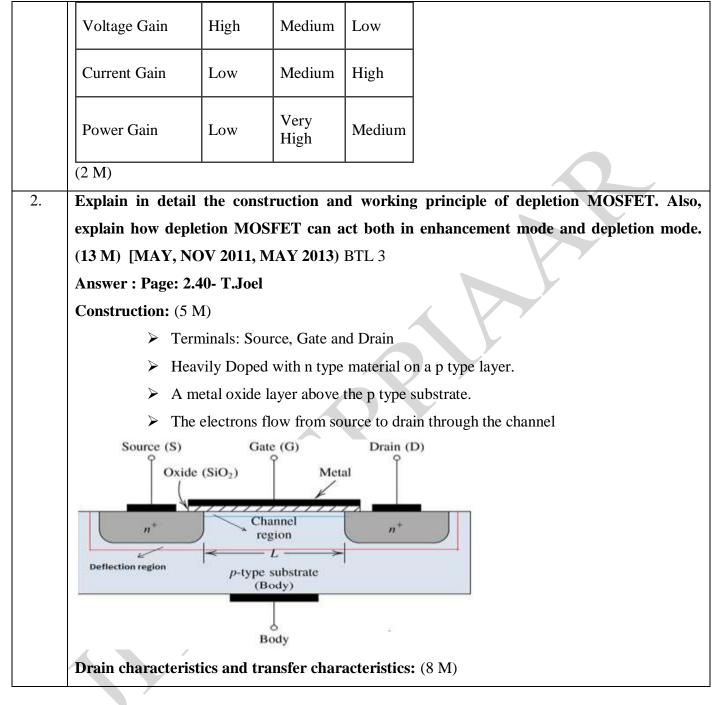


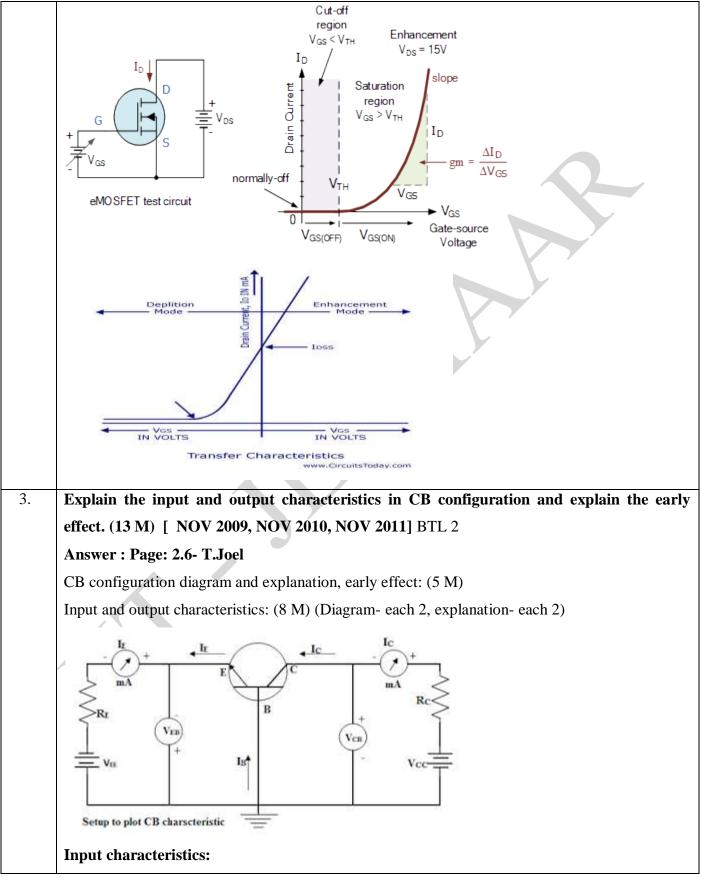


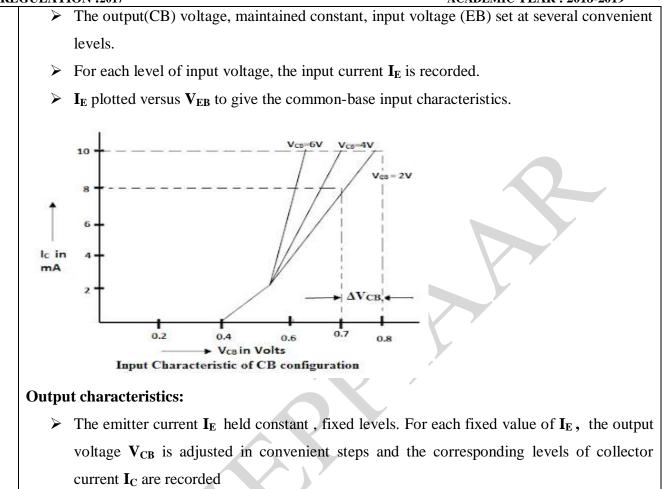
	EGULATION :2017 ACADEMIC YEAR : 2018-2019
4.	
	What is half wave rectifier? Explain the working with neat sketch. Derive the dc voltage, rms voltage, ripple factor and efficiency (13 M) [May 2011, May 2012] BTL 2 Answer: Page: 1.16- T. JOEL Construction and working: Input AC signal, transformer, One diode. Positive half cycle: diode conducts. Current flow through diode ,load resistor R _L , secondary winding. Output follows input. Negative half cycle: diode does not conducts. No Current flow through diode and load resistor R _L , Output- zero (5 M) Derivation: (8 M) AC input Primary Secondary D R _L & T R _L & T
	T I = Current D = Diode RL= Load resistor T = Transformer + = Positive half cycle - = Negative half cycle Half wave rectifier
	$V_{dc} = V_m / \pi$ $V_{rms} = V_m / 2$ Ripple factor: $\gamma = 1.21$ Rectifier efficiency: 40.6%
5.	Derive the transformer utilization factor, form factor, peak inverse voltage, peak factor of half wave rectifier. (8 M) BTL 3 Answer: Page: 1.21- T. Joel PIV= Vm (1 M) Transformer utilization factor = dc power delivered to the load/ ac rating of transformer secondary= 28.7% (3 M) Form factor = rms value/ average value= 1.57 (2 M) Peak factor= 2 (2 M)
6.	Derive the transformer utilization factor, form factor, peak inverse voltage, peak factor of half wave rectifier. (8 M) BTL 3 Answer: Page: 1.21- T. Joel $PIV=2V_m(1 M)$ Transformer utilization factor = dc power delivered to the load/ ac rating of transformer secondary= 69.2% (3 M) Form factor = rms value/ average value= 1.57 (2 M) Peak factor= 2 (2 M)
7.	 Explain in detail about diffusion capacitance and transient capacitance. (13 M) BTL 3 Answer : Page- 1.10- T.Joel Space charge or Transition capacitance (C_T): Reverse bias, majority carriers, move away from the junction, thickness of depletion layer increases, reverse voltage at the junction,

R	REGULATION :2017	ACADEMIC YEAR : 2018-2019
	Capacitive effect.	
	Transition region, space charge, barrier, depleti	on region capacitance (3 M)
	Derivation : $eN_AW_P = eN_DW_n$	
	$E = \frac{qND}{s} (x-W)$	
	$C_{T} = \frac{\varepsilon A}{W} (5 M)$	
		nce: Forward biased PN junction, capacitance,
		ulate near junction, diffuse and recombine with
		of change of injected charge with voltage. (3 M)
	Derivation: $C_D = \frac{dQ}{dV}$	
	$C_{D=}\frac{\tau I}{NVT} (2 M)$	
	$C_{D} = \eta V T$ (2 141)	
	РА	RT*C
1.		
	With neat diagram, explain the working of I	JED. (15 M) BTL 2
	Answer: Page: 1.37 - T. JOEL	
		ons when it is forward biased, Infrared or visible
	spectrum. The forward bias voltage range: 2 V t	o 3 V. (4 M)
	+ ~ ~	
	$I_D V_D$	
		/
	Output characteristics: (3 M)	
	Materials used and color LEDs: Gallium	n Phosphide and Gallium Arsenide Phosphide
	(4 M)	
	Characteristics: The colour: neither coherent no	or monochromatic. (2 M)
	Applications: (2 M)	
	 Visual signals where light goes more or 	e less directly from the source to the human eye, to
	convey a message or meaning	
	Illumination where light is reflected from	m objects to give visual response of these objects
	Measuring and interacting with process	es involving no human vision.
	Narrow band light sensors where LED	s operate in a reverse-bias mode and respond to
	incident light, instead of emitting light	
2.		
	Explain how zener diode is used as a regulat	or. (15 M) BTL 3
	Answer: Page: 1.48- T.JOEL	
	Reverse bias of Zener diode: (3 M)	
	VI characteristics: (3 M)	
	Zener diode as voltage regulator waveform and	expression: (9 M)
		-
	Zener diode when reverse biased behave as vol	lage regulator.
	zener breakdown	

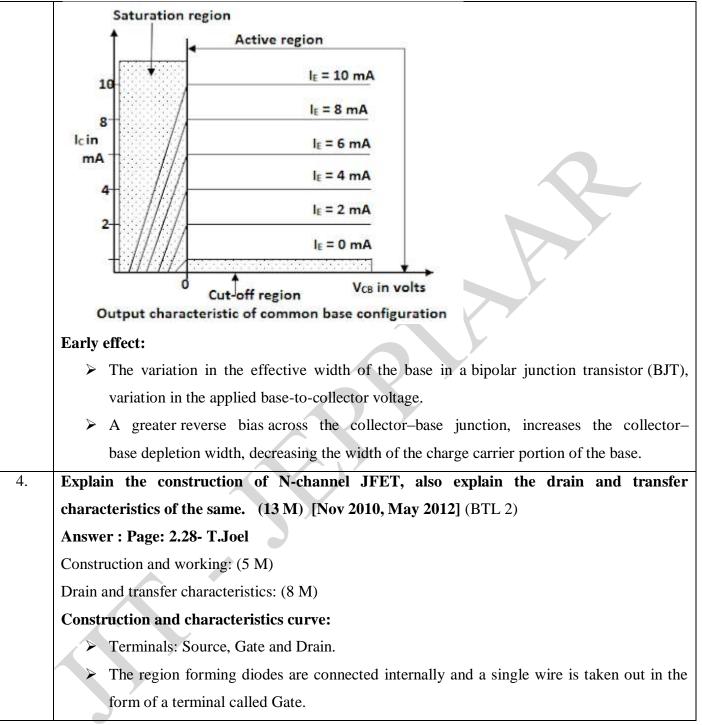

Frequency of ripple voltage = 120 Hz

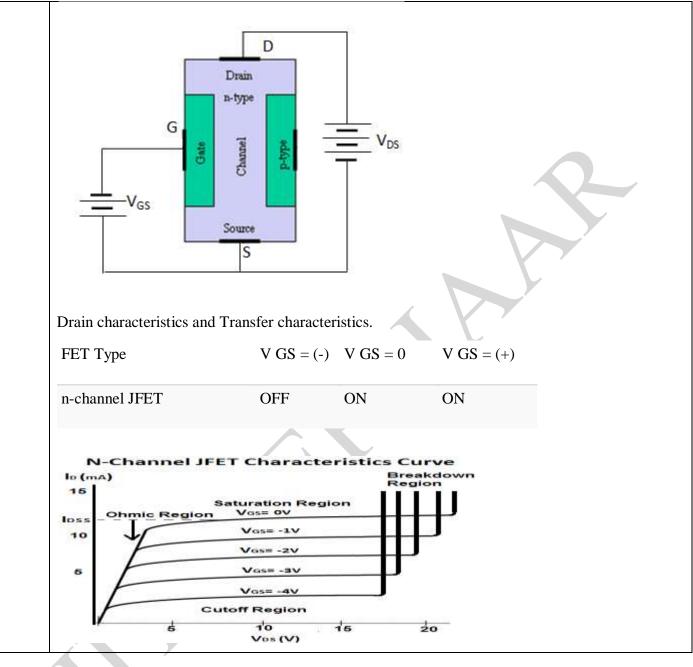

	UNIT II TRANSISTORS AND THYRISTORS		
BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristors and IGBT -			
Structure and characteristics.			
	PART * A		
Q.No.	Questions		
1	Exhibit the relation between the 'currents of a transistor'? (BTL 1)		
	$I_E = I_B + I_C$		
2	List the types of circuit connections known as configurations, for operating a transistor.		
	(BTL 1)		
	Common-Base (CB)		
	• Common-Emitter (CE)		
	• Common-Collector (CC)		
3	What is the relation between α and β of a transistor? (BTL 1)		
	$\alpha = \frac{\beta}{\beta + 1}$		
4	Identify the regions of BJT when used as a switch. (BTL 1)		
	Saturation and cut-off regions.		
5	Why must the base be narrow for the transistor (BJT) action ? (BTL 2)		
	Beta (β) is the ratio of I _C to I _B .I _B becomes less if the base width is narrow. Higher value of β can		
	be obtained with lower value of base current.		
6	Elucidate the value of cut-in voltage for a BJT. (BTL 1)		
	For Silicon BJT - 0.7V For Germanium - 0.3V		
7	Why an ordinary transistor is called bipolar ? (BTL 2)		
	Because the transistor operation is carried out by two types charge carriers- majority		
	and minority carriers.		
8	Why transistor (BJT) is called current controlled device ? (BTL 2)		
	The output voltage, current or power is controlled by the input current in a transistor. So , it is		

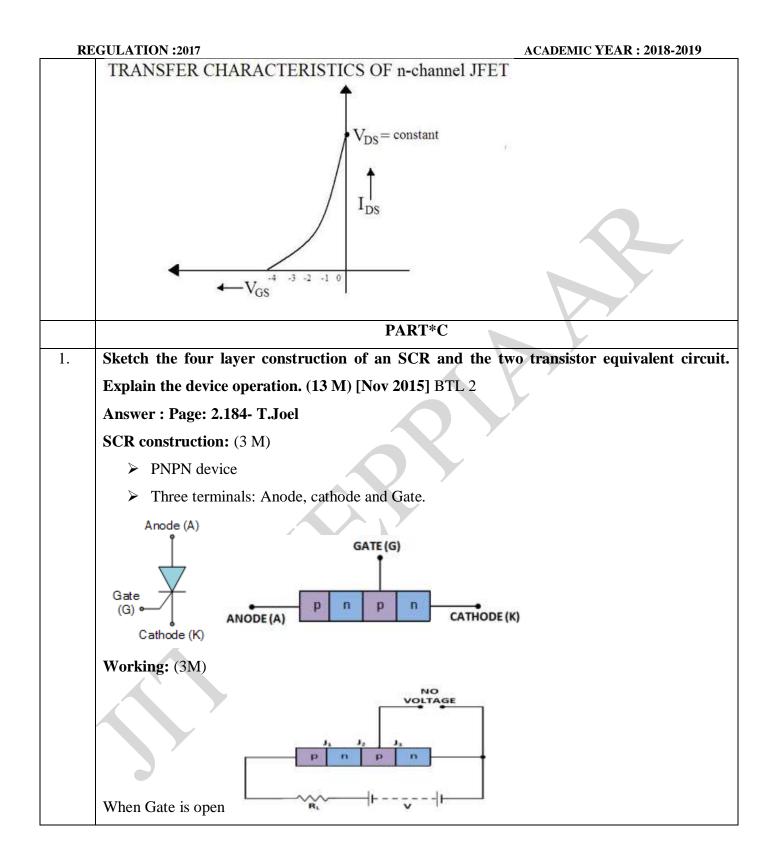

KĽ	AGULATION .2017 ACADEMIC TEAK : 2010-2019
	called the current controlled device.
9	What are "emitter injection efficiency" and "base transport factor" of a transistor? (BTL
	1)
	The ratio of current of injected carriers at emitter junction to the total emitter current is called the
	emitter injection efficiency.
	Transport factor, $\beta = I_c A_B$
10	State why collector is made larger than emitter and base. (BTL 2)
	Collector is made physically larger than emitter and base because collector is to dissipate much
	power.
11	Why CE configuration is most popular in amplifier circuits? (BTL 2)
	CE configuration is most popular in amplifier circuits because its current, voltage and powe
	gains are quite high and the ratio of output impedance and input impedance are quite moderate.
12	Why is CC configuration seldom used? (BTL 2)
	CC configuration has its voltage gain is always less than unity, hence it is seldom used.
13	What is the typical value of h _{ie} ? (BTL 2)
	The typical value of h_{ie} is 1 K Ω
14	Which of the BJT configuration is suitable for impedance matching application and why
	(BTL 2)
	CC configuration is suitable for impedance matching applications because of very high input
	impedance and low output impedance.
15	What are the tools used for small signal analysis of BJT? (BTL 2)
	i. h – Parameter circuit model.
	ii.z – Parameter circuit model.
	iii. y – Parameter circuit model.
	iv. Transconductance parameter circuit model.
	V.Physical model.
	vi. T-model.
16	What is the significance of I _{CBO} and I _{CO} ? (BTL 2)
	I_{CBO} is the leakage current from the collector to base with emitter open. I_{CO} is the leakage current
	from collector to emitter with base open ($I_{CO} = I_{CEO}$).
17	Differentiate between FET and BJT (any two). (BTL 4)

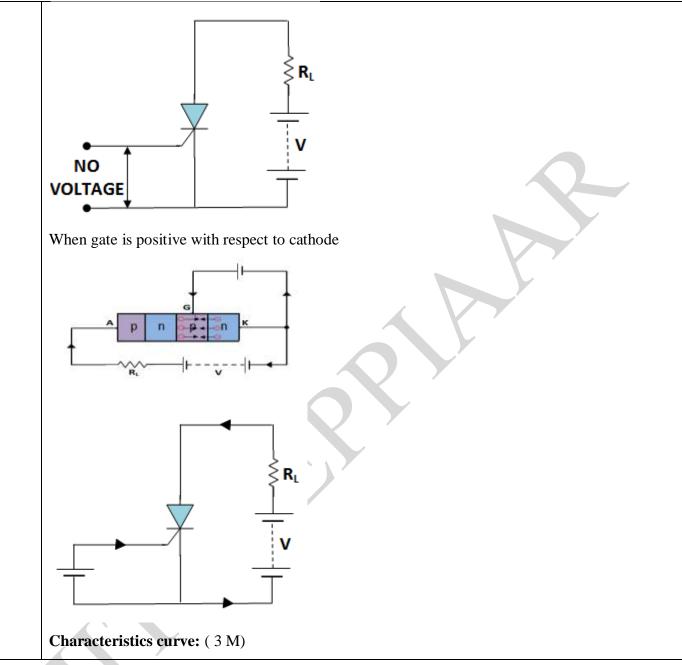

KĽ	GULATION :2017	ACADEMIC YEAR : 2018-2019
	FET	BJT
	Unipolar device (that is current conduction	Bipolar device (that is current conduction by
	by only one type either by electron or hole)	both electrons and hole)
	High input impedance due to reverse bias	Low input impedance due to forward bias
	Gain is characterized by transconductance	Gain is characterized by voltage
	gain.	
	Low noise level	High noise level.
18	State the biasing conditions to operate trans	istor in active region. (BTL 1)
	Emitter-base junction has to be forward biased	and collector-base junction to be reverse biased.
19	What is thermal runaway? (BTL 1)	
	The power loss in transistor is primarily at the	collector junction because the voltage there is high
	compared to the low voltage at the forward	biased emitter junction. If the collector current
	increases, the power developed tends to raise the	he junction temperature. This causes an increase in
	β and α further increase in collector current ir	temperature may occur resulting in "thermal run
	away."	
20	Define bipolar junction transistors. (BTL 1)	
	These devices operate with both holes and elec	trons and hence are called bipolar junction.
21	Why FET's are so called? (or) Why FETs ar	re voltage controlled devices? (BTL 2)
	The output characteristics of a FET can be co	ntrolled by the applied electric field (voltage) and
	hence the name FET and are voltage controlled	devices.
22	Define pinch-off voltage in a JFET. (BTL 1)	
	The value of VDS at which the channel is	pinched-off, i.e., all the free charges from the
	channel get removed, is called the pinch-off vo	ltage in a JFET.
23	List the parameters that control the pinch-or	ff voltage of JFET. (BTL 1)
	Electron charge, donor/acceptor concentration	density, permittivity of channel material and
	half-width of channel bar.	
24	Why MOSFET is called IGFET? (BTL 2)	
	MOSFET is constructed with the gate termin	hal insulated from the channel. So it is called as
	insulated gate FET or IGFET	

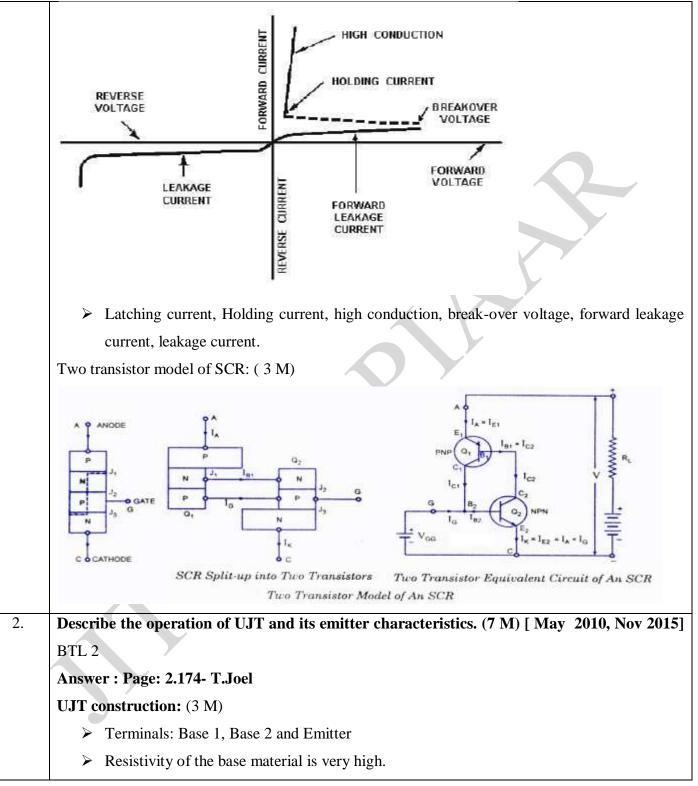
RE	CGULATION :2017 ACADEMIC YEAR : 2018-2019	
25	Name the factors which make the JFET superior to BJT? (BTL 1)	
	High input impedance, low output impedance and low noise level.	
26	26 Define pinch off voltage. (BTL 1)	
	When the reverse bias is increased above a certain value, the effective width of the channel	
	decreases, the depletion region or the space charge region widens, reaching further into the	
	channel and restricting the passage of electrons from the source to drain. Finally at a certain gate	
	to source voltage $V_{GS} = V_P$.	
27	Write the relative disadvantages of an FET over that of a BJT. (BTL 1)	
	The gain bandwidth product in case of a FET is low as compared with a BJT.	
	The category, called MOSFET, is extremely sensitive to handling therefore additional	
	precautions have to be considered while handling.	
	PART * B	
1.	Draw and explain the input and output characteristics of a BJT in CE configuration.	
	Compare the performance of CE configuration with other characteristics. (13 M) (NOV.	
	2009, MAY 2011, NOV 2011, MAY 2013) BTL 2	
	Answer : Page: 2.11- T.Joel	
	$v_{BE} \xrightarrow{I_{B}} B P \\ I_{E} \xrightarrow{I_{E}} V_{CE}$ Common emitter configuration (3 M)	
	Input characteristics: (4 M)	
	> Output voltage V_{CE} - maintained constant, input voltage V_{BE} , set at several	
	convenient levels. For each level of input voltage, the input current I_B .	
	> I_B plotted versus V_{BE} , common-base input characteristics.	

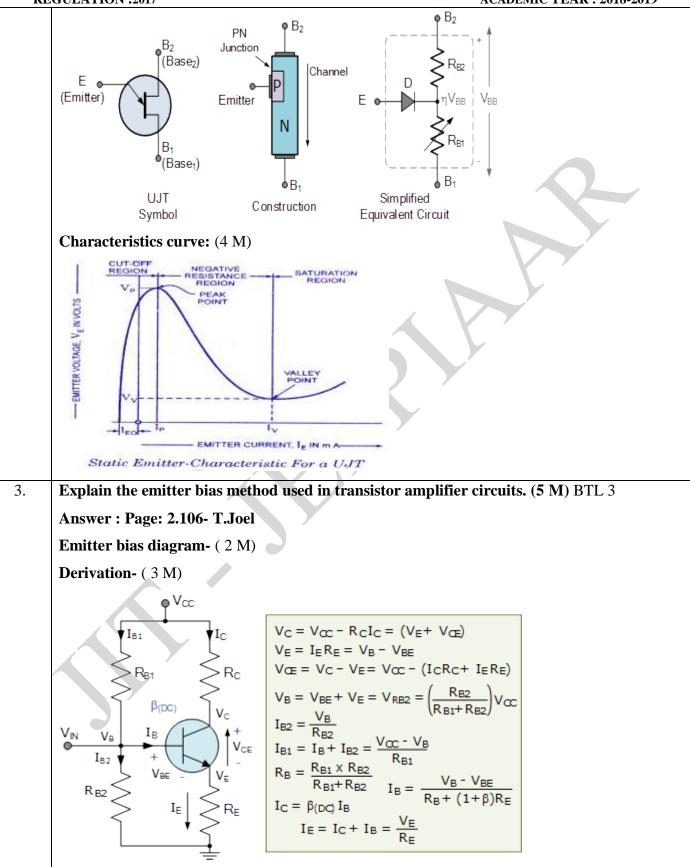


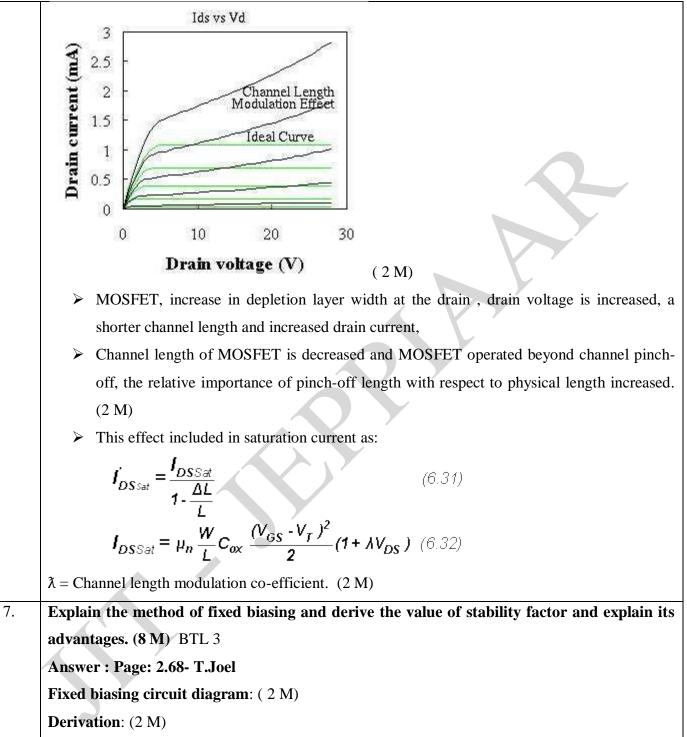


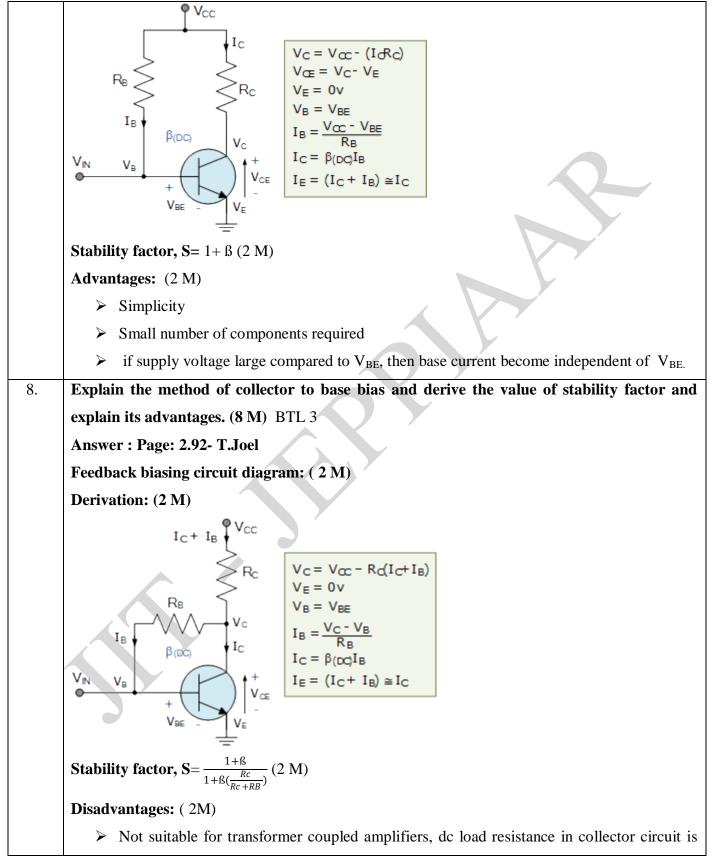





For each fixed value of I_E, I_C is almost equal to I_E and appears to remain constant when V_{CB} is increased



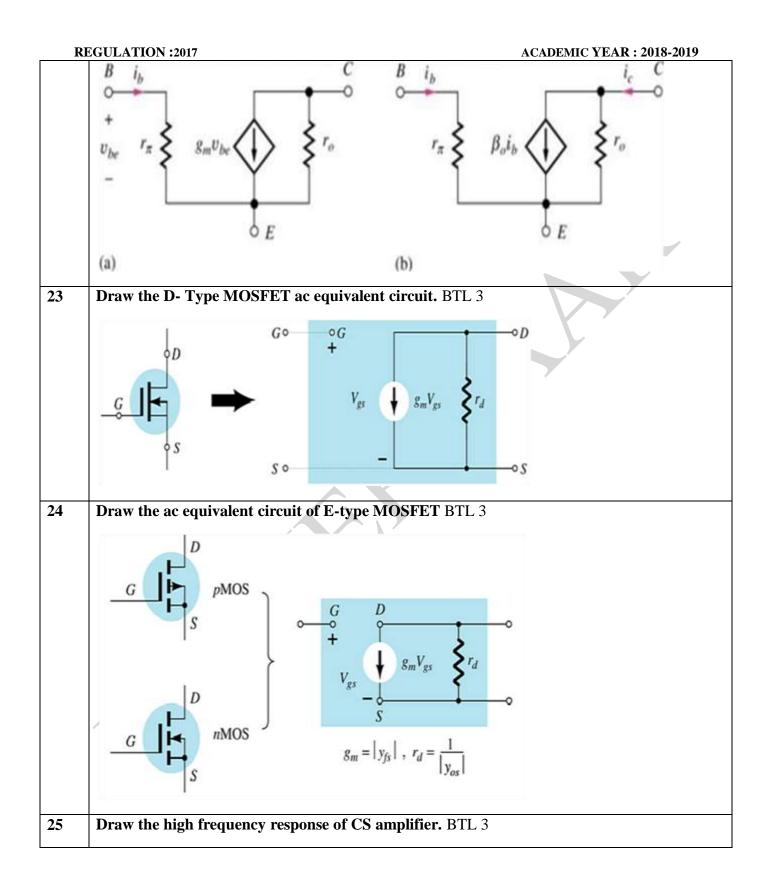


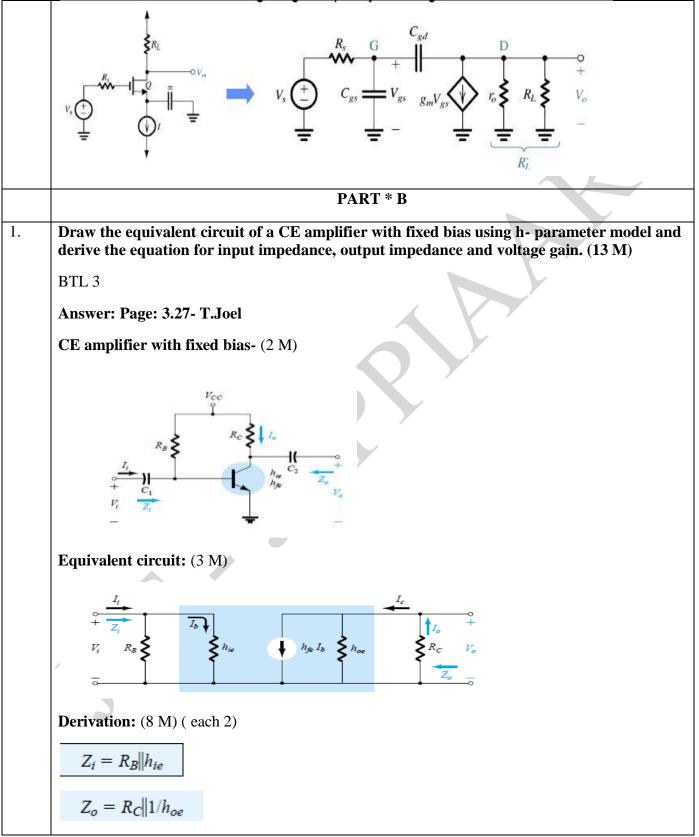


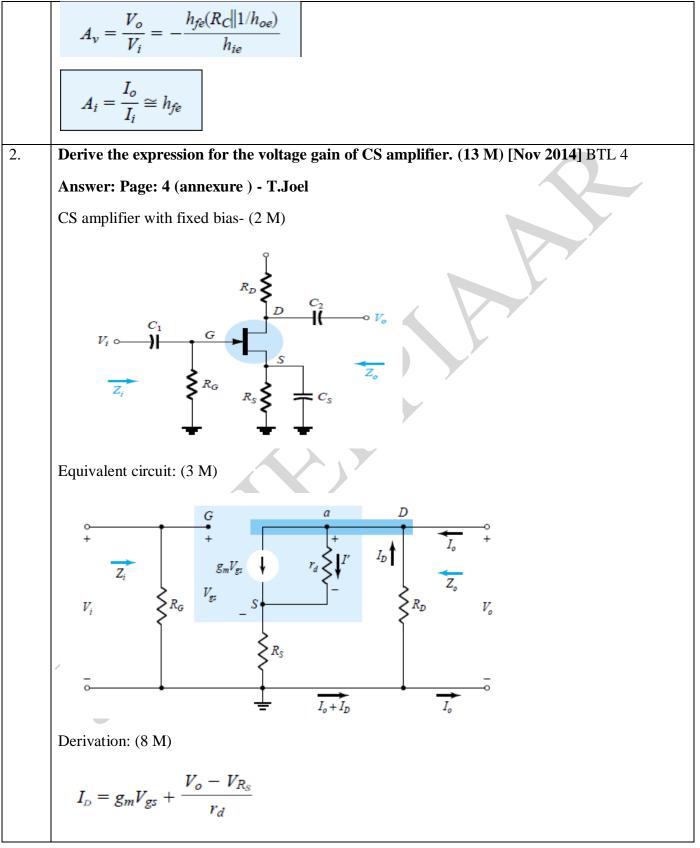
4.	Draw the eber molls model of PNP transistor and explain its significance. (6 M) BTL 3	
4.		
	Eber molls model: Two diodes connected back to back cannot act as a transistor. (1 M)	
	$\begin{array}{c c} \mathbf{I}_{\mathrm{F}} & \mathbf{I}_{\mathrm{R}} \\ \hline \mathbf{E}_{\mathrm{mitter}} & \mathbf{I}_{\mathrm{F}} & \mathbf{Collector} \\ \hline \mathbf{I}_{\mathrm{E}} & \mathbf{I}_{\mathrm{C}} \end{array}$	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} $	
	$I_{E} = I_{F0} \left(e^{V_{BB}/V_{T}} - 1 \right) - \alpha_{R} I_{R0} \left(e^{V_{BC}/V_{T}} - 1 \right)$	
	$I_{C} = \alpha_{F} I_{F0} \left(e^{\frac{v_{BE}}{v_{T}}} - 1 \right) - I_{R0} \left(e^{\frac{v_{BC}}{v_{T}}} - 1 \right) $ (3 M)	
5.	i) A transistor with $I_B = 100 \ \mu$ A, and $I_C = 2 \ m$ A, find,	
	a) ß of transistor,	
	b) α of transistor,	
	c) emitter current I _E ,	
	d) if I_B changes by 25 μ A and I_C changes by 0.6 mA. Find the new values of β . (10 M)	
	BTL 3	
	Answer : Page: 2.29- Salivahanan	
	ß= 20	
	α= 0.952	
	I _E = 2.01 mA	
	new values of $\beta = 20.08$	
	ii) Justify transistor as an amplifier. (5 M) BTL 3	
	Transistor in active region- amplifier. (2 M)	
	Input side- forward bias, output side- reverse bias. (2 M)	
	Current gain, voltage gain, amplification factor. (1 M)	
6.	Discuss the effect of channel length modulation. (6 M) BTL 3	
	1	

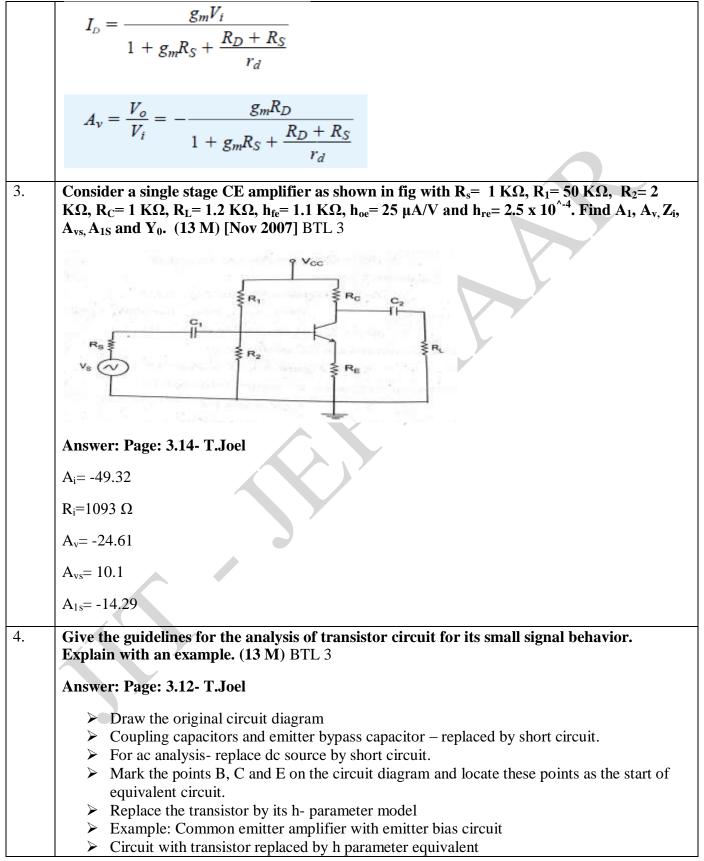
	very small.
9.	State the advantage of self bias over other types of biasing. (4 M) BTL 2
	Fixed bias- not used for biasing base, poor stability.
	\blacktriangleright Collector to base bias- R_C is very small, equal to fixed bias.
	\blacktriangleright Self bias, S= 1, good stability.
10.	For a voltage divider bias with the following parameters, R_1 = 56 k Ω , R_2 = 12.2 k Ω , R_C = 2
	$k\Omega$, R_E = 400 Ω, V_{CC} = 10 V, $V_{BE}(on)$ = 0.7 V and β=150. (8 M) BTL 3
	Answer : Page: 190- Salivahanan
	$R_{TH} = R_1 \parallel R_2 = 10 \text{ k}\Omega \ (2 \text{ M})$
	$V_{TH} = 1.79 V (2 M)$
	I_{BQ} = 15.5 µA (2 M)
	Q point is $V_{CEQ} = 4.426$ V and $I_{CQ} = 2.32$ (2 M)

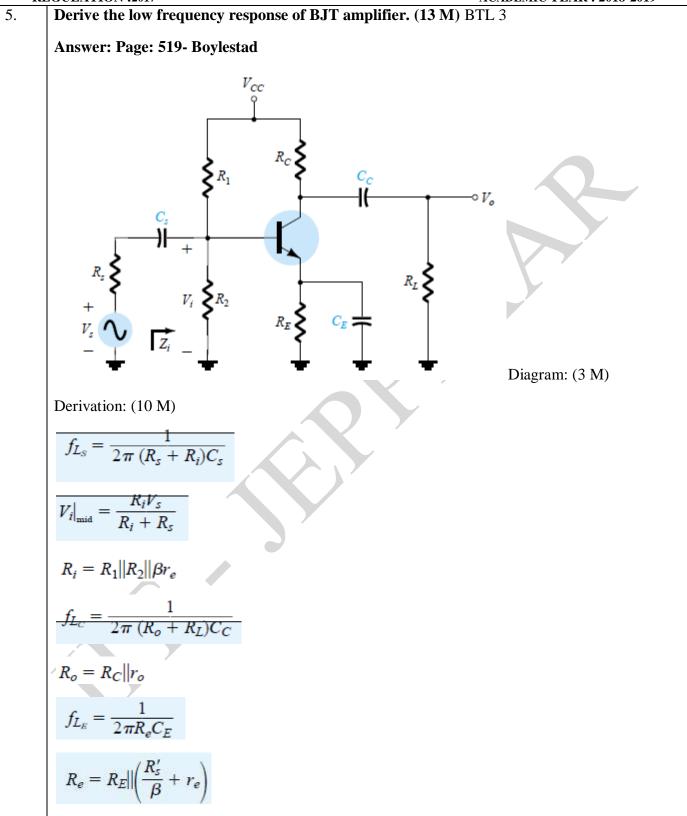
UNIT III AMPLIFIERS

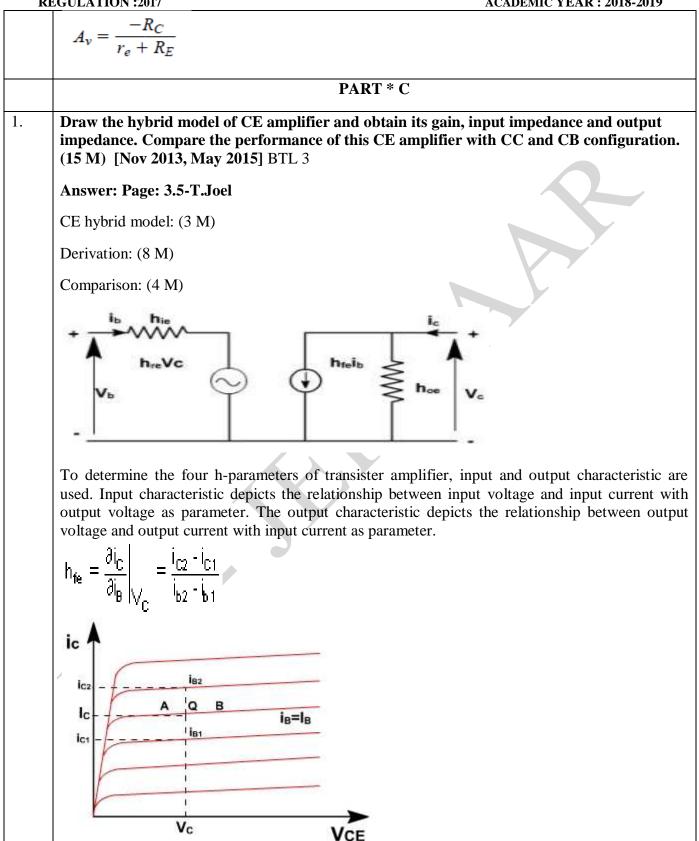

BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET small signal model– Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

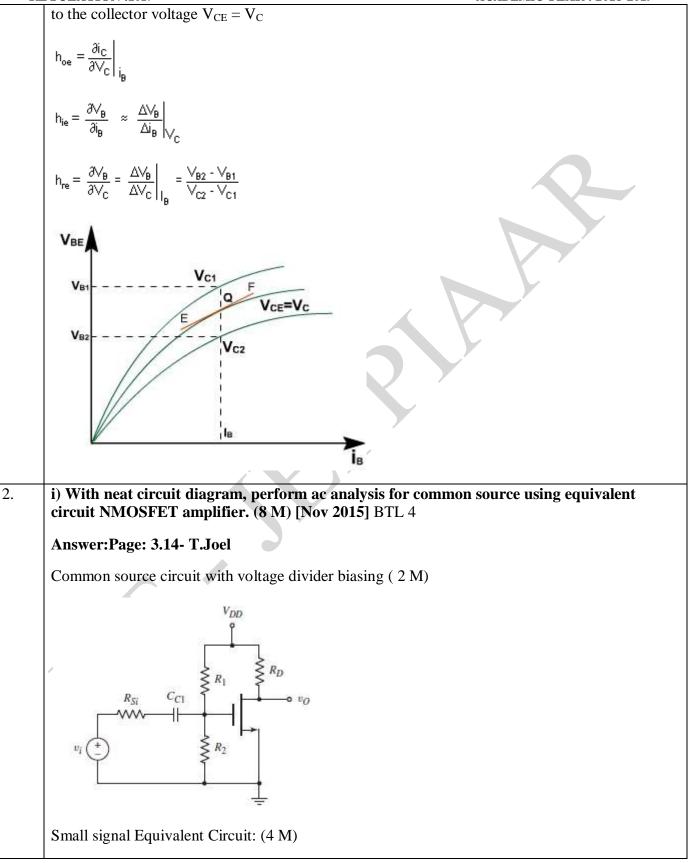

	PART * A	
Q.N o	Questions	
1	Why h-parameters are called hybrid parameters?BTL 2h parameters are so called because they have different units are mixed with other parameters.	
2	What is the typical value of hie? BTL 1 1 kΩ	
3	Write the equation for the output voltage and voltage gain for CS amplifier. BTL 1 The output voltage is given by $V_o = -R_D \mu Vgs$ $R_D + r_d$ Where μ is the amplification factor, R_d is the drain resistance	

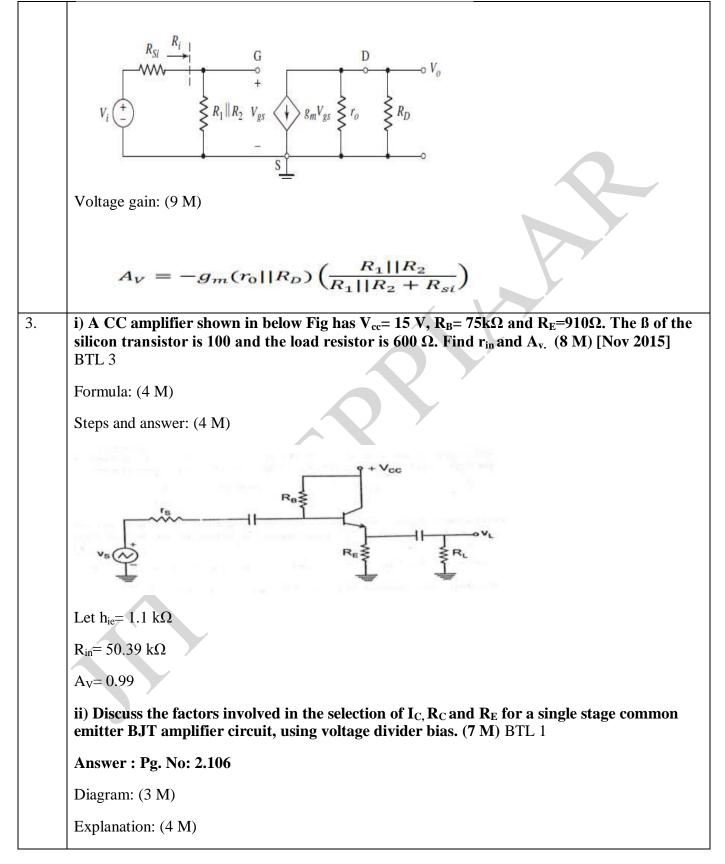

]	REGULATION :2017 ACADEMIC YEAR : 2018-2019
	$V_{gs} = V_i$, the input voltage
	The voltage gain for CS amplifier is given by
	$\mathbf{A}\mathbf{v} = (\mathbf{V}_{o} \mathbf{V}_{i}) = -\mathbf{\mu}\mathbf{R}_{D}$
	$\overline{\mathbf{R}_{\mathrm{D}}+\mathbf{r}_{\mathrm{d}}}$
4	Write the equations for the output voltage and voltage gain for CD amplifier. BTL 1
	The output voltage is given by
	$\mathbf{V}_{\mathbf{o}} = \underline{\boldsymbol{\mu} \mathbf{R}_{\mathbf{s}} \mathbf{V}_{\mathbf{gd}}}$
	$(\mu + 1)\mathbf{R}_{s} + \mathbf{r}_{d}$
	Where $V_{gd} = V_i$, the input voltage.
	The voltage gain for CD amplifier is given by
	$A_v = \mu R_s$
	$(\mu + 1)R_s + r_d$
5	What are the benefits of h-parameters? BTL 1
	Real numbers at audio frequency
	Easy to measure
	 Can be obtained from the transistor state characteristics curves Convenient to use in circuit analysis and design.
6	Draw hybrid model of BJT. (MAY2015) BTL 3
	k hu
	+ × · · · · · · · · · · · · · · · · · ·
	v_1 $h_{12}V_2$ v_2 $h_{21}i_1 \leq h_{22} v_2$
7	Draw High frequency model of JFET BTL 3
	G o D
	v_{qs} $\downarrow g_m v_{qs} \ r_o$
	s
8	Define transistor action. BTL 1
	A transistor consists of 2 coupled PN junctions. The base is a common region to both junctions
	and makes a coupling between them. Since the base regions are smaller, a significant interaction

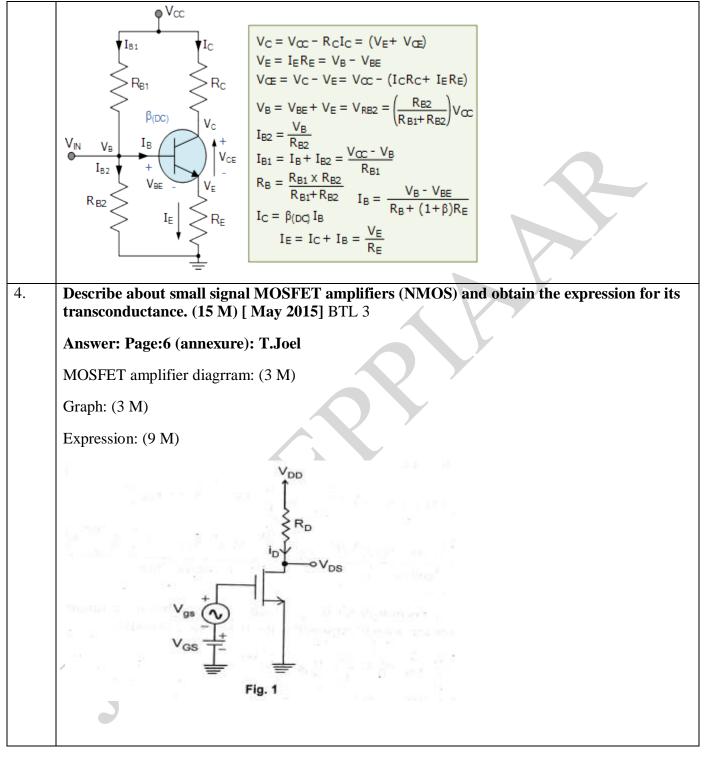

r	REGULATION :2017 ACADEMIC YEAR : 2018-2019
	between junctions will be available. This is called transistor action.
9	Draw the frequency response of an amplifier. (DEC 2007) BTL 3
	A (dB)
	A _M -3dB
	ω_ ω _Η ω
10	With small signal equivalent circuit, derive the input impedance of CB amplifier. (NOV
	2005) BTL 1
	$ \begin{array}{c} \mathbf{k}^{h_{ib}} \\ \mathbf{k}^{$
	$h_{ie} = \beta r_e$,
	$n_{ie} = \rho r_e,$
11	What is bandwidth of an amplifier? BTL 1
	The range of frequencies between the upper cut off frequency and lower cut off frequency is known as bandwidth
	kilowit as balldwidth
12	Define f_T in a high frequency transistor. BTL 1
	It is the frequency at which short circuit CE current gain becomes unity.
	It is the nequency at which short circuit CE current gain becomes unity.
13	Draw the ac equivalent circuit of small signal HF common emitter amplifier (NOV 2006) or
	Draw the high frequency equivalent circuit of a BJT. (NOV 2004) BTL 3
	r _{bic}
	I_b $T_{bb'}$ I_b
	$r_{b'e} = \frac{1}{g_{b'e}} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \begin{array}{c} \\ \end{array} \right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right\} \left\{$
	<i>Bu gbu y to bu tee hoe y and but the phild </i>
14	What are high frequency effects? BTL 1
14	what are light frequency checis. DTL 1
	At high frequencies, the internal capacitance of the transistors C_{be} and C_{bc} will output voltage as
	well as reduces the circuit gain

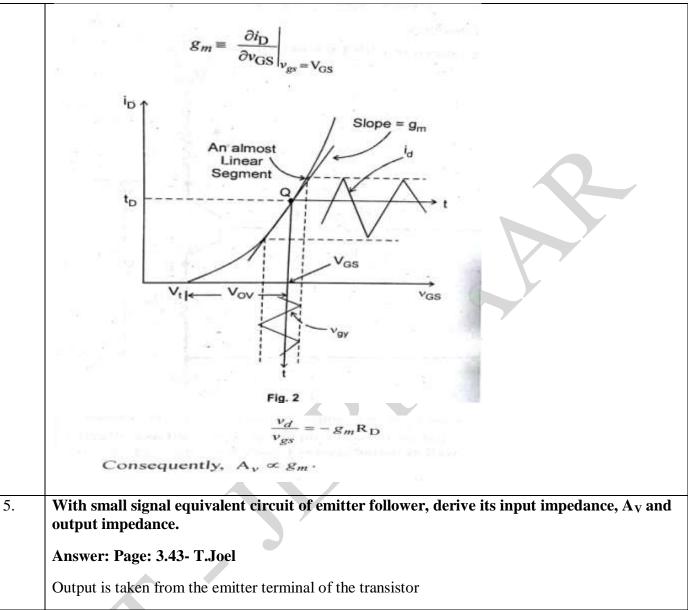

	REGULATION :2017 ACADEMIC YEAR : 2018-2019
15	What is the effect of C_{be} on the input circuit of a BJT amplifier at high frequency? BTL 1
	The capacitor connected between input and output cause the variation of output voltage known as bypass capacitor
16	Give the significance of coupling and bypass capacitor in Bandwidth of amplifiers. BTL 1
	At low frequency the bypass capacitor makes gain to lower value and at high frequency the coupling capacitor decreases the gain so at low and high frequencies the frequency response curves is varied and mid range of frequencies the gain is nearly constant.
17	What is the need of coupling capacitors in amplifier design? BTL 2
	In amplifier design, the source and load cannot be subjected to a DC voltage or permitted to conduct DC current. To prevent the DC component of an amplifier, output voltage from producing DC current in the load, a capacitor is connected in series with the load. This capacitor is called coupling capacitor or blocking capacitor, because they block the flow of DC current.
18	What is the need to go for simplified hybrid model? BTL 2
	The equivalent circuit of a transistor can be drawn using simple approximation by retaining its essential features. These equivalent circuits will aid in analyzing transistor circuits easily and rapidly.
20	Draw the ideal tuned circuit and write its expression for resonant frequency. BTL 3
	$L \underbrace{_{i}}_{i} _{v} _{i} $
21	What are amplifiers? Write its uses. BTL 1
	An amplifier is an electronic device that increases the voltage, current, or power of a signal. Amplifiers are used in wireless communication and broadcasting, and in audio equipment of all kinds. They can be categorized as either weak-signal amplifiers or power amplifiers. Transistors are used as audio amplifiers in a home stereo or PA system. RF high power generation for semiconductor equipement, to RF and Microwave applications such as radio transmitters.
22	Draw the small signal model of BJT. BTL 3

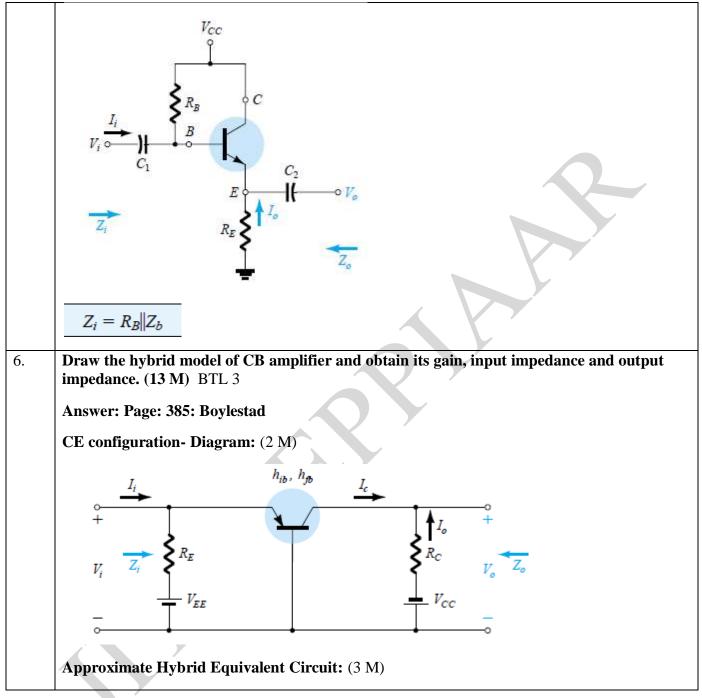


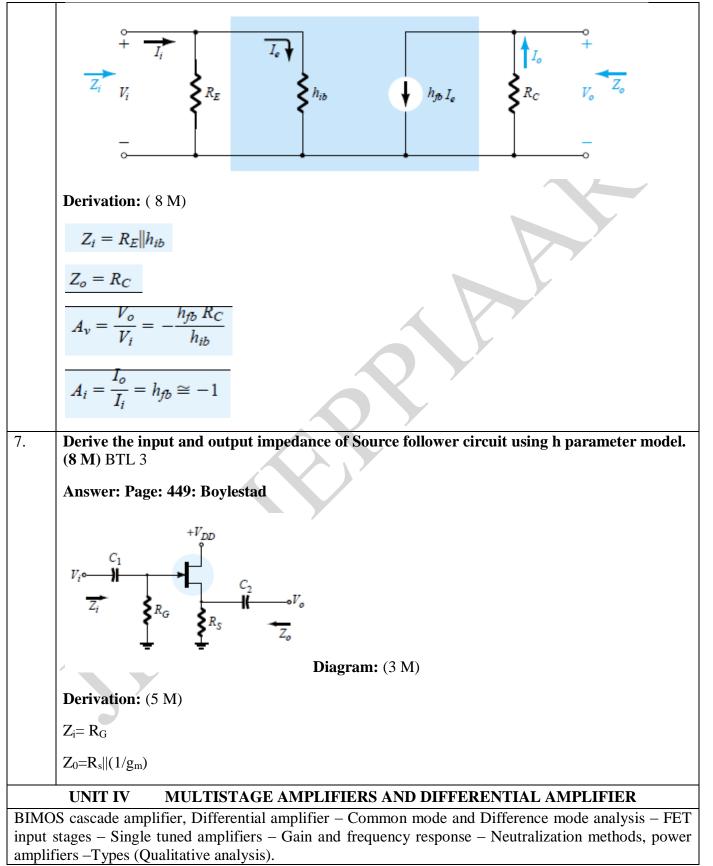


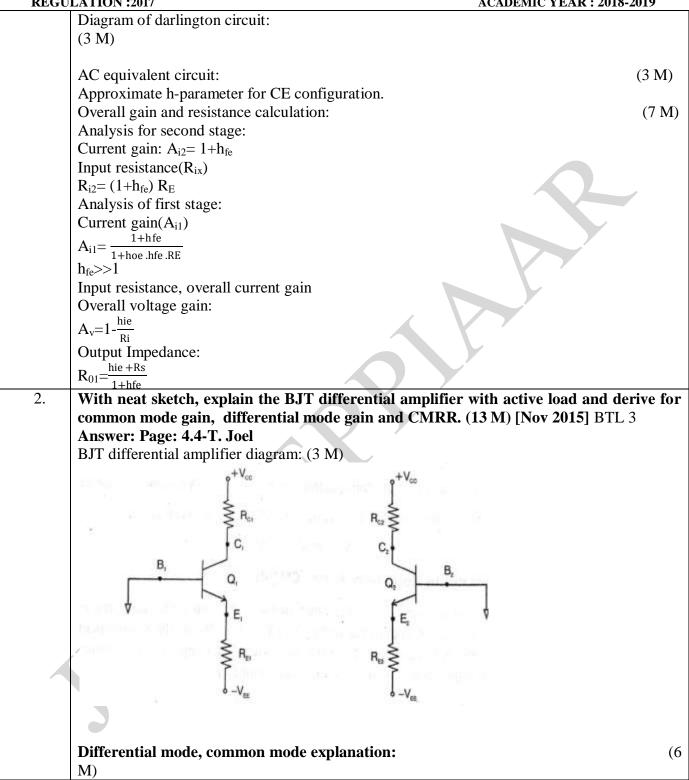


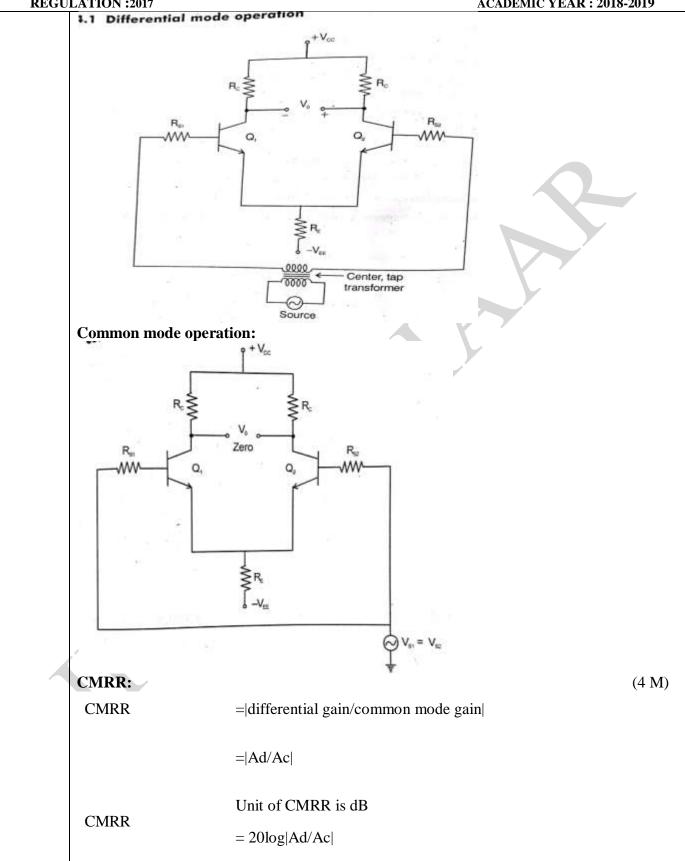





The current increments are taken around the quiescent point Q which corresponds to $i_{B} = I_{B}$ and







	PART * A
Q.No.	Questions
1	What is a differential amplifier? BTL 1 An amplifier, which is designed to give the difference between two input signals, is called the differential amplifier.
2	What is the function of a differential amplifier? BTL 1 The function of a differential amplifier is to amplify the difference of two signal inputs, i.e., $V_0 = A_D(V1 - V_2)$, where Ad is the differential gain
3	When two signals V_1 and V_2 are connected to the two inputs of a difference amplifier, define a difference signal V_d and common-mode signal Vc. BTL 1 The difference signal V_d is defined as the difference of the two signal inputs, i.e., $V_d = V_1 - V_2$ The common-mode signal V_c is defined as the average of the two signals, I.e., $V_c = 1/2$ ($V_1 + V_2$)
4.	What is the need for neutralization? BTL 2 Neutralization circuit is used to convert unstable system to stable system by process of cancelling Miller effect. Miller effect is cancelled by adding neutralization capacitor which will provide equal magnitude and out of phase voltage or current with that of Millers capacitance.
5	What are the advantages of differential amplifier? BTL 1 It has high gain and high CMRR.
6.	 Give the purpose of using coupling networks. BTL 2 The coupling networks serve the following two purposes ➢ It transfers the a.c. output of one stage to the input of the next stage. ➢ It isolates the d.c. conditions of one stage to the next.
7.	 What are the coupling schemes that are used in the multistage amplifiers? BTL 1 The coupling schemes that are used in the multistage amplifiers are: Resistance- capacitance (RC) coupling. Transformer coupling.
9.	Define Common Mode Rejection Ratio. (MAY 2014) BTL 1 The relative sensitivity of an op-amp to a difference signal as compared to a common mode signal is called common-mode and gives the figure of merit for the differential amplifier. CMRR, ρ= Ad/Ac
10.	 Write the classification of amplifiers based on Q point (operating point). BTL 1 Class A amplifier. Class B amplifier. Class AB amplifier. Class C amplifier.
11	What is the drawback of class B amplifier? How this could be minimized? BTL 2 The drawback of class B amplifier is cross over distortion To overcome the cross over distortion, a small forward bias is kept applied to the transistors. So that when input is zero, this additional forward bias can make the transistor ON immediately, eliminating cross over distortion.

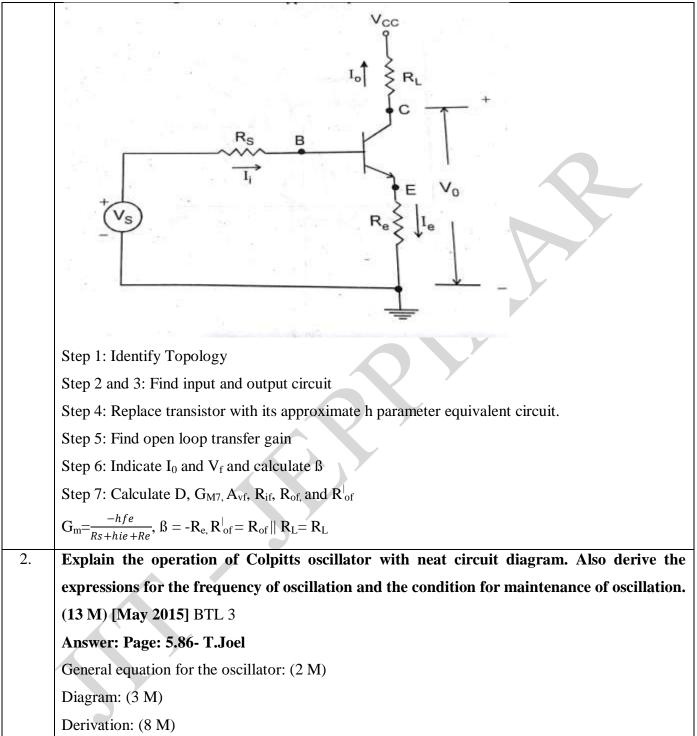
REGU	LATION :2017 ACADEMIC YEAR : 2018-2019
12	Which is the most commonly used feedback arrangement in cascaded amplifier and
	why? BTL 2
	Voltage series feedback increases input resistance and decreases output resistance. Increase in
	input resistance reduces the loading effect of amplifier itself for driving the next stage.
13	Write the Advantages of differential amplifier. BTL 1
	A differential amplifier helps to increase the CMRR which in turn helps avoid
	unwanted signals that couple into the input to get propagated. IT also helps to increase the
	signal to noise ratio. Further more it provides larger output voltage swings.
14	What are the advantages of class B amplifier compared to class A amplifier? BTL 1
	Possible to obtain greater power output.
	Efficiency is higher.
	Negligible power loss.
15	What is class AB operation? BTL 1
	> The power amplifier is said to be class AB amplifier, if the Q point and the
	input signal are selected such that the output signal is obtained for more than
	180° but less than 360°, for a full input signal.
	The efficiency of class AB is more than class A but less than class B operation.
	The class AB is important to eliminate cross over distortion.
16	State about Class D amplifier. BTL 2
	In the class D amplifier the input signal is converted to a sequence of higher voltage
	output pulses. The averaged-over-time power values of these pulses are directly proportional
	to the instantaneous amplitude of the input signal. The frequency of the output pulses is
	typically ten or more times the highest frequency in the input signal to be amplified. The
	output pulses contain inaccurate spectral components (that is, the pulse frequency and its
	harmonics) which must be removed by a low-pass passive filter. The resulting filtered signal
	is then an amplified replica of the input.
17	Define Class A amplifier. BTL 2
	100% of the input signal is used (conduction angle $\Theta = 360^{\circ}$ or 2π); i.e., the active element
	remains conducting (works in its "linear" range) all of the time. Where efficiency is not a
	consideration, most small signal linear amplifiers are designed as class A. Class A amplifiers
	are typically more linear and less complex than other types, but are very inefficient. This type
	of amplifier is most commonly used in small-signal stages or for low-power applications
	(such as driving headphones).
18	Write about Class B amplifier. BTL 2
	50% of the input signal is used ($\Theta = 180^\circ$ or π ; i.e., the active element works in its linear
	range half of the time and is more or less turned off for the other half). In most class B, there
	are two output devices (or sets of output devices), each of which conducts alternately (push-
	pull) for exactly 180° (or half cycle) of the input signal; selective RF amplifiers can also be
	implemented using a single active element.
	These amplifiers are subject to crossover distortion if the transition from one active
	element to the other is not perfect, as when two complementary transistors (i.e., one PNP, one
	NPN) are connected as two emitter followers with their base and emitter terminals in
	common, requiring the base voltage to slew across the region where both devices are turned
	off.
19	What is Class C amplifier? BTL 2
	Class C amplifiers conduct less than 50% of the input signal and the distortion at the output is
	high, but high efficiencies (up to 90%) are possible. Some applications (for example,

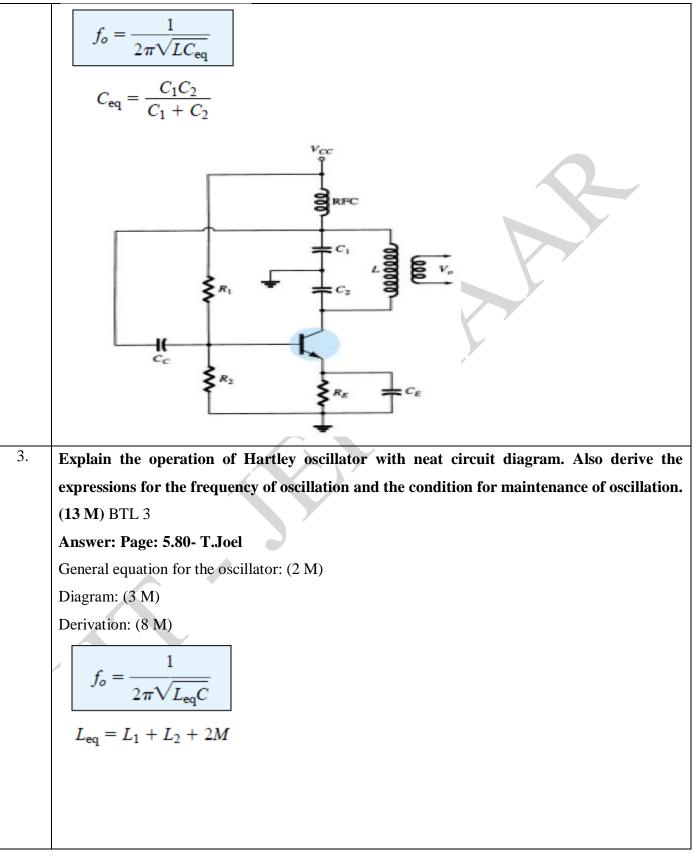
REGU	LATION :2017 ACADEMIC YEAR : 2018-2019
	megaphones) can tolerate the distortion. A much more common application for class C amplifiers is in RF transmitters, where the distortion can be vastly reduced by using tuned
	loads on the amplifier stage
	L L
	-
20	What is conversion efficiency? BTL 1
20	It is a measure of the ability of an active device in converting the d.c. power of the supply into
	the a.c. power delivered to the load. Conversion efficiency is also :red to as theoretical
	efficiency and collector circuit efficiency (for transistor amplifier) and it is denoted by η .
21	Why class A amplifier must not be operated under no signal conditions? BTL 2
	Under no signal condition, the entire d.c. power input $P_{DC} = V_{CC} I_{CQ}$, is dissipated as
	the heat. Thus the power dissipation is maximum under no signal condition. This may
	increase the transistor junction temperature beyond safe value, which may lead to transistor
22	damage. To avoid this, class A amplifier must not be operated under no signal condition. Define Miller's theorem. (APR/MAY 2010) BTL 1
	The Miller theorem :s to the process of creating equivalent circuits. It asserts that a floating
	impedance element, supplied by two voltage sources connected in series, may be split into
	two grounded elements with corresponding impedances. There is also a dual Miller theorem
	with regards to impedance supplied by two current sources connected in parallel. The two
	versions are based on the two Kirchhoff's circuit laws.
23	Define multistage amplifier. BTL 1
	Additional amplification can be required to provide a signal having some specified level.
	The first stage can be designed for input impedance, the last for output impedance, and one or
	more intermediate stages for voltage gain. if a single stage of amplification will provide a
	maximum gain of 100 and the desired gain from the device is 1000, two stages of
	amplification will be required. The two stages might have gains of 10 and 100, 20 and 50, or
	25 and 40. (The overall gain is the product of the individual stages-10 X $100 = 20 X 50 = 25$ X $40 = 1000$)
25	X 40 = 1000.) Mention the advantages which are specific to Darlington connection. BTL 2
	The major advantage of a Darlington connection is high gain, typically ranging from over
	100 to 1000. The forward voltage drop from the base to the emitter of the Darlington is
	approximately two times the forward voltage drop of a single transistor. It is a beta
	multiplier therefore it has higher emitter current capability.
	PART*B
1.	With neat sketch explain two staged cascaded amplifier and derive its overall A_v , A_i , R_i ,
	R ₀ . (13 M) [Nov 2014] BTL 3
	Answer:Page: 8 (Annexure)- T.Joel

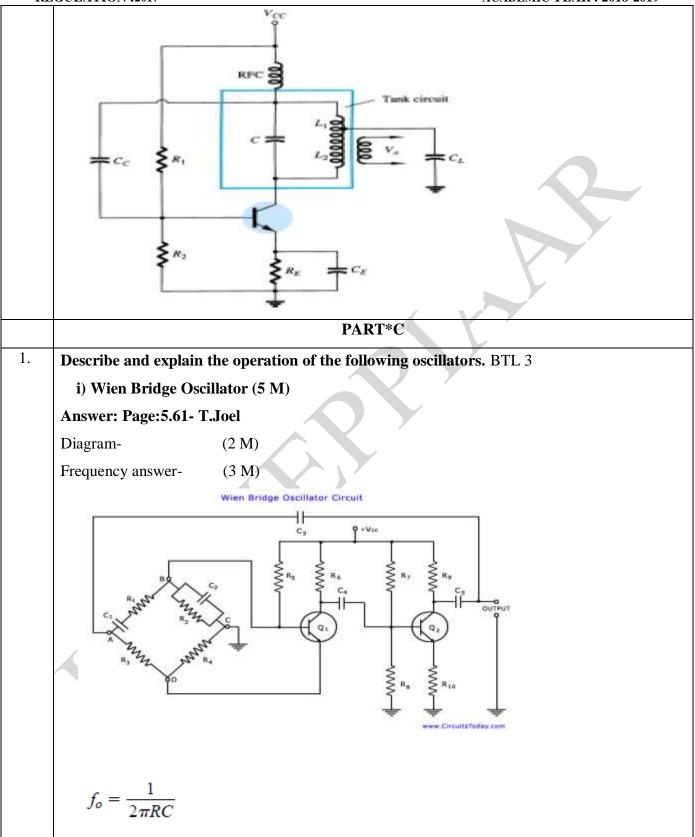
REGU	JLATION :2017 ACADEMIC YE	AR: 2018-2019
3.	What is Neutralization? Explain hazeltine neutralization and	narrow band
	neutralization methods in brief. (13 M) [May 2015] BTL 2	
	Answer: Page: 4.40- T.Joel	
	Neutralization:	
	Neutralization circuit is used to convert unstable system to stable system	tem by process of
	cancelling Miller effect.	5 1
	> Miller effect is cancelled by adding neutralization capacitor which y	will provide equal
	magnitude and out of phase voltage or current with that of Millers ca	
	\succ To improve stability.	(3 M)
	Methods (Diagram and explanation)	(0 112)
	Broad banding using Hazeltine Neutralization	(5 M)
	Narrow band neutralization using coil	(5 M)
4	Perform DC analysis and AC analysis of FET differential amplifiers	
т –	circuit diagrams. (13 M) BTL 4	with appropriate
	Answer: Page: 4.26: T.Joel	
	Dual input unbalanced output FET differential amplifier:	
	Duai input unbalanced output PET unrefential amplifier. DC analysis:	(3M)
	Short circuit the sources.	(5 WI)
		$(\mathbf{A} \mathbf{M})$
	$V_{DS} = V_{DD} + V_{EE} - I_D R_D - I_S R_S$	(4 M)
	AC analysis:	(6M)
	Determine the gain in both differential- mode and common mode.	
	Differential mode gain:	
	$A_d = g_m R_D$	
	Common mode gain:	
	$A_{\rm C} = V_0 / V_{\rm i} = -g_{\rm m} R_{\rm D} / (1+2 g_{\rm m} R_{\rm S})$	
	$CMRR = 1 + 2g_m R_S$	
	PART*C	
1.	i) Explain with circuit diagram class B power amplifier and derive its	efficiency.(13 M)
	[Nov 2015] BTL 2	
	Answer:Page: 4.44: T. Joel	
	One-hilf coreait	
	V, Loud	
	One-half	
	circuit	
		(3
	M)	
	Derivation:	(10 M)
	$P_i(dc) = V_{CC}I_{dc}$	
	I f(dc) V CC1dc	
	2	
	$I_{\rm dc} = \frac{2}{\pi} I(p)$	
	$\pi \tau$	
	$P_i(dc) = V_{CC} \left(\frac{2}{\pi} I(p)\right)$	
	$P_{i}(\alpha c) = V_{cc}(\pi^{1}(\mathbf{p}))$	
	N /	

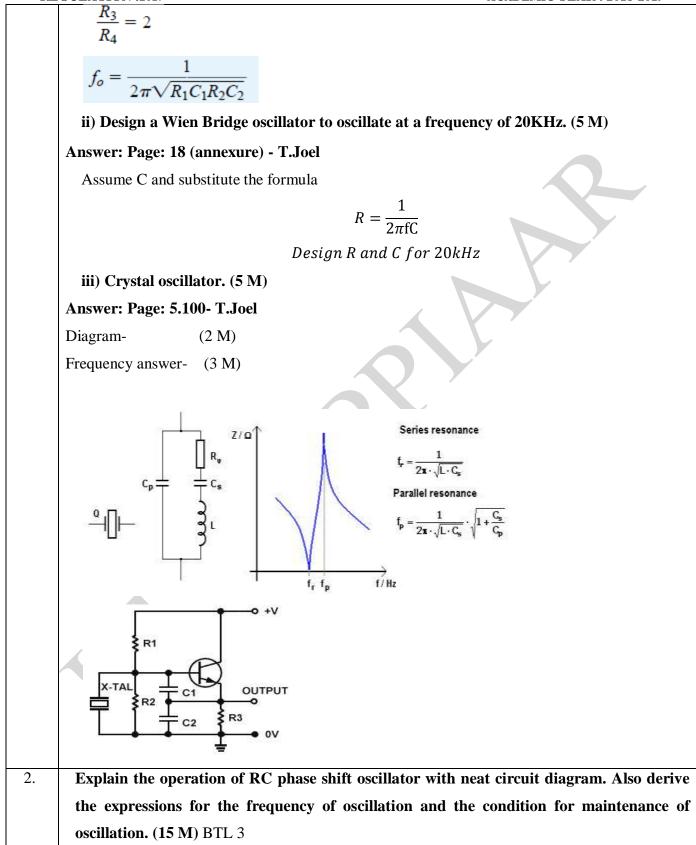
$P_{o}(ac) = \frac{V_{L}^{2}(rms)}{R_{L}}$ % $\eta = \frac{P_{o}(ac)}{P_{f}(dc)} \times 100\%$ maximum efficiency = $\frac{\pi}{4} \times 100\% = 78.5\%$ 2. With neat circuit, explain and derive the gain and bandwidth of a single tuned amplifier. (15 M) [Nov 2015] BTL 3 Answer:Page: 4.31- T.Joel Diagram: (5 M) $\frac{+V_{CC}}{\prod_{i=1}^{n}} = \frac{+V_{CC}}{\prod_{i=1}^{n}} = \frac{+V_{CC}}{\prod_{i=1$	REGU	LATION :2017 ACADEMIC YEAR : 20	18-2019
maximum efficiency = $\frac{\pi}{4} \times 100\%$ = 78.5% 2. With neat circuit, explain and derive the gain and bandwidth of a single tuned amplifier. (15 M) [Nov 2015] BTL 3 Answer:Page: 4.31- T.Joel Diagram: (5 M) Imput signal Imput signal Imput signal Imput signal R1 Imput signal R2 Imput signal R2 Imput signal R2 Imput signal R2 Imput signal R4 Imput signal R4 Imput signal Imput signal Imput signal R2 Imput signal R4 Imput signal Imput signal			
2. With neat circuit, explain and derive the gain and bandwidth of a single tuned amplifier. (15 M) [Nov 2015] BTL 3 Answer:Page: 4.31- T.Joel Diagram: (5 M)		% $\eta = \frac{P_o(\mathrm{ac})}{P_i(\mathrm{dc})} \times 100\%$	
(15 M) [Nov 2015] \overrightarrow{BTL} 3 Answer:Page: 4.31- T.Joel Diagram: (5 M) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow		maximum efficiency = $\frac{\pi}{4} \times 100\% = 78.5\%$	
Answer:Page: 4.31- T.Joel Diagram: (5 M) $+ V_{CC}$ $+ V_{CC}$	2.	With neat circuit, explain and derive the gain and bandwidth of a single tuned	amplifier.
Diagram: (5 M) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow		(15 M) [Nov 2015] BTL 3	
$\begin{array}{c} & \downarrow & $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Diagram:	(5 M)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+V _{cc}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Input Signal \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 Equivalent circuit $\Delta \phi = \phi_0 / R_1 \phi_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier. (10 M)(10 M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60mV$ (p-p) at 1 KHz and $V_{s2} = 40mV$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), (3 M) $A_d = 135.54 A$, (3 M) $A_c = 0.3966$, (3 M) CMRR=50.67 dB, (3 M)			
Input Signal \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 \mathbb{R}_2 Equivalent circuit $\Delta \phi = \phi_0 / R_1 \phi_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier. (10 M)(10 M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60mV$ (p-p) at 1 KHz and $V_{s2} = 40mV$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), (3 M) $A_d = 135.54 A$, (3 M) $A_c = 0.3966$, (3 M) CMRR=50.67 dB, (3 M)			
Signal $R_E \neq -C_E$ Equivalent circuit $\Delta \phi = \phi_0 / R_1 \phi_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier. M) (10 M) 3. Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60mV$ (p-p) at 1KHz and $V_{s2} = 40mV$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} = 3.2 K\Omega$. (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), (3 M) $A_d = 135.54 A$, (3 M) (3 M) $A_c = 0.3966$, (3 M) (3 M) CMRR=50.67 dB, (3 M) (3 M)			
Equivalent circuit Modified equivalent circuit $\Delta \dot{\omega} = \dot{\omega}_0 / R_1 \dot{\omega}_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier. (10 M) 3. Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60mV$ (p-p) at 1KHz and $V_{s2} = 40mV$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 KΩ. (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), (3 M) $A_d = 135.54 A$, (3 M) $A_c = 0.3966$, (3 M) CMRR=50.67 dB, (3 M)		Signal R _F S	
Modified equivalent circuit $\Delta \dot{\omega} = \dot{\omega}_0 / R_1 \dot{\omega}_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier.(10 M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60 \text{mV}$ (p-p) at 1KHz and $V_{s2} = 40 \text{mV}$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), $A_d = 135.54 \text{ A}$, $A_c = 0.3966$, $CMRR = 50.67 \text{ dB}$,(3 M) (3 M)			
Modified equivalent circuit $\Delta \dot{\omega} = \dot{\omega}_0 / R_1 \dot{\omega}_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier.(10 M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60 \text{mV}$ (p-p) at 1KHz and $V_{s2} = 40 \text{mV}$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), $A_d = 135.54 \text{ A}$, $A_c = 0.3966$, $CMRR = 50.67 \text{ dB}$,(3 M) (3 M)		↓ ↓ ↓	
Modified equivalent circuit $\Delta \dot{\omega} = \dot{\omega}_0 / R_1 \dot{\omega}_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier.(10 M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60 \text{mV}$ (p-p) at 1KHz and $V_{s2} = 40 \text{mV}$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), $A_d = 135.54 \text{ A}$, $A_c = 0.3966$, $CMRR = 50.67 \text{ dB}$,(3 M) (3 M)		° <u> </u>	
Modified equivalent circuit $\Delta \dot{\omega} = \dot{\omega}_0 / R_1 \dot{\omega}_0 C = 1 / R_1 C$ rad/S $\Delta f = 1/2 \Pi R_1 C$ Response of tuned amplifier.(10 M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if $V_{s1} = 60 \text{mV}$ (p-p) at 1KHz and $V_{s2} = 40 \text{mV}$ (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), $A_d = 135.54 \text{ A}$, $A_c = 0.3966$, $CMRR = 50.67 \text{ dB}$,(3 M) (3 M)		Equivalent circuit	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Response of tuned amplifier.(10M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if V_{s1} = 60mV (p-p) at 1KHz and V_{s2} = 40mV (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with h_{ie} = 3.2 KQ. (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), A_d= 135.54 A, A_c=0.3966, CMRR=50.67 dB,(3 M) (3 M)			
M)3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if V_{s1} = 60mV (p-p) at 1KHz and V_{s2} = 40mV (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with h_{ie} = 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), A_d= 135.54 A, A_c=0.3966, CMRR=50.67 dB,(3 M) (3 M)			
3.Calculate the operating point values, differential gain, common mode gain, CMRR, output voltage if V_{s1} = 60mV (p-p) at 1KHz and V_{s2} = 40mV (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with h_{ie} = 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), A_d= 135.54 A, A_c=0.3966, CMRR=50.67 dB,(3 M) (3 M)			(10
output voltage if V_{s1} = 60mV (p-p) at 1KHz and V_{s2} = 40mV (p-p) at 1 KHz for the differential amplifier shown in Fig. Assume the transistor is made of Silicon with h_{ie} = 3.2 K Ω . (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), (3 M) A _d = 135.54 A, (3 M) A _c =0.3966, (3 M) CMRR=50.67 dB, (3 M)			
differential amplifier shown in Fig. Assume the transistor is made of Silicon with $h_{ie} =$ 3.2 K Ω . (15 M) BTL 1Answer: Page: 122- NotesOperating point (1.009mA, 8.16V),A_d= 135.54 A,A_c=0.3966,CMRR=50.67 dB,(3 M)	3.		
3.2 KQ. (15 M) BTL 1 Answer: Page: 122- Notes Operating point (1.009mA, 8.16V), A_d = 135.54 A, A_c =0.3966, CMRR=50.67 dB,			
Answer: Page: 122- Notes $(3 M)$ Operating point (1.009mA, 8.16V), $(3 M)$ A_d = 135.54 A, $(3 M)$ A_c =0.3966, $(3 M)$ CMRR=50.67 dB, $(3 M)$			with fi _e –
Operating point (1.009mA, 8.16V),(3 M) A_d = 135.54 A,(3 M) A_c =0.3966,(3 M)CMRR=50.67 dB,(3 M)			
$ \begin{array}{ll} A_d = 135.54 \text{ A}, & (3 \text{ M}) \\ A_c = 0.3966, & (3 \text{ M}) \\ CMRR = 50.67 \text{ dB}, & (3 \text{ M}) \end{array} $		8	(3 M)
$\begin{array}{c} A_{c}=0.3966, \\ CMRR=50.67 \text{ dB}, \end{array} \tag{3 M} \\ (3 M) \end{array}$			````
CMRR=50.67 dB, (3 M)		- ,	, ,
$V_0 = 2.73 V(p-p)$ (3)		- ,	, ,
		$V_0 = 2.73 V(p-p)$	

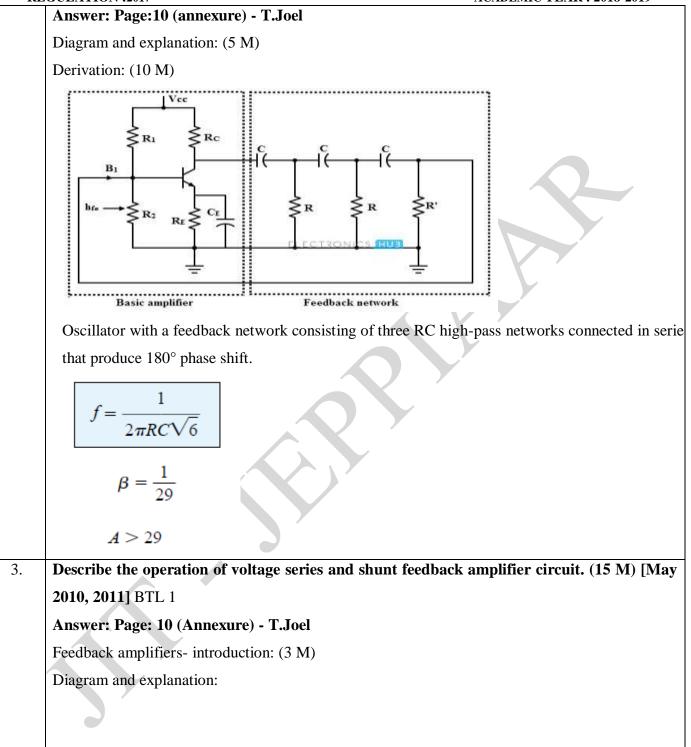
KEGU	M) ACADEMIC YEAR : 2018-2019
4.	What is power amplifier? List the various classes of power amplifiers. Explain in detail the Position of Q point for class A amplifier with its current and voltage waveforms. (13)
	M) BTL 3
	Answer: Page: 4.42: T.Joel
	Power amplifier: Draws power from d.c power supply and converts to a.c signal. Efficiency-
	Conversion efficiency, action controlled by input signal. Classification: Class A, Class B Class C, Class AB
	Class C, Class AB (2 M)
	Diagram: Position of Q point for Class A amplifier.
	Current and voltage waveforms. (4 M)
	Explanation: (6 M)
	Q point and input signal selected, output signal is obtained for a full input cycle.
	Q point approximately at the midpoint of the load line.
	Transistor remains in the active region and never enters into cut-off and saturation region.
	a.c input signal applied, collector voltage varies sinusoidally, collector current varies
	sinusoidally. The collector current flows for 360 [°] , full cycle, input signal.
	Efficiency- very small. (1M)
5.	Explain in detail the Position of Q point for class C amplifier with its current and
	voltage waveforms. Also describe the working of Class C tuned amplifier with near
	diagram. (13 M) BTL 3
	Answer: Page: 4.45: T.Joel
	Diagram: Position of Q point for Class C amplifier, Current and voltage waveforms. (3)
	M)
	Explanation: (10 M)
	\triangleright Q point and input signal selected, output signal is obtained for less than a half cycle.
	Q point shifted below x-axis.
	Transistor remains in the active region.
	> For the remaining cycle, transistor remains cut off, no signal produced at output current flow less than 180° .
	Output is much more distorted.
	> Never used for A.F power amplifiers.
	➤ Efficiency much higher- very close to 100%.
	Applications:
	Not suitable for audio frequency power amplifiers.
	> Used in Tuned circuits, used in communication areas and in radio frequency
	amplifiers.
	Also used in mixer or converter circuits used in radio receivers and wireless
	communication system.
	UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS
dvantag	es of negative feedback - voltage / current, series , Shunt feedback -positive feedback -
Condition	for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.
	PART * A
Q.No.	Questions
I	


	CGULATION :2017 ACADEMIC YEAR : 2018-2019 D. G. (1) G. (1) L. (1)
1	Define (i) feedback (ii) positive feedback and (iii) negative feedback. BTL 1
	i. Feedback: The process of combining a fraction of the output (of a Device- amplifier) back to
	its input is called feedback.
	ii. Positive Feedback: If the feedback is in phase to the input, it is called positive feedback.
	iii. Negative Feedback: When the feedback is in opposition (out of phase) to the input, it is
	called negative feedback.
2	Mention the four connections in Feedback. BTL 1
	Voltage series feedback.
	Voltage shunt feedback
	Current series feedback.
	Current shunt feedback.
3	Write the effects of negative feedback. BTL 1
	The gain becomes stabilized with respect to changes in the amplifier active device parameters
	like hfe.
	The non-linear distortion is reduced there by increasing the signal handling capacity or the
	dynamic range of the amplifier.
4	Write the conditions for a circuit to oscillate. BTL 1
	The oscillator circuit should consist of an amplifier and a portion of the output should be
	feedback to the input. For sustained oscillations, the feedback voltage must be in phase with
	the input, i.e., total phase shift around the loop must be 360°.
	The amount of energy or power feedback to the input must be sufficient to the input circuit.
5	Mention the classification of oscillators. BTL 1
	According to the frequency determining networks,
	RC oscillators
	LC oscillators
	Crystal oscillators
6	List the advantages of phase shift oscillator. BTL 1
	The phase shift oscillator does not required conductance or transformers.
	It is suitable for the low frequency range i.e., from a few hertz to several hundred KHz. The
	upper frequency is limited because the impedance of RC network may become so small that i
	loads the amplifier heavily.


RE 7	GULATION :2017 ACADEMIC YEAR : 2018-2019 Write the disadvantages of Phase shift oscillator. BTL 1 1
/	
	It is necessary to change the C or R in all the three RC networks simultaneously for changing
	the frequency of oscillations. This is practically difficult.
	It is not suitable for high frequencies.
8	Write the main drawback of LC oscillators. BTL 1
	The frequency stability is not very good.
	They are too bulky and expensive and cannot be used to generate low frequencies.
9	Why the capacitor in a high pass RC circuit is called blocking capacitor? BTL 2
	Because of the blocking property of the capacitor for DC or low frequency input signals, the
	capacitor acts like an open circuit and blocks the signal. So the capacitor in high-pass RC circuits
	is called "blocking capacitor".
10	Write the voltage series feedback. BTL 2
	In this case, the feedback voltage is derived from the output voltage and fed in series with
	input signal. The input of the amplifier and the feedback network are in series is also known as
	series parallel in parallel, hence this configuration is also known as series parallel feedback
	network.
11	State the voltage shunt feedback. BTL 2
	The input of amplifier and the feedback network are in parallel and known as parallel -
	parallel feedback network. This type of feedback to the ideal current to voltage converter, a
	circulating having very low input impedance and very low output impedance.
12	Write the current series feedback. BTL 2
	When the feedback voltage derived from the load current and is fed in series with the
	input signal, the feedback is said to be current series feedback, the inputs of the amplifier and the
	feedback network are in series and the output are also in series. This configuration is also called
	as series-series feedback configuration.
13	Define the current shunt feedback. BTL 2
	When the feedback voltage is derived from the load current and a fed in parallel with the
	input signal, the feedback is said to be current shunt feedback. Herein the inputs of the amplifier
	and the feedback network are in parallel and the outputs are in series. This configuration is also
	known as parallel series feedback.
14	Give the barkhausen criterion for oscillator. (NOV 2012) (MAY 2013) BTL 1


RE	CGULATION :2017 ACADEMIC YEAR : 2018-2019
	When $AB = -1$, the gain is infinite this represents the condition for oscillation The
	requirements for oscillation are described by the Barkhausen criterion: The magnitude of the
	loop gain AB must be 1 The phase shift of the loop gain AB must be 180°, or 180° plus an integer
	multiple of 360°.
	It should be mentioned that the criterion is necessary but not sufficient. The criterion is just an
	observation based on the assumption of a linear circuit.
15	Write the advantages of negative feedback amplifier. BTL 1
	Better frequency response, less distortion, less gain or voltage drift, less temperature drift,
	better CMRR, SVRR, bias point stability
16	Define frequency stability of an oscillator. BTL 1
	The term "frequency stability" is used to define the ability of the oscillator to maintain a
	single fixed frequency as long as possible over a time interval. These deviations in frequency are
	caused due to variations in the values of circuit features (circuit components, transistor
	parameters, supply voltages, stray-capacitances, output load etc.) that determine the oscillator
	frequency.
17	Mention two high frequency LC oscillators. BTL 1
	Hartley oscillator
	Colpitts oscillator
18	Mention the types of feedback. BTL 1
	1. Positive or regenerative feedback.
	2. Negative of degenerative feedback.
19	Define feedback. BTL 1
	The process of injecting a fraction of the output voltage of an amplifier into the input so
	that it becomes a part of the input is known as feedback.
20	Draw the block diagram of feedback amplifier.[A/M - 11] [N/D - 11] BTL 2
	The block diagram of feedback amplifier


		${\underset{s \pm \Phi_{f}}{\longrightarrow}} Basic ampliwith gain$		ampler $\Phi_0 \notin R_0$		
		Feedbac network				
21	What are the impacts	s of negative	feedback on n	oise in circuit?	[A/M - 10]	BTL 1
	The impacts of negative	ve feedback of	n noise in circu	it are		
	Signal feedback reduce	es the amount	of noise signal	and non linear	distortion.	
	The factor $(1 + \beta A)$ re	educes both in	nput noise and	resulting non lir	near distortion	n for considerable
	improvement.					
22	What are the effects	of negative f	eedback on in	put and output	t impedance	of an amplifier?
	[N/D - 11] [A/M - 12] BTL 1				
	The effects of negative	e feedback on	input and outp	ut impedance of	an amplifier	:
	Parameter	Voltage	Current	Voltage shunt	Current	
		series	series		shunt	
	Input	Increases	Increases	Decreases	Decreases	
	resistance					
	Output	Decreases	Increases	Decreases	Increases	
	resistance					
23	Draw a block diagram input resistance. BTI		series feedbac	- 	d write the e	expression for its
	The block diagram of The input resistance of	-	-		R _i (1+βA _V)	Where Rif
	- Input resistan	ce with feedb	ack.			
	Ri - Input resistance w	ithout feedba	ck. Av - Voltag	ge gain without f	feedback.	


REGULATION :2017 ACADEMIC YEAR: 2018-2019 - Feedback factor. ß Determine the gain with feedback for an amplifier with open loop gain of 300 and feedback 24 factor of 0.1. [N/D - 09] BTL 1 Solution: Given: Av = 300 and $\beta = 0.1$ Αv Avf = $1 + \beta Av$ Avf = 300/ (1+0.1 x 300) = 9.677 An amplifier has a voltage gain of 1000. With negative feedback, the voltage gain reduces to 25 **10.** Calculate the fraction of the output that is feedback to the input. [A/M - 07] BTL 1 Solution: Given Av = 1000 and Avf = 10Αv Avf = $\frac{1+\beta Av}{\beta Av}$ $10 = 1000 / \beta = 0.099$ **PART*B** Draw circuit of CE amplifier with current series feedback and obtain the expression for 1. feedback ratio, voltage gain, input and output resistances.(13 M) [May 2015] BTL 3 Answer: Page: 10 (annexure) Diagram with explanation: (5 M) Derivation: (8 M)

	$ \begin{array}{c} \downarrow \\ V_{L} \\ \downarrow \\ V_{L} \\ \downarrow \\ $
	Fig: a) Series feedback b) shunt feedback
	Voltages to connecting the output voltage as input to the feedback network; current s to tapping
	off some output current through the feedback network. Series to connecting the feedback signal
	in series with the input signal voltage; shunt to connecting the feedback signal in shunt (parallel)
	with an input current source.
	Series feedback connections tend to increase the input resistance, while shunt feedback
	connections tend to decrease the input resistance. Voltage feedback tends to decrease the output
	impedance, while current feedback tends to increase the output impedance. (7 M)
4.	Calculate the voltage gain, input and output resistance of a voltage series feedback
	amplifier having A=400, R_i =1 k Ω , R_o =20 k Ω and β =0.02. (15 M) BTL 1
	Answer: Page:5.40 (Annexure) - T.Joel
	$A_{f} = \frac{A}{AB+1} = 44.44 (5 M)$
	$R_{if} = R_i((AB + 1) = 9 K\Omega (5 M))$
	$R_{0f} = R_0 / ((A\beta + 1) = 2.2K\Omega (5 M))$

	OBJECTIVE TYPE QUESTIONS
1	Semicoductor material have bonds.
	a)Ionic b) Covalent c) mutual d) Metallic
2	The process of adding impurities to pure semiconductor is called
	a) mixing b) doping c) diffusing d) Refining
3	The most widely used semiconducting materials in electronic devices is
	a) Germanium b) Silicon c) Copper d) Carbon
4	The leakage current of the P-N diode is caused by

RE	GULATION :2017 ACADEMIC YEAR : 2018-2019
	a) heat energy b) Chemical energy c) barrier potential d) majority carriers
5	Any voltage that is connected across a P-N junction is called voltage.
	a) breakdown voltage b) barrier voltage c) bias voltage d) Reverse voltage.
6	The depletion region of semiconductor diode is due to
	a) Reverse biasing b) forward biasing c) crystal doping d) migration of mobile charge
	carriers.
7	A LED emits visible light when its
	a) PN junction is reverse biased b) depletion region widens c) holes and electrons recombine
	d) P-N junction becomes hot.
8	GaAs, LEDs emit radiation in the
	a) ultra violet region b) violet blue green range og the visible region c) visible region d) infra -
	red region
9	The ripple factor of a Half Wave Rectifier is
	a) 0.406 b) 0.812 c) 1.21 d) 1.11
10	Which stage of a dc power supply uses zener diode as the main component?
	a) rectifier b) voltage divider c) regulator d) filter
11	In case of bipolar transistor, α is
	a) positive and >1 b) positive and <1 c) negative and >1 d) negative and <1
12	When a BJT operates in cut off
	a) $V_{CE}=0$, b) $V_{CE}=V_{CC}$ c) V_{CE} has negative value d) I_C is maximum
13	Improper biasing of a transistor circuit leads to
	a) Excessive heat production at collector terminal
	b) Distortion in input Signal
	c) Faulty loacation of load lined) Heavy loading of emitter terminal
14	When a BJT is employed as an amplifier, it operates
τſ	
	a) cutoff b) saturation c) well into saturation d) Over the active region.
15	The smallest of the four h-parameters of a transistor is
	a) $h_i b$) $h_r c$) $h_0 d$) h_f

	GULATION 2017 ACADEMIC TEAK : 2010-2019
16	FETs have similar properties to
	a) PNP transistors b) NPN transistors c) Thermonic valves d) Unijunction Transistors
17	A JFET has the disadvantage of
	a) being noisy b) having small gain- bandwidth product c) possessing positive temperature co-efficient d) Having low input impedance
18	A JFET can be cut-off with the help of a) \mathbf{V}_{GS} b) \mathbf{V}_{DS} c) \mathbf{V}_{DG} d) \mathbf{V}_{DD}
19	If properly biased JFET acts as a
	 a) Current controlled current source b) Voltage controlled current source c) voltage controlled voltage source d) current controlled voltage source
20	
20	The main factor which differentiates a DEMOSFET and EMOSFET is the absence of a) Insulated gate b) electrons c) channel d) P-N junctions
21	The polarity of V_{GS} for E- MOSFET is a) positive b) negative c) zero d) depends on P or N-channel.
22	A unijunction transistor has
	a) anode, cathode and a gate b) two bases and one emitter c) two anodes and one gate d) anode, cathode and two gates
23	After firing the SCR, the gating pulse is removed, the current in the SCR will a) remains the same , b) Immediately falls to zero c) rise up d) rise a little and then fall to zero.
24	An SCR may be turned off by a) interrupting its anode current b) reversing polarity of its anode-cathode voltage c) low current dropout d) all the above
25	Which device acts like a diode and two resistors? a) SCR b) triac c) DIAC d) UJT
26	A CC amplifier has the highest a) voltage gain b) current gain c) power gain d) output impedance
27	In a class A amplifier, worst case conditions occur with a) zero signal input b) maximum signal input c) high load resistance d) transformer coupling.
28	CE amplifier is characterized by
	a) low voltage gain b) moderate power gain c) signal phase reversal d) very high output impedance

RE	GULATION :2017 ACADEMIC YEAR : 2018-2019
29	The decibel is a measure of a) Power b) Voltage c) Current d) power level
30	The main reason for the variation of amplifier gain with frequency is
	a) the presence of capacitances, both external and internal b) due to interstage transformers
	c) the logarithmic increase in its output power d) the miller effect
31	When power output of an amplifier doubles, the increase in its power level is decibels
	a) 2 b) 20 c) 3 d) 10
32	An ideal amplifier is one whicha) has infinite voltage gain b) responds only to signals
	at its input terminals c) has positive feedback d) gives uniform frequency response
33	The voltage gain of a single stage CE amplifier is increased whena) its ac load is
	decreased b) resistance of signal source is increased c) emitter resistance R_E is increased. d) ac
	load resistance is increased.
34	Unique features of a CC amplifier circuit is that ita) steps up the impedance level b)
	does not increase signal voltage c) acts as an impedance matching device d) all of the above.
35	The h-parameters of a transistor depends on itsa) configuration b) operating point
	c) temperature d) all of the above.
36	The voltage gain of a given common source JFET amplifier depends on itsa) input
	impedance b) amplification factor c) dynamic drain resistance d) drain load resistance
37	A transconductance amplifier hasa) high input impedance and low output impedance
	b) low input impedance and high output impedance c) high input and output impedances d)
	low input and output impedances
38	For the operation of enhancement only N-channel MOSFET, value of gate voltage has to be
	a) high positive b) high negative c) low positive d) zero
39	When emitter bypass capacitor in a CE amplifier is removed, its is considerably
0,	reduced. a) input resistance b) output load resistance c) emitter current d) voltage gain .
-	
40	In an ac amplifier, larger the internal resistance of the ac signal sourcea) greater the
	overall voltage gain b) greater the input impedance c) smaller the current gain d) smaller the
	circuit voltage gain
41	RC coupling is used for amplification
	Voltage b) Current c) Power d) None of the above
42	In an RC coupled amplifier, the voltage gain over

mid-frequency range	
1 5 6	
a)Changes abruptly with frequency	
b) Is constant	
c) Changes uniformly with frequency	
d) None of the above	
43 In an RC coupling scheme, the coupling capacitor	
CC must be large enough	
a) To pass d.c. between the stages	
b) Not to attenuate the low frequencies	
c) To dissipate high power	
d) None of the above	
44 When a multistage amplifier is to amplify d.c. signal, then one must use cou	ıpling
a) RC	
b) Transformer	
c) Direct	
d) None of the above	
d) None of the above	
45 coupling provides the maximum voltage gain	
a) RC	
b) Transformer	
c) Direct	
d Impedance	
46 Transformer coupling is generally employed when load resistance is	
+0 Transformer coupling is generally employed when load resistance is	
a) Large	
b) Very large	
c) Small	
d) None of the above	
47 If a three-stage amplifier has individual stage gains of 10 db, 5 db and 12 db, then	total gain in
	totai gain in
db is	
a) 600 db	
b) 24 db	
c) 14 db	
d) 27 db	
48 The lower and upper cut off frequencies are also called frequenc	ies
a) Sideband	
b) Resonant	
c) Half-resonant	

REG	GULATION :2017 ACADEMIC YEAR : 2018-2019
	d) Half-power
49	In transistor amplifiers, we use transformer for impedance matching
	a) Step up
	b) Step down
	c) Same turn ratio
	d) None of the above
50	RC coupling is not used to amplify extremely low frequencies because
	a) There is considerable power loss
	b) There is hum in the output
	c) Electrical size of coupling capacitor becomes very large
	d) None of the above
51	The purpose of RC or transformer coupling is to
	a) Block a.c.
	b) Separate bias of one stage from another
	c) Increase thermal stability
	d) None of the above
52	The number of stages that can be directly coupled is limited because
	a) Changes in temperature cause thermal instability
	b) Circuit becomes heavy and costly
	c) It becomes difficult to bias the circuit
	d) None of the above
53	An amplifier receives 0.1 W of input signal and delivers 15 W of signal power. What is the
	power gain in db?
	a) 8 db
	b) 6 db
	c) 5 db
	d) 4 db
54	The noise factor of an ideal amplifier expressed in db is
0.	
	a) 0
	b) 1
	c) 1
	d) 10
55	In RC coupling, the value of coupling capacitor is about
1	

REG	GULATION :2017 ACADEMIC YEAR : 2018-2019
	a) 100 pF
	b) 0.1 µF
	c) 0.01 µF
	d) 10 Mf
56	The value of negative feedback fraction is always
	a) Less than 1
	b More than 1
	c) Equal to 1
	d) None of the above
57	If the output of an amplifier is 10 V and 100 mV from the output is fed back to the input, then feedback fraction is
	a) 10
	b) 1
	c) 0.1
	d) 15
58	A feedback circuit usually employs network
	a) Resistive
	b) Capacitive
	c) Inductive
	d) None of the above
59	The gain of an amplifier with feedback is known as gain
	a) Resonant
	b) Open loop
	c) Closed loop
	d) None of the above
60	When current feedback (negative) is applied to an amplifier, its input impedance

RE	GULATION :2017 ACADEMIC YEAR : 2018-2019
	a) Is decreased
	b) Is increased
	c) Remains the same
	d) None of the above
61	Negative feedback is employed in
	a) Oscillators
	b) Rectifiers
	c) Amplifiers
	d) None of the above
62	When a negative voltage feedback is applied to an amplifier, its bandwidth
	a) Is increased
	b) Is decreased
	c) Remains the same
	d) Insufficient data
63	In an LC oscillator, the frequency of oscillator is L or C.
	a) Proportional to square of
	b) Directly proportional to
	c) Independent of the values of
	d) Inversely proportional to square root of
64	An oscillator produces oscillations
	a) Damped
	b) Undamped
	c) Modulated
	d) None of the above
65	An oscillator employs feedback

REG	GULATION :2017 ACADEMIC YEAR : 2018-2019
	a) Positive
	b) Negative
	c) Neither positive nor negative
	d) Data insufficient
66	Hartley oscillator is commonly used in
	a) Radio receivers
	b) Radio transmitters
	c) TV receivers
	d) None of the above
67	In a phase shift oscillator, we use RC sections
	a) Two
	b) Three
	c) Four
	d) None of the above
68	In a phase shift oscillator, the frequency determining elements are
	a) L and C
	b) R, L and C
	c) R and C
	d) None of the above
69	A Wien bridge oscillator uses feedback
	a) Only positive
	b) Only negative
	c) Both positive and negative
	d) None of the above
70	The piezoelectric effect in a crystal is

a) A voltage developed because of mechanical stress b) A change in resistance because of temperature c) A change in frequency because of temperature d) None of the above

EE8391 ELECTROMAGNETIC THEORY L T P C 2 2 0 3

OBJECTIVES:

- > To introduce the basic mathematical concepts related to electromagnetic vector fields
- > To impart knowledge on the concepts of
- > Electrostatic fields, electrical potential, energy density and their applications.
- Magneto static fields, magnetic flux density, vector potential and its applications
- Different methods of emf generation and Maxwell's equations
- Electromagnetic waves and characterizing parameters

UNIT I ELECTROSTATICS – I

Sources and effects of electromagnetic fields – Coordinate Systems – Vector fields –Gradient, Divergence, Curl – theorems and applications - Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and applications.

UNIT II ELECTROSTATICS – II

Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor – Electric field in free space, conductors, dielectrics - Dielectric polarization – Dielectric strength - Electric field in multiple dielectrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, Energy density, Applications.

UNIT III MAGNETOSTATICS

Lorentz force, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media Boundary conditions, scalar and vector potential, Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications.

UNIT IV ELECTRODYNAMIC FIELDS

Magnetic Circuits - Faraday's law – Transformer and motional EMF – Displacement current - Maxwell's equations (differential and integral form) – Relation between field theory and circuit theory – Applications.

UNIT V ELECTROMACNETIC WAVES

Electromagnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance, propagation constant – Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting vector – Plane wave reflection and refraction.

TOTAL : 60 PERIODS

OUTCOMES:

> Ability to understand the basic mathematical concepts related to electromagnetic vector fields.

- Ability to understand the basic concepts about electrostatic fields, electrical potential, energy density and their applications.
- Ability to acquire the knowledge in magneto static fields, magnetic flux density, vector potential and its applications.
- > Ability to understand the different methods of emf generation and Maxwell's equations
- Ability to understand the basic concepts electromagnetic waves and characterizing parameters
- Ability to understand and compute Electromagnetic fields and apply them for design and analysis of electrical equipment and systems

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

6+6

6+6

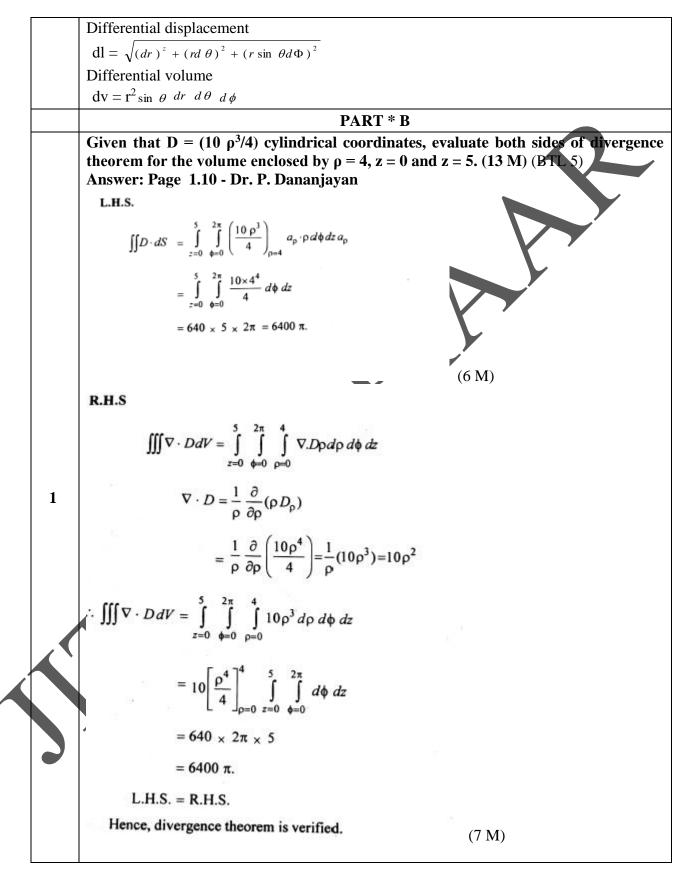
6+6

6+6

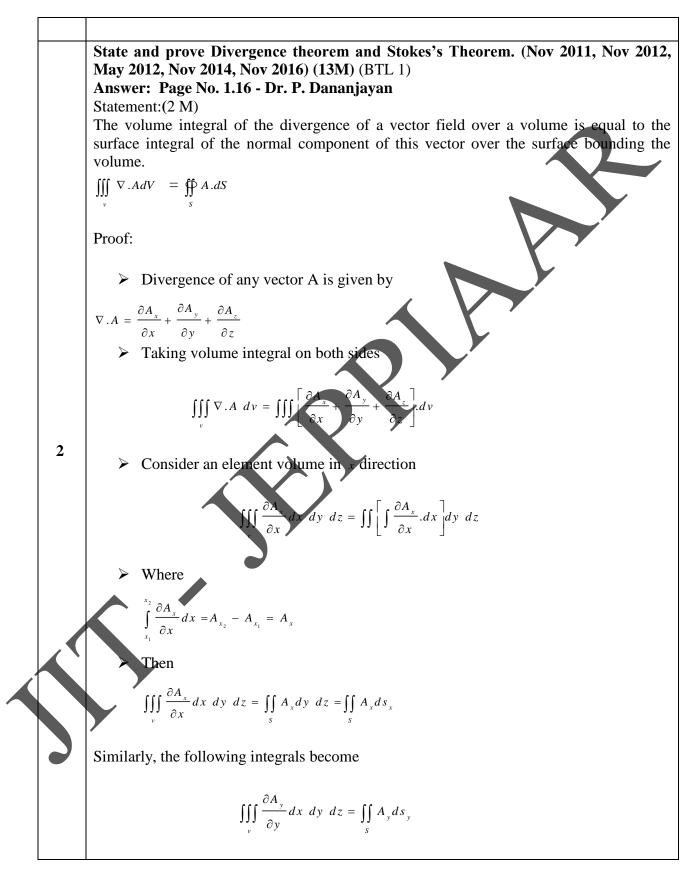
6+6

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

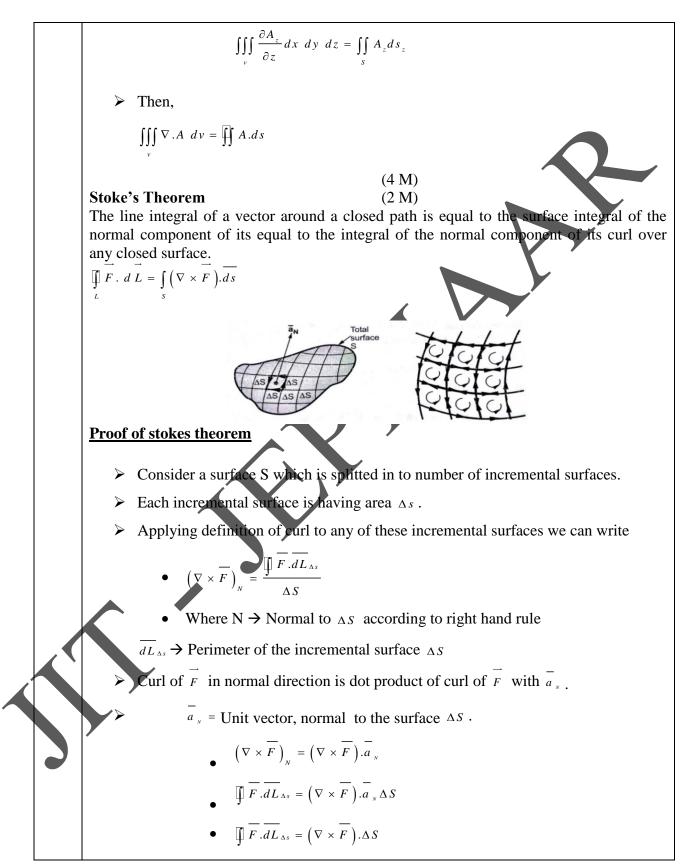
	The curl of a vector 'A' at a any point is defined as the limit of its cross product with		
	normal over a closed surface per unit volume as the volume shrinks to zero.		
	$\nabla \mathbf{x} \mathbf{A} = \mathbf{L} \mathbf{t}_{v \to 0} \frac{1}{v} \oint_{s}^{s} n \mathbf{x} \mathbf{A} \mathrm{ds}.$		
	Show that the vector $\overline{H} = 3y^4z^a + 4x^3z^{2a} + 2x^3y^{2a}z$ is solenoidal. (BTL 1)		
4	$\nabla .\mathrm{H} = \left(\begin{array}{c} \frac{\partial}{\partial x}\overline{a}_{x} + \frac{\partial}{\partial y}\overline{a}_{y} + \frac{\partial}{\partial z}\overline{a}_{z} \end{array}\right) . \left(3y^{4}z\overline{a}_{x} + 4x^{3}z^{2}\overline{a}_{y} + 2x^{3}y^{2}\overline{a}_{z}\right)$		
	$=\frac{\partial}{\partial x}(3y^4z)+\frac{\partial}{\partial y}(4x^3z^2)+\frac{\partial}{\partial z}(2x^3y^2)=0+0+0=0; \text{Hence } \overline{H} \text{ is solenoidal.}$		
	Determine the angle between $A = 2^{a} x + 4^{a} y$ and $B = 6^{a} y - 4^{a} z$. Nov 2016) (BTL 5)		
_	$\theta = Cos[\overline{A}.\overline{B}/(\overline{A} . \overline{B})]$ $ \overline{A} = \sqrt{2^2 + 4^2} = 4.47$		
5	$ \overline{B} = \sqrt{6^2 + 4^2} = 7.21$		
	A.B = 2 * 0 + 4 * 4 = 28		
	θ=0.5182° Define Stoke's and divergence Theorem. (Nov 2013, May 2014, Nov 2016) (BTL 1)		
	Stoke's Theorem		
	The line integral of a vector around a closed path is equal to the surface integral of the		
	normal component of its equal to the integral of the normal component of its curl over any closed surface.		
	$\oint H . dl = \iint \nabla \times H dS$		
6	s		
	Divergence theorem The volume interval of the divergence of a vector field over a volume is equal to the		
	The volume integral of the divergence of a vector field over a volume is equal to the surface integral of the normal component of this vector over the surface bounding the		
	volume.		
	$\iiint \nabla .AdV = \oiint A.dS$		
	Write down the expression for conversion of Cylindrical to Cartesian system. (B'		
	The Cylindrical co-ordinates (r, Φ , z) can be converted into Cartesian co-ordinates(x, y,		
7	z). Given Transform		
	\mathbf{r} $\mathbf{x} = \mathbf{r} \cos \theta$		
	$y = r \sin \theta$		
	z $z = z$ What is the physical significance of curl in a vector field?(Nov 2011) (BTL 1)The curl of a vector is an axial vector whose magnitude is the maximum circulation of A		
8			
	per unit area as the area tends to zero and whose direction is the direction normal		
	direction of the area when the area is oriented to make the circulation maximum. Write down the expression for conversion of Cartesian to Spherical system. (BTL 1)		
9	The Cartesian co-ordinates (x, y, z) can be converted into Spherical co-ordinates (r, θ , Φ).		

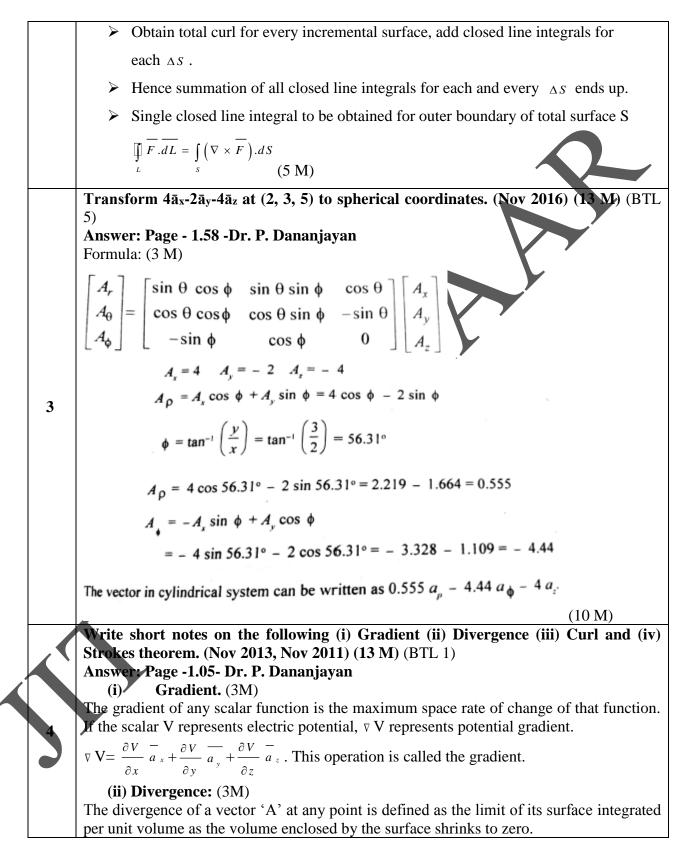

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

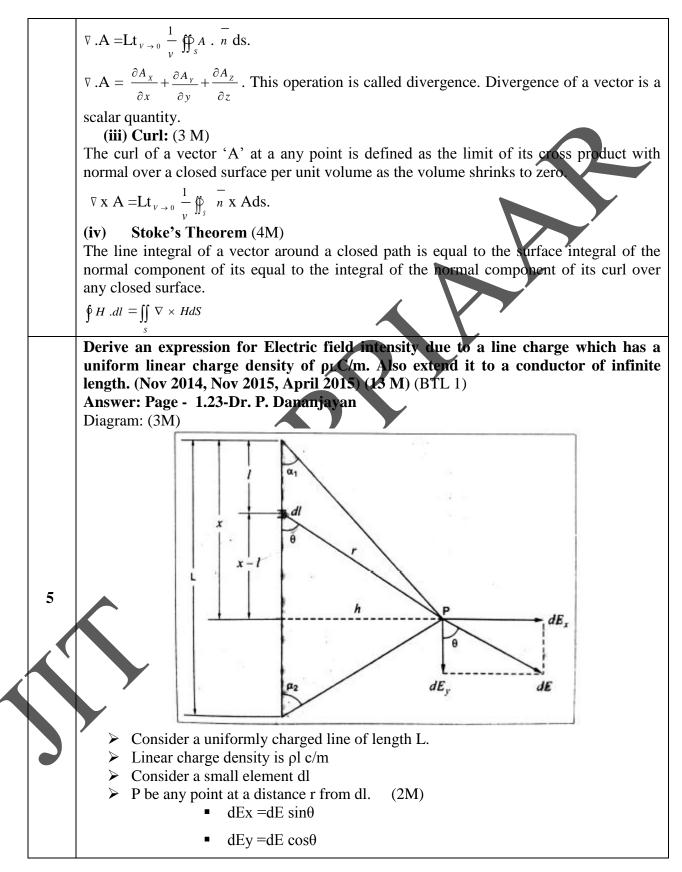
	Given	Transform		
	х	$\mathbf{r} = \sqrt{x^2 + y^2 + z^2}$		
	У	$\theta = \cos^{-1} \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)$		
	Z	$\Phi = \tan^{-1}(y/x)$		
10	Write down the expre The Spherical co-ordin Given	ession for conversion of Spherical to Cartesian system. (BTL 1) ates (r, θ, Φ) can be converted into Cartesian co-ordinates (x, y, z) . Transform $x = rsin\theta.cos\Phi$		
	θ	$y = r \sin\theta . \sin \Phi$		
	Transform the Carte	$z = r\cos\theta$ sian co-ordinates x = 2, y = 1, z = 3 into spherical co-ordinates.		
	(BTL 5)			
	Given	$\frac{\text{Transform}}{z^2 + y^2 + z^2} = \sqrt{4 + 1 + 9} = 3.74$		
	$x = 2$ $r = \sqrt{x}$	$z^{2} + y^{2} + z^{2} = \sqrt{4 + 1 + 9} = 3.74$		
11	$y = 1$ $\theta = \cos^{-1}$	$\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right) = \cos \left(\frac{3}{\sqrt{14}}\right) = 36.7^{\circ}$		
	$z = 3$ $\Phi = tar$	$x^{-1}(y/x) = \tan^{-1}(1/2) = 26.56^{\circ}$		
	The spherical co-ordin	ates are $(3.74, 36.7^{\circ}, and 26.56^{\circ})$.		
	Define electric flux, electric flux density and electric field intensity. (May 2016) (B'			
	1) Electric flux: The line	s of electric force are known as electric flux. It is denoted by Ψ .		
	$\Psi = Q$ (charge) \mathcal{Q} oulomb.			
		Electric hux density or displacement density is defined as the		
12	electric flux per unit an $D = Q/A$	ea		
	-	y: Electric field intensity is defined as the electric force per unit		
	positive charge. It is de	enoted by E.		
	$\mathbf{E} = \frac{F}{Q} = \frac{Q}{4\pi\varepsilon r^2} \mathbf{V}/\mathbf{m}.$			
	-	iven P=3i+5j+2k and Q=2i-4j+3k.Determine the angular		
13 I we vectors are given $r=51+5j+2k$ and $Q=21-4j+5k$. Determining separation between them. (November 2011) (BTL 5)				
	$P. Q = IPIIQI \cos\theta, P.Q$	=-8, IPI=6.1644 IQI=5.38516, Cosθ=-0.2409, θ=103.94.		
	-	es A=4i+3j+5k and B=i-2j-2k.are oriented in two different the angular separation between them. (Nov 2012) (May		
directions. Determine the angular separation between 2012) (BTL 5)		the angular separation between them. (100 2012) (Way		
	$A.B = IAI IBI \cos \theta$			
	$\theta = \cos^{-1} \frac{A.B}{IAIIBI} = 67.$	84°		
		t sources of Electromagnetic fields? (May 2012) (BTL 1)		
15	Ū.	are present everywhere in our environment but are invisible to the		
	numan eye. Electric fi	elds are produced by the local build-up of electric charges in the		

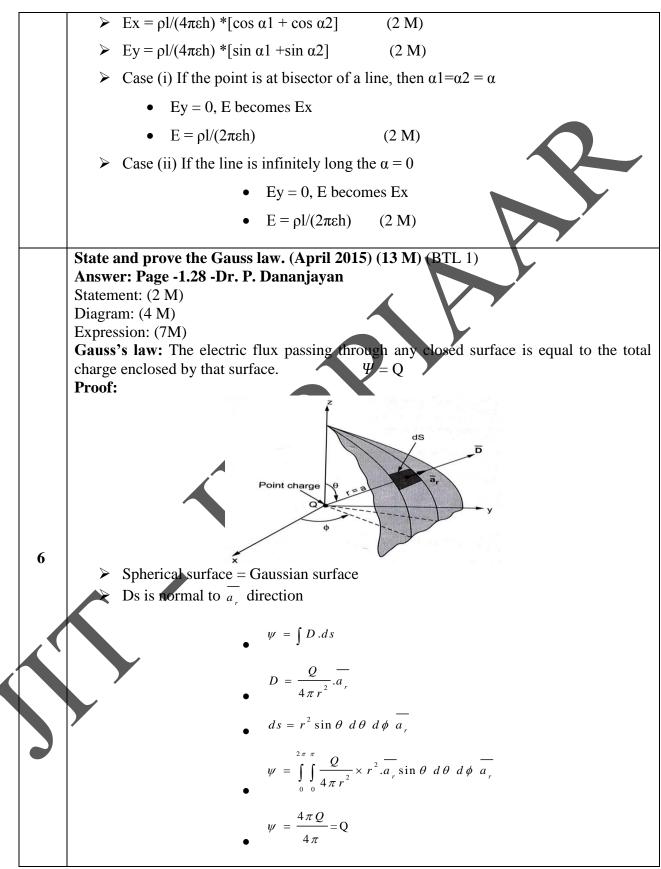

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

	atmosphere associated with thunderstorms. The earth's magnetic field causes a compass
	needle to orient in a North-South direction and is used by birds and fish for navigation.Define the unit vector in cylindrical co-ordinate systems.(Nov 2013) (BTL 6)
16	A vector A in cylindrical coordinates can be written as $(A_{\rho}, A_{\varphi}, A_{z})$
10	
	Where $a_{\rho,}a_{\phi}$ and a_z are unit vectors in the ρ , ϕ and z directions.State the condition for the vector to be solenoidal and irrotational.(Nov2012)
17	(BTL 1)
1/	A.B=0 and AX B=0
	State Gauss's law and Coulomb's law (May 2016) (BTL 1)
	Gauss's law: The electric flux passing through any closed surface is equal to the total
	charge enclosed by that surface. $\Psi = Q$
	Coulomb's law.
	Coulomb's law states that the force between two very small charged objects separated by
	a large distance compared to their size is proportional to the charge on each object and
18	inversely proportional to the square of the distance between them.
	$F \alpha Q_1 Q_2$
	$F\alpha \frac{1}{r^2}$
	$F \alpha \frac{Q_1Q_2}{r^2} = \frac{Q_1Q_2}{4\pi cr^2} \overline{a_{12}}$ Newton
	Name a few applications of Gauss's law in electrostatics. (Nov 2013) (BTL 1)
19	Gauss's law is applied to determine the electric field intensity from a closed surface. (e.g)
17	Electric field can be determined for shell, two concentric shell or cylinders, etc.
	What is the electric field intensity at a distance of 20cm from a charge of $20\mu c/m^2$
	lying on the z=0 plane. in vacuum ⁹ (Nov/Dec 2014) (BTL 5)
20	$P_{x_{10}} = \frac{\rho_{x_{10}}}{20 x_{10}} = \frac{1}{20} + \frac{1}{10} + $
	$\mathbf{E} = \frac{\rho_s}{2\varepsilon_0} a_z = \frac{20 \times 10^{-6}}{2 \times 8.854 \times 10^{-12}} a_z = 1.12 \times 10^{6} a_z \text{V/m}.$
	Points P and Q are located at (0,2,4) and (-3,1,5). Calculate the distance vector from
21	P to Q. (Nov/Dec 2014) (BTL 5)
	$R_{pq} = r_q - r_p = (-3, 1, 5) - (0, 2, 4) = (-3, -1, 1)$
	Given $\overline{A} = 4\overline{a_x} + 6\overline{a_y} - 2\overline{a_z}$ and $\overline{B} = -2\overline{a_x} + 4\overline{a_y} + 8\overline{a_z}$. Show that the vectors are
22	
24	orthogonal. (April /May 2015) (BTL 5)
	\overrightarrow{A} . \overrightarrow{B} =(4*2)+(6*4)+(-2*8)=-8+24-16=0. Therefore, \overrightarrow{A} , \overrightarrow{B} are orthogonal.
	Express in matrix form the unit vector transformation from the rectangular to
23	cylindrical co-ordinate system. (April /May 2015) (BTL 1) $\begin{bmatrix} a_{\rho} \end{bmatrix} \begin{bmatrix} \cos \varphi & \sin \varphi & 0 \end{bmatrix} \begin{bmatrix} a_{x} \end{bmatrix}$
23	$\begin{vmatrix} a_{\phi} \\ a_{\phi} \end{vmatrix} = \begin{vmatrix} cos\phi & sin\phi & 0 \\ -sin\phi & cos\phi & 0 \end{vmatrix} \begin{vmatrix} a_{x} \\ a_{y} \end{vmatrix}$
	$\begin{vmatrix} a_{y} \\ a_{z} \end{vmatrix} = \begin{vmatrix} 3iii\psi & cos\psi & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} a_{y} \\ a_{z} \end{vmatrix}$
	What are the practical applications of electromagnetic fields? (Nov/Dec 2015) (BTL
24	
24	1)
24	Electric fans, electric motors, magnetic tape, mobiles and telephones.
24 25	,


JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

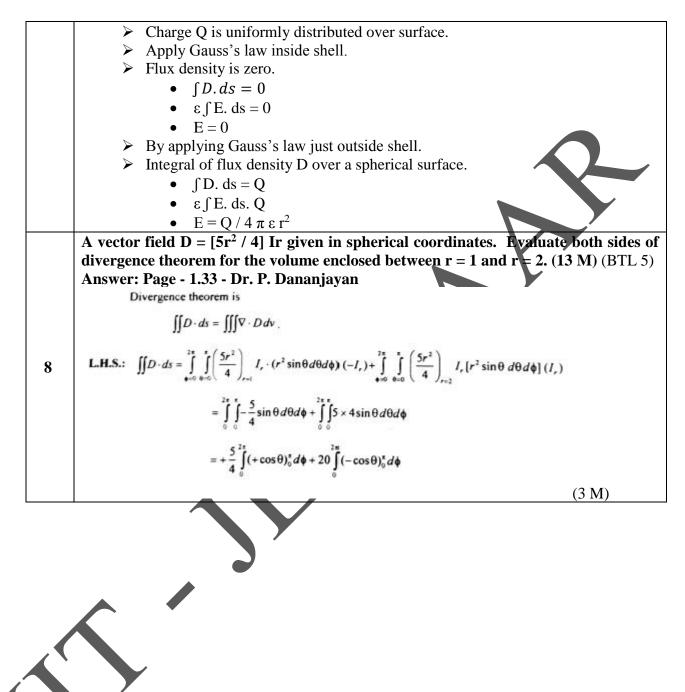


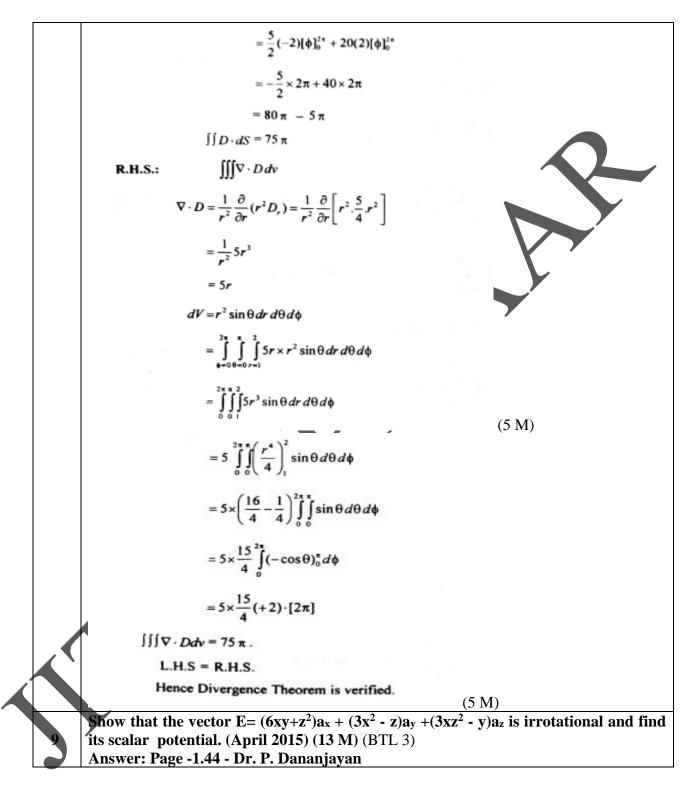

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0



JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

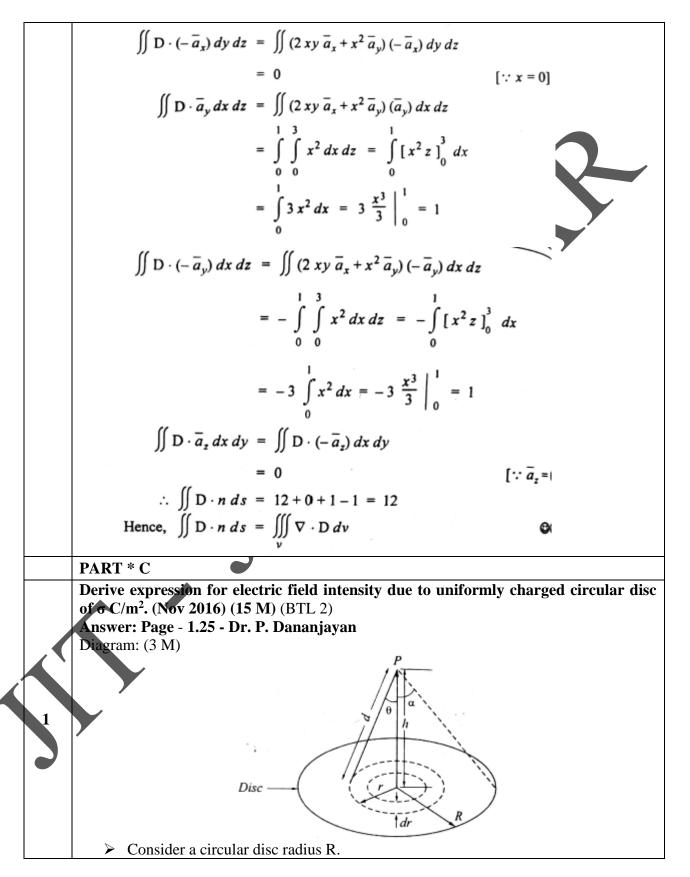


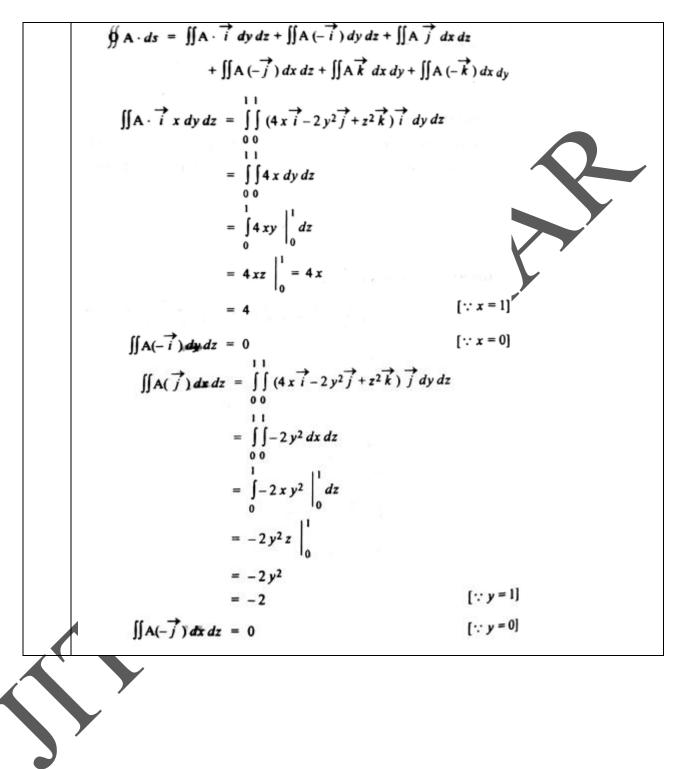


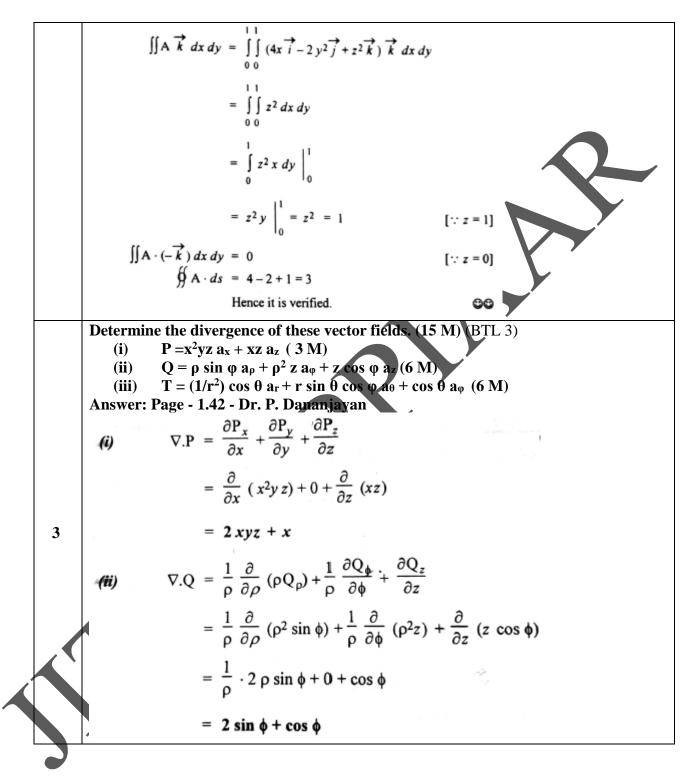


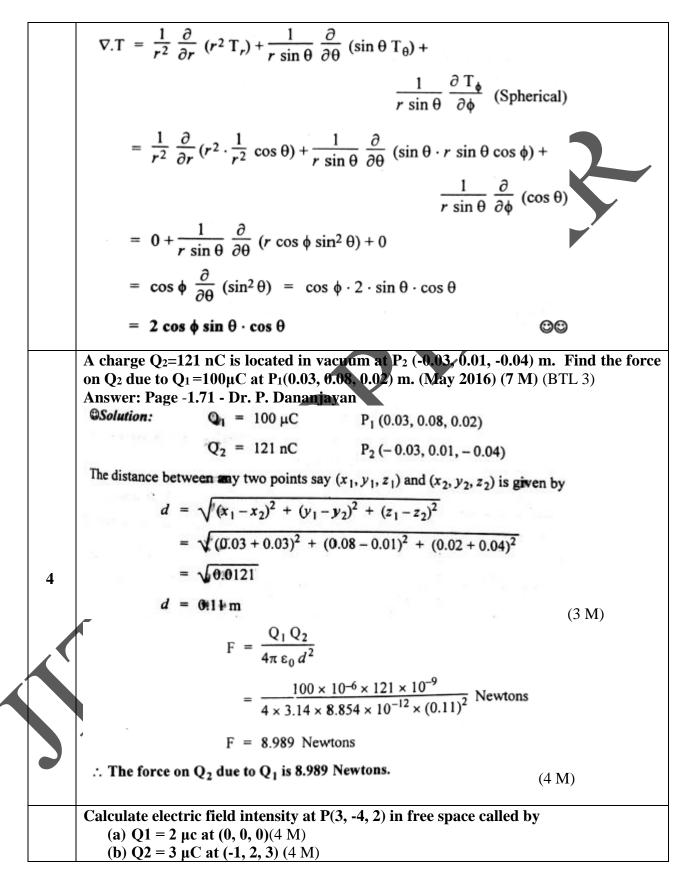
JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

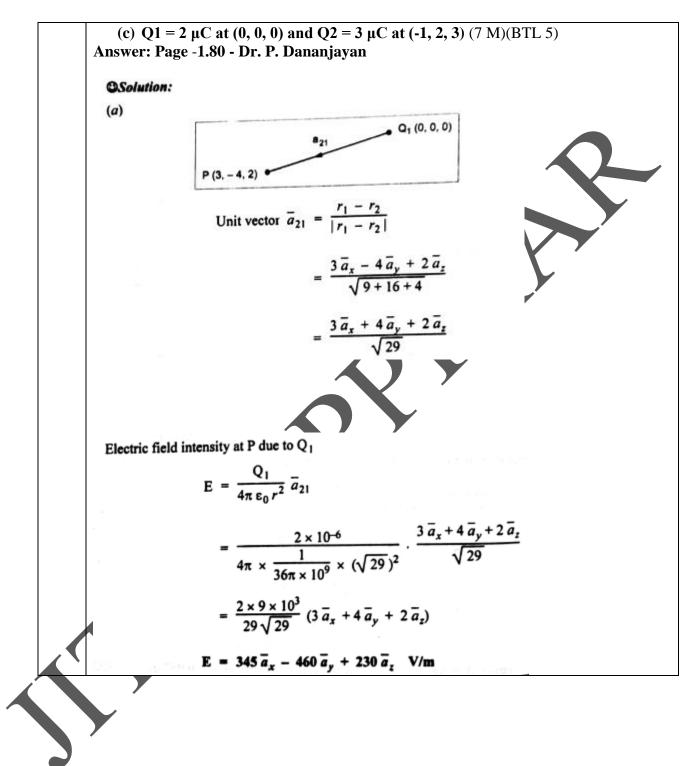
JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0



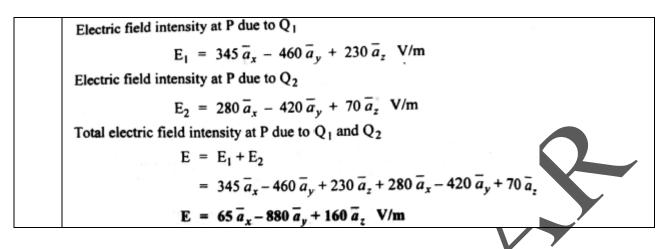

$$\nabla \times \mathbf{E} = \begin{vmatrix} \overline{a}_{x} & \overline{a}_{y} & \overline{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & (3x^{2} - y) - \frac{\partial}{\partial x} (3x^{2} - z) \end{bmatrix} - \overline{a}_{y} \left[\frac{\partial}{\partial x} (3x^{2} - y) - \frac{\partial}{\partial x} (6xy + z^{3}) \right] \\ + \overline{a}_{z} \left[\frac{\partial}{\partial x} (3x^{2} - y) - \frac{\partial}{\partial y} (6xy + z^{2}) \right] \\ - \overline{a}_{x} \cdot [-1 + 1] - \overline{a}_{y} \cdot [3z^{2} - 3z^{2}] + \overline{a}_{x} \cdot [6x - 6x] \\ - 0 \end{vmatrix}$$
Hence E is irrotational.

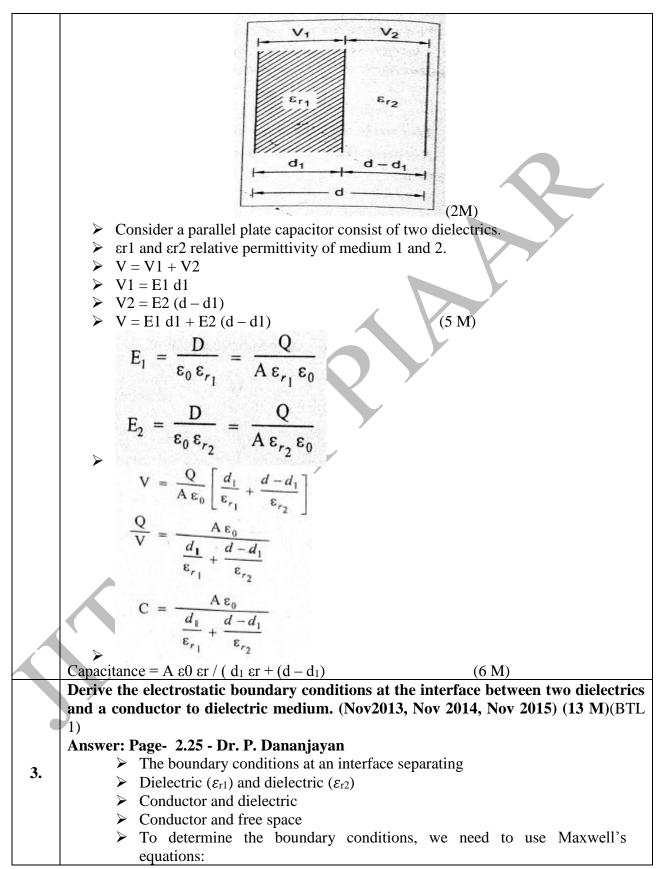

$$-\nabla \cdot \nabla = \mathbf{E} = (6xy + z^{3})\overline{a}_{x} + (3x^{2} - z)\overline{a}_{y} + (3xz^{2} - y)\overline{a}_{z} \\ - \left[\overline{a}_{x} \frac{\partial}{\partial x} + \overline{a}_{y} \frac{\partial}{\partial y} + \overline{a}_{z} \frac{\partial}{\partial z} \right] = (6xy + z^{3})\overline{a}_{x} + (3x^{2} - z)\overline{a}_{y} + (3xz^{2} - y)\overline{a}_{z} \\ - \left[\overline{a}_{x} \frac{\partial}{\partial x} + \overline{a}_{y} \frac{\partial}{\partial y} + \overline{a}_{z} \frac{\partial}{\partial z} \right] = (6xy + z^{3})\overline{a}_{x} + (3x^{2} - z)\overline{a}_{y} + (3xz^{2} - y)\overline{a}_{z} \\ = \frac{\partial}{\partial x} = \frac{\partial}{\partial x} = 6xy + z^{3} \\ - \frac{\partial}{\partial x} = 3x^{2} - z \\ - \frac{\partial}{\partial x} = 3xz^{2} - y \\ - \frac{\partial}{\partial x} = 3x^{2} - y \\ \text{Then,} \qquad -\partial v = (6xy + z^{3})\partial x \\ - v = \int (6xy + z^{3})\partial x \\ - v = 3x^{2}y - yz + c_{2} \\ - \partial v = (3xz^{2} - y)\partial z \\ - v = xz^{3} - yz + c_{3} \\ \text{Then, adding these values of } v \\ v = -2(3x^{2}y + xz^{3} - yz) + c \\ \text{where } c = c_{1} + c_{2} + c_{3} \\ (7 \text{ M}) \\ \text{Check radidity of the divergence theorem considering the field D=2xy ax + x^{2}ay c/m^{2} \\ \text{and the rectangular parallelepiped formed by the planes x=0, x=1, y=0, y=2 & 8z=0, z=3 \\ (3 \text{ M}) (BTL 2) \\ \text{fiswer: Page 1.60 - Dr. P. Danajayan \\ \text{Formula: The volume integral of the divergence of a vector field over a volume is equal to the surface integral of the normal component of this vector over the surface bounding the volume. (3 \text{ M}) \\ \text{Verification: (10 \text{ M}) \\ \iiint v \cdot Adv = \iint A ds \\ x = \frac{\partial}{\partial x} =$$


OSolution: By divergence theorem. $\iint \overline{\mathbf{D}} \cdot \mathbf{n} \, ds = \iiint \nabla \cdot \overline{\mathbf{D}} \, dv$ $\nabla \cdot \overline{\mathbf{D}} = \left(\overline{a}_x \frac{\partial}{\partial x} + \overline{a}_y \frac{\partial}{\partial y} + \overline{a}_z \frac{\partial}{\partial z}\right) \cdot (2 x y \ \overline{a}_x + x^2 \overline{a}_y)$ $=\frac{\partial}{\partial x}(2xy)+\frac{\partial}{\partial y}(x^2)+0$ = 2v + 0 = 2v $\iiint \nabla \cdot \overline{\mathbf{D}} \, dv = \int_{x=0}^{1} \int_{y=0}^{2} \int_{z=0}^{3} 2y \, dx \, dy \, dz$ $= \int_{0}^{1} \int_{0}^{2} \left[2yz \right]_{0}^{3} dx dy = \int_{0}^{1} \int_{0}^{2} 6y dx dy$ $= \int_{0}^{1} \left[6 \frac{y^{2}}{2} \right]_{0}^{2} dx = \int_{0}^{1} 12 dx = \left[12 x \right]_{0}^{1} = 12$ Evaluation of $\iint D \cdot n \, ds$ $\iint \mathbf{D} \cdot \mathbf{n} \, ds = \iint \mathbf{D} \cdot \overline{a}_x \, dy \, dz + \iint \mathbf{D} \cdot (-\overline{a}_x) \, dy \, dz + \iint \mathbf{D} \cdot \overline{a}_y \, dx \, dz$ + $\iint \mathbf{D} \cdot (-\overline{a}_y) dx dz$ + $\iint \mathbf{D} \cdot \overline{a}_z dx dy$ + $\iint \mathbf{D} \cdot (-\overline{a}_z) dx dy$ $\iint \mathbf{D} \cdot \overline{a}_x \, dy \, dz = \iint (2 \, xy \, \overline{a}_x + x^2 \, \overline{a}_y) \, (\overline{a}_x) \, dy \, dz$ $= \int_{0}^{2} \int_{0}^{3} 2xy \, dy \, dz$ $= \int_{0}^{2} \left[2 xyz \right]_{0}^{3} dy = \int_{0}^{2} 6 xy dy$ $= \left[6x \frac{y^2}{2} \right]_0^2 = 12x = 12 \qquad [\because x = 1]$

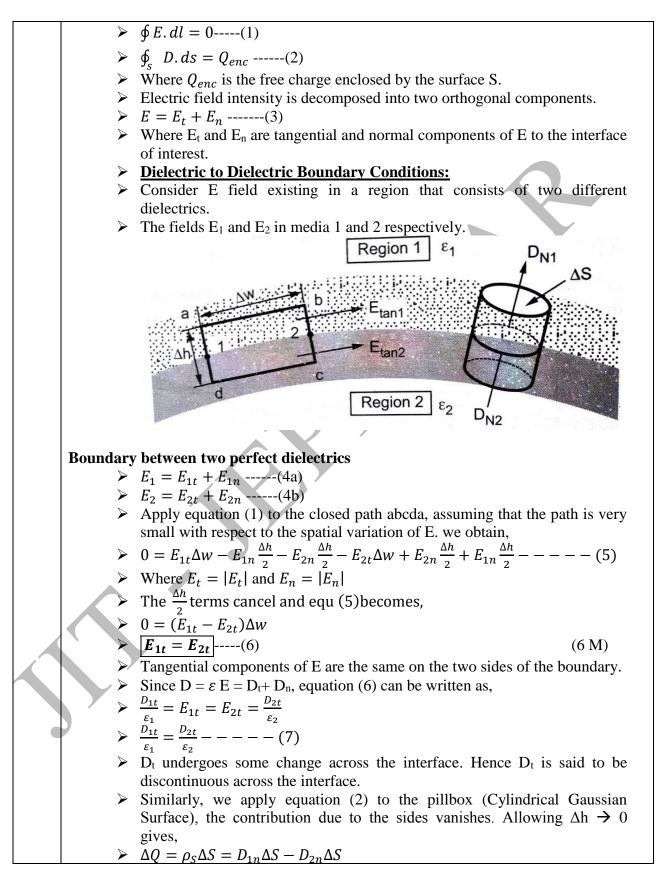


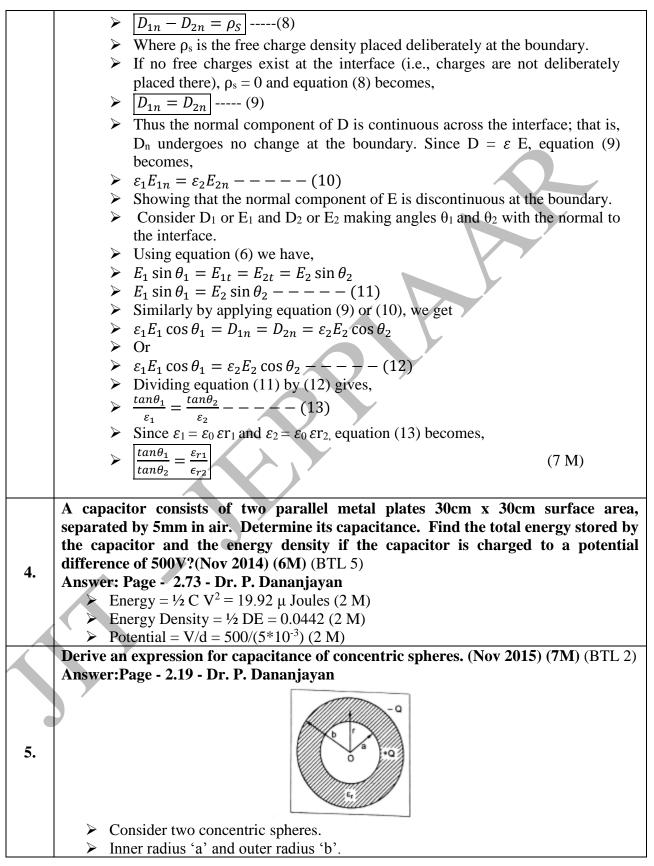
 \blacktriangleright Charge density $\rho s c/m^2$ Annular ring of radius r. Radial thickness dr. Area of annular ring ds = 2π r dr $dE = \rho s ds / 4\pi \epsilon d^2$ ۶ $dEy = \rho s ds \cos \theta / 4\pi \epsilon d^2$ $E = [\rho s / 2\epsilon] * [1 - h/(\sqrt{(h^2 + R^2)})]$ (12 M) State and verify Divergence theorem for the vector $A = 4x i - 2y^2 j + z^2$ taken over the cube bounded by x = 0, x = 1, y = 0, y = 1. (15 M) (BTL 3) Answer: Page - 1.67 - Dr. P. Dananjayan Statement: (3 M) Verification: LHS = RHS = 3 (12 M)The volume integral of the divergence of a vector field over a volume is equal to the surface integral of the normal component of this vector over the surface bounding the volume. $\iiint \nabla . AdV = \oiint A.dS$ Given: A = $4x \overrightarrow{i} - 2y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$ $\nabla \cdot \mathbf{A} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z} \right) \cdot (4x \overrightarrow{i} - 2y^2 \overrightarrow{j} + z^2 \overrightarrow{k})$ = 4 - 4y + 2z2 $\iiint \nabla \cdot \mathbf{A} = \iint_{0 \ 0 \ 0} (4 - 4y + 2z) \, dx \, dy \, dz$ $= \int_{0}^{1} \int_{0}^{1} 4z - 4y z + \frac{2}{2} z^{2} \Big|_{0}^{1} dx dy$ $= \int \int (5-4y) dx dy$ 0 0 $= \int_{0}^{1} (5y - \frac{4}{2}y^2) \Big|_{0}^{1} dx$ 3 dx = 3x

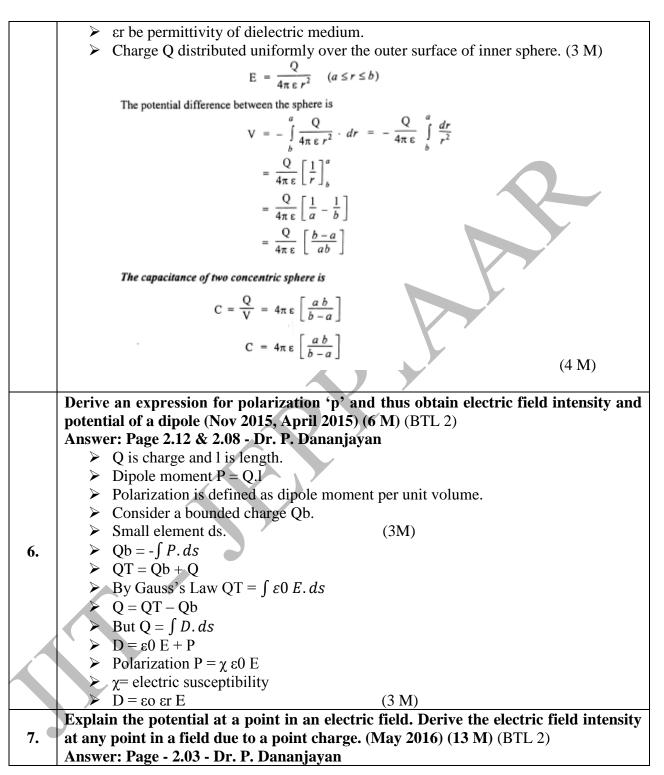


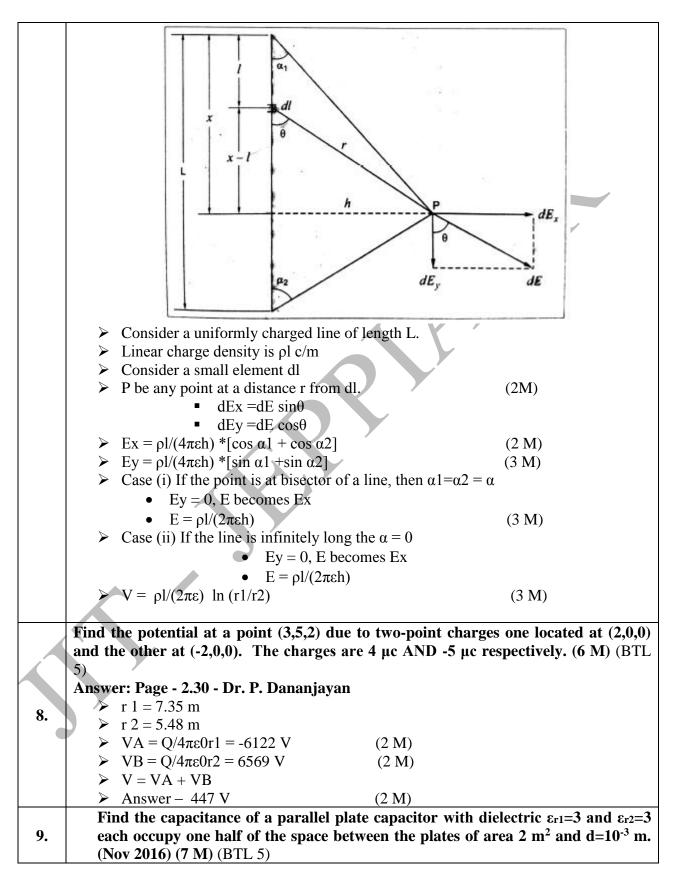


	UNIT II ELECTROSTATICS – II		
Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor – Electric field in free space, conductors, dielectrics - Dielectric polarization – Dielectric strength - Electric field in multiple dielectrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, Energy density, Applications.			
Q. No	Part * A		
	Questions		
1	What do you understand by linear, surface and volume charge densities?(BTL 1) Linear Charge density: It is the charge per unit length (Col / m) at a point on the line of charge. $\rho_{I}=Lt_{\Delta I \rightarrow 0}\left(\frac{\Delta Q}{\Delta I}\right)$ Surface charge density: It is the charge per surface area (C/m ²) at a point on the surface of the charge. $\rho_{s}=Lt_{\Delta s \rightarrow 0}\left(\frac{\Delta Q}{\Delta s}\right)$ Volume charge density: It is the charge per volume (C/m ³) at a point on the volume of the charge. $\rho_{V}=Lt_{\Delta v \rightarrow 0}\left(\frac{\Delta Q}{\Delta v}\right)$		
2	Define potential and potential difference. (Nov 2012)(May2012) (Nov 2013)(BTL 1) Potential: Potential at any point as the work done in moving a unit positive charge from infinity to that point in an electric field = $\frac{Q}{4\pi\varepsilon}$ Volts. Potential Difference: Potential difference is defined as the work done in moving a unit positive charge from one point in an electric field. V= $\frac{Q}{4\pi\varepsilon}$ ($\frac{1}{r_A} - \frac{1}{r_B}$) Volts.		
3	Find the electric potential at a point (4, 3) m due to a charge of 10 ⁻⁹ C located at the origin in free space.(BTL 5) $V = \frac{Q}{4\pi\varepsilon_{o}r}; r = \sqrt{4^{2} + 3^{2}} = 5m. \qquad V = \frac{10 - 9}{4\pi x 8.854 \ x 10 - 12 \ x (5)} = 1.8V$		
4	Define Capacitance. (BTL 1) The capacitance of two conducting planes is defined as the ratio of magnitude of charge on either of the conductor to the potential difference between conductors. It is given by, $C = \frac{Q}{V}$ Farad.		
5	What is meant by conduction current? (BTL 1) Conduction current is nothing but the current flows through the conductor. Conduction current density is given by $Jc = \sigma E \text{ Amp} / m^2$.		
6	Write the Poisson's equation and Laplace equation. (May 2014, May 2016)(BTL 1) Poisson equation; $\nabla^2 V = -\rho/\epsilon$		


	where ρ – Volume charge density , ϵ - Permittivity of the medium, ∇ - Laplacian				
	operator.				
	$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial Y^2} + \frac{\partial^2 V}{\partial z^2} = -\rho/\epsilon$				
	Laplace equation: $\nabla^2 V = 0$; $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial Y^2} + \frac{\partial^2 V}{\partial z^2} = 0$				
	Give the relationship between potential gradient and electric field. (BTL 1)				
7	$\mathbf{E} = -\nabla \mathbf{V} \; ; \; \mathbf{E} = -\left(\begin{array}{c} \frac{\partial}{\partial x} \\ a \\ x \end{array} + \frac{\partial}{\partial y} \\ a \\ y \end{array} + \frac{\partial}{\partial z} \\ a \\ z \end{array} \right) \; \mathbf{V}.$				
	Define dipole and dipole moment. (BTL 1)				
	Dipole or electric dipole is nothing but two equal and opposite point charges are separated				
8	by a very small distance. The product of electric charge and distance (spacing) is known				
	as dipole moment. It is denoted by m where Q is the charge and I is the length (m) =Q. 1 C/m				
	C/m What is meant by conservative property of Electric field? (Nov 2011)(BTL 1)				
	The line integral of electric field along a closed path is zero. Physically this implies that				
9	no net work is done in moving a charge along a closed path is zero. Thysically this implies that no net work is done in moving a charge along a closed path in an electrostatic field. Thus				
	an electrostatic field is said to have conservative property.				
	What is meant by Displacement current density?(BTL 1)				
10	Displacement current is nothing but the current flows through the Capacitor.				
10	Displacement current density is given by $J_d = \frac{\partial D}{\partial t} \operatorname{Amp} / m^2$				
	State the boundary conditions at the interface between two perfect dielectrics.(BTL				
	1)				
	The tangential component of electric field E is continuous at the surface. That is E is the				
11	same just outside the surface as it is just inside the surface. $E_{t1} = E_{t2}$				
	The normal component of electric flux density is continuous if there is no surface charge				
	density. Otherwise D is discontinuous by an amount equal to the surface charge density.				
	$D_{n1} = D_{n2}$ Find the energy stored in a parallel plate capacitor of 0.5m by 1m has a separation				
	of 2cm and a voltage difference of 10V.(BTL 5)				
12	$C = \varepsilon_0 \frac{A}{d} = \frac{8.854 \times 10^{-12} \times 0.5 \times 1}{2 \times 10^{-2}} = 2.2135 \times 10^{-10} \text{F}$				
	Energy stored in a capacitor $E=1/2$ CV ² =1/2 X 2.2135 X 10 ⁻¹⁰ X10 ² =1.10675 X 10 ⁻⁸ Joules.				
	Express the value of capacitance for a co-axial cable. (BTL 5)				
13	$C = \frac{2\pi \varepsilon_{o} \varepsilon_{r}}{b}$; Where b – outer radius: a – inner radius.				
10	$\frac{b}{\ln -}$				
	a				

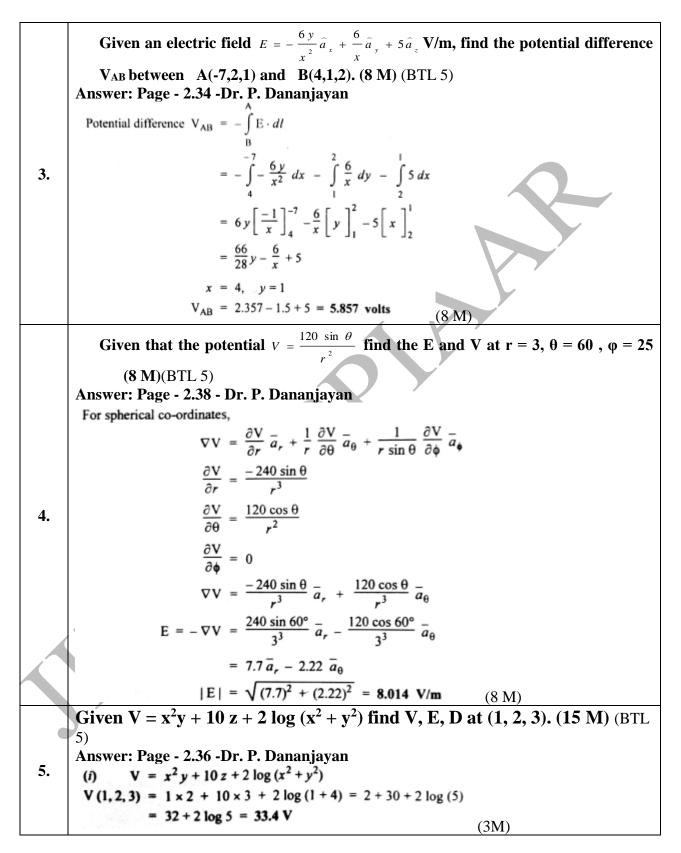

	Determine the capacitance of a parallel plate capacitor with two metal plates of size		
	30cm x 30cm separated by 5mm in air medium. (BTL 5)		
	Given data: $A = 0.3 \times 0.3 = 0.09 \text{m}^2$; $d=5 \times 10^{-3} \text{m}$.		
14			
	$\varepsilon_{0} = 8.854 \times 10^{-2}; C = \frac{A}{2} \varepsilon_{0} = \frac{0.09 \times 8.854 \times 10^{-12}}{5 \times 10^{-3}}$		
	= 15.9nF		
	What is the physical significance of divD? (BTL 1)		
15	$\nabla D = \rho_{v}$. The divergence of a vector flux density is electric flux per unit volume leaving		
	a small volume. This is equal to the volume charge density.		
	A parallel plate capacitor has a charge of 10-3 C on each plate while the potential differences between the plates is 1000 V Cale culots the value of paragitary of the value		
16	difference between the plates is 1000V.Calaculate the value of capacitance. (Nov 2012)(May2012)(BTL 5)		
16			
	Given data, Q = 10-3C, V = 1000V, C = $\frac{Q}{2} = \frac{10}{3} = 1 \mu F$.		
	Given data, Q = 10-3C, $V = 1000V$, $C = \frac{Q}{V} = \frac{10^{-3}}{10^{-3}} = 1\mu F$. Give the significant physical difference between Poisson's and Laplace equation.		
	(Nov 2011, Nov/Dec14) (BTL 2)		
	Poisson equation: $\nabla^2 V = -\rho/\epsilon$		
	Where ρ – Volume charge density, ϵ – Permittivity of the medium, ∇^2 - Laplacian		
	operator.		
17	-		
	$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial Y^2} + \frac{\partial^2 V}{\partial z^2} = -\rho/\epsilon$		
	$\partial x = \partial x = \partial z$		
	Laplace equation: $\nabla^2 V = 0$; $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$		
	The Laplace equation is defined only for the region which is free of charges.		
	State the properties of electric flux lines. (Nov/Dec 2014) (BTL 1)		
	a. It must be independent of the medium.		
18	b.Its magnitude solely depends upon the charge from which it originates,		
10	c.If a point charge is enclosed in an imaginary sphere of radius R, the electric flux must		
	pass perpendicularly and uniformly through the surface of the sphere and		
	d. The electric flux density, the flux per unit area is then inversely proportional to R^2 .		
	What is the electric field intensity at a distance of 20 cm from a charge of 2 μ C in		
19	vacuum? (Nov/Dec 2015) (BTL 5) $2*10^{-6}$		
	$E = \frac{Q}{4\pi \epsilon r^2} V/m ; E = \frac{2*10^{-6}}{4\pi * 8.854 * 10^{-12*} 0.02^2} V/m ;$		
	$E = 4.49 * 10^7 V/m$		
	Calculate the capacitance per Km between a pair of parallel wires each of diameter		
20	1cm at a spacing of 50cms. (Nov/Dec 2015) (BTL 5)		
20	$c = \frac{\epsilon_A}{d}F/km$; A = 2π rh = $2\pi * 1*10^{-5}*1 = 6.28 * 10^{-5}$ km ² ; d = $50 * 10^{-3}$ km;		
	$c = \frac{8.854 \times 10^{-12} \times 6.28 \times 10^{-5}}{50 \times 10^{-5}} \text{F/km} = 1.112 \text{*}10^{-4} \text{F/km}.$		
	Find the electric field intensity in free space if D=30az C/m ² . (April /May 2015)(BTL		
21	5)		
	$D = \epsilon E$; $E = \frac{D}{\epsilon}$; $E = \frac{30}{8854 \times 10^{-12}} = 3.388 \times 10^{12} \text{ V/m}$		
1	E 8.854*10 ⁻⁺⁺		


	What is the practical significance of Lorentz's Force?(April /May 2015)(Nov/Dec			
	2015)(BTL 1)			
22	When an electric charge element is moving in a uniform magnetic field (B) with velocity V_{i} the charge superior as force (dE). This force is called as L creater's force.			
22	V, the charge experience a force (dF). This force is called as Lorentz's force.			
	$dF = dQVBsin\theta$, θ is angle between V and B.			
	The direction of lorentz's force is maximum if the direction of movement of charge perpendicular to the orientation of field lines.			
	Find the capacitance of an isolated spherical shell of radius α. (Nov 2016)(BTL 5)			
23	$C = 4\pi\varepsilon_0 \alpha$			
	Find the magnitude of D for a dielectric material in which E=0.15MV/m and ε_r =5.25.			
24	(Nov 2016)(BTL 5)			
24	$D = \varepsilon_0 \varepsilon_r E; D = 8.854 \times 10^{-12} \times 5.25 \times 0.15 \times 10^6 = 6.97 \mu V/m$			
	Define capacitor and capacitance. (May 2016)(BTL 1)			
25	Capacitor is a passive element that stores electrical energy in an electric field.			
	Capacitance is the ability of a body to store an electric charge.			
	PART * B			
	Derive the expression for energy and energy density in the static electric field.(Nov			
	2013, Nov 2015) (13 M) (BTL 2)			
	Answer: Page - 2.24 – Dr. P. Dananjayan			
	Energy: (7 M)			
	Capacitor stores the electrostatic energy.			
	 Voltage connected across the capacitor, capacitor charges. 			
	Potential is defined as work done per unit charge.			
	\blacktriangleright V = dW/dQ			
	$\rightarrow dW = V. dQ$			
	but $V = Q/C$			
1.	\blacktriangleright W = $\int_0^Q \frac{Q}{c} dQ$			
	\blacktriangleright W = Q ² /2C			
	\blacktriangleright But Q = CV			
	Energy = $\frac{1}{2}$ C V ²			
	Energy Density: (6 M)			
	\blacktriangleright Consider a elementary cube of side Δd .			
	$\Delta C = \epsilon A/\Delta d = \epsilon \Delta d$ $\Delta W = \frac{1}{2} \Delta C (\Delta V)^2$ $But \Delta V = E. \Delta d$ $\Delta W = \frac{1}{2} \epsilon E^2 \Delta V$			
	$\Delta W = \frac{1}{2} \epsilon E^2 \Delta V$ Energy Density = 16 DE			
	 Energy Density = ½ DE Deduce an expression for the capacitance of a parallel plate capacitor with two 			
	dielectrics of relative permittivity ε_1 and ε_2 respectively interposed between the			
2.	plates.(Nov 2013, May 2015, May 2016) (13 M)(BTL 2)			
	Answer: Page - 2.16–Dr. P. Dananjayan			
L				



JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

	American Deve 2.5(Dev. D. Devenier				
	Answer: Page-2.56 - Dr. P. Dananjayan $C_1 = c_0 c_{r_1}(A/2)/d = 17.708 r_{r_1} c_{r_2}(2M)$				
	$\succ C1 = \epsilon_0 \epsilon_1 (A/2) / d = 17.708 \text{ nF} $ (2M) $\succ C2 = \epsilon_0 \epsilon_2 (A/2) / d = 26.562 \text{ nF} $ (2M)				
	$ C2 = \varepsilon 0 \ \varepsilon r 2(A/2) \ / \ d = 26.562 \ nF $ (2M) C = C1 + C2				
	$\sim C = C_1 + C_2$ $\sim C = 44.270 \text{ nF}$ (3M)				
	Derive the Poisson'sand Laplace's Equations. (May/June 2014, Nov/Dec 16,				
	April/May 2018) (13 M)(BTL 1)				
	$\succ \nabla . D = \rho_{v} ; D = \varepsilon E$				
	$\blacktriangleright \nabla . (\varepsilon E) = \rho_{v}$				
	$\blacktriangleright \varepsilon . \nabla . E = \rho_{v}$				
	ρ				
	$\blacktriangleright \nabla . E = \frac{\rho_v}{\varepsilon}$				
	$\blacktriangleright E = -\nabla V$				
	$\blacktriangleright \nabla . \left(-\nabla V \right) = \frac{\rho_v}{\varepsilon}$				
	$\nabla . \nabla V = \frac{\rho_v}{\varepsilon}$				
	ε				
	$ \nabla^2 V = -\frac{\rho_v}{\Gamma} $ This is Poisson's equation. (6 M)	$\nabla^2 V = -\frac{\rho_v}{\Gamma}$ This is Poisson's equation. (6 M)			
	> In a certain region, volume charge density is zero, $\rho_v = 0$ which is true for				
10.	dielectric medium.				
	Then the Poisson's equation takes the form,				
		$\blacktriangleright \nabla^2 V = 0 \nabla^2 V$ is laplacian of 'V'			
	This is special case of Poisson's equation and is called Laplace equation.				
	\blacktriangleright ∇^2 Operation / Laplace equation in different co-ordinate system:				
	The potential 'V' can be expressed in any of the 3-co-ordinate system as				
	$V(x, y, z), (r, \phi, z) \& (r, \theta, \phi)$.				
	Cartesian co-ordinate system or Rectangular co-ordinate system				
	$\partial^2 V \partial^2 V \partial^2 V$				
	$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$				
	 <u>Cylindrical co-ordinate system</u> 				
	$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} = 0$				
	Spherical co-ordinate system				
	$\nabla^2 V = \frac{1}{2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{2} \frac{\partial}{\partial r} \left(\sin \theta \frac{\partial V}{\partial r} \right) + \frac{1}{2} \frac{\partial^2 V}{\partial r^2} = 0$ (7M)				
	$ \qquad \qquad$				
	PART * C				
1.	If $V = 2x^2y + 20z - \frac{4}{x^2 + y^2}$ V, find electric field & flux density at P(6,-2,3). (7 M)				
	(BTL 5)				
L					


JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

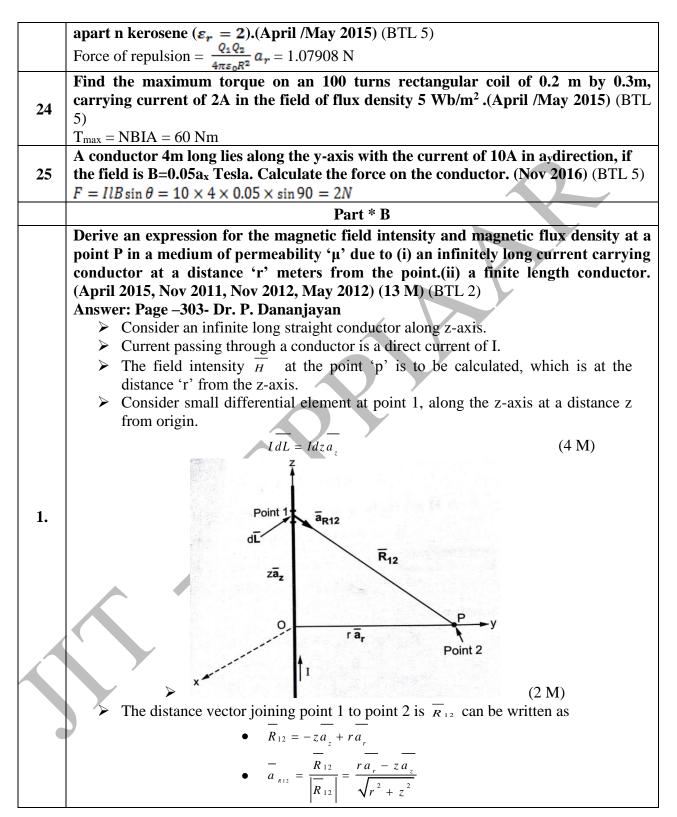
Answer: Page - 2.35 - Dr. P. Dananjayan

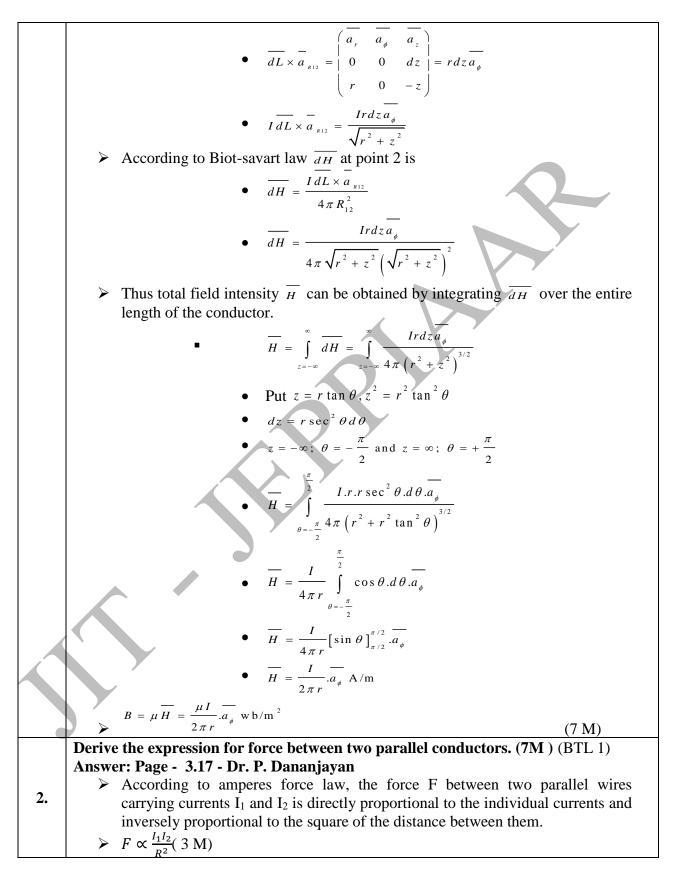
$$\bigotimes$$
Solution: $E = -\nabla V$

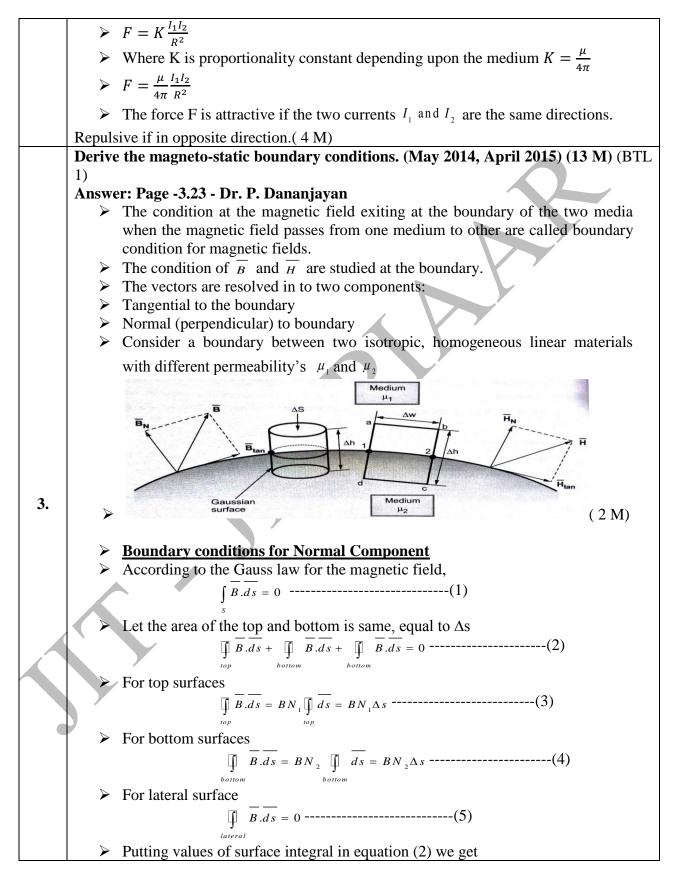
$$= -\left[\overline{a}, \frac{\partial}{\partial x} + \overline{a}, \frac{\partial}{\partial y} + \overline{a}, \frac{\partial}{\partial z}\right] \left[2x^2 y + 20z - \frac{4}{x^2 + y^3}\right]$$

$$= -\left[\overline{a}, \left(4xy + \frac{8x}{(x^2 + y^3)^2}\right) + \overline{a}, \left(2x^2 + \frac{8y}{(x^2 + y^3)^2}\right) + \overline{a}, z0\right]$$
E(6, -2.5, 3) = -[(-60 + 0.0268) $\overline{a}, + (72 - 0.012) \overline{a}, + 20 \, \overline{a},$
 $= 9.97 \, \overline{a}, -71.99 \, \overline{a}, -20 \, \overline{a}, Vm$ (4M)
D = $v_0 E$
D(6, -2.5, 3) = 8.854 × 10⁻¹² × (59.97 $\overline{a}, -71.99 \, \overline{a}, -20 \, \overline{a},$]
 $= 0.53 \, \overline{a}, -0.637 \, \overline{a}, -0.177 \, \overline{a}, nc/m^2$ (3 M)
If a potential V = $x^3yz + Ay^3z$ find the value of A so that Laplace's equation is
satisfied and electric field (2, -2, 1) (7M) (BTL 5)
Answer: Page -2.41 - Dr. P. Dananjayan
Laplace's equation $\forall x^2 v = 0$
 $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$
 $\frac{\partial^2 V}{\partial x^2} + x^2 x + Ay^3$ and $\frac{\partial^2 V}{\partial z^2} = 0$
 \therefore Laplace's equation
 $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$
 \therefore Laplace's equation
 $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 2yz$
 $\frac{\partial V}{\partial z} = x^2 y + Ay^3$ and $\frac{\partial^2 V}{\partial z^2} = 0$
 \therefore Laplace's equation
 $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 2yz + 6Ayz = 0$
 $A(2, -2, 1), 2(-2)1 + 6A(-2)1 = 0$
 $-4 - 12A = 0$
 $A = -13$
 $V = x^2 yz - \frac{y^2}{3}$ (4 M)
Electric field $E = -\nabla V$
 $= -\left[\frac{\partial V}{\partial x} \overline{a}, + \frac{\partial V}{\partial y} \overline{a}, \frac{\partial V}{\partial z^2} = \overline{a}, (4 M)$
Electric field $E = -\nabla V$
 $= -\left[\frac{\partial V}{\partial x} \overline{a}, + \frac{\partial V}{\partial y} \overline{a}, \frac{\partial V}{\partial z} = \overline{a}, \frac{\partial V}{\partial z}, \frac{\partial V}{\partial z} = 0$
 $(2 - 2, 1) = -\left[2(2)(-2)\overline{a}, +(2^2 - (-2)^2)\overline{a}, +(2^2 - (-2)^2)\overline{a}, \frac{1}{(2^2 - (2) - (-2)^2)}, \overline{a}_{z}\right]$
 $= -\left[2(2yz)\overline{a}, \frac{2}{x}, \frac{2}{y}, \frac{2}{$

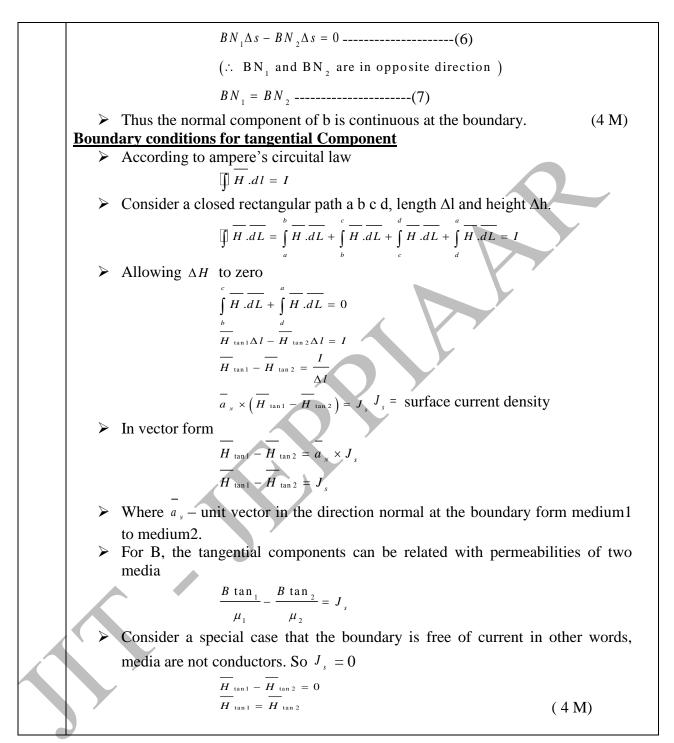
$(ii) \qquad \mathbf{E} = -\nabla \mathbf{V}$		
$= -\left[\overline{a}_x \frac{\partial}{\partial x} (x^2 y + 2 \log (x^2 + y^2)) + \overline{a}_y \frac{\partial}{\partial y} (x^2 y + y^2)\right]$		
$2 \log (x^2 + y^2)) + \overline{a}_z \frac{\partial}{\partial z} (10 z)$		
$= -(4.8 \ \overline{a}_x + 2.6 \ \overline{a}_y + 10 \ \overline{a}_z) V/m $ (4 M)		
(<i>iii</i>) $\mathbf{D} = \boldsymbol{\varepsilon} \cdot \mathbf{E}$		
$D = \varepsilon_0 \left[\left(2 xy + \frac{4 x}{x^2 + y^2} \right) \overline{a}_x + \left(x^2 + \frac{4 y}{x^2 + y^2} \right) \overline{a}_y + 10 \overline{a}_z \right]$		
$D(1, 2, 3) = -8.854 \times 10^{-12} (4.8 \overline{a}_x + 2.6 \overline{a}_y + 10 \overline{a}_z) c/m^2 $ (4 M)		
$\nabla \cdot \mathbf{D} = -\varepsilon_0 \left[\vec{a}_x \frac{\partial}{\partial x} + \vec{a}_y \frac{\partial}{\partial y} + \vec{a}_z \frac{\partial}{\partial z} \right]$		
$= \left[\bar{a}_{x} \left(2xy + \frac{4x}{x^{2} + y^{2}} \right) + \bar{a}_{y} \left(x^{2} + \frac{4y}{x^{2} + y^{2}} \right) + \bar{a}_{z} \left(10 \right) \right]$		
$= -\varepsilon_0 \left[\frac{\partial}{\partial x} (2xy + \frac{4x}{x^2 + y^2}) + \frac{\partial}{\partial y} (x^2 + \frac{4y}{x^2 + y^2}) + \frac{\partial}{\partial z} (10) \right]$		
$\rho_{v}(1, 2, 3) = -8.854 \times 10^{-12} \times 2 \times 2$		
$= 35.416 \times 10^{-12} \text{ c/m}^3 \tag{4 M}$		
Calculate the capacitance of a parallel plate capacitor with the following details:		
Plate area $A = 100 \text{ cm}^2$		
Dielectric 1, $\varepsilon_{r1} = 4$, $d_1 = 2$ mm		
Dielectric 2, $\varepsilon_{r2} = 3$, $d_2 = 3$ mm		
If 200 V is applied across the plates, what will be the voltage gradient across each		
dielectric? (8 M)(BTL 5)		
Answer: Page - 2.44 - Dr. P. Dananjayan		
6. $D = Q/A$ $E = D / \varepsilon \varepsilon \varepsilon r$		
$ \begin{array}{c} F = D / \cos \varepsilon r \\ F = Q / V \end{array} $		
$ \searrow C = 59 \text{ pf} $ (2 M)		
V = 66.66 V (2 M)		
V2 = 133.33 V (2 M)		
E1 = 33.33 kV/m (2M)		
E1 = 33.35 kV/m (2101) E2 = 44.44 kV/m		
A parallel plate capacitor with $d = 1$ m and plate area 0.8 m ² and a dielectric relative		
permittivity of 2.8. A dc voltage of 500 V is applied between the plates, find the		
conscience and energy stored $(8 \text{ M})(\text{RTL} 5)$		
7. Answer: Page - 2.61 – Dr. P. Dananjayan		
\rightarrow d = 1m		
$A = 0.8 m^2$		

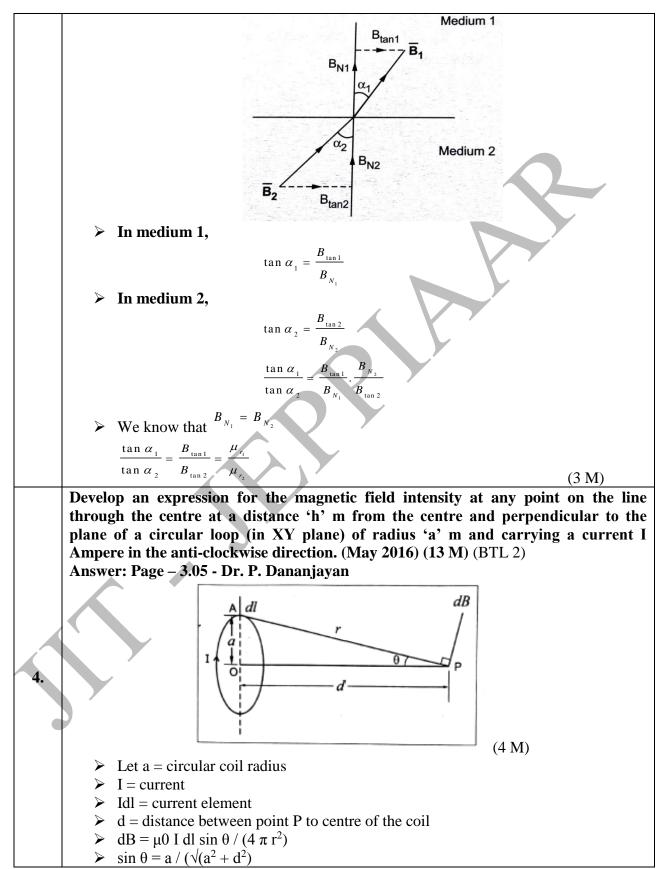

\blacktriangleright $\epsilon r = 2.8$
\succ C = ε A / d
Energy Stored = $\frac{1}{2}$ C V ² = 0.99 J (8 M)

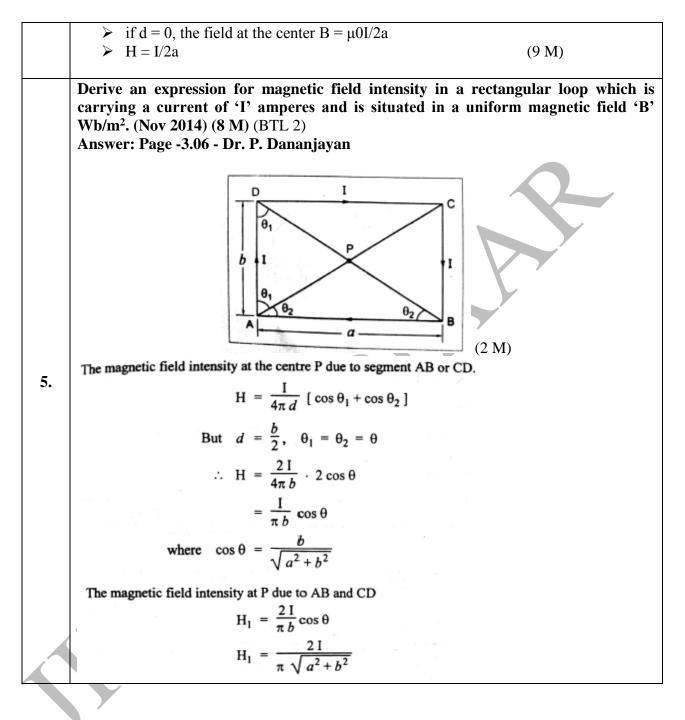

	UNIT III - MAGNETOSTATICS			
due to in free Bound	Lorentz force, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media Boundary conditions, scalar and vector potential, Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications.			
Q. No	Part * A			
	Questions			
1	Define magnetic flux and magnetic flux density. (BTL 1) Magnetic flux: Magnetic flux is defined as the flux passing through any area. Its unit is Weber. $\Phi = \int B.da$ Weber. Magnetic flux density.			
	Magnetic flux density is defined as the magnetic flux density passing per unit area. Its unit is Weber / meter or Tesla. $B = \frac{\Phi}{A}$; $B = \mu H$			
2	Define magnetic Gauss's Law. (BTL 1) The total magnetic flux passing thorough any closed surface is equal to zero. $\oint B.da = 0$			
3	State Biot- Savart law. (BTL 1) It states that the magnetic flux density at any point due to current element is proportional to the current element and sine of the angle between the elemental length and the line joining and inversely proportional to the square of the distance between them. $dB = \frac{\mu_o I dl \sin \theta}{1 + \frac{2}{2}}$			
4	State the Lorentz force equation. (Nov 2013) (BTL 1) The force on a moving particle due to combined electric and magnetic field is given by $F = Q \left[\vec{E} + \vec{V} \times \vec{B} \right]$. This force is called Lorentz force.			
5	State Ampere's circuital law. (May 2014, May 2016, Nov 2016) (BTL 1) Ampere's circuital law states that the line integral of magnetic field intensity H about any closed path is exactly equal to the direct current enclosed by the path. $\oint H dl = 1$			
6	 Distinguish between diamagnetic, paramagnetic and ferromagnetic materials. (BTL 1) Diamagnetic: In diamagnetic materials magnetization is opposed to the applied field. It has magnetic field. Paramagnetic: In paramagnetic materials magnetization is in the same direction as the field. It has weak magnetic field. Ferro magnetic: In Ferromagnetic materials is in the same direction as the field. It has strong magnetic field. 			
7	Compare scalar magnetic potential with vector magnetic potential. (Nov/Dec 2014) (BTL 1)			

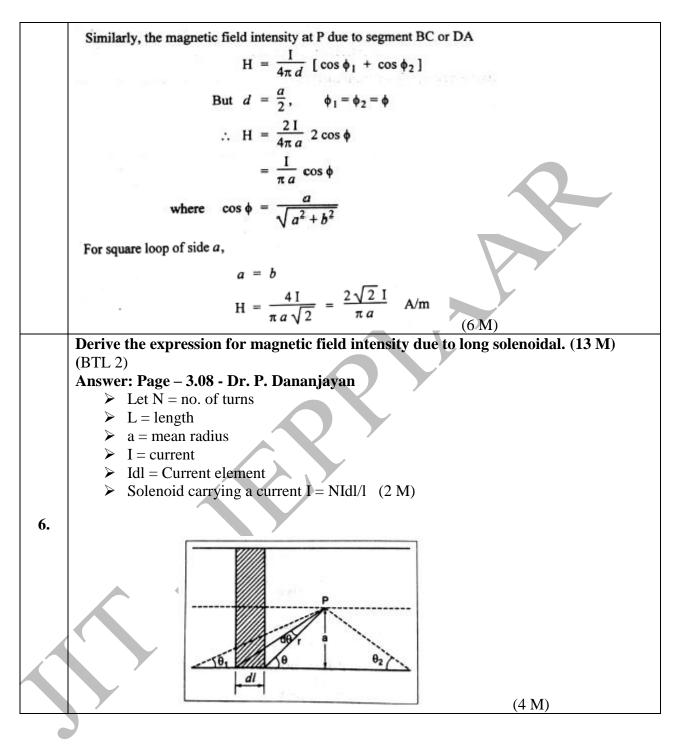

Imagene premiuImagene recentIt is defined as dead quantity whose negative gradient gives the magnitude intensity if ther is no current source present. H = $-\nabla V_{a}$ where, Vm is the magnetic scalar potential. $V_{a} = -\int H dl$ It is defined as that quantity whose density. $B = \nabla X A$; where A is the magnetic vector potential. $A = \frac{\mu}{4\pi} \iiint \frac{1}{\nu} \frac{1}{r} dr$ Web / mA solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. (BTL 5)8 Given data,N=nl = 20 x 10 = 200 turns; 1 = 10 X 10^2 n; $I = 10 X 10^3 A$; $u = \frac{M}{I} = 20 AT/m.$ Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5)9 Force / length = $\frac{\mu_{a}/I_{a}}{2\pi D} = \frac{40 \times 40}{2\pi \pi 2} + \frac{4\pi \times 10^{-3}}{2\pi \times 5 \times 10^{-3}} + \frac{4\pi \times 10^{-3}}{4\pi \times 10^{-3}}$ $= 6.4 \times 10^{-3} N/m.$ Define magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity, $\chi = \frac{M}{H}$ $\mu, = 1 + \chi_{a}$ Where μ_{a} is relative permeability; I_{a} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1)11Electrostatic field intensity $E = (\frac{1}{2} L_{a}^{-2} - \frac{M}{2}$ 2 . Charges are rest12(b)For Parallel $L = \frac{L_{L_{a}} - M^{-2}}{L_{a} + L_{a} + 2M}$ Where, (+) sign for aiding , (-) sign for opposition13Distinguish between solenoid and toroid. (BTL 1)			Scalar magnetic potential	Magnetic vector potential
whose negative gradient gives the magnitude intensity if there is no current source present. $H = -\nabla V_{n}$ where, ∇m is the magnetic scalar potential. $V_{n} = -\int H dl$ A solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. (BTL 5) Given data, N=nl = 20 x 10 = 200 turns; 1 = 10 X 10 ⁻² m; I = 10 x 10 ⁻³ Å; $\mu = \frac{M}{l} = 20 \text{AT/m}.$ Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5) Force / length = $\frac{\mu_{e,l}I_{e,l}}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} \times 4\pi x 10^{-7}$ $= 6.4 \times 10^{-3} \text{ N/m}.$ Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{e} = \frac{M}{H}$ $\mu_{e} = 1 + \chi_{m}$ Where μ_{e} is relative permeability; χ_{n} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) $\frac{11}{2}$ Electric field intensity $E = (1 - Magnetic field intensity H (Amp/m))$ 2. Electric flux density $D=EE c/m3. Energy stored is 1/2CV^{2}4$. Charges are rest 4. Charges are in motion What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series $L = L_1 + L_2 + 2M$ Where, (+) sign for aiding , (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)				Trughene vector potential
the magnitude intensity if there is no current source present. $H = -\nabla V_{\pi}$ where, Vm is the magnetic scalar potential. $V_{\pi} = -\int H dl$ A solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. (BTL 5) Given data, N=nl = 20 x 10 = 200 turns; 1 = 10 X 10 ² m; 1 = 10 X 10 ³ A; $H = \frac{M}{l} = 20$ AT/m. Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5) Force / length = $\frac{\mu_{c} l_{c} l_{c}}{2\pi 0} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} x^{4\pi \times 10^{-7}}$ =6.4 x 10 ⁻³ N/m. Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $x_{\mu} = \frac{M}{H}$ $\mu_{c} = 1 + \chi_{a}$ Where μ_{c} is relative permeability; χ_{a} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) 11 11 11 11 11 12 14 15 16 16 16 17 17 17 17 17 17 18 19 10 10 10 10 10 10 10 10 10 10				
is no current source present. $H = -\nabla X_n$ where, Vm is the magnetic scalar potential. $V_n = -\int H dl$ $B = \nabla X$ A; where A is the magnetic vector potential. $A = \frac{\mu}{4\pi} \iiint \frac{J}{r} dr$ Web / mA solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. (BTL 5) Given data, N=nl = 20 x 10 = 200 turns; 1 = 10 x 10^{-3} A; $\mu = \frac{N}{l} = 20 A T/m.$ Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5)9Force / length = $\frac{\mu_n I/I_2}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} x^{4\pi x10^{-7}}$ $= 6.4 x 10^{-3} N/m.$ Define magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_n = \frac{M}{H}$ $\mu_n = 1 + \chi_n$ Where μ_n is relative permeability; χ_n is susceptibility10Electroic field intensity E ($Volts/m)$ $2. Electric field intensity E (Volts/m)2. Electric field is 1/2CV^24. Charges are rest11Electroic field is 1/2CV^24. Charges are rest12(b)For Parallel L = \frac{L_1 L_2 - M^2}{L_1 L_2 \pm 2M}Where, (+) sign for aiding, (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)$			6 6 6	e e
$H = -\nabla V_{m} \text{ where, Vm} \text{ is the magnetic scalar potential.} V_{m} = -\int H dl$ a solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. (BTL 5) Given data,N=nl = 20 x 10 = 200 turns; 1 = 10 X 10 ² m; I = 10 x 10 ³ A; H = \frac{M}{I} = 20AT/m. Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5) Force / length = $\frac{\mu_{a} I_{a} I_{a}}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} \times 4\pi \times 10^{-7}$ =6.4 x 10 ⁻³ N/m. Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{a} = \frac{M}{H}$ $\mu_{c} = 1 + \chi_{a}$ Where μ_{a} is relative permeability; χ_{a} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) Lectrostatic field intensity E (1.1 Magnetic field intensity H (Amp/m)) 2. Electric field antensity E (2.2 Magnetic field intensity H (Mep/m)) 2. Electric field intensity E (2.2 Magnetic field intensity H (Mep/m)) 3. Energy stored is 1/2CV ² 4. Charges are rest 4. Charges are in motion What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For Parallel L = $\frac{L_{1}L_{2} - M^{2}}{L_{1} + L_{2} \pm 2M}$ Where, (+) sign for aiding, (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)			-	
$A = \frac{\mu}{4\pi} \iint_{V} \frac{1}{r} dr Web / m$ $A = \frac{\mu}{4\pi} \iint_{V} \frac{1}{r} dr Web / m$ A solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. (BTL 5) Given data, N=nl = 20 x 10 = 200 turns; 1 = 10 x 10 ² m; 1 = 10 x 10 ³ A; $\mu = \frac{N}{t} = 20AT/m.$ Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5) Force / length = $\frac{\mu_s I_t I_2}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} x^{4\pi x 10^{-2}}$ $= 6.4 x 10^{-3} N/m.$ Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{m} = \frac{M}{H}$ $\mu_{s} = 1 + \chi_{m}$ Where χ_{s} is relative permeability; χ_{s} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) $\frac{11}{2.Electric field intensity E (1.Magnetic field intensity H (Amp/m))}{2.Electric flux density D=cE c/m}$ $3. Energy stored is 1/2CV^{2}$ $4. Charges are in motion$ What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = $L_1 + L_2 \pm 2M$ (b) For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding, (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)			-	
A solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. (BTL 5) Given data,N=nl = 20 x 10 = 200 turns; 1 = 10 x 10 ⁻² m; I = 10 x 10 ⁻³ A; $\mu = \frac{M}{l} = 20$ AT/m.Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5)9Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5)9Force / length = $\frac{\mu_s I_s I_s}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} x^4 4\pi x 10^{-7}$ =6.4 x 10 ⁻³ N/m.Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_w = \frac{M}{H}$ $\mu_z = 1 + \chi_w$ Where μ_z is relative permeability; χ_w is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1)11Electric field intensity E (1 . Magnetic field intensity H (Amp/m) 2 . Electric flux density D=E c/m 3 . Energy stored is 1/2CV ² 4 . Charges are rest 4 . Charges are in motion12What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = $L_1 + L_2 \pm 2M$ (b) For Parallel L = $\frac{L_1 L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for opposition12Distinguish between solenoid and toroid. (BTL 1)				
10mA. Find H at the centre if the total length is 10cm. (BTL 5)8Given data,N=nl = 20 x 10 = 200 turns; 1 = 10 X 10 ⁻² m; I = 10 x 10 ⁻³ A; $\mu = \frac{N}{l} = 20$ AT/m.Determine the force per unit length between two long parallel wires separated by 59999Force / length = $\frac{\mu_s I_s I_s}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} x^4 \pi x 10^{-7}$ =6.4 x 10 ⁻³ N/m.Define magnetic susceptibility and their relation with relative permeability. (BTL 1)Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{\pi} = \frac{M}{H}$ $\mu_s = 1 + \chi_{\pi}$ Where μ_s is relative permeability; χ_{π} is susceptibilityGiven data (Nov/Dec 2014)(BTL 1)Electrostatic field Magnetic field (Nov/Dec 2014)(BTL 1)Image: Stored is 1/2CV ² 4. Charges are rest4. Charges are rest4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b)parallel? (BTL 2)(a) For series L = $L_1 + L_2 \pm 2M$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)				$A = \frac{\mu}{4\pi} \iiint_{v} \frac{s}{r} dr \text{Web} / \text{m}$
8 Given data,N=nl = 20 x 10 = 200 turns; l = 10 X 10 ⁻² m; I = 10 x 10 ⁻³ A; $H = \frac{NI}{I} = 20 \text{AT/m.}$ 9 Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5) 9 Force / length = $\frac{\mu_{a}I_{1}I_{a}}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} x 4\pi x 10^{-7}$ =6.4 x 10 ⁻³ N/m. 10 Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{a'} = \frac{M}{H}$ $\mu_{r} = 1 + \chi_{a}$ Where μ_{a} is relative permeability; χ_{a} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) 11 $\frac{\text{Electrostatic field}}{1. Electric flux density D=\varepsilon E c/m}$ 3. Energy stored is 1/2CV ² 4. Charges are rest 12 (a) For series L = L_1 + L_2 \pm 2M (b) For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding, (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)		A soleno	bid with a radius of 2cm is wou	and with 20 turns per cm length and carries
$H = \frac{M}{l} = 20 \text{AT/m}.$ Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5) Force / length $= \frac{\mu_o I_1 I_2}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} \times 4\pi x 10^{-7}$ $= 6.4 \times 10^{-3} \text{ N/m}.$ Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{\mu'} = \frac{M}{H}$ $\mu_r = 1 + \chi_n$ Where μ_r is relative permeability; χ_n is susceptibility (BTL 1) 11 $\frac{11}{11}$ $\frac{11}{11}$ $\frac{11}{11}$ $\frac{11}{11}$ $\frac{11}{11}$ $\frac{11}{12}$ $\frac{11}$				
ll9Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. (BTL 5) Force / length = $\frac{\mu_a L_1 L_a}{2\pi D} = \frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} \times 4\pi \times 10^{-7}$ =6.4 x 10 ⁻³ N/m.Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_m = \frac{M}{H}$ $\mu_r = 1 + \chi_m$ Where μ_r is relative permeability; χ_m is susceptibility10Electrostatic field 1. Electric field intensity E (volts/m) 2. Electric flux density $D=\varepsilon E$ c/m 3. Energy stored is 1/2CV ² 4. Charges are rest11What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series $L = L_1 + L_2 \pm 2M$ (b) For Parallel $L = \frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for opposition12Distinguish between solenoid and toroid. (BTL 1)	8			$=10 \times 10^{-2} \text{ m};$ $I = 10 \times 10^{-5} \text{ A};$
9cm in air and carrying currents 40A in the same direction. (BTL 5)9Force / length = $\frac{\mu_a l_1 l_a}{2\pi D}$ = $\frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} \times 4\pi x 10^{-7}$ =6.4 x 10 ⁻³ N/m.Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{\mu} = \frac{M}{H}$ $\mu_r = 1 + \chi_m$ Where μ_r is relative permeability; χ_m is susceptibility10Electrostatic field I. Electric field intensity E (Volts/m) 2. Electric flux density D= εE c/m 3. Energy stored is $1/2\text{CV}^2$ 4. Charges are restMagnetic field intensity B= μ H (web / m2) 3. Energy stored is $1/2\text{LI}^2$ 4. Charges are in motion12(b)For Parallel L = $\frac{L_1 L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)		$H = \frac{NI}{l} = 20 \text{AT/m}.$		
9 Force / length = $\frac{\mu_x l_1 l_z}{2\pi D}$ = $\frac{40 \times 40}{2\pi \times 5 \times 10^{-2}} \times 4\pi \times 10^{-7}$ =6.4 x 10 ⁻³ N/m. Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_x = \frac{M}{H}$ $\mu_x = 1 + \chi_x$ Where μ_x is relative permeability; χ_x is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) 11 Electrostatic field intensity E (1. Magnetic field intensity H (Amp/m)) 2. Electric field intensity D=cE c/m 3. Energy stored is 1/2CV ² 4. Charges are rest 4. Charges are in motion What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L ₁ + L ₂ ± 2M (b) For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding, (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)				
Polee / length $= \frac{1}{2\pi D} = \frac{1}{2\pi \times 5 \times 10^{-2}} x 4\pi x 10^{-2}$ =6.4 x 10 ⁻³ N/m. Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{\mu} = \frac{M}{H}$ $\mu_{\tau} = 1 + \chi_{\pi}$ Where μ_{τ} is relative permeability; χ_{π} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) 11 11 11 11 11 11 11 11 11	9			
$=6.4 \times 10^{-3} \text{ N/m.}$ Define magnetic susceptibility and their relation with relative permeability. (BTL 1) Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{\pi} = \frac{M}{H}$ $\mu_r = 1 + \chi_{\pi}$ Where μ_r is relative permeability; χ_{π} is susceptibility Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1) 11 Electrostatic field intensity E (volts/m) 2. Electric flux density D=&E c/m 3. Energy stored is $1/2CV^2$ 4. Charges are rest 2. Electric flux density D=&E c/m 3. Energy stored is $1/2CV^2$ 4. Charges are in motion What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L ₁ + L ₂ ± 2M (b)For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)		Force / le	ength = $\frac{\mu_{0} r_{1} r_{2}}{2\pi D} = \frac{1}{2\pi \times 5 \times 10^{-2}} x^{4}$	$\pi x 10^{-7}$
Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is dimensionless quantity. $\chi_{\mu} = \frac{M}{H}$ $\mu_r = 1 + \chi_m$ Where μ_r is relative permeability; χ_m is susceptibilityGive four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1)InElectrostatic field intensity E (volts/m)Electrostatic field intensity E (volts/m)Magnetic field intensity H (Amp/m) 2. Magnetic flux density $B=\mu H$ (web / m2)Stenergy stored is $1/2CV^2$ 4. Charges are restStenergy stored is $1/2LI^2$ 4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series $L = L_1 + L_2 \pm 2M$ (b) For Parallel $L = \frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)		=6.4 x	: 10 ⁻³ N/m.	
10intensity. It is dimensionless quantity. $\chi_{\mu\nu} = \frac{M}{H}$ $\mu_r = 1 + \chi_m$ Where μ_r is relative permeability; χ_m is susceptibilityGive four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1)11Electrostatic fieldMagnetic field11Electric field intensity E (volts/m)1. Magnetic field intensity H (Amp/m) 2. Magnetic flux density B= μ H (web / m2)2. Electric flux density D= ε E c/m 3. Energy stored is $1/2$ CV23. Energy stored is $1/2$ Ll24. Charges are rest4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = $L_1 + L_2 \pm 2M$ (b)For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)			-	
$\mu_r = 1 + \chi_m$ Where μ_r is relative permeability; χ_m is susceptibilityGive four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1)11Electrostatic fieldMagnetic field11Electric field intensity E (volts/m)1. Magnetic field intensity H (Amp/m) 2. Magnetic flux density B= μ H (web / m2)2. Electric flux density D= ϵ E c/m 3. Energy stored is 1/2CV23. Energy stored is 1/2LI2 4. Charges are rest4. Charges are rest4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L1 + L2 ± 2M L1 + L2 ± 2M12(b) For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)		-		
$\mu_r = 1 + \chi_m$ Where μ_r is relative permeability; χ_m is susceptibilityGive four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1)11Electrostatic fieldMagnetic field11Electric field intensity E (volts/m)1. Magnetic field intensity H (Amp/m) 2. Magnetic flux density B= μ H (web / m2)2. Electric flux density D= ϵ E c/m 3. Energy stored is 1/2CV23. Energy stored is 1/2LI2 4. Charges are rest4. Charges are rest4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L1 + L2 ± 2M L1 + L2 ± 2M12(b) For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)	10	intensity	. It is dimensionless quantity. χ_m	$=\frac{M}{U}$
Give four similarities between Electrostatic field and Magnetic field. (Nov/Dec 2014) (BTL 1)Electrostatic field11Electrostatic fieldMagnetic field11Electric field intensity E (volts/m) 2. Electric flux density D= ε E c/m 3. Energy stored is 1/2CV ² 4. Charges are rest1. Magnetic field intensity B= μ H (web / m2) 3. Energy stored is 1/2LI ² 4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L ₁ + L ₂ ± 2M (b)For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)				11
(BTL 1) 11 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
I1Electrostatic fieldMagnetic field1. Electric field intensity E (volts/m)1. Magnetic field intensity H (Amp/m) 2. Magnetic flux density B= μ H (web / m2)2. Electric flux density D= ϵ E c/m 3. Energy stored is 1/2CV23. Energy stored is 1/2LI2 4. Charges are rest4. Charges are rest4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L ₁ + L ₂ ± 2M (b)For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)			in similarities between Electros	and frequencies (1007/Dec 2014)
11volts/m)2. Electric flux density D= ϵ E c/m2. Magnetic flux density B= μ H (web / m2)3. Energy stored is 1/2CV23. Energy stored is 1/2LI24. Charges are rest4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L1 + L2 ± 2M12(b)For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)			Electrostatic field	Magnetic field
12 Volts/m) 2. Electric flux density D= ϵ E c/m 3. Energy stored is 1/2CV ² 4. Charges are rest 4. Charges are in motion What will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series L = L ₁ + L ₂ ± 2 <i>M</i> (b)For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)	11			
3. Energy stored is $1/2CV^2$ 3. Energy stored is $1/2LI^2$ 4. Charges are rest3. Energy stored is $1/2LI^2$ 4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b)parallel? (BTL 2)(a) For series $L = L_1 + L_2 \pm 2M$ 12(b)For Parallel $L = \frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)				
4. Charges are rest4. Charges are in motionWhat will be effective inductance, if two inductors are connected in (a) series and (b) parallel? (BTL 2) (a) For series $L = L_1 + L_2 \pm 2M$ 12(b)For Parallel $L = \frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)			5	
What will be effective inductance, if two inductors are connected in (a) series and (b)parallel? (BTL 2) (a) For series $L = L_1 + L_2 \pm 2M$ 12(b)For Parallel $L = \frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for oppositionDistinguish between solenoid and toroid. (BTL 1)				
12 parallel? (BTL 2) (a) For series $L = L_1 + L_2 \pm 2M$ (b)For Parallel $L = \frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)	<u> </u>			
12 (b)For Parallel L = $\frac{L_1L_2 - M^2}{L_1 + L_2 \pm 2M}$ Where, (+) sign for aiding , (-) sign for opposition Distinguish between solenoid and toroid. (BTL 1)				
$\begin{array}{c} L_1 + L_2 \pm 2M \\ \text{Where, (+) sign for aiding , (-) sign for opposition} \\ \hline \\ \textbf{Distinguish between solenoid and toroid. (BTL 1)} \end{array}$				
$\begin{array}{c} L_1 + L_2 \pm 2M \\ \text{Where, (+) sign for aiding , (-) sign for opposition} \\ \hline \\ \textbf{Distinguish between solenoid and toroid. (BTL 1)} \end{array}$	12	(b)For Parallel L = $\frac{L_1 L_2 - M^2}{M^2}$		
Distinguish between solenoid and toroid. (BTL 1)		$L_1 + L_2 \pm 2M$		
Distinguish between solenoid and toroid. (BTL 1)				

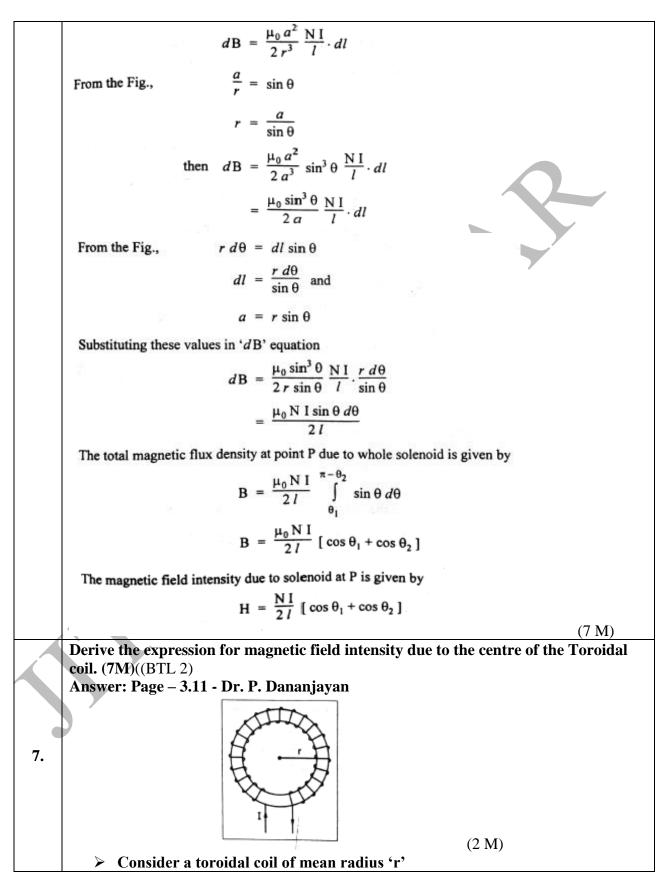
				
	Solenoid	Toroid		
	Solenoid is a cylindrically shaped coil	If a long, slender solenoid is bent into the form of a		
	consisting of a large number of closely spaced turns of insulated wire wound			
	usually on a non – magnetic frame.	itself, it becomes toroid		
	Inductance of solenoid is given by	Inductance of solenoid is		
		given by		
	$L = \frac{\mu_o N^2 A}{2}$			
	1	$L = \frac{\mu_o N^2 A}{2 \pi R} = \frac{\mu_o N^2 r^2}{2 R};$		
	Define magneto-static energy density. (Nov 201			
14	It is defined as the ratio of magnetic energy per un			
	Write the expression for the inductance per un	it length of a long solenoid of N turns		
	and having a length 'L' meter carrying a cur	crent of I amperes. (May/June 2014)		
15	(BTL 1)			
	$H = \frac{NI}{[\cos \theta_2 - \cos \theta_1]}$			
	21			
	State the boundary condition at the interface	e e e e e e e e e e e e e e e e e e e		
	different permeability. (May 2012) (BTL 1	1)		
16	$H_{t1}=H_{t2}$, $B_{n1}=B_{n2}$,			
	H_{t1} , H_{t2} are the tangential magnetic field in region			
	B_{n1} , B_{n2} are the normal magnetic flux density in re			
	Write down the magnetic boundary conditions.			
17	1. The tangential component of magnetic field intensity is continuous across the			
1/	boundary. $H_{t1} = H_{t2}$.			
	2. The normal component of magnetic flux density is continuous across the bou $= B_{n2}$			
10	State Ohm's law for magnetic circuits. (Nov	2012. Nov/Dec14) (BTL 1)		
18	Sum of Magnetic motive force (mmf) in a closed p			
	State Lorentz Law of force. (May 2012)			
19	When a current carrying conductor is placed in a			
	given by, $dF = I \times B dI = BI dI \sin\theta$ Newton.			
	State the law of conservation of magnetic flux.			
20	An isolated magnetic charge does not exist. Thus	, the total flux through a closed surface		
20	is zero.			
	$\iint B \cdot ds = 0$. This is called as law of conservation of magnetic flux.			
	Determine the value of magnetic field intens	ity at the centre of a circular loop		
21	carrying a current of 10A. The radius of the lo	op is 2m. (Nov/Dec 2014) (BTL 5)		
21	$H = \frac{I}{I} = \frac{10}{I} = 2.5 \text{A/m}$			
	$\frac{11-\frac{1}{2a}}{2a} = \frac{1}{2x^2} = 2.5A/m$			
	What is the mutual inductance of two inductively tightly coupled coils			
22	inductance of 25mH and 100mH? (Nov/Dec2015) (BTL 5)			
	$L_1 = 25 \text{mH}, L_2 = 100 \text{mH}, M = K \sqrt{L_1 L_2} = \sqrt{25 \ X \ 100} = 50 \text{mH}$			
23	Find the force of interaction between two charges 4*10 ⁻³ and 6*10 ⁻³ spaced 10cm			
ļ	/EEE/M_ / IAVAVELU/IIIdv./SEM 02 /EE9201/ELECTDOMACNETIC			

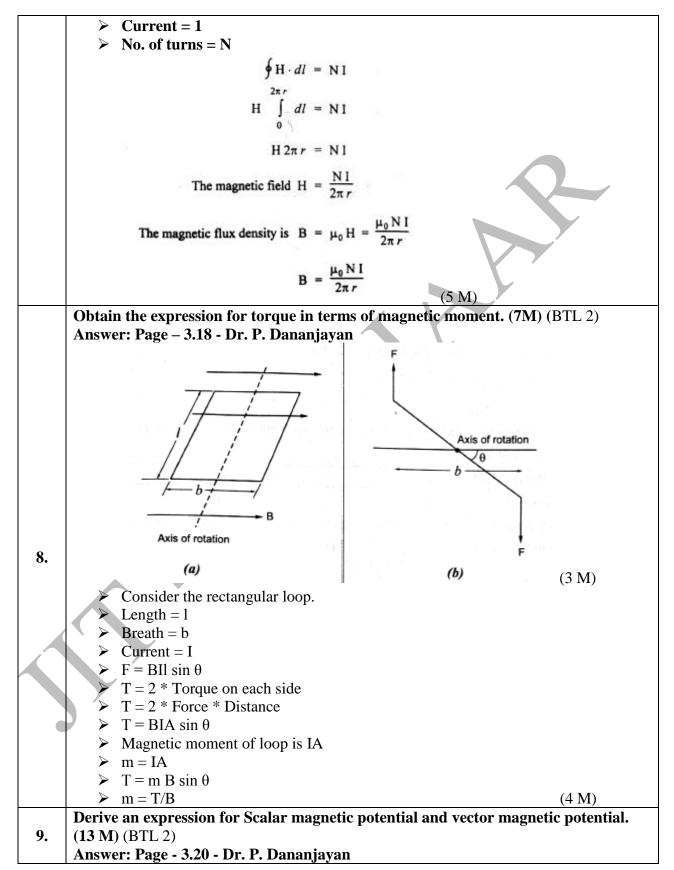

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

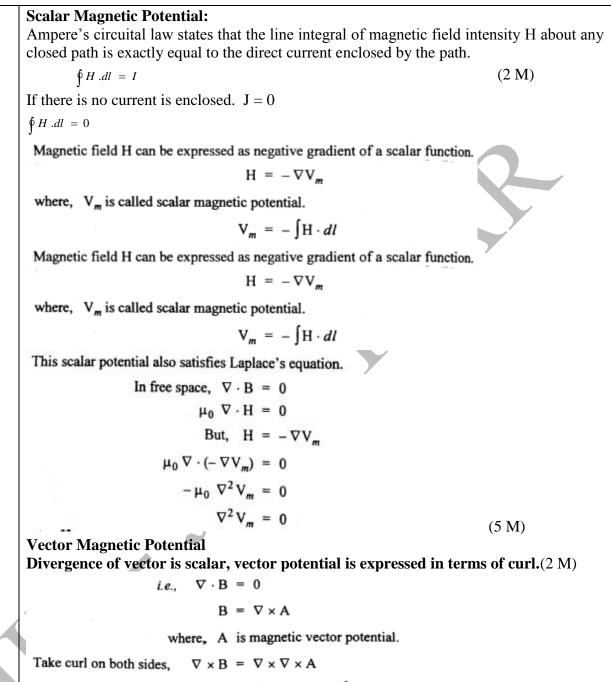


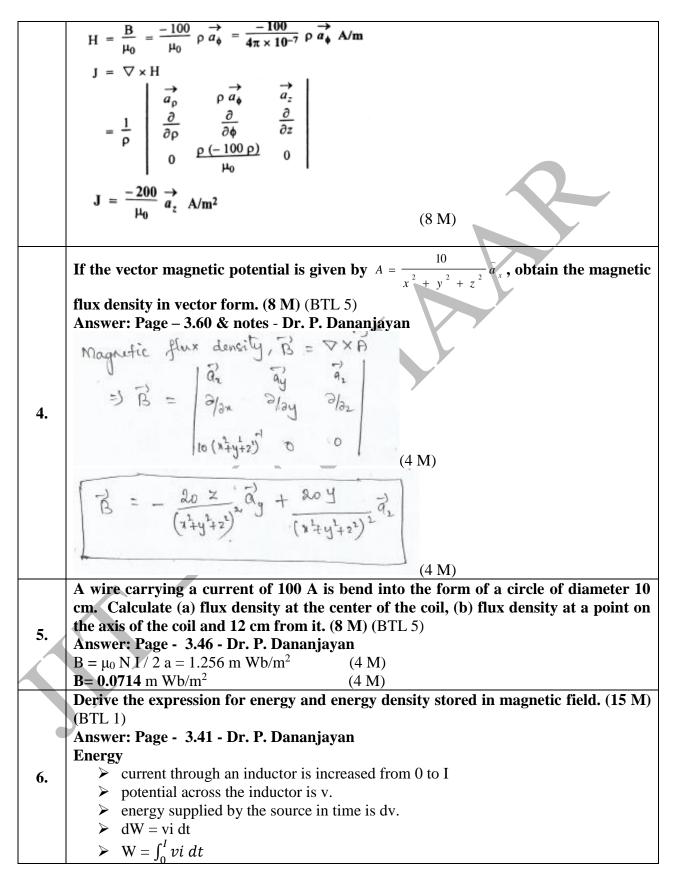


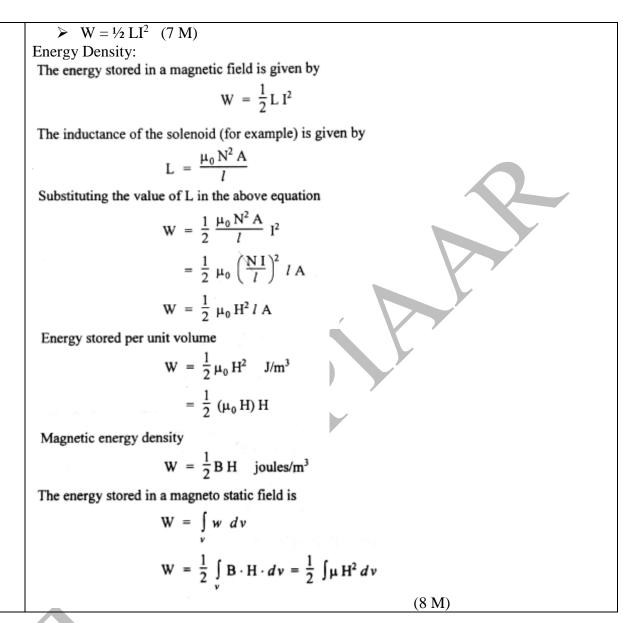

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0






JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0




By the identity, $\nabla \times \nabla \times A = \nabla (\nabla \cdot A) - \nabla^2 A$

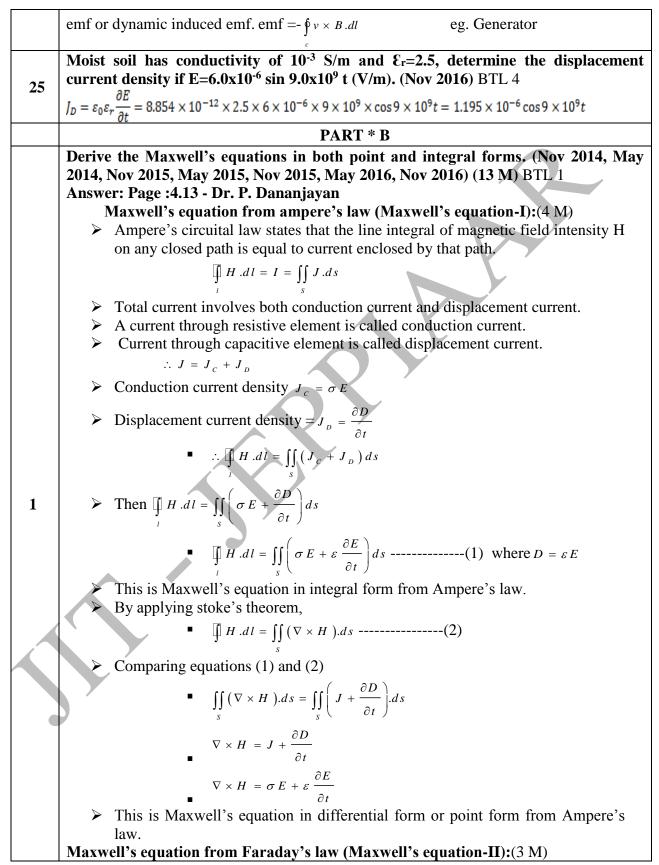
But $\nabla \times B = \mu J$ $\nabla (\nabla \cdot A) - \nabla^2 A = \mu J$ For the steady dc, $(\nabla \cdot A) = 0$ then, $-\nabla^2 A = \mu J$ $\overline{a}_x \nabla^2 \mathbf{A}_x + \overline{a}_y \nabla^2 \mathbf{A}_y + \overline{a}_z \nabla^2 \mathbf{A}_z = -\mu (\overline{a}_x \mathbf{J}_x + \overline{a}_y \mathbf{J}_y + \overline{a}_z \mathbf{J}_z)$ Equating $\nabla^2 A_x = -\mu J_x$ $\nabla^2 A_{\nu} = -\mu J_{\nu}$ $\nabla^2 A_z = -\mu J_z$ The general, magnetic vector potential can be expressed as $A = \frac{\mu}{4\pi} \iiint \frac{J}{r} dv$ $(4 \mathrm{M})$ Determine the inductance per unit length of a two-wire transmission line with separation distance d. Each wire has a radius a. (8 M) (BTL 1) Answer: Page - 3.40 - Dr. P. Dananjayan (2 M)The internal flux linkage of the conductor A is given by $\phi_1 = \frac{\mu_0 \, \mu_r \, I}{8\pi}$ 10. The external flux linkage with the conductor A is given by $\phi_2 = \frac{\mu_0 I}{2\pi} ln \left(\frac{d}{a}\right)$ The total flux linkage of A is $\phi = \phi_1 + \phi_2$ $= \frac{\mu_0 \mu_r I}{8\pi} + \frac{\mu_0 I}{2\pi} ln \left(\frac{d}{a}\right)$ $L_A = \frac{\phi}{I}$ $L_{A} = \frac{\mu_{0}}{4\pi} \left[\frac{\mu_{r}}{2} + 2 \ln \left(\frac{d}{a} \right) \right] H/m$

	Similarly for conductor B, the total flux linkage is			
	$\phi = \frac{\mu_0 \mu_r \mathrm{I}}{8\pi} + \frac{\mu_0 \mathrm{I}}{2\pi} \ln\left(\frac{d}{a}\right)$			
	on 2n (a)			
	The total inductance of conductor B is			
	$L_{B} = \frac{\mu_{0}}{4\pi} \left[\frac{\mu_{r}}{2} + 2 \ln\left(\frac{d}{a}\right) \right]$			
	$\mathbf{L} = \mathbf{L}_{\mathbf{A}} + \mathbf{L}_{\mathbf{B}}$			
	$\mathbf{L} = \mu_0 / 4\pi * [\mu r + 4 \ln (d/a)] $ (6 M)			
	PART * C			
	Evaluate the inductance of a solenoid of 2500 turns wound uniformly over a length of 0.5 m on a cylindrical paper tube 4 cm in diameter. The medium is air. (Nov			
	2016) (8 M) (BTL 3)			
	Answer: Page - 3.70 - Dr. P. Dananjayan			
1.	N = 2500			
	1 = 0.5 m			
	d = 4 cm			
	$A = \pi d^2/4 = 12.566 * 10^{-4} $ (4 M)			
	Inductance L = $\mu 0 N^2 A / 1 = 19.7386 \text{ mh}$ (4 M)			
	At a point P(x,y,z) the components of vector magnetic potential A are given as $A_x = (A_x + 2x) + (A_y + 2x$			
	$(4x + 3y + 2z)$; $A_y = (5x + 6y + 3z)$ and $A_z = (2x + 3y + 5z)$. Determine magnetic flux			
	density B at any point P. (7 M) (BTL 3) Answer: Page – 3.58 - Dr. P. Dananjayan			
	$\Gamma = -$			
2.	$a_x \overline{a}_y \overline{a}_z$			
	$\mathbf{B} = \nabla \times \mathbf{A} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{A}} & \partial & \partial \end{bmatrix}$			
	$\partial x \qquad \overline{\partial y} \qquad \overline{\partial z}$			
	4x+3y+2z $5x+6y+3z$ $2x+2y+5z$			
	$B = \nabla \times A = \begin{bmatrix} \overline{a}_{x} & \overline{a}_{y} & \overline{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 4x + 3y + 2z & 5x + 6y + 3z & 2x + 3y + 5z \end{bmatrix} (2 M)$			
	B = 2 a_z (5 M) In cylindrical co-ordinates, $A = 50 \rho^2 \hat{a}_z$ Wb/m is a vector magnetic potential in a			
	certain region of free space. Find the magnetic field intensity H, magnetic flux			
	density B and current density J. (15 M) (BTL 5)			
	density D and current density 5. (15 M) (D12 5)			
	Answer: Page – 3.59 -Dr. P. Dananjayan			
	$\mathbf{B} = \nabla \times \mathbf{A} = \frac{1}{\rho} \begin{vmatrix} \overrightarrow{a}_{\rho} & \overrightarrow{\rho} & \overrightarrow{a}_{\phi} & \overrightarrow{a}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ 0 & 0 & 50 \ \rho^{2} \end{vmatrix}$			
3.	$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} - \mathbf{\rho} \frac{\partial}{\partial \rho} \frac{\partial}{\partial \phi} \frac{\partial}{\partial z}$			
	$0 0 50 \rho^2$			
	$= \frac{1}{\rho} \overrightarrow{a_{\rho}} \left[\frac{\partial}{\partial \phi} (50 \ \rho^2) \right] - \overrightarrow{a_{\phi}} \left[\frac{\partial}{\partial \rho} (50 \ \rho^2) \right]$			
	$= 0 - 100 \rho \overrightarrow{a_{\phi}}$			
	$\mathbf{B} = -100 \ \rho \stackrel{\rightarrow}{a_{\phi}} Wb/m^2 \tag{7 M}$			
	$\mathbf{B} = -100 \mathbf{p} \mathbf{a}_{0} \text{(7 M)}$			

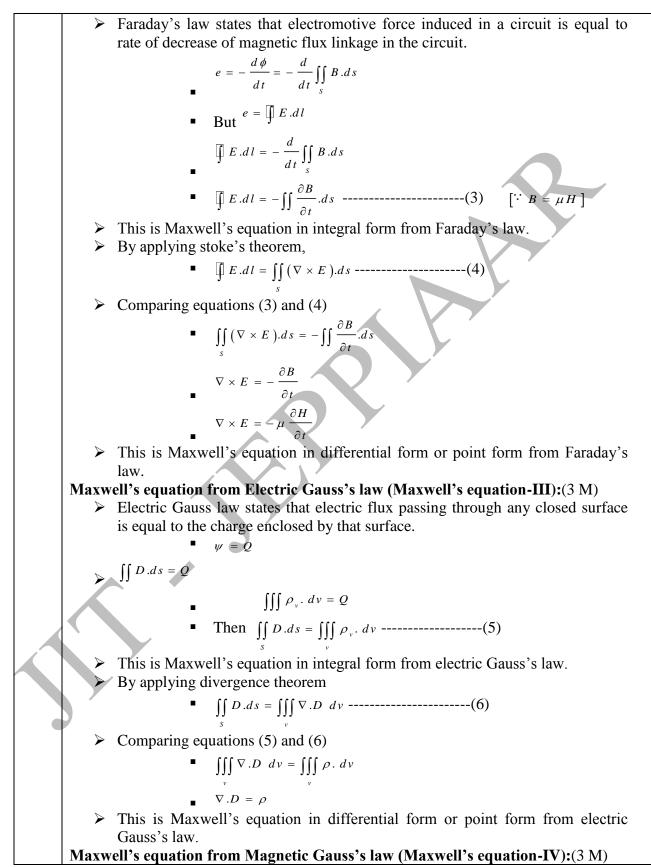
JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

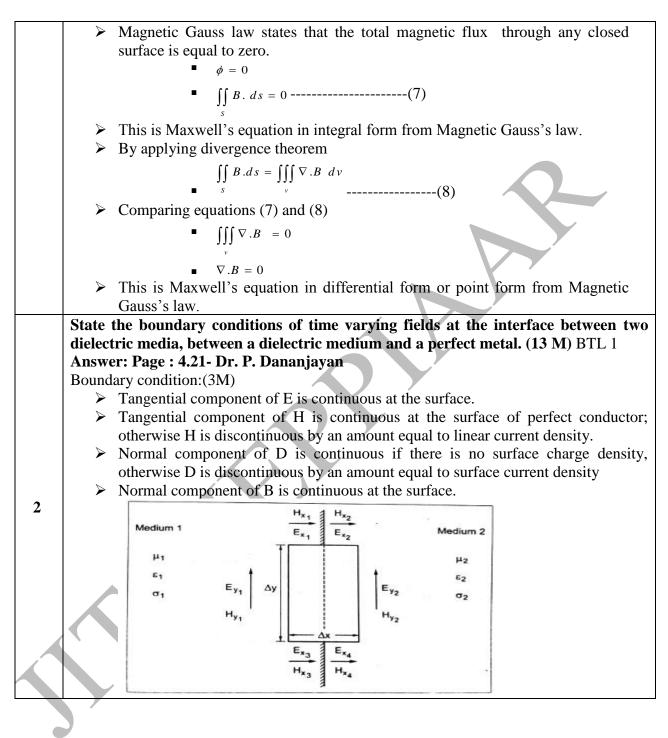
UNIT IV ELECTRODYNAMIC FIELDS

Magnetic Circuits - Faraday's law – Transformer and motional EMF – Displacement current - Maxwell's equations (differential and integral form) – Relation between field theory and circuit theory – Applications.


0	1		
Q. No	Part * A		
1	State Faraday's law of electromagnetic induction. (May 2016, Nov 2016) BTL 1 Faraday's law states that electromagnetic force induced in a circuit is equal to the rate of change of magnetic flux linking the circuit. $\text{Emf} = \frac{d\Phi}{dt}$		
2	Define mmf and reluctance. BTL 1 Magnetic motive force (mmf) is given by mmf = flux x reluctance mmf = Φ^{\Re} Amp.turns. Reluctance is the ratio of mmf of magnetic circuit to the flux through it. $\Re = \frac{mmf}{flux (\Phi)}$. It is also written as $\Re = \frac{l}{\mu A}$; Where <i>l</i> is the length, A is the area of cross- section, μ is permeability		
	What is the expression for energy stored and energy density in magnetic field? BTL1		
3	Energy W = $\frac{1}{2}$ LI ² ; Where L is the inductance, I is the current.		
	Energy density (w) = $\frac{1}{2}$ BH = $\frac{1}{2}$ μ H ²		
4	State Lenz's law. BTL 1 Lenz's law states that the induced emf in a circuit produces a current which oppose the		
4	change in magnetic flux producing it.emf = $-\frac{d\Phi}{dt}$		
	What is meant by Displacement current? (Nov 2013, May 2016)BTL 1		
5	Displacement current is nothing but the current flows through the Capacitor. $I_c=C dV/dt$.		
	State Ampere's circuital law. Should the path of integration be circular? BTL 1		
6	The integral of the tangential component of the magnetic field strength around a closed path is equal to the current enclosed by the path $\delta H_{\rm c}$. The path of integration must		
	path is equal to the current enclosed by the path. $\oint H dl = I$. The path of integration must		
	be enclosed one. It must be any shape and it need not be circular alone. Write the fundamental postulate for electromagnetic induction. BTL 1		
	A changing magnetic flux (Φ) through a closed loop, produces an emf or voltage at the		
	terminals as given by $v = -\frac{d\Phi}{dt}$ where the voltage is the integral of the electric field E		
7	around the loop. For uniform magnetic field Φ = B.A where B is the magnetic flux density		
	and A is the area of the loop. $v = \oint E dl = -\iint \frac{\partial B}{\partial t} ds$. This is Faraday's law. It states that		
	the line integral of the electric field around a stationary loop equals the surface integral of the time rate of change of the magnetic flux density B integrated over the loop area.		

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0


	Write down the Maxwell's equation in point form. BTL 1				
	From Ampere's Law				
-					
	$\nabla XH = J + \frac{\partial D}{\partial t}$				
8					
	$\nabla XE = -\frac{\partial B}{\partial B}$				
	∂t				
	From Electric Gauss's Law, $\nabla . D = \rho$,				
	From Magnetic Gauss's Law, $\nabla .B = 0$ Write down the Maxwell's equation in integral form. BTL 3				
	From Ampere's Law				
	$\oint \mathbf{H} \cdot \mathbf{d} \mathbf{l} = \iint_{\mathbf{s}} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial \mathbf{t}} \right) \mathbf{d} \mathbf{s}$				
	From Faraday's Law				
9	$\oint \mathbf{E} d\mathbf{l} = -\iint_{\mathbf{s}} \frac{\partial \mathbf{B}}{\partial \mathbf{t}} d\mathbf{s}$				
From Electric Gauss's Law					
	$\oint D.ds = \iiint \rho dv$				
	From Magnetic Gauss's Law				
	$\oint B ds = 0$				
	s				
	Mention four similarities between electric circuit and magnetic circuit.(Nov/Dec				
	2014) BTL 1 Electric circuit Magnetic circuit				
	1.emf (volts)1. mmf(Amp-turns)				
	2.current = $\frac{\text{emf}}{\text{emf}}$				
10	2.current $-\frac{1}{\text{resistance}}$ 2.magnetic flux $=\frac{\text{mmf}}{1}$				
	3.resistance $R = \frac{\rho l}{r}$				
	A 3. Reluctance $\Re = \frac{1}{4}$				
	4.Conductance $G = \frac{1}{2}$				
	^R 4. Permeance $P = \frac{1}{m}$				
	Write down the Maxwell's equations in point phasor forms. BTL 1				
	Write down the Maxwell's equations in point phasor forms. B1L 1 $\nabla xH = J + j\omega D = (\sigma + j\omega\varepsilon) E$				
11	$\nabla xE = -j\omega B = -j\omega\mu H$				
	$\nabla . D = \rho$				
	$\nabla .B = 0$				
10	Write the expression for total current density. (May 2012) BTL 1				
12	$J=J_C + J_D$ J_C is conduction current density, J_D is displacement current density.				
13	Why $\nabla .B = 0$ and $\nabla xE = 0$. ? BTL 1				
10	· anu				


	$\nabla B = 0$ States that there is no magnetic charge. The net magnetic flux emerging through				
	any closed surface is zero.				
	In a region in which there is no time changing magnetic flux, the voltage around the loop				
	would be zero. By Maxwell's equation, $\nabla X E = -\frac{\partial B}{\partial t} = 0$ (irrotational).				
	$\mathbf{Why} \ \nabla . \mathbf{D} = 0 \ \mathbf{?BTL} \ 4$				
14	In a free space there is no charge enclosed by the medium. The volume charge density is				
	zero. By Maxwell's equation $\nabla .D = \rho_y = 0$.				
	Find the emf induced in a circuit hav	ring an inductance of 700µH if the current			
15	through it varies at the rate of 5000A/se				
	$E=L di/dt=700 \ \mu H \ X \ 5000 \text{A/sec.}=3.5 \ \text{volt}$				
		heory and Field theory. (Nov/Dec 2014) BTL			
	Circuit Theory	Field Theory			
	This analysis originated by its own.				
	Applicable only for portion of H	RF Beyond RF range (Microwave)			
	range. The dependent and independe	ent Not directly, through E and H.			
	parameters I, V are directly obtain				
	for the given circuit.	cu			
		ot Parameter of medium (permittivity			
16	involved.	and permeability) are involved in			
		the analysis.			
	Laplace Transform is employed,	Maxwell's equation is employed			
	Z, Y, and H parameters are used.	S parameter is used.			
	Low power is involved.	Relatively high power is involved.			
	Simple to understand.	Needs visualization ability			
	Two-dimensional analysis	Three – dimensional analysis			
	Frequency is used as reference.	Wave length is used as reference			
	Lumped components are involved	Distributed components are			
		involved.			
	Distinguish between conduction and dis	placement current. (Nov 2011) BTL 1			
	Conduction current.	Displacement current			
	Conduction current is nothing	Displacement current is nothing but			
17	but the current flows through	the current flows through the			
	the conductor.	Capacitor.			
	$I_c = \sigma E.$	$I_{d} = = \int_{s} \frac{\partial D}{\partial t} ds$			
		$\int_{s} \partial t$			
	0	th a velocity of 100m/sec. perpendicular to a			
18	field of 1 tesla. What is the value of emf	. ,			
	$E_{induced} = vlB$, where $v = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 1 \text{m}$, $B = 100 \text{m/sec}$, $l = 100 \text{m/sec}$				
19	What is the significance of displacement current? (Nov 2012) BTL 1				
	The displacement current I _D through a spe	ecified surface is obtained by integration of the			

	normal component of J_D over the surface.			
	1			
	$I_{d} = \int_{S} J_{D} . ds = \int_{S} \frac{\partial D}{\partial t} . ds$			
	$I_{d} = \varepsilon \frac{\partial E}{\partial t} ds$			
	This is a current which directly passes through the capacitor.			
	A loop is rotating about the Y axis in a magnetic field $B = B_0 \sin wt$ i web/m ² . What is			
20	the type the voltage induced in the loop? (May 2012) BTL 3			
20	Motional or Generator emf is induced in the conductor as the conductor position varies			
	with respect to time.			
	Calculate the characteristics impedance of free space and of the medium whose			
	relative permeability is 1 and relative permittivity is 3, (Nov 2012)			
	(Nov/Dec2015)BTL 3			
21	E μ			
	$\eta = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}}$			
	$=\sqrt{\frac{4\pi\times10^{-7}\times1}{8.854\times10^{-12}\times3}} = 217.4$			
	A parallel plate capacitor with plate area of 5 cm ² and plate separation of 3 mm has			
	a voltage 50 sin 10 ³ t V applied to its plates. Calculate the displacement current			
	assuming ∈ = 2 \in_0 .(Nov/Dec2015)BTL 3			
22	$I_{d} = \frac{\partial D}{\partial t} = \in \frac{\partial E}{\partial t}; E = \frac{V}{d}$ $I_{d} = \frac{e}{d} \frac{\partial V}{\partial t} = \frac{2e_{0}}{d} \frac{\partial V}{\partial t}$			
	$L = \frac{\partial t}{\partial v} = \frac{\partial t}{2\varepsilon_0 \partial v}$			
	$d = \frac{1}{d \partial t} - \frac{1}{d \partial t} \frac{1}{d \partial t}$			
	$=\frac{2 \times 8.854 \times 10^{-12}}{3 \times 10^{-3}} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = 2.951 \times 10^{-4} \cos 10^{3} t \text{ A/m}^{2}$			
	Define mutual inductance and self-inductance. (Apr/May2015) BTL 1			
	Mutual inductance.			
	The mutual inductance between two coils is defined as the ratio of induced magnetic flux			
	linkage in one coil to the current through in other coil(M) = $\frac{N_2 \Phi_{12}}{i_1}$; Where N ₂ is number			
23	of turns in coil 2; Φ_{12} is magnetic flux links in coil 2 and i_1 is the current through coil 1.			
	Self -inductance.			
	The self -induction of a coil is defined as the ratio of total magnetic flux linkage in the			
	circuit to the current through the coil (L) = $\frac{N\Phi}{i}$ Where Φ is magnetic flux; N is			
	number of turns of coil; i is the current.			
	Distinguish between transformer emf and motional emf. (Nov 2013)(Apr/May			
	2015)BTL 1			
_	The emf induced in a stationary conductor due to the change in flux linked with it, is			
24	called transformer emf or static induced emf. emf = - $\iint \frac{\partial B}{\partial t} ds$ eg.			
	Transformer. ∂t			
	The emf induced due to the movement of conductor in a magnetic field is called motional			
L	The child method due to the movement of conductor in a magnetic field is called motional			

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

The integral form of the second Maxwell's equation is

$$\oint \mathbf{E} \cdot d\mathbf{l} = \iint_{\mathbf{S}} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s}$$

This is applied to a rectangle

$$E_{y_1} \Delta y + E_{x_1} \frac{\Delta x}{2} + E_{x_2} \frac{\Delta x}{2} - E_{y_2} \Delta y - E_{x_4} \frac{\Delta x}{2} - E_{x_3} \frac{\Delta x}{2} = \frac{\partial B}{\partial t} \Delta x \Delta y$$

Consider the area of the rectangle is made to approach zero by reducing the width Δx to approach zero.

Then,

 $\mathbf{E}_{y_1} = \mathbf{E}_{y_2}$

 $\mathbf{E}_{y_1}\,\Delta y - \mathbf{E}_{y_2}\,\Delta y \ = \ 0$

The tangential component of E is continuous.

The integral form of first Maxwell's equation is

.

$$\oint_{l} \mathbf{H} \cdot dl = \iint_{\mathbf{S}} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) ds$$

Applying to the rectangle,

$$H_{y_{1}} \Delta y + H_{x_{1}} \frac{\Delta x}{2} + H_{x_{2}} \frac{\Delta x}{2} - H_{y_{2}} \Delta y - H_{x_{4}} \frac{\Delta x}{2} - H_{x_{3}} \frac{\Delta x}{2} = \left(J + \frac{\partial D}{\partial t}\right) \Delta x \Delta y$$
If $\Delta x \to 0$, then
$$H_{y_{1}} \Delta y - H_{y_{2}} \Delta y = 0$$

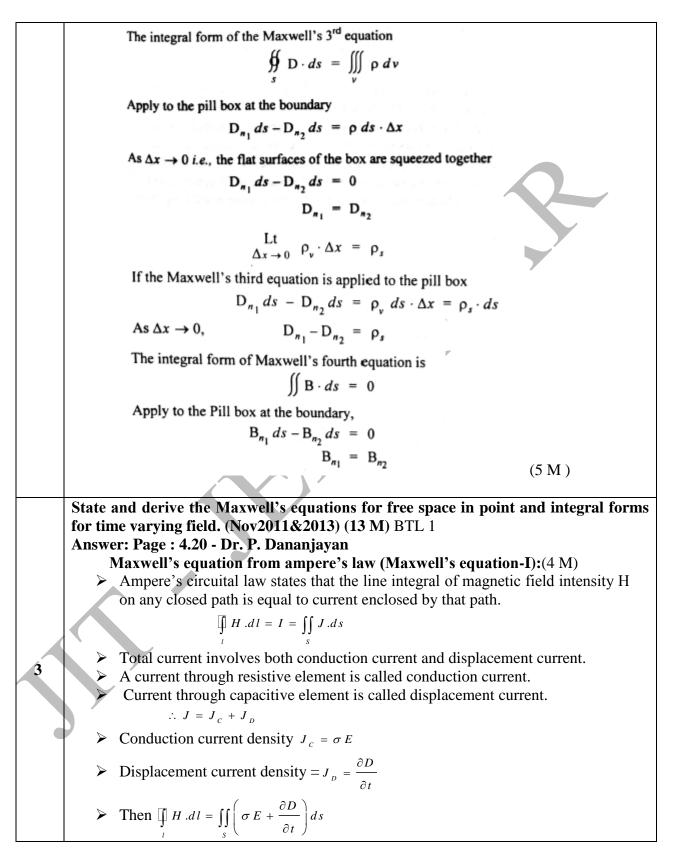
$$H_{y_{1}} = H_{y_{2}}$$

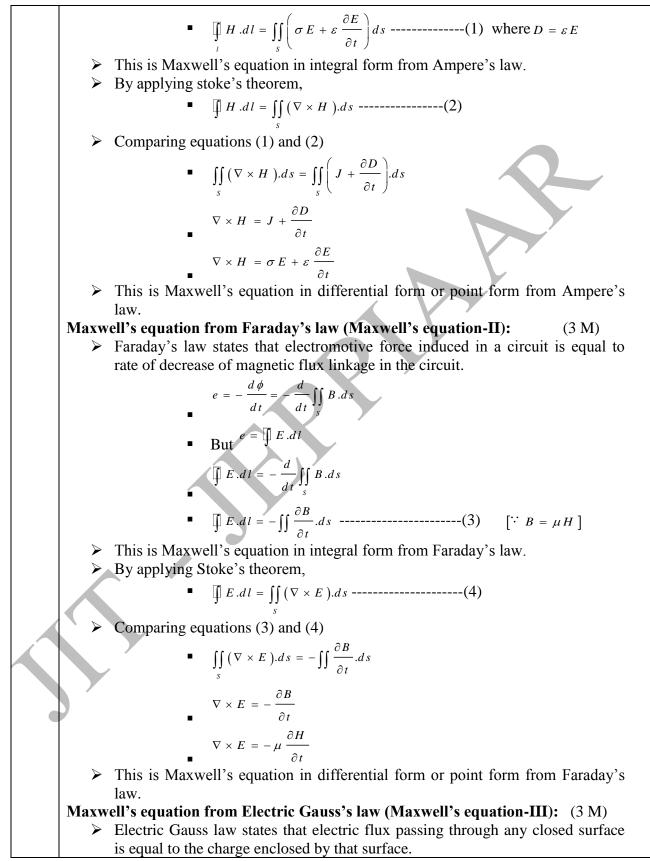
$$Lt \\ \Delta x \to 0 \quad J \cdot \Delta x = J_{f} \quad A/m$$

If the Maxwell's I equation is applied to the rectangle, then

$$H_{y_{1}} \Delta y + H_{x_{1}} \frac{\Delta x}{2} + H_{x_{2}} \frac{\Delta x}{2} - H_{y_{2}} \Delta y - H_{y_{4}} \frac{\Delta x}{2} - H_{y_{3}} \frac{\Delta x}{2} = \left(J + \frac{\partial D}{\partial x}\right) \Delta x \Delta y$$

$$= J \Delta x \Delta y + \frac{\partial D}{\partial x} \Delta x \Delta y$$

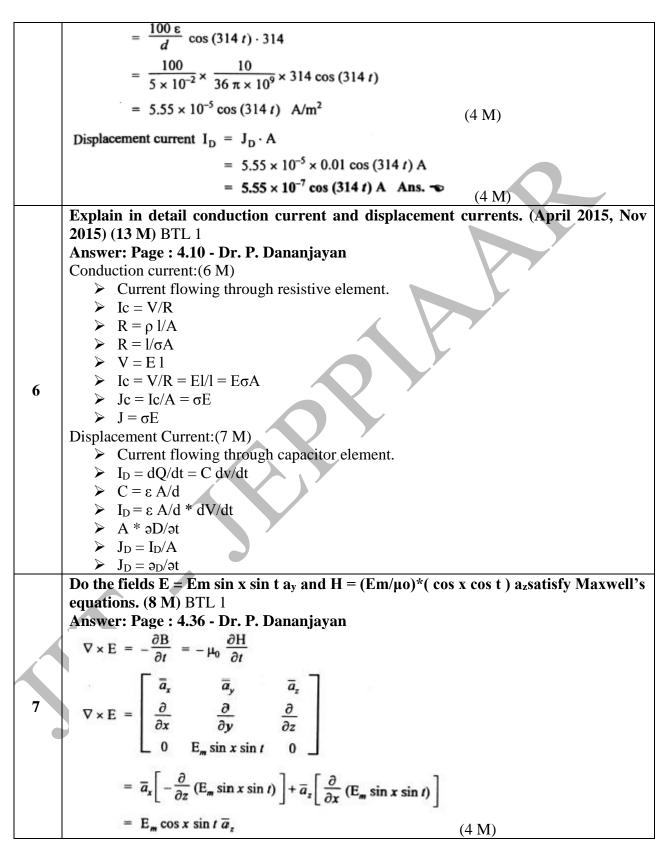

$$H_{y_{1}} \Delta y - H_{y_{2}} \Delta y = J_{l} \Delta y$$

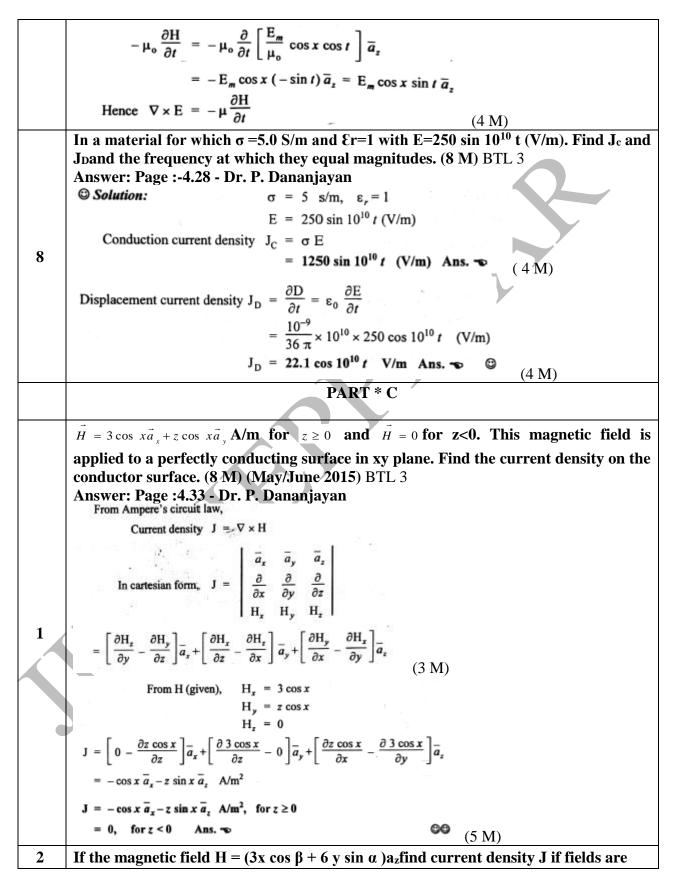

$$H_{y_{1}} - H_{y_{2}} = J_{l}$$
(5 M)

ε₂ σ₂

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

D'n2

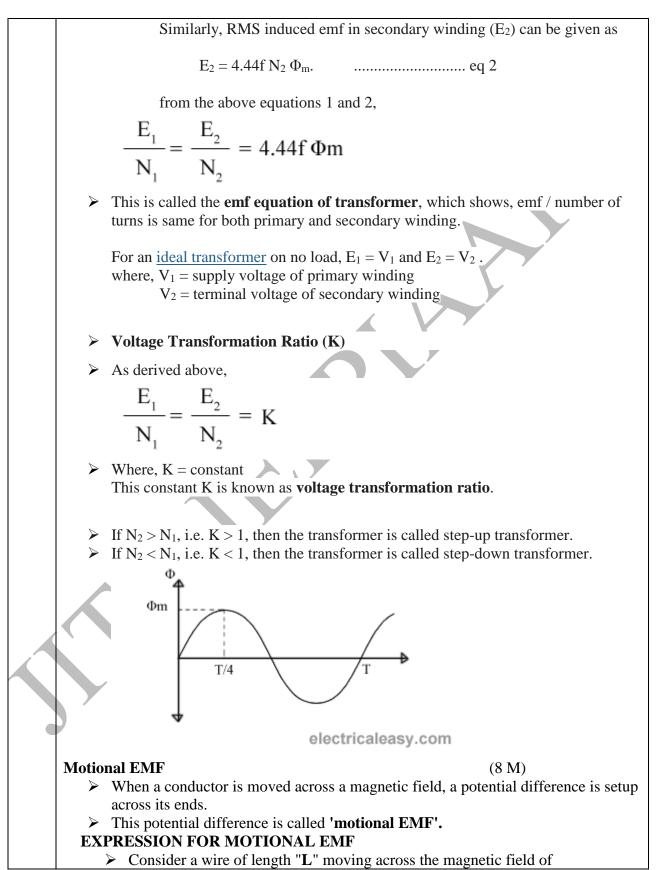


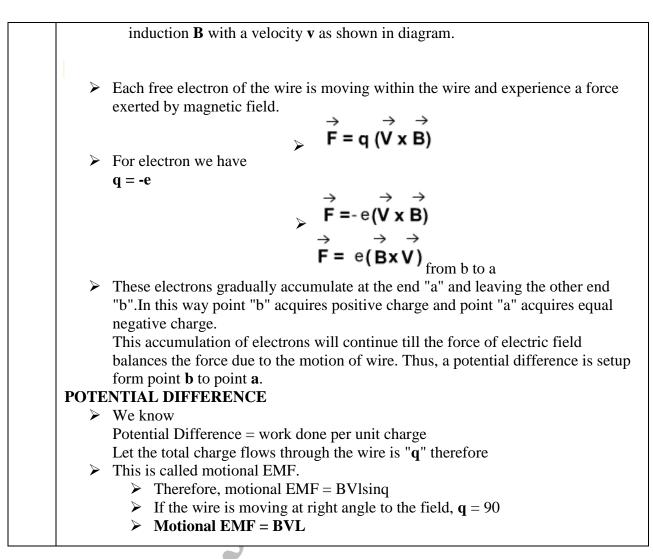


JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

• $\psi = O$ $\int D \, ds = Q$ $\iiint \rho_v \cdot dv = Q$ Then $\iint D.ds = \iiint \rho_v. dv$ -----(5) > This is Maxwell's equation in integral form from electric Gauss's law. ➢ By applying divergence theorem $\iint D.ds = \iiint \nabla.D \ dv$ -----(6) Comparing equations (5) and (6) $\iiint_{v} \nabla . D \ dv = \iiint_{v} \rho . \ dv$ $\nabla . D = \rho$ This is Maxwell's equation in differential form or point form from electric \geq Gauss's law. Maxwell's equation from Magnetic Gauss's law (Maxwell's equation-IV): (3 M) > Magnetic Gauss law states that the total magnetic flux through any closed surface is equal to zero. $\phi = 0$ $\iint B \cdot ds = 0 - (7)$ > This is Maxwell's equation in integral form from Magnetic Gauss's law. By applying divergence theorem fivergence $\iint B.ds = \iiint_{v} \nabla .B \ dv$ -----(8) Comparing equations (7) and (8) $\iiint \nabla . B = 0$ $\nabla B = 0$ This is Maxwell's equation in differential form or point form from Magnetic Gauss's law. $E(x, t) = \text{Real part of } [E(x) e^{j \omega t}]$ $\frac{\partial E}{\partial t}(x, t) = \text{Real part of } [j \omega E(x) e^{j \omega t}]$ Apply for Maxwell's equation, Real part of $[\nabla \times H] = \text{Real part of } [(\sigma E + j \omega \varepsilon E) e^{j \omega t}]$ $\nabla \times H = \sigma E + i \omega \epsilon E$ $\nabla \times H = (\sigma + j\omega \varepsilon) E$ $H(x, t) = \operatorname{Re}[H(x)e^{j\omega t}]$ For magnetic field, $\frac{\partial H}{\partial t}(x,t) = \operatorname{Re}\left[j\omega H(x) e^{j\omega t}\right]$

		Apply for Maxwell's equation	n		
	$\operatorname{Re}\left[\nabla \times E\right] = -\operatorname{Re}\left[j\omega\mu H e^{j\omega t}\right]$				
		$\nabla \times \mathbf{E} = -j \omega \mu \mathbf{H}$			
		Differential Form	Integral Form	٦	
		$\nabla \times \mathbf{H} = (\sigma + j\omega\varepsilon) \mathbf{E}$	$\oint \mathbf{H} \cdot dl = \iint (\sigma + j \omega \varepsilon \mathbf{E}) ds$		
		$\nabla \times \mathbf{H} = (\sigma + j \omega \varepsilon) \mathbf{E}$ $\nabla \times \mathbf{E} = -j \omega \mu \mathbf{H}$ $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$	$\oint \mathbf{E} \cdot dl = -\mu \iint j \omega \mathbf{H} \cdot ds$		
		$\nabla \cdot \mathbf{D} = \boldsymbol{\rho}$	$\oint \mathbf{D} \cdot ds = \iiint \rho dv$		
		$\nabla \cdot \mathbf{B} = 0$	$\oint \mathbf{B} \cdot ds = 0$		
	For 1 A conductor current in copper wire, find the corresponding displacement current at 100 MHz. Assume for copper σ = 5.8 * 10 ⁷ mho/m. (7M) BTL 3 Answer: Page : 4.25 - Dr. P. Dananjayan				
		ent $I_C = J_C A = 1 Amp$			
		$J_C = \frac{I}{A} = \sigma E$			
4		$E = \frac{J_C}{\sigma} = \frac{I/A}{\sigma} = \frac{0.17}{\sigma}$		M)	
	Displacement current $I_D = \omega \varepsilon E \cdot A = \omega \varepsilon_0 \varepsilon_r E A$				
	For copper $\epsilon_r = 1$, $I_D = 2\pi \times 100 \times 10^6 \times \frac{10^{-9}}{36 \pi} \times \frac{0.172 \times 10^{-7}}{A}$				
		$I_{\rm D} = 9.556 \times 10^{-1}$	¹ A Ans. ● (3	M)	
	A parallel plate capacitor with plate area of 0.01 m ² and plate separation of 5 cm has a voltage 100 sin 314 t V applied to its plates. Calculate the displacement current				
		اله 114 t v applied to its او (May 2012, Nov 2014)		nacement current	
Answer: Page : 4.32 - Dr. P. Dananjayan Displacement current density					
5	$J_{\rm D} = \frac{\partial {\rm D}}{\partial t} = \varepsilon \frac{\partial {\rm E}}{\partial t}$				
	$E = \frac{V}{a}$	$\frac{1}{4}$			
	$J_{\rm D} = \frac{\varepsilon}{d}$	$\frac{\partial \mathbf{V}}{\partial t} = \frac{\mathbf{\varepsilon}}{d} \frac{\partial}{\partial t} (100 \sin 314)$	(1)		




invariant with time. (8 M) BTL 5 Answer: Page: 4.35 - Dr. P. Dananjayan $\nabla \times H = J + \frac{\partial D}{\partial t}$ If the fields are invariant with time $\frac{\partial D}{\partial t} = 0$. $\nabla \times H = J$ (3 M) $J = \begin{vmatrix} \overline{a}_x & \overline{a}_y & a_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$ $\mathbf{J} = \frac{\partial}{\partial y} (3 x \cos \beta + 6 y \sin \alpha) \,\overline{a}_x - \frac{\partial}{\partial \dot{x}} (3 x \cos \beta + 6 y \sin \alpha) \,\overline{a}_y$ $J = 6 \sin \alpha \, \overline{a}_r - 3 \cos \beta \, \overline{a}_{r,s} \, A/m^2$ Ans. $-\infty$ 66 (5 M) The conduction current flowing through a wire with conductivity $\sigma = 3 \times 10^7$ s/m and relative permittivity $\varepsilon_r = 1$ is given by Ic 3 sin ωt (mA). If $\omega = 10^8$ ras/sec. Find the displacement current. (8 M) BTL 3 Answer: Page: 4.33 - Dr. P. Dananjayan $I_{c} = \sigma E A$ $E = \frac{I_{C}}{\sigma A} = \frac{3 \times 10^{-3} \sin \omega t}{3 \times 10^{7} \times A} = \frac{1 \times 10^{-10}}{A} \sin \omega t$ $\frac{\partial E}{\partial t} = \frac{1 \times 10^{-10}}{A} \omega \cos \omega t$ $J_{\rm D} = \varepsilon \frac{\partial E}{\partial t}$ 3 $J_{\rm D} = \varepsilon \, \omega \cdot \frac{1 \times 10^{-10}}{\rm A} \cos \omega t$ $= 8.85 \times 10^{-12} \times 10^8 \times \frac{10^{-16}}{A} \cos 10^8 t$ (4 M)Displacement current $I_D = J_D \cdot A$ $= 8.85 \times 10^{-12} \times 10^8 \times \frac{10^{-16}}{A} \cos 10^8 t \text{ A}$ $I_{\rm D} = 8.85 \times 10^{-4} \cos 10^8 t$ Amperes Ans. - $(4 \mathrm{M})$ Given the conduction current density in a lossy dielectric ad $Jc = 0.02 \sin 10^9 t \text{ A/m}^2$. 4 Find the displacement current density if $\sigma = 10^3$ mho/m and $\varepsilon r = 6.5$ (8 M) BTL 5 Answer: Page: 4.35 – Dr. P. Dananjayan

$J_{\rm C} = 0.02 \sin 10^9 t \text{A/m}^2$
$\sigma = 10^3 \text{ mho/m}$
$\varepsilon_r = 6.5$
$J_{\rm C} = \sigma E$
$E = \frac{J_C}{\sigma}$
$E = \frac{\sigma}{\sigma}$
$= \frac{0.02 \sin 10^9 t}{10^3} = 2 \times 10^{-5} \sin 10^9 t \text{ V/m} $ (4 M)
$=\frac{10^3}{10^3} = 2 \times 10^3 \text{ sm} 10^4 \text{ Vm} (4 \text{ M})$
Displacement current density $J_D = \frac{\partial D}{\partial t} = \varepsilon \frac{\partial E}{\partial t}$
$\frac{\partial E}{\partial t} = 2 \times 10^{-5} \times 10^9 \cos 10^9 t$
$J_{\rm D} = \varepsilon \frac{\partial E}{\partial t} = \varepsilon_{\rm o} \varepsilon_{\rm r} \frac{\partial E}{\partial t}$
$= 8.854 \times 10^{-12} \times 6.5 \times 2 \times 10^{-5} \times 10^9 \cos 10^9 t \text{ A/m}$
= $115.1 \times 10^{-8} \cos 10^9 t$ A/m Ans. $\neg \circ$ (4 M)
Derive the emf equations for transformer and motional emf. (15 M) BTL1
Answer: Page : 4.04 – Dr. P. Dananjayan
EMF Equation of The Transformer (7 M)
> Let,
N_1 = Number of turns in primary winding N_2 = Number of turns in secondary winding
$\Phi_{\rm m} = {\rm Maximum flux in the core (in Wb)} = ({\rm B}_{\rm m} \times {\rm A})$
f = frequency of the AC supply (in Hz)
As, shown in the fig., the flux rises sinusoidally to its maximum value \sim
$\Phi_{\rm m}$ from 0.
 It reaches to the maximum value in one quarter of the cycle i.e in T/4 sec
(where, T is time period of the sin wave of the supply = $1/f$).
5 Average rate of change of flux = $\frac{\Phi_m}{T/4}$ = $\frac{\Phi_m}{T/4}$
> average rate of change of flux = 4f Φ_m (Wb/s).
> Induced emf per turn = rate of change of flux per turn.
> Therefore, average emf per turn = 4f Φ_m (Volts).
Now, we know, Form factor = RMS value / average value
 Therefore, RMS value of emf per turn = Form factor X average emf per
turn. \land As the flux Φ verice sinuscidally form factor of a sine wave is 1.11
As, the flux Φ varies sinusoidally, form factor of a sine wave is 1.11 Therefore, RMS value of emf per turn = 1.11 x 4f Φ_m = 4.44f Φ_m .
RMS value of induced emf in whole primary winding (E ₁) = RMS value of emf per turn X Number of turns in primary winding
emf per turn X Number of turns in primary winding $E_1 = 4.44f N_1 \Phi_m$
$\mathbf{L}_{1} = \mathbf{L}_{1} \mathbf{\Psi}_{1} \mathbf{\Psi}_{m} \qquad \dots \qquad \mathbf{U}_{1} \mathbf{U}_{1} \mathbf{U}_{1}$

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IIndYr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

	UNIT V ELECTROMAGNETIC WAVES			
	Electromagnetic wave generation and equations - Wave parameters; velocity, intrinsic			
-	impedance, propagation constant – Waves in free space, lossy and lossless dielectrics,			
Q.	ctors- skin depth - Poynting vector – Plane wave reflection and refraction.			
V. No	Part * A			
	Mention the properties of uniform plane wave. (Nov 2016) BTL 1			
	The properties of uniform plane wave are as follows:			
	At every point in space, the electric field E and Magnetic field H are perpendicular to each other and to the direction of the travel.			
1	 The fields vary harmonically with the time and at the same frequency, everywhere 			
	in space.			
	Each field has the same direction, magnitude and phase at every point in any plane			
	perpendicular to the direction of wave travel.			
	Write down the wave equations for E and H in a non-dissipative (free space) and			
	conducting medium. (May 2012) BTL 1 In Free space.			
	-			
2	$\nabla^{2} \mathbf{E} - \mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} = 0 ; \qquad \nabla^{2} \mathbf{H} - \mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} = 0$			
	In conducting medium.			
	$= \frac{\partial^2 E}{\partial t^2} = \frac{\partial E}{\partial t^2} = \frac{\partial^2 H}{\partial t^2} = \frac{\partial^2 H}{\partial$			
	$\nabla^{2}E - \mu\epsilon \frac{\partial^{2}E}{\partial t^{2}} - \mu\sigma \frac{\partial E}{\partial t} = 0$; $\nabla^{2}H - \mu\epsilon \frac{\partial^{2}H}{\partial t^{2}} - \mu\sigma \frac{\partial H}{\partial t} = 0$			
	Define uniform plane wave.(Nov 2013) BTL 1			
3	If the phase of a wave is the same for all points on a plane surface it is called plane			
	wave. If the amplitude is also constant in a plane wave, it is called uniform plane wave. Define intrinsic impedance or characteristic impedance. BTL 1			
	It is the ratio of electric field to magnetic field. Or It is the ratio of square root of			
4				
	permeability to permittivity of the medium. $\eta = \frac{E}{H} = \sqrt{\frac{\mu}{\epsilon}}$ Ohms			
	Calculate intrinsic impedance or characteristic impedance of free space.			
	(Nov 2011) BTL 3			
5	$\eta = \frac{E}{H} = \sqrt{\frac{\mu_o}{\epsilon}} = \sqrt{\frac{4\pi \times 10^{-7}}{8.854 \times 10^{-12}}} = 120\pi = 377 \text{ ohms}$			
	$\eta = \frac{1}{H} = \sqrt{\frac{\epsilon_0}{\epsilon_0}} = \sqrt{\frac{120\pi - 377}{8.854 \times 10^{-12}}} - 120\pi - 377$ on this			
	Define polarization. BTL 1			
6	Polarization is defined as the polarization of a uniform plane wave refers to the time			
	varying nature of the electric field vector at some fixed point in space.			
	Define Surface impedance. BTL 1 Surface impedance is defined as the ratio of tangantial component of electric field at the			
7	Surface impedance is defined as the ratio of tangential component of electric field at the surface of a conductor to the linear current density.			
	$Z_s = \frac{E_{\text{tan}}}{J_s} = \frac{\gamma}{\sigma}$; Where γ is propagation constant.			
	σ is conductivity medium.			
I				

0	Define Poynting vector. (May 2014, May 2016) BTL 1				
8	The pointing vector is defined as rate of floe of energy of a wave as it propagates. It is the				
	vector product of electric field and magnetic field. $P = E \times H$				
9	State Slepian vector. BTL 1				
	Slepian vector is a vector which defined at every point, such that its flux coming out of				
9	any volume is zero. $(\nabla . S) = 0$. Slepian vector is given by $S = \nabla \times (\nabla H)$				
	Where, V is electric potential, H is magnetic field intensity.				
	State Poynting theorem. (Nov 2013) BTL 1				
10	The vector product of electric field intensity at any point is a measure of the rate of				
	energy flow per unit area at that point. $P = E \times H$				
	Fine the skin depth at a frequency of 2MHz is Aluminum where $\sigma = 38.2M$ s/m and				
	$\mu_r = 1$. BTL 3				
	Solution:				
	Given data: $\sigma = 38.2$ M s/m = 38.2 x 10 ⁶ s/m; $\mu_r = 1$; $\omega = 2\pi f = 2\pi x 2 x 10^6$				
11	Given data.o - 38.21vi s/iii - 38.2 x 10 s/iii, $\mu_r = 1, \omega = 2\pi f = 2\pi x 2 x 10$				
11	For Good conductor Skin depth s $\frac{1}{2}$ –				
	For Good conductor, Skin depth $\delta = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}} =$				
	$=5.758 \times 10^{-5} \text{ m}.$				
	$\sqrt{\frac{2}{2\pi \times 2 \times 10^{-6} \times 1 \times 4\pi \times 10^{-7} \times 38.2 \times 10^{-6}}} = 5.758 \times 10^{-5} \text{ m.}$				
	State Snell's law. BTL 1				
	When a wave is travelling from one medium to another medium, the angle of incidence is				
	$\sin \theta_1$ $\left[\frac{\eta_1}{\epsilon_2} \right]$				
	related to angle of reflection as follows. $\frac{\sin \theta_{i}}{\sin \theta_{i}} = \sqrt{\frac{\eta_{1}}{\eta_{2}}} = \sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}}$				
12					
	$(\mu_1 = \mu_2 = \mu_0)$				
	Where θ_i is angle of incidence; θ_i is angle of refraction; ε_1 is dielectric constant of				
	medium 1				
	ε_2 is dielectric constant of medium 2.				
	Write Helmholtz's equation. BTL 1				
13					
	$\nabla^2 E - \gamma^2 E = 0$; where $\gamma = \sqrt{j\omega\mu (\sigma + j\omega\varepsilon)}$				
	What is Brewster angle? BTL 1				
	Brewster angle is an incident angle at which there is no reflect wave for parallel polarized				
14	$= \frac{\varepsilon_2}{\varepsilon_2} = \frac{\varepsilon_2}{\varepsilon_2} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\varepsilon_2}{\varepsilon_2} = \frac{\varepsilon_2}{\varepsilon_2} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\varepsilon_2}{\varepsilon_2} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\varepsilon_1}{\varepsilon_2} = \frac{\varepsilon_2}{\varepsilon_2} = \frac{\varepsilon_1}{\varepsilon_2} $				
	wave. $\theta = \tan^{-1} \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$ Where, ε_1 is dielectric constant of medium $1, \varepsilon_2$ is dielectric				
	constant of medium				
15	What do you meant by total internal reflection? BTL 1				
	When a wave is incident from the denser medium to rarer medium at an angle equal to or				
	greater than the critical angle, the wave will be totally internally reflected back. This				
	phenomenon is called Total internal reflection.				
17	Write the expression for poynting theorem in integral form and in point form. BTL				
16					
	Integral form				

	$-\oint_{S} P.ds = \int_{V} \sigma E^{2} + \frac{\partial}{\partial t} \int_{V} \frac{1}{2} \frac{\partial}{\partial t} [\mu H^{2} + \varepsilon E^{2}]$			
	Point form:			
	$-\nabla \cdot \overline{P} = \sigma E^{2} + \frac{1}{2} \frac{\partial}{\partial t} [\mu H^{2} + \varepsilon E^{2}]$			
17	What is practical significance of skin depth? (Nov 2015, May 2016) BTL 1 Skin depth or depth of penetration (δ) is defined as that of depth in which the wave has been attenuated to 1 / e or approximately 37% of its original value. $\delta = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}} \qquad \text{for good conductor. } \delta = \sqrt{\frac{1}{\pi f\mu\sigma}}; \delta \alpha \frac{1}{f}$			
	For low frequency, the skin depth δ is large. For High or microwave frequency range, the skin depth δ is small.			
	Define normal incidence and oblique incidence. BTL 1			
10	Normal incidence: When a uniform plane wave incidences normally to the boundary			
18	between the media, then it is known as normal incidence.			
	Oblique incidence: When a uniform plane wave incidences obliquely to the boundary between the two media, then it is known as oblique incidence.			
	Define voltage reflection coefficient at the load end of the transmission line.(Nov			
19	2011) BTL 1			
17	It is defined as the ratio of the magnitude of the reflected wave to that of the incident			
	Wave. What is (standing wave ratio?? (New 2012, May 2014, New 2016) PTL 1			
	What is 'standing wave ratio'? (Nov 2012, May 2014, Nov 2016) BTL 1 It is defined as the ratio of maximum to minimum amplitudes of voltage.			
20				
	$\mathbf{S} = \frac{E_{1s \max}}{E_{1s \min}} = \frac{1 + \left \Gamma\right }{1 - \left \Gamma\right }$			
	The capacitance and inductance of an overhead transmission line are 0.0075µF/km			
	and 0.8mH/km respectively. Determine the characteristic impedance of the			
	line.(Nov/Dec 2014) BTL 3			
21	The characteristic impedance of a transmission line is equal to the square root of the ratio			
	of the line's inductance per unit length divided by the line's capacitance per unit length			
	$Z_0 = \sqrt{\frac{L}{C}} = 326.5\Omega$			
	Compare the equi-potential plots of uniform and non-uniform fields. (April /May			
	2015) BTL 1			
	Uniform field Non-uniform field			
22	The equipotential surface are The equipotential surface are			
	perpendicular to \vec{E} and are perpendicular to \vec{E} and are no			
	equidistant for fixed incrementequidistant for fixed incrementof voltagesof voltages			
	Of voltages Of voltages What is the wavelength and frequency of a wave propagation in free space when			
23	$\beta=2?$ (April /May 2015) BTL 3			
L				

11 a plane wave is incident normally from medium 1 to medium2, write the and transmission co-efficients. (Nov/Dec 2014) BTL 3 24 Reflection Co-efficients $\text{Er}_0 = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} Ei_0$ Transmission Co-efficients $\text{Et}_0 = \frac{2\eta_2}{\eta_2 - \eta_1} Ei_0$				
24 Reflection Co-efficients $\operatorname{Er}_0 = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} Ei_0$				
Transmission Co-efficients Eto== $\frac{2\eta_2}{Ei}$				
Transmission Co-efficients Et ₀ = = $\frac{2\eta_2}{\eta_2 + \eta_1} Ei_0$				
A plane wave travelling in air is normally incident on a block of par	raffin with			
25 Reflection co-efficient = $\frac{\sqrt{\epsilon_1} - \sqrt{\epsilon_2}}{\sqrt{\epsilon_1} + \sqrt{\epsilon_2}} = \frac{\sqrt{2.3} - \sqrt{1}}{\sqrt{2.3} + \sqrt{1}} = 0.5165/2.565 = 0.2053$	$\epsilon_{r=2.3.5}$ Find the reflection co-efficient. (Nov/Dec 2015)BTL 3 Reflection co-efficient = $\frac{\sqrt{\epsilon_1} - \sqrt{\epsilon_2}}{\sqrt{\epsilon_1} + \sqrt{\epsilon_2}} = \frac{\sqrt{2.3} - \sqrt{1}}{\sqrt{2.3} + \sqrt{1}} = 0.5165/2.565 = 0.2053$			
PART * B				
Obtain the electromagnetic wave equation for free space in terms of ele	ectric field			
and magnetic fields.(13 M) (Nov 2012, Nov 2015) BTL 2 Answer: Page:5.03 - P. Dananjayan				
For free space (dielectric medium) the conductivity of the medium is ze	ero. (i.e.,			
$\sigma = 0$) and there is no charge containing in it (i.e., $\rho = 0$).				
The electromagnetic wave equations for free space can be obtained	ed from			
 Maxwell's equations. The Maxwell's equation from Faraday's law for free space in point form 	m is			
$\nabla \times E = -\frac{\partial B}{\partial t} = -\mu \frac{\partial H}{\partial t}$	11 13			
Taking curl on both sides,				
	`			
• $\nabla \times \nabla \times E = -\mu \ \nabla \times \frac{\partial H}{\partial t}$ (1)				
But Maxwell's equation from ampere's law for free space in point form	ı is			
1 $\nabla \times H = -\frac{\partial D}{\partial t} = -\varepsilon \frac{\partial E}{\partial t}$				
$\nabla \times \frac{\mathfrak{G}H}{\partial t} = \frac{\partial \nabla \times H}{\partial t} = \frac{\partial}{\partial t} \left(\varepsilon \frac{\partial E}{\partial t} \right)$				
$\nabla \times \frac{\partial H}{\partial t} = \left(\varepsilon \frac{\partial^2 E}{\partial t^2} \right) - \dots - (2)$.)			
Substituting the equation (2) in (1)				
$\nabla \times \nabla \times E = -\mu \ \varepsilon \times \left(\frac{\partial^2 E}{\partial t^2}\right)$	(3)			
\blacktriangleright But the identity is given by,				
$ abla imes \nabla imes E = abla (abla .E) - abla^2 E$				
$\nabla .E = \frac{1}{\varepsilon} \nabla .D = \frac{\rho}{\varepsilon} = 0$				
$ abla^{2} \nabla \times \nabla \times E = \nabla (\nabla . E) - \nabla^{2} E $				

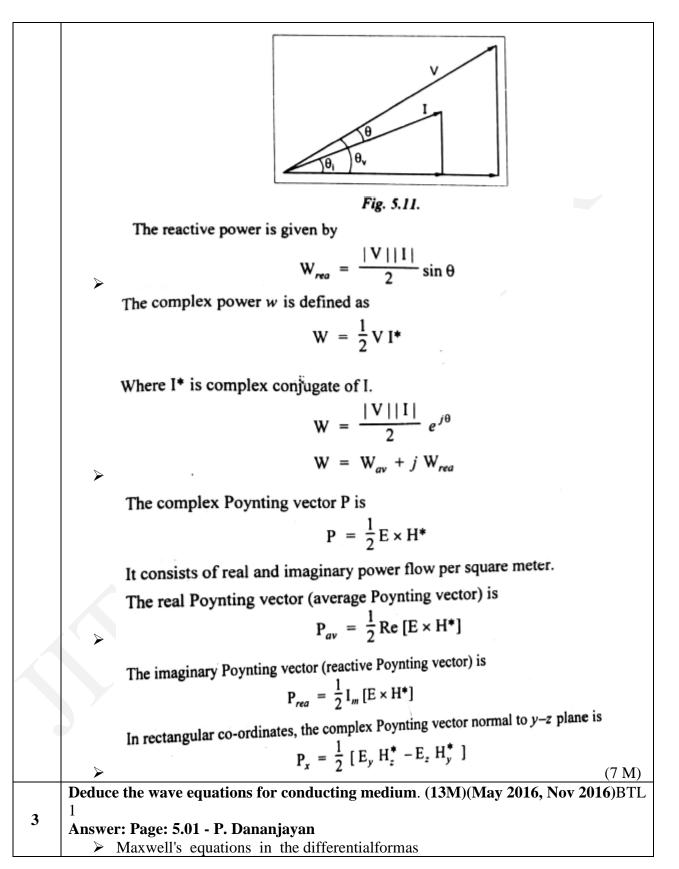
$$\nabla^{2} H - \mu_{v} \varepsilon_{v} \frac{\delta^{2} H}{\delta t^{2}} = 0$$

$$\int_{0}^{\infty} \mu_{v} \varepsilon_{v} = 4\pi \times 10^{-7} \times \frac{1}{36\pi \times 10^{-7}} = \frac{1}{9 \times 10^{19}}$$

$$\int_{0}^{1} \frac{1}{\sqrt{\mu_{v}} \varepsilon_{v}} = 3 \times 10^{8} \text{ m/s} = v_{v}$$

$$\Rightarrow \text{ Where } v_{v} \text{ is the velocity of light.}$$

$$\Rightarrow \text{ Then the wave equation,}$$


$$\Rightarrow \nabla^{2} H - \frac{1}{v_{v}^{2}} \frac{\delta^{2} H}{\delta t^{2}} = 0 \quad (\text{or}) \quad \nabla^{2} E - \frac{1}{v_{v}^{2}} \frac{\delta^{2} E}{\delta t^{2}} = 0$$
(7)
M)
$$\text{State Poynting theorem and thus obtain an expression for instantaneous power density vector associated with electromagnetic field. (13M) (Nov2011, May2012, Nov 2014, April 2015, Nov 2015) BTL 1
Answer: Page: 5.42 · P. Dananjayan
$$\Rightarrow \text{ The vector product of electric field intensity at any point is a measure of the rate of energy flow per unit area at that point. P = E \times H$$

$$\Rightarrow \text{ The instantaneous power we can be written in terms of instantaneous voltage v and current 1 as
$$v = \text{Re} \left[V e^{Iwt} \right] = |V| \cos (\omega t + \theta_{v})$$

$$i = \text{Re} \left[1 e^{Iwt} \right] = |1| \cos (\omega t + \theta_{v})$$
The instantaneous power is given by
$$W = |V||1| \cos (\omega t + \theta_{v}) \cos (\omega t + \theta_{v}) + \theta_{v}| \right]$$
The instantaneous power flow per square meter *i.e.* Poynting vector is
$$\widetilde{P} = \widetilde{E} \times \widetilde{H}$$
The average power is given by
$$w_{w} = \frac{|V||11|}{2} \cos \theta$$

$$W_{w} = \frac{|V||11}{2} \cos \theta$$

$$(6 M)$$$$$$

$$\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$$

$$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

$$\nabla \cdot \overrightarrow{D} = \overrightarrow{\rho}$$

$$\nabla \cdot \overrightarrow{B} = 0$$
> Let us consider a source free uniform medium having dielectric constant, ε magnetic permeability µand conductivity σ . The above set of $_{\mathcal{B}}$ quations can be written as
$$\nabla \times \overrightarrow{H} = \sigma \overrightarrow{E} + \varepsilon \frac{\partial \overrightarrow{E}}{\partial t} \qquad (5.29(a))$$

$$\nabla \cdot \overrightarrow{E} = -\mu \frac{\partial \overrightarrow{H}}{\partial t} \qquad (5.29(b))$$

$$\nabla \cdot \overrightarrow{E} = 0 \qquad (5.29(c))$$

$$\nabla \cdot \overrightarrow{H} = 0 \qquad (5.29(c))$$
> Using the vector identity,
$$\nabla \times \nabla \times \overrightarrow{A} = \nabla \cdot (\nabla \cdot \overrightarrow{A}) - \nabla^2 A$$

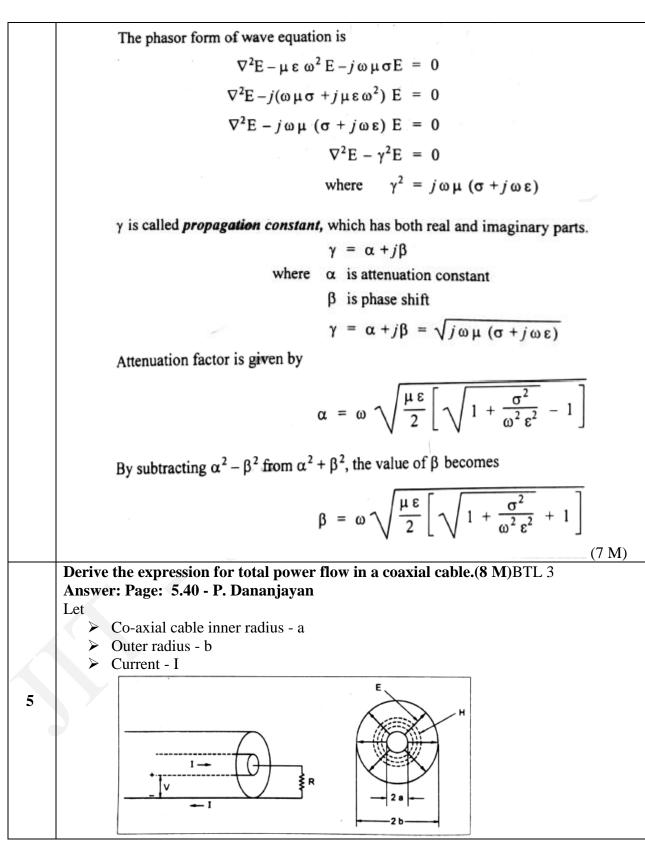
$$\nabla \times \nabla \times \overrightarrow{A} = \nabla \cdot (\nabla \cdot \overrightarrow{A}) - \nabla^2 A$$

$$\nabla \cdot (\nabla \cdot \overrightarrow{E}) - \nabla^2 \overrightarrow{E} = -\mu \frac{\partial}{\partial t} (\nabla \times \overrightarrow{H})$$

$$\nabla \cdot (\nabla \cdot \overrightarrow{E}) - \nabla^2 \overrightarrow{E} = -\mu \frac{\partial}{\partial t} (\nabla \times \overrightarrow{H})$$

$$\nabla \cdot (\nabla \cdot \overrightarrow{E}) - \nabla^2 \overrightarrow{E} = -\mu \frac{\partial}{\partial t} (\sigma \overrightarrow{E} + \varepsilon \frac{\partial \overrightarrow{E}}{\partial t})$$

$$\bullet \nabla \cdot \overrightarrow{E} = 0$$


$$\nabla^2 \overrightarrow{E} = \mu \sigma \frac{\partial \overrightarrow{E}}{\partial t} + \mu \varepsilon \frac{\partial^2 \overrightarrow{E}}{\partial t^2}$$
> But in source free medium (eqn 5.29(c))
> In the same manner for equation eqn 5.29(a) (6 M)

$$\nabla \times \nabla \times \overrightarrow{H} = \nabla \cdot (\nabla \cdot \overrightarrow{H}) - \nabla^2 \overrightarrow{H}$$

$$= \sigma \left(\nabla \times \overrightarrow{E} \right) + \varepsilon \frac{\partial}{\partial t} \left(\nabla \times \overrightarrow{E} \right)$$

$$= \sigma \left(-\mu \frac{\partial \overrightarrow{H}}{\partial t} \right) + \varepsilon \frac{\partial}{\partial t} \left(-\mu \frac{\partial \overrightarrow{H}}{\partial t} \right)$$
> Since $\nabla \cdot \overrightarrow{H} = 0$
fromeqn5.29(d),wecanwrite
 $\nabla^2 \overrightarrow{H} = \mu \sigma \left(\frac{\partial \overrightarrow{H}}{\partial t} \right) + \mu \varepsilon \left(\frac{\partial^2 \overrightarrow{H}}{\partial t^2} \right)$
> Thesetwo equations
 $\nabla^2 \overrightarrow{E} = \mu \sigma \left(\frac{\partial \overrightarrow{H}}{\partial t} \right) + \mu \varepsilon \left(\frac{\partial^2 \overrightarrow{H}}{\partial t^2} \right)$
> Are known as wave equations.
> It may be noted that the field components are functions of both space and time.
For example, if we consider a Cartesian coordinate system, \overrightarrow{E} and \overrightarrow{H} essentially
represents $\overrightarrow{E}(x, y, z, t)$ and $\overrightarrow{H}(x, y, z, t)$. For simplicity, we consider
> Propagation in free space, i.e., $\sigma = 0$
 $\mu = \mu_0 \varepsilon_0 \left(\frac{\partial^2 \overrightarrow{E}}{\partial t^2} \right)$ (5.32(a))
 $\nabla^2 \overrightarrow{H} = \mu_0 \varepsilon_0 \left(\frac{\partial^2 \overrightarrow{H}}{\partial t^2} \right)$ (5.32(b))
> Further simplifications can be made if we consider in Cartesian coordinate
system a special case where \overrightarrow{E} and \overrightarrow{H} are considered to be independent in two
dimensions, say \overrightarrow{E} and \overrightarrow{H} are assumed to be independent in two
dimensions, say \overrightarrow{E} and \overrightarrow{H} are assumed to be independent of y and z. Such waves
are called plane waves. (7 M)

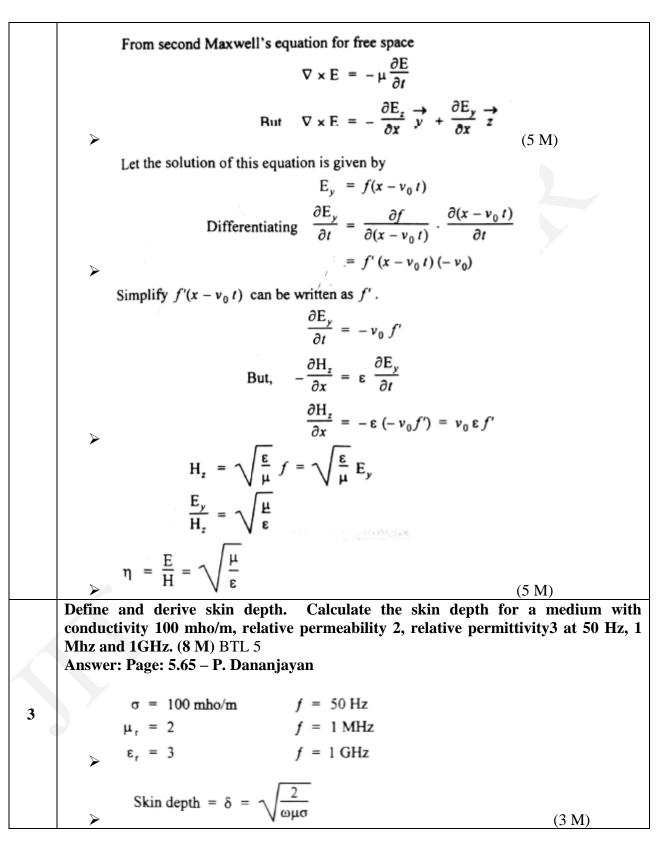
Discuss group velocity, phase velocity and propagation constant of electromagnetic waves.(13M) (May 2016)BTL 2 Answer:Page: 5.12 - P. Dananjavan ➤ The wave equation for free space is $\nabla^2 E = \mu \varepsilon \frac{\partial^2 E}{\partial t^2}$ \succ The phasor value of E is $E(x, t) = \operatorname{Re} [E(x) e^{j \omega t}]$ $\nabla^2 \operatorname{Re} [\operatorname{E} e^{j\omega t}] = \mu \varepsilon \frac{\partial^2}{\partial t^2} \operatorname{Re} [\operatorname{E} e^{j\omega t}]$ $\nabla^2 \operatorname{Re}\left[\operatorname{E} e^{j\,\omega\,t}\right] = \mu \varepsilon \operatorname{Re}\left[-\omega^2 \operatorname{E} e^{j\,\omega\,t}\right]$ Re $[(\nabla^2 E + \mu \varepsilon \omega^2 E) e^{j \omega t}] = 0$ $\nabla^2 E + \mu \epsilon \, \omega^2 \, E = 0$ $\nabla^2 E + \beta^2 E = 0$ 4 where $\beta^2 = \mu \epsilon \omega^2$ $\beta = \sqrt{\mu \epsilon} \omega$ β is called phase shift constant. The velocity of propagation is $v = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu \epsilon}}$ The wave propagates in x direction *i.e.*, no variation in y and z. $\frac{\partial^2 E}{\partial x^2} + \beta^2 E = 0$ The solution of the equation is $E = C_1 e^{-j\beta x} + C_2 e^{j\beta x}$ The wave equation for conducting medium is $\nabla^2 E - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} - \mu \sigma \frac{\partial E}{\partial t} = 0$ (6 M)

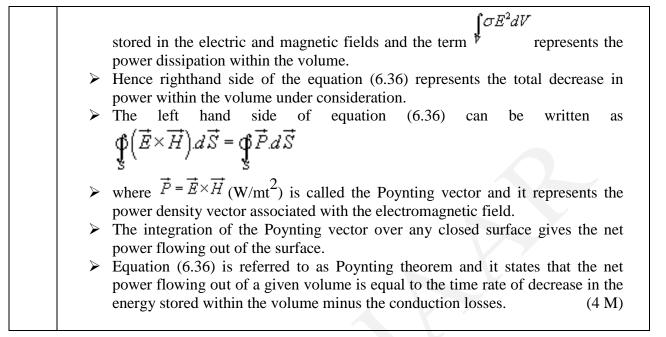
 $\oint \mathbf{H} \cdot dl = \mathbf{I}$ $\oint \mathbf{H} \cdot dl = \mathbf{H} \cdot (2\pi r)$ where, r is the radius of the circle $\mathbf{H} \cdot (2\pi r) = \mathbf{I}$ $H = \frac{1}{2\pi r}$ \geq (4 M)The electric field strength of coaxial cable is given by $E = \frac{V}{r \ln (b/a)}$ The Poynting vector $P = E \times H$ \triangleright $\mathbf{W} = \int_{s} \mathbf{E} \times \mathbf{H} \cdot ds = \int_{s} \mathbf{E} \mathbf{H} \cdot ds$ $= \int_{a}^{b} \frac{V}{r \ln (b/a)} \left(\frac{1}{2\pi r}\right) 2\pi r \cdot dr$ $= \frac{VI}{\ln(b/a)} \ln[b/a]$ = VI $(4 \mathrm{M})$ PART * C A medium is characterized by $\sigma = 10^{-3}$, $\mu = \mu_0$ and $\varepsilon = 80 \varepsilon_0$. If the frequency of 10 kHz. Calculate parameter of the wave. (8 M) BTL 5 Answer: Page: 5.66 - P. Dananjayan $\sigma = 10^{-3} \, s/m$ $\varepsilon = 80 \varepsilon_0$ $= \mu_0 \qquad f = 10 \times 10^3 \text{ Hz}$ = $\frac{10^{-3}}{2\pi \times 10 \times 10^3 \times 80 \times 8.854 \times 10^{-12}} \le 1$ $\mu = \mu_0$ <u>σ</u> ωε 1 .: Medium is a dielectric medium $\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} = \frac{10^{-3}}{2} \sqrt{\frac{\mu_0}{80 \epsilon_0}}$ Attenuation constant, $= \frac{10^{-3}}{2} \cdot \frac{1}{\sqrt{80}} \cdot 120 \pi = 21.07 \times 10^{-3} \text{ nepers}$ (4 M)

$$\beta = \omega \sqrt{\mu \varepsilon} \left[1 + \frac{1}{2} \left(\frac{\sigma}{2 \omega \varepsilon} \right)^2 \right]$$

$$= 2 \pi (10 \times 10^3) \sqrt{4\pi \times 10^{-7} \times 80 \times 8.854 \times 10^{-12}} \left[1 + \frac{1}{2} \left(\frac{10^{-3}}{2 \times 2\pi \times 10^4 \times 80 \times 8.854 \times 10^{-12}} \right)^2 \right]$$

$$\beta = 0.12 \text{ rad}$$


$$\lambda = \frac{2\pi}{\beta} = 52.35 \text{ m} \qquad (4 \text{ M})$$
Derive the expression for characteristics Impedance. (15 M) BTL 1
Answer: Page: 5.07 - P. Dananjayan
$$\sum_{v} \frac{\partial^2 E}{\partial x^2} = \mu \varepsilon \frac{\partial^2 E}{\partial t^2}$$
The general solution of this differential equation is in the form
$$E = f_1 (x - v_0 t) + f_2 (x + v_0 t)$$
where
$$v_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$


$$E = f(x - v_0 t)$$

$$\sum_{v \in E} E_x = E_y = E_z$$

$$E_x = H_x = 0 \text{ and } \frac{\partial E}{\partial y} = \frac{\partial E}{\partial z} = 0$$

$$\nabla \times E = -\frac{\partial E_z}{\partial x} \overrightarrow{y} + \frac{\partial E_y}{\partial x} \overrightarrow{z} \quad (5 \text{ M})$$
Comparing these two equations,
$$-\frac{\partial H_z}{\partial x} \overrightarrow{y} + \frac{\partial H_y}{\partial x} \overrightarrow{z} = \varepsilon \left[\frac{\partial E_y}{\partial t} \overrightarrow{y} + \frac{\partial E_z}{\partial t} \overrightarrow{z} \right] \quad [\because E_x = 0]$$
Equating \overrightarrow{y} and \overrightarrow{z} terms
$$-\frac{\partial H_z}{\partial x} = \varepsilon \frac{\partial E_z}{\partial t}$$

OBJECTIVE TYPES QUESTIONS WITH ANSWER

ELECTROSTATICS -I

1. The force between two charges is 120 N. If the distance between the charges is doubled, the force will be (a) 60 N (b) 30 N (c) 40 N (d) 15 N Ans: b 2. The electric field intensity at a point situated 4 meters from a point charge is 200 N/C. If the distance is reduced to 2 meters, the field intensity will be (a) 400 N/C (b) 600 N/C (c) 800 N/C (d) 1200 N/C Ans: c 3. The lines of force due to charged particles are (a) always straight (b) always curved (c) sometimes curved (d) none of the above Ans: b 4. The electric field at a point situated at a distance d from straight charged conductor is (a) proportional to d (b) inversely proportional to d (c) inversely proportional to d (d) none of the above Ans: b 5. The direction of electric field due +0 positive charge is . (a) away from the charge (b) towards the charge (c) both (a) and (6) (d) none of the above Ans: a 6. A field line and an equipotential surface are (a) always parallel (b) always at 90° (c) inclined at any angle 0 (d) none of the above Ans: b 7. The ability of charged bodies to exert force on 6ne another is attributed to the existence of (a) electrons (b) protons JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

(c) neutrons (d) electric field Ans: d 8. If the sheet of a Bakelite is inserted between the plates of an air capacitor, the capacitance will (a) decrease (b) increase (c) remains unchanged (d) become zero Ans: b 9. A capacitor stores 0.24 coulombs at 10 volts. Its capacitance is (a) 0.024 F (b) 0.12 F (c) 0.6 F (d) 0.8 F Ans: a 10. For making a capacitor, it is better to select a dielectric having (a) low permittivity (b) high permittivity (c) permittivity same as that of air (d) permittivity slightly more than that of air Ans: b 11. The units of capacitance are (a) volts/coulomb (b) coulombs/volt (c) ohms (d) henry/Wb Ans: b 12. If three 15 uF capacitors are connected in series, the net capacitance is (a) 5 uF (6) 30 uF (c) 45 uF (d) 50 uF Ans: a 13. If three 10 uF capacitors are connected in parallel, the net capacitance is (a) 20 uF (b) 30 uE (c) 40 uF (d) 50 uF Ans: b 14. A dielectric material must be (a) resistor (b) insulator (c) good conductor (d) semi conductor JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0 Ans: b

15. An electrolytic capacitor can be used for

(a) D.C. only

(b) AC. only

(c) both D.C. as well as A.C.

Ans: a

16. The capacitance of a capacitor is not affected by

(a) distance between plates

(6) area of plates

(c) thickness of plates

(d) all of the above

Ans: c

17. Which of the following is not a vector?

(a) Linear momentum

(b) Angular momentum

(c) Electric field

(d) Electric potential

Ans: b

18. Two plates of a parallel plate capacitor after being charged from a constant voltage source are separated apart by means of insulated handles, then the

(a) Voltage across the plates increases

(b) voltage across the plates decreases

(c) charge on the capacitor decreases

(d) charge on the capacitor increases

Ans: b

19. If A.C. voltage is applied to capacitive circuit; the alternating current can flow in the circuit because

(a) varying voltage produces the charging and discharging currents

(b) of high peak value

(c) charging current can flow

(d) discharge current can flow

Ans: a

20. Voltage applied across a ceramic dielectric produces an electrolytic field 100 times greater than air. What will be the value of dielectric constant?

(a) 50

(6) 100

(c) 150

(d) 200

Ans: b

21. Which of the following statements is correct?

(a) Air capacitors have a blackband to indicate the outside foil

(b) Electrolytic capacitor must be connected in the correct polarity

(c) Ceramic capacitors must be connected in the correct polarity

(d) Mica capacitors are available in capacitance value of 1 to 10 pF

Ans: b

22. The dissipation factor of a good dielectric is of the order of

(a) 0.0002

(b) 0.002

(c) 0.02

(d) 0.2

Ans: a

23. "The total electric flux through any closed surface surrounding charges is equal to the amount of charge enclosed".

The above statement is associated with

(a) Coulomb's square law

(b) Gauss's law

(c) Maxwell's first law

(d) Maxwell's second law

Ans: b

24. Three capacitors each of the capacity C are given. The resultant capacity 2/3 C

can be obtained by using them

(a) all in series

(b) all in parallel

(c) two in parallel and third in series with this combination

(d) two in series and third in parallel across this combination

Ans: c

25. For which of the following parameter variation, the capacitance of the capacitor remains unaffected?

(a) Distance between plates

- (b) Area of the plates
- (c) Nature of dielectric
- (d) Thickness of the plates

Ans: d

Unit -II

1. Which of the following statement is true?

- (a) The current in the discharging capacitor grows linearly
- (b) The current in the discharging capacitor grows exponentially
- (c) The current in the discharging capacitor decays exponentially

(d) The current in the discharging capacitor decreases constantly

Ans: b

2. Which of the following expression is correct for electric field strength?

(a) E = D/E

- (b) E = D2/t
- (c) E = jtD
- (d) E=nD2

Ans: a

3. In a capacitor the electric charge is stored in

- (a) metal plates
- (b) dielectric

(c) both (a) and (6)

(d) none of the above

Ans: b

4. Which of the following materials has the highest value of dielectric constant?

(a) Glass

- (b) Vacuum
- (c) Ceramics

(d) Oil

Ans: c

5. Which of the following capacitors will have the least variation?

(a) Paper capacitor

(b) Ceramic capacitor

(c) Silver plated mica capacitor

(d) None of the above

Ans: c

6. Which of the following statements is incorrect?

(a) The leakage resistance of ceramic capacitors is generally high

(b) The stored energy in a capacitor decreases with reduction in value of capacitance

(c) The stored energy in a capacitor increases with applied voltage

(d) A wire cable has distributed capacitance between the conductors

Ans: b

7. Which of the following capacitors has relatively shorter shelf life?

(a) Mica capacitor

(b) Electrolytic capacitor

(c) Ceramic capacitor

(d) Paper capacitor

Ans: b

8. The sparking between two electrical contacts can be reduced by inserting a

(a) capacitor in parallel with contacts

(6) capacitor in series with each contact

(c) resistance in line

(d) none of the above

Ans: a

9. In the case of a lossy capacitor, its series equivalent resistance value will be

(a) small

(b) very small

(c) large

(d) zero

Ans: c

10. The power dissipated in a pure capacitor is

(a) zero

(b) proportional to applied voltage

(c) proportional to value of capacitance

(d) both (b) and (c) above

Ans: a

11. In a capacitive circuit

(a) a steady value of applied voltage causes discharge

(b) an increase in applied voltage makes a capacitor charge

(c) decrease in applied voltage makes a capacitor charge

(d) none of the above

Ans: b

12. When a dielectric slab is introduced in a parallel plate capacitor, the potential difference

between plates will

(a) remain uncharged

(b) decrease

(c) increase

(d) become zero

Ans: b

13. Capacitance increases with

(a) increase in plate area and decrease in distance between the plates

(b) increase in plate area and distance between the plates

(c) decrease in plate area and value of applied voltage

(d) reduction in plate area and distance between the plates

Ans: a

14. A capacitor consists of

(a) two insulators separated by a conductor

(b) two conductors separated by an insulator

(c) two insulators only

(d) two conductors only

Ans: b

15. A gang condenser is a

(a) polarized capacitor

(6) variable capacitor

(c) ceramic capacitor

(d) none of the above

Ans:

16. A paper capacitor is usually available in the form of

(a) tubes

(b) rolled foil

(c) disc

(d) meshed plates

Ans: b

17. Air capacitors are generally available in the range

(a) 10 to 400 pF

(b) 1 to 20 pF

(c) 100 to 900 pF

(d) 20 to 100 pF

Ans: a

18. The unit of capacitance is

(a) henry

(b) ohm

(c) farad (d) farad/m Ans: c 19. A capacitor charged to 200 V has 2000 (iC of charge. The value of capacitance will be (a) 10 F (6) 10 uF (c) 100 nF (d) 1000 uF Ans: b 20. A capacitor in a circuit became hot and ultimately exploded due to wrong con-nections, which type of capacitor it could be ? (a) Paper capacitor (b) Ceramic capacitor (c) Electrolytic capacitor (d) Any-of the above Ans: c 21. Energy stored in the electric field of a capacitor C when charged from a D.C source of voltage V is equal to joules (a) CV2 (b) C2V (c) CV2 (d) CV Ans: a 22. The absolute permittivity of free space is given by (a) 8.854 x 1(T9 F/m) (6) 8.854 x 1(T10 F/m) (c) 8.854 x KT11 F/m (d) 8.854 x 10"12 F/m Ans: b 23. The relative permittivity of free space is given by (a) 1 (b) 10 (c) 100 (d) 1000 Ans: a 24. Electric field intensity is a quantity (a) scalar (b) vector (c) both (a) and (6)(d) none of the above Ans: b 25. When 4 volts e.m.f. is applied across a 1 farad capacitor, it will store energy of (a) 2 joules (b) 4 joules (c) 6 joules JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

(d) 8 joules Ans: d UNIT III **MAGNETOSTATICS** 1. Tesla is a unit of (a) field strength (b) inductance (c) flux density (d) flux Ans: c 2. A permeable substance is one (a) which is a good conductor (6) which is a bad conductor (c) which is a strong magnet (d) through which the magnetic lines of force can pass very easily Ans: d 3. The materials having low retentivity are suitable for making (a) weak magnets (b) temporary magnets (c) permanent magnets (d) none of the above Ans: b 4. A magnetic field exists around (a) iron (b) copper (c) aluminum (d) moving charges Ans: d 5. Ferrites are materials. (a) paramagnetic (b) diamagnetic (c) ferromagnetic (d) none of the above Ans: c 6. Air gap has reluctance as compared to iron or steel path (a) little (b) lower (c) higher (d) zero Ans: b 7. The direction of magnetic lines of force is (a) from south pole to north pole (b) from north pole to south pole (c) from one end of the magnet to another (d) none of the above Ans: b

8. Which of the following is a vector quantity?

(a) Relative permeability

(b) Magnetic field intensity

(c) Flux density

(d) Magnetic potential

Ans: b

9. The two conductors of a transmission line carry equal current I in opposite directions.

The force on each conductor is

(a) proportional to 7

(b) proportional to X

(c) proportional to distance between the conductors

(d) inversely proportional to I

Ans: b

10. A material which is slightly repelled by a magnetic field is known as

(a) ferromagnetic material

(b) diamagnetic material

(c) paramagnetic material

(d) conducting material

Ans: b

11. When an iron piece is placed in a magnetic field

(a) the magnetic lines of force will bend away from their usual paths in order to go away from the piece

(b) the magnetic lines of force will bend away from their usual paths in order to pass through the piece

(c) the magnetic field will not be affected

(d) the iron piece will break

Ans: b

12. Fleming's left hand rule is used to find

(a) direction of magnetic field due to current carrying conductor

(b) direction of flux in a solenoid

(c) direction of force on a current carrrying conductor in a magnetic field

(d) polarity of a magnetic pole

Ans: c

13. The ratio of intensity of magnetisation to the magnetisation force is known as

(a) flux density

(b) susceptibility

(c) relative permeability

(d) none of the above

Ans: b

14. Magnetising steel is normals difficult because

(a) it corrodes easily

(6) it has high permeability

(c) it has high specific gravity

(d) it has low permeability

Ans: d

15. The left hand rule correlates to

(a) current, induced e.m.f. and direction of force on a conductor

(b) magnetic field, electric field and direction of force on a conductor

(c) self induction, mutual induction and direction of force on a conductor

(d) current, magnetic field and direction of force on a conductor

Ans: d

16. The unit of relative permeability is

(a) henry/metre

(b) henry

- (c) henry/sq. m
- (d) it is dimensionless

Ans: d

17. A conductor of length L has current I passing through it, when it is placed parallel to a magnetic field. The force experienced by the conductor will be

- (a) zero
- (b) BLI
- (c) B2LI
- (d) BLI2

Ans: a

- 18. The force between two long parallel conductors is inversely proportional to
- (a) radius of conductors
- (b) current in one conductor
- (c) product of current in two conduc¬tors
- (d) distance between the conductors

Ans: d

- 19. Materials subjected to rapid reversal of magnetism should have
- (a) large area oiB-H loop
- (b) high permeability and low hysteresis loss
- (c) high co-ercivity and high reten-tivity
- (d) high co-ercivity and low density

Ans: b

20. Indicate which of the following material does not retain magnetism permanently.

(a) Soft iron

- (b) Stainless steel
- (e) Hardened steel
- (d) None of the above

Ans: a

- 21. The main constituent of permalloy is
- (a) cobalt
- (b) chromium
- (c) nickel
- (d) tungsten

Ans: c

22. The use of permanent magnets is. not made in

(a) magnetoes

(6) energy meters (c) transformers (d) loud-speakers Ans: c 23. Paramagnetic materials have relative permeability (a) slightly less than unity (b) equal to unity (c) slightly more than unity (d) equal to that ferromagnetic materials Ans: c **ELECTRODYNAMIC FIELDS UNIT IV** 1. An air gap is usually inserted in magnetic circuits to (a) increase m.m.f. (b) increase the flux (c) prevent saturation (d) none of the above Ans: c 2. The relative permeability of a ferromagnetic material is (a) less than one (b) more than one (c) more than 10 (d) more than 100 or 1000 Ans: d 3. The unit of magnetic flux is (a) henry (b) weber (c) ampereturn/weber (d) ampere/metre Ans: b 4. Permeability in a magnetic circuit corresponds to_____ in an electric circuit. (a) resistance (b) resistivity (c) conductivity (d) conductance Ans: c 5. Point out the wrong statement. Magnetic leakage is undesirable in electric machines because it (a) lowers their power efficiency (b) increases their cost of manufacture (c) leads to their increased weight (d) produces fringing Ans: a 6. Relative permeability of vacuum is (a) 1 (b) 1 H/m JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0 (c) 1/4JI (d) 4n x 10-' H/m Ans: a 7. Permanent magnets are normally made of (a) alnico allovs (b) aluminium (c) cast iron (d) wrought iron Ans: a 8. Energy stored by a coil is doubled when its current is increased by percent. (a) 25 (b) 50 (c)41.4 (d) 100 Ans: c 9. Those magnetic materials are best suited for making armature and transformer cores which have __permeability and__ hystersis loss. (a) high, high (b) low, high (c) high, low (d) low, low Ans: c 10. The rate of rise of current through an inductive coil is maximum (a) at 63.2% of its maximum steady value (b) at the start of the current flow (c) after one time constant (d) near the final maximum value of current Ans: b 11. When both the inductance and resistance of a coil are doubled the value of (a) time constant remains unchanged (b) initial rate of rise of current is doubled (c) final steady current is doubled (d) time constant is halved Ans: a 12. The initial rate of rise of current through a coil of inductance 10 H when suddenly connected to a D.C. supply of 200 V is _____ Vs (a) 50 (b) 20 (c) 0.05 (d) 500 Ans: b 13. A material for good magnetic memory should have (a) low hysteresis loss (b) high permeability (c) low retentivity

(d) high retentivity Ans: d 14. Conductivity is analogous to (a) retentivity (b) resistivity (c) permeability (d) inductance Ans: c 15. In a magnetic material hysteresis loss takes place primarily due to (a) rapid reversals of its magnetisation (b) flux density lagging behind magnetising force (c) molecular friction (d) it high retentivity Ans: d 16. Those materials are well suited for making permanent magnets which have retentivity and coercivity. (a) low, high (b) high, high (c) high, low (d) low, low Ans: b 17. If the area of hysteresis loop of a material is large, the hysteresis loss in this material will be (a) zero (b) small (c) large (d) none of the above Ans: c 18. Hard steel is suitable for making permanent magnets because (a) it has good residual magnetism (b) its hysteresis loop has large area (c) its mechanical strength is high (d) its mechanical strength is low Ans: a 19. Silicon steel is used in electrical machines because it has (a) low co-ercivity (b) low retentivity (c) low hysteresis loss (d) high co-ercivity Ans: c 20. Conductance is analogous to (a) permeance (b) reluctance (c) flux (d) inductance JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0 Ans: a

21. The property of a material which opposes the creation of magnetic flux in it is known as

(a) reluctivity

(b) magnetomotive force

(c) permeance

(d) reluctance

Ans: d

22. The unit of retentivity is

(a) weber

(b) weber/sq. m

(c) ampere turn/metre

(d) ampere turn

Ans: b

23. Reciprocal of reluctance is

(a) reluctivity

(b) permeance

(c) permeability

(d) susceptibility

Ans: b

24. While comparing magnetic and electric circuits, the flux of magnetic circuit is compared with which parameter of electrical circuit ?

(a) E.m.f.

(b) Current

(c) Current density

(d) Conductivity

Ans: b

25. The unit of reluctance is

(a) metre/henry

(b) henry/metre

(c) henry

(d) 1/henry

Ans: d

UNIT - V ELECTROMAGNETIC WAVES

1. The property of coil by which a counter e.m.f. is induced in it when the current through the coil changes is known as

(a) self-inductance

(b) mutual inductance

(c) series aiding inductance

(d) capacitance

Ans: a

2. As per Faraday's laws of electromagnetic induction, an e.m.f. is induced in a conductor whenever it

(a) lies perpendicular to the magnetic flux

(b) lies in a magnetic field

(e) cuts magnetic flux

(d) moves parallel to the direction of the magnetic field

Ans: c

3. Which of the following circuit element stores energy in the electromagnetic field ?

- (a) Inductance
- (b) Condenser
- (c) Variable resistor
- (d) Resistance

Ans: a

- 4. The inductance of a coil will increase under all the following conditions except
- (a) when more length for the same number of turns is provided
- (6) when the number of turns of the coil increase
- (c) when more area for each turn is provided
- (d) when permeability of the core increases

Ans: a

- 5. Higher the self-inductance of a coil,
- (a) lesser its weber-turns
- (b) lower the e.m.f. induced
- (c) greater the flux produced by it
- (d) longer the delay in establishing steady current through it

Ans: d

- 6. In an iron cored coil the iron core is removed so that the coil becomes an air cored coil.
- The inductance of the coil will
- (a) increase
- (b) decrease
- (c) remain the same
- (d) initially increase and then decrease

Ans: b

- 7. An open coil has
- (a) zero resistance and inductance
- (b) infinite resistance and zero inductance
- (c) infinite resistance and normal inductance
- (d) zero resistance and high inductance

Ans: b

8. Both the number of turns and the core length of an inductive coil are doubled.

Its self-inductance will be

- (a) unaffected
- (b) doubled
- (c) halved
- (d) quadrupled

Ans: b

9. If current in a conductor increases then according to Lenz's law self-induced voltage will

- (a) aid the increasing current
- (b) tend to decrease the amount of cur-rent
- (c) produce current opposite to the in-creasing current
- (d) aid the applied voltage

Ans: c

10. The direction of incVicede.m.f. can be found by

(a) Laplace's law

(b) Lenz's law

(c) Fleming's right hand rule

(d) Kirchhoff s voltage law

Ans: b

11. Air-core coils are practically free from

(a) hysteresis losses

(b) eddy current losses

(c) both (a) and (b)

(d) none of the above

Ans: c

12. The magnitude of the induced e.m.f. in a conductor depends on the

(a) flux density of the magnetic field

(b) amount of flux cut

(c) amount of flux linkages

(d) rate of change of flux-linkages

Ans: d

13. Mutually inductance between two magnetically-coupled coils depends on

(a) permeability of the core

(b) the number of their turns

(c) cross-sectional area of their com-mon core

(d) all of the above

Ans: d

14. A laminated iron core has reduced eddy-current losses because

(a) more wire can be used with less D.C. resistance in coil

(b) the laminations are insulated from each other

(c) the magnetic flux is concentrated in the air gap of the core

(d) the laminations are stacked vertf-cally

Ans: b

15. The law that the induced e.m.f. and current always oppose the cause producing them is due to

(a) Faraday

(b) Lenz

(c) Newton

(d) Coulomb

Ans: b

16. Which of the following is not a unit of inductance ?

(a) Henry

(b) Coulomb/volt ampere

(c) Volt second per ampere

(d) All of the above

Ans: b

17. In case of an inductance, current is proportional to

(a) voltage across the inductance (b) magnetic field (c) both (a) and (b) (d) neither (a) nor (b) Ans: b 18. Which of the following circuit elements will oppose the change in circuit current ? (a) Capacitance (b) Inductance (c) Resistance (d) All of the above Ans: b 19. For a purely inductive circuit which of the following is true ? (a) Apparent power is zero (b) Relative power is.zero (c) Actual power of the circuit is zero (d) Any capacitance even if present in the circuit will not be charged Ans: c 20. Which of the following is unit of inductance? (a) Ohm (b) Henry (c) Ampere turns (d) Webers/metre Ans: b 21. An e.m.f. of 16 volts is induced in a coil of inductance 4H. The rate of change of current must be (a) 64 A/s (b) 32 A/s (c) 16 A/s (d) 4 A/sAns: d 22. The core of a coil has a length of 200 mm. The inductance of coil is 6 mH. If the core length is doubled, all other quantities, remaining the same, the in ductance will be (a) 3 mH (b) 12 mH (c) 24mH (d)48mH Ans: a 23. The self inductances of two coils are 8 mH and 18 mH. If the co-efficients of coupling is 0.5, the mutual inductance of the coils is (a) 4 mH (b) 5 mH (c) 6 mH (d) 12 mH Ans: c 24. Two coils have inductances of 8 mH and 18 mH and a co-efficient of coupling of 0.5. If JIT-JEPPIAAR/EEE/Mr. K. JAYAVELU/IInd Yr/SEM 03 /EE8391/ELECTROMAGNETIC THEORY /UNIT 1-5/QB+Keys/Ver1.0

the two coils are connected in series aiding, the total inductance will be

(a) 32 mH

(b) 38 mH

(c) 40 mH

(d) 48 mH

Ans: b

25. A 200 turn coil has an inductance of 12 mH. If the number of turns is increased to 400 turns, all other quantities (area, length etc.) remaining the same, the inductance will be (a) 6 mH

(b) 14 mH

(c) 24 mH

(d) 48 mH

Ans: d