JEPPIAAR INSTITUTE OF TECHNOLOGY

Self Belief | Self Discipline | Self Respect

QUESTION BANK

ACADEMIC YEAR : 2019-2020

REGULATION: 2017

III YEAR – 06th SEMESTER

DEPARTMENT OF MECHANICAL

ENGINEERING

INSTITUTION VISION

Jeppiaar Institute of Technology aspires to provide technical education in futuristic technologies with the perspective of innovative, industrial and social application for the betterment of humanity.

INSTITUTION MISSION

- To produce competent and disciplined high quality professionals with the practical skills necessary to excel as innovative professionals and entrepreneurs for the benefit of the society.
- To improve the quality of education through excellence in teaching and learning, research, leadership and by promoting the principles of scientific analysis, and creative thinking.
- To provide excellent infrastructure, serene and stimulating environment that is most conducive to learning.
- To strive for productive partnership between the Industry and the Institute for research and development in the emerging fields and creating opportunities for employability.
- To serve the global community by instilling ethics, values and life skills among the students needed to enrich their lives.

DEPARTMENT VISION

To be the most sought-after Department in the field of Mechanical Engineering for imparting Technical Education for the upliftment of the society.

DEPARTMENT MISION

- To provide innovative solutions for industrial problems which helps in societal development.
- To inculcate students for a successful career in engineering and technology.
- To promote excellence in engineering and technology by motivating students for higher studies.
- To motivate self-employment thereby reducing migration to urban areas.
- To maintain ethical values while assimilating diverse culture without compromising with Indian value system.
- To motivate lifelong learning

PROGRAM OUTCOMES (POs) (Given in SAR)

Engineering Graduates will be able to:

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

BLOOM'S TAXONOMY

Definition:

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition like thinking, learning and understanding.

Objectives:

- To classify educational learning objectives into levels of complexity and specification. The classification covers the learning objectives in cognitive, affective and sensory domains.
- > To structure curriculum learning objectives, assessments and activities.

Levels in Bloom's Taxonomy:

- BTL 1 Remember The learner recalls, restate and remember the learned information.
- BTL 2 Understand The learner embraces the meaning of the information by interpreting and translating what has been learned.
- BTL 3 Apply The learner makes use of the information in a context similar to the one in which it was learned.
- BTL 4 Analyze The learner breaks the learned information into its parts to understand the information better.
- BTL 5 Evaluate The learner makes decisions based on in-depth reflection, criticism and assessment.
- BTL 6 Create The learner creates new ideas and information using what has been previously learned.

TABLE OF CONTENT

ME8651 – Design of Transmission Systems			
Unit No.	Торіс	Page No.	
	Syllabus	1-1	
Ι	Design of flexible elements	1-3	
II	Spur gear and parallel axis helical gears	1-15	
III	Bevel, worm and cross helical gears	1-32	
IV	Gear boxes	1-48	
V	Cams, clutches and brakes	1-64	
	ME8691 – Computer Aided Design and Manufacturing	1	
	Syllabus	2-1	
Ι	Introduction	2-3	
II	Geometric modeling	2-26	
III	CAD Standards	2-41	
IV	Fundamental of CNC and part programming	2-54	
V	Cellular manufacturing and flexible manufacturing systems	2-71	
	ME8692 – Finite Element Analysis		
	Syllabus	3-1	
Ι	Introduction	3-3	
II	One dimensional problems	3-17	
III	Two dimensional scalar variable problems	3-28	
IV	Two dimensional vector variable problems	3-43	
V	Isoparametric formulation	3-62	
	ME8693 – Heat and Mass Transfer		
	Syllabus	4-1	
Ι	Conduction	4-3	
II	Convection	4-33	
III	Phase change heat transfer and heat exchangers	4-57	
IV	Radiation	4-84	
V	Mass Transfer	4-110	

JLATION : 201	7 ACADE	MIC YEAR : 2019-20
	ME8694 – Hydraulics and Pneumatics	
	Syllabus	5-1
Ι	Fluid power principles and hydraulic pumps	5-2
II	Hydraulic actuators and control components	5-16
III	Hydraulic circuits and systems	5-29
IV	Pneumatic and electro pneumatic systems	5-40
V	Trouble shooting and applications	5-49
	ME8091 – Automobile Engineering	
	Syllabus	6-1
Ι	Vehicle structure and engines	6-3
II	Engine auxiliary systems	6-12
III	Transmission systems	6-25
IV	Steering, brakes and suspension systems	6-37
V	Alternative energy sources	6-46

ME8651 DESIGN OF TRANSMISSION SYSTEMS L TPC

OBJECTIVES:

- To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
- > To understand the standard procedure available for Design of Transmission of Mechanical elements.
- > To learn to use standard data and catalogues.

UNIT I DESIGN OF FLEXIBLE ELEMENTS

Design of Flat belts and pulleys - Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys – Design of Transmission chains and Sprockets.

UNIT II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects – Fatigue strength - Factor of safety - Gear materials – Design of straight tooth spur & helical gears based on strength and wear considerations – Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces for helical gears.

UNIT III BEVEL, WORM AND CROSS HELICAL GEARS

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.

UNIT IV GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box -Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT V CAMS, CLUTCHES AND BRAKES

Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches -axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes - external shoe brakes - Internal expanding shoe brake.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students can able to successfully design transmission components used in Engine and machines

TEXT BOOKS:

1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.

2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

REFERENCES:

1. Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.

2. Gitin Maitra, L. Prasad "Hand book of Mechanical Design", 2nd Edition, Tata McGraw-Hill, 2001.

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

3003

9

9

9

REGULATION: 2017

3. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.

4. C.S.Sharma, Kamlesh Purohit, "Design of Machine Elements", Prentice Hall of India, Pvt. Ltd., 2003.

5. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.

6. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005

7. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-HillBookCo.(Schaum's Outline), 2010

8. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.

9. Ansel Ugural, "Mechanical Design - An Integral Approach", 1st Edition, Tata McGraw-HillBook Co, 2003.

10. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements"8th Edition, Printice Hall, 2003.

11. U.C.Jindal : Machine Design, "Design of Transmission System", Dorling Kindersley, 2010

Subject Code:ME8651 Subject Name: Design Of Transmission Systems Subject Handler: Mr.S.Kanna & S.Vignesh

Year/Semester: III /06

UNIT I –DESIGN OF FLEXIBLE ELEMENTS		
Design of Flat belts and pulleys - Selection of V belts and pulleys - Selection of hoisting wire ropesand		
pulley	s – Design of Transmission chains and Sprockets.	
	PART * A	
O No	Questions	
Q.NO.	Questions	
1	Give an expression for ratio of tensions in a flat belt drive. BTL3	
	$\frac{T_1}{T} = e^{\mu\theta}$	
	Where T_1 -Tension in tight side in N: T_2 -Tension in slock side in N: u -Coefficient of friction:	
	where, T_1 remsion in tight side in N, T_2 remsion in stack side in N, μ =Coefficient of includit, θ =Angle of contact of driving nulley in radians	
2	How is a V-belt specified?BTL2	
_	A typical example of its specification "C2032 IS 2494: 1964". Here the 'C' denotes the section	
	type of the belt, '2032' represents the nominal inside length of the belt and 1964 is referred to as	
	year of coding. The power transmitting capacity of section'C' type of the belt is 1 kW to 12 kW.	
3	What is meant by "Chordal action of chain"? Also name a company that produces driving	
	chains. (April/May 2015)BTL1	
	When chain passes over a sprocket, it moves as a series of chords instead of a continuous arc as	
	in the case of a belt drive. It results in varying speed of the chain drive. This phenomenon is	
	known as chordal action. Some of the company names producing chains are: Roto mechanical	
	equipment Chennai. Monal Chains Limited, Mumbai; Innotech Engineers Ltd., New Delhi.	
4	Why tight-side of the belt should be at the bottom side of the pulley?BTL4	
	The positions of input and output pulleys are such that the tight side of the belt must be on the	
	bottom and slack side on the top of the pulleys. Otherwise, the angle of contact between the belt	
	and rim of the pulley reduces, decreasing the power transmission capacity of the belt.	
5	Define the term "Crowning of pulley". (Nov/Dec-2016, May/June 2014)BTL1	
	The pulley rims are tapered slightly towards the edges. This slight convexity is known as	
	crowning. The crowning tends to keep the belt in centre on a pulley rim while in motion. These	
	flat belts stayed centered on pulleys without any guides or flanges. The key to keeping them	
	tracking centered on the pulleys is the use of "crowned pulleys"	
6	A longer belt will last more than a shorter belt. why? (Apr/May 2017)B1L4	
	The life of a belt is a function of the centre distance between the driver and driven sharts and	
	additional banding strosses while running around the pullous at a given speed. And also it will	
	auditional bending stresses while running around the puneys at a given speed. And also it will be destroyed quickly due to fotigue. Hence the increased centre distance and diameter of rullar	
	be destroyed quickly due to faligue. Hence the increased centre distance and diameter of pulley	

REGULATION: 2017 ACADEMIC YEAR: 2019-2020 will increase the belt life. Hence, a longer belt will last more than a shorter belt. 7 Mention the losses in belt drives. (Nov/Dec 2014)BTL2 The losses in a belt drive are due to: \blacktriangleright Slip and creep of the belt on the pulleys (about 3%) \blacktriangleright Bending of the belt over the pulleys (about 1%) ▶ Friction in the bearings of pulley (about 1%) and > Windage or air resistance to the movement of belt and pulleys (usually negligible) 8 In what ways the timing belts are superior to ordinary V-belts? (April/May 2015)BTL4 Flat belt and V-belt drives cannot provide a precise speed ratio, because slippage occurs at the sheaves. But certain applications require an exact output to input speed ratio. In such situations, timing belts are used. Since the timing belts (aka. synchronous belts) possess toothed shape in their -inner side, engagement with toothed pulley will provide positive drive without, belt-slip where as in the case of ordinary V-belts, chances of slip are and hence positive drive is not possible at all times. Hence toothed belts (I timing belts) are superior to ordinary V-belts. 9 Why are idler pulleys used in a belt drive?BTL4 Idler pulleys are used to take up slack, change the direction of transmission, or provide clutching action in any industry, material handling or any other mechanical purpose. But they don't provide any mechanical advantage, nor does it transmit power. One such example of its application is to improve belt drive performances as they reduce vibration by supporting a segment of belt which is prone to vibration/oscillation. They are also used in car engines for positive clutching action by running the idler pulley on the slack side of the flat-belt drive from engine to transmission. 10 Name the few materials for belt drives. (May/June 2016)BTL2 ▶ Leather ➢ Fabric and cotton ➢ Rubber \succ Balata and > Nylon. State the law of belting.BTL1 11 Law of belting states that the centre line of the belt as it approaches the pulley must lie in a plane perpendicular to the axis of that pulley or must lie in the plane of the pulley, otherwise the belt will run off the pulley. "The centreline of the belt when it approaches a pulley must lie in the midplane of the pulley". What is wipping? How it can be avoided in belt drives?BTL3 12 If the centre distances between two pulleys are too long then the belt begins to vibrate in a direction perpendicular to the direction of motion of belt. This phenomenon is called as wipping. Wipping can be avoided by using idler pulleys. 13 How are wire ropes designated? Give an example? (Nov/Dec 2012)BTL2 Wire ropes are designated (or specified) by the number of strands and the number of wires in each strand. Standard Wire Rope, 6x7 Class Wire Rope, Strands: 6, Wires per Strand: 7, Core: Fiber Core, Standard Grade(s): Improved Plow (IPS), Lay: Regular or Lang, Finish: Bright or

REGULATION: 2017

	Galvanized
14	What do you understand by 6 x 19 constructions in wire ropes? (Nov/Dec 2014)BTL2
	A 6 x 19 wire rope means a rope is made from 6 strands with 19 wires in each strand.
15	Give any three applications of chain drives. What are they limitations? (April/May
	2011)BTL2
	Chain drives are widely used in transportation industry, agricultural machinery, metal and wood
	working machines.
	Limitations: heavy height, sudden failure, intensive wear of the links in the joints
	susceptibility to jerks and overloads.
16	What is the effect of chordal action in chain drives? How can you reduce that effect?
	(April/May 2015)BTL4
	As the chain enters and exits, it rises and falls as each pitch engages and disengages the
	sprockets. This movement, called chordal action, causes chain speed variations (drive
	roughness) that may be objectionable in some applications. These speed variations can normally
	be minimized by increasing the size of the sprockets. Chordal action results in a pulsating and
	jerk motion of a chain. In order to reduce the variation in chain speed, the number of teeth on
	the sprocket should be increased.
17	What do you mean by galling of roller chains? (May/June 2012)BTL3
	Galling is a stick-slip phenomenon between the pin and the bushing. When the load is
	heavy and the speed is high, the high spots (i.e. joints) of the contacting surfaces are
	welded together. This phenomenon of welding is called as galling of roller chains. Use high
	quality, high pressure lubricants and ensure that the lubricant regime is such that the film of
10	lubricant is constantly maintained between the surfaces.
18	Under what circumstances chain drives are preferred over V belt drives? (May/June
	The popularity of chain drives stems from their ability to transmit high torque levels in a small
	package, at relatively low cost, while utilizing readily available stock components. While initial
	costs of standard roller chain drives can be quite low, the cost of maintaining them can be
	substantial. The ability to create any length of chain with connecting links. The availability of a
10	What factors will affect the working conditions of abain drive? (New/Dec 2016) PTL 2
19	Tension in the chains
	Sizes of the pulley/gear
	 Number of pulley/gear
	 Length of the chain drive
	 Friction between chains & pullev/gear
	 Angle of contact.
20	List the advantages of wire ropes compared to chains.(Apr/May-2017)BTL1
	> More reliable in operation
	Silent operation even at high working speeds
	\blacktriangleright Less danger for damage due to jerks.

RE	EGULATION: 2017 ACADEMIC YEAR: 2019-2020
21	What is centrifugal effect on belts? (Nov/Dec 2015)BTL4
	As the belt moves round the pulley, it would experience a centrifugal force which has a tendency
	to separate the belt from the pulley surface. To maintain contact between the pulley and belt, the
	centrifugal force produce additional tension in the belt, which is known as centrifugal tension
	$(T_{\rm C}=mv^2).$
22	What are the factors upon which the coefficient of friction between the belt and pulley
	depends? (May/June 2014, 2012)BTL2
	The coefficient of friction between the belt material and pulley surface depends upon the belt
	material, material of the pulley surfaces, belt speed and belt slip.
23	Name the types of belts used for transmission of power.(May/June 2013)B7L2
	➢ Flat belts
	➢ V-belts
	Ribbed belts
	Toothed or timing belts
24	List out the various stresses induced in the wire ropes. (May/June 2013)BTL1
	Direct stress due to the weight of the load to be lifted.
	Bending stress when the rope passes over the sheave
	➢ Stress due to acceleration
	Stress due to starting and stopping
	➢ Effective stress.
25	Mention the parts of roller chains.(Nov/Dec 2012)BTL2
	Inner (pin link or coupling link) and outer link plates (roller link)
	➢ Pin
	Bushing and rollers.
	PART * B
1	Design a flat belt drive to transmit 110 kW for a system consisting of two pulleys of
	diameters 0.9m and 1.2m for a centre distance of 3.6m, belt speed of 20 m/s and coefficient
	of friction is 0.3. There is a slip of 1.2% at each pulley and 5% friction loss at each shaft
	with 20% overload. (13M)(Nov/Dec 2016) BTL5
	Pulley diameters: $d = 0.9m$, $D = 1.2m$
	Answer: Page: 1.31 – Dr.A.Baskar
	Design power:(2M)
	$Design nower = \frac{Rated power X Load correction factor}{M} = 135882 W$
	Arc of contact factor
	Type of belt: (2M)
	Considering heavy duty and medium belt speed; Dunlop FORT 949 g belt is selected.
	Load rating = 0.0578 kW per mm per ply
	No. of plies $= 8$.
	Standard belt width:(2M)
	$Belt width = \frac{Design power}{Design power} = 294 mm$
	load

	$C = A + \sqrt{A^2 - B} = 411.7 \ mm$
	Dimensions of V grooved pulley:(2M)
	Pitch width, $l_p = 14$ mm.
	Minimum distance down to pitch line, $b = 4.2$ mm.
	Centre to centre distance, $e = 19$ mm.
	Edge of pulley to first groove, $f = 12.5$ mm.
3	At the construction site, 1 tonne of steel is to be lifted upto a height of 20 m with the help of
	2 wire ropes of 6x19 size, nominal diameter 12 mm and breaking load 75 kN. Determine the
	factor of safety if the sheave diameter is 56d and wire rope is suddenly stopped in 1 second
	while travelling at a speed of 1.2 m/s. What is the factor of safety if bending load is
	neglected? (13M)(Nov/Dec 2014)BTL5
	Answer: Page: 1.126 – Dr.A.Baskar
	Wire rope type: 6 x 19 group.(2M)
	Design load: Not required
	Wire rope diameter, d and weight of rope, Wr:(2M)
	$D = 12 \text{ mm} \text{ (given)}, W_r = 106 \text{ N}.$
	Drum diameter, $D = 56d = 672$ mm.
	Useful cross section area, $A = 45.24 \text{ mm}^2$.
	Wire diameter, dw:(3M)
	$d_{m} = \frac{Rope \ diameter, d}{Rope \ diameter, d} = 0.7493 \ mm$
	$1.5 \times \sqrt{No. of strands \times No. of wires per strand} = 0.1155 min$
	Effective load, Weq:(4M)
	$W_d = W + W_r = 9916 N$
	$W_b = E \times \frac{a_w}{D} \times A = 3959 N$
	$W = \frac{W + W_r}{W_r} \times a = 1213 N$
	$w_a = \frac{g}{g} \times u = 1213 N$
	$W_{eq} = W_d + W_b + W_a$
	Actual factor of safety:(2M)
	Working factor of safety – Breaking load of the selected rope -10.24
	Effective load = 10.34
4	A bucket elevator is to be driven by a geared motor and a roller chain drive with the
	information given below:
	Motor output = 3 kW; speed of motor shaft = 100 rpm; elevator drive shaft speed = 42 rpm;
	load = even; distance between centres of sprockets approximately = 1.2m; period of
	operation = 16 hours/day; geared motor is mounted on an auxiliary bed for centre distance
	adjustments. Design the chain drive. (13M)(Nov/Dec 2016)BTL5
	Answer: Page: 1.151 – Dr.A.Baskar
	Type of chain: Roller chain.(1M)
	Preferred transmission ratio, i;(2M)

REGULATION: 2017

5

ACADEMIC YEAR: 2019-2020

$$i = \frac{z_2}{z_1} = \frac{n_1}{n_2} = 2.38$$
Number of teeth, z; (1M)
 $Z_1 = 27$; $Z_2 = 100$ to 120 satisfied.
Standard pitch, p: (1M)
 $p = \frac{a}{30}$ to $\frac{a}{50} = 40$ to 24 mm
The standard pitch of 15.875 mm is selected.
Minimum factor of safety, n: (2M)
 $N = \frac{Q.v}{102nk_s}$ in kW
Chain velocity, $v = 0.7144$ m/s.
Service factor, $k_s = 1.0$
Breaking load, $Q = \frac{N \times 102 \times n \times k_s}{v} = 3364$ kgf
Selection of chain: (1M)
Chain no. 10 A-2 DR 50 is selected; Breaking area, A = 140 mm²
Check for actual factor of safety, [n]: (1M)
 $[n] = \frac{Q}{\sum P} = 10.06$
Actual factor of safety is larger than assumed factor of sarey. Hence the design is safe.
Check for bearing stress: (1M)
 $\sigma = \frac{N \times 102 \times k_s}{A_s v} = 3.15 \text{ kgf}/mm^2$
Actual bearing stress is less than the allowable bearing stress. Hence the design is safe.
Actual length of chain $k_1(1M)$
 $l_p = 2a_p + \frac{(z_1 + z_2)}{2} + \frac{(z_2 - x_1)^2}{a_p} = 198 mm$
 $l = l_p, p = 3143.25 mm$
Exact centre distance, a; (rM)
 $\alpha = \frac{e + \sqrt{e^2 - 8m}}{4}, p = 1202.67 mm$
Chain wheel profile dimensions: (1M)
Pitch diameter of small sprocket, d_1 = 136.74 mm.
Tooth sider addius, $k = 0.76 mm.$
Shroud depth, $J = 3.43 mm.$
Shroud adjus, $k = 0.76 mm.$

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

Load factor is 1.3. Take a 5-ply, flat Dunlop belt. Power to be transmitted is 12 kW. High

/UNIT 1-5/QB+Keys/Ver1.0

	no. of belts = $\frac{P \times F_a}{kW \times F \times F_a}$ = 4 belts
	Actual centre distance $C \cdot (3M)$
	$L \pi(D+d)$
	$A = \frac{1}{4} - \frac{1}{8} = 517.496$
	$(D+d)^2$
	$B = \frac{15312.5}{8}$
	$C = A + \sqrt{A^2 - B} = 1019.98 mm$
	Actual belt tensions:(3M)
	Power transmitted ner helt $-\frac{Total power transmitted}{1875}$ W
	Number of belts $-1075 W$
	$\frac{T_1}{1} = e^{\left(\frac{\mu\theta}{\sin\beta}\right)}$
	T_2
	Tension on slack side, $T_1 = 15.19$ N;
	Tension on tight side, $T_2 = 254.04$ N.
2	The transporter of a heat treatment furnace is driven by a 4.5 kW, 1440 rpm induction
	motor through a chain drive with a speed reduction ratio of 2.4. The transmission is
	norizontal with both type of lubrication. Kating is continuous with 5 shifts per day. Design the complete chein drive (15M)(New/Dec 2012) DTI 5
	the complete chain drive.(15M)(Nov/Dec 2013)B1L5
	Answer: Page: 1.145 – Dr.A.Baskar
	Type of chain: Roller chain. (1M) Desting the probability of the
	Number of teeth $z_1(1M)$
	$7_{1} = 27 \text{ (assumed): } 7_{2} = 65$
	$\Sigma_1 = 27$ (assumed), $\Sigma_2 = 05$. Standard nitch n:(1M)
	$p = \frac{1}{30}$ to $\frac{1}{50} = 16.6667$ to 10 mm
	Available standard pitches are: 9.525 mm, 12.7 mm & 15.875 mm.
	The standard pitch of 12.7 mm is selected.
	Minimum factor of safety, n:(2M)
	$N = \frac{Q \cdot v}{102 m k} in kW$
	$\frac{102nk_s}{102nk_s}$
	Service factor $k = 1.5$
	Service factor, $k_s = 1.5$ $Preaching lead 0 = \frac{N \times 102 \times n \times k_s}{1004.22} haf$
	$Breaking load, Q = \frac{v}{v} = 1104.33 \text{ kg}$
	Selection of chain:(1M)
	Chain no.08 B-3 R 12/8H is selected;
	Breaking load, $Q = 2100$ kgf;
	Weight per meter = 0.75 kgf;
	Breaking area, $A = 54 \text{ mm}^2$
	Check for actual factor of safety, [n]:(1M)

$$\left[n\right] = \frac{Q}{\Sigma P} = 33.23$$
Actual factor of safety is larger than assumed factor of safety. Hence the design is safe.
Check for bearing stress:(2M)

$$\sigma = \frac{N \times 102 \times k_z}{A.v} = 1.55 \, kgf/mm^2$$
Actual bearing stress is less than the allowable bearing stress. Hence the design is safe.
Actual length of chain, 1:(2M)

$$l_p = 2a_p + \frac{(z_1 + z_2)}{2} + \frac{\left(\frac{2x-2x}{2\pi}\right)^2}{a_p} = 125.669 \, mm$$

$$l = l_p, p = 1600.2 \, mm$$
Exact centre distance, a:(2M)
Pich diameter of small sprocket, d₁ = 109.4 mm.
Tooth side radius, F = 12.70 mm.
Shroud depth, J = 2.79 mm.
Shroud depth, J = 2.79 mm.
Shroud radius, K = 0.76 mm.
3
A 7.5 kW electric motor running at 1400 rpm is used to drive the input shaft of the gear box
of a special purpose machine. Design a suitable roller chain to connect the motor shaft to
the gear box shaft to give an exact speed ratio of 10 to 1. Assume the minimum centre
distance between driver, and driven shafts as 600 mm.(15M)(May/June 2016)BTL5
Answer: Page: 1.156 - Dr.A.Baskar
Type of chair, stolic chain.(1M)
Preferred transmission ratio, i = 10 (given);
Number of teeth, z: (1M)
 $z_1 = 1f$ (assumed); $z_2 = 110$.
Standard pitch p:(1M)
 $p = \frac{a}{30}$ to $\frac{a}{50} = 20$ to 12 mm.
The standard pitch p:(1M)
 $N = \frac{Q.v}{102nk_s}$ in kW
Chain velocity, $v = 4.07$ m/s.
Service factor, $k_s = 1.525$
Breaking load, $Q = \frac{N \times 102 \times NK_s}{v} = 3877 \, kgf$

ACADEMIC YEAR: 2019-2020

/UNIT 1-5/QB+Keys/Ver1.0

UNIT II-SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects – Fatigue strength-Factor of safety - Gear materials – Design of straight tooth spur & helical gears based on strengthand wear considerations – Pressure angle in the normal and transverse plane- Equivalent number ofteethforces for helical gears.

	PART * A	
Q.No.	Questions	
1	Specify the conditions based on which gear cutters are selected.BTL4	
	> The capacity of the machine size and shape of the gear	
	Proper material selection	
	The magnitude of production range	
	The production time	
	The technical experience of the machinist	
	The economic viability of the machine	
	The cutting forces	
2	Define backlash. What factors influence backlash in gear drives? (Nov/Dec 2016)BTL1	
	Shortest distance between the non-contacting surfaces of the adjacent teeth is referred to as	
	backlash.	
	Module and	
	Pitch line velocity influence the backlash in gear drives.	
3	What are the advantages of the helical gear over spur gear?BTL2	
	> Helical gears produce less noise than spur gears of equivalent quality because the total	
	contact ratio is increased.	
	Helical gears have a greater load carrying capacity than equivalent size of spur gears.	
	\succ A limited number of standard cutters are used to cut a wide variety of helical gears	
	simply by varying the helix angle.	
	Smoother engagement of the gear teeth.	
	More teeth carry load at a given time so that they are more efficient – carry more load for	
	a given size.	
4	What are the main types of gear tooth failure? (May/June2013, 2012)BTL1	
	Tooth breakage (due to static and dynamic loads).	
	Tooth wear (or surface deterioration): (a) Abrasion; (b) Pitting and(c) Scoring or seizure.	
5	What are the assumptions made in deriving Lewis equation?BTL3	
	The effect of radial component, which induces compressive stresses, is negligible.	
	The tangential component is uniformly distributed across the full face width.	
	The tangential force is applied to the tip of a single tooth.	

	Stress concentration in the tooth fillet is negligible.
6	Why is pinion made harder than gear? (Nov/Dec 2012)BTL4
	Since the teeth of pinion undergo more number of cycles than gear and hence quicker wear.
7	List out the various methods of manufacturing a gear.BTL2
	➢ Gear milling,
	➢ Gear generating,
	➢ Gear hobbing,
	Gear shaping,
	➢ Gear molding,
	 Injection molding,
	➢ Die casting and
	➢ Investment casting.
8	What are the common forms of gear tooth profile? (Apr/May 2011)BTL1
	Involute tooth profile and
	Cycloidal tooth profile.
9	What are the standard interchangeable tooth profiles?BTL2
	> $14\frac{1}{2}^{0}$ composite system
	> $14\frac{1}{2}^{0}$ full depth involute system
	$\geq 20^{\circ}$ full depth involute system and
	$\geq 20^{\circ}$ stub involute system.
10	What are the effects of increasing and decreasing the pressure angle in gear design?
	(April/May 2015, 2017&2014, Nov/Dec 2014)BTL4
	Increasing the pressure angle will increase the beam and surface strengths of tooth. But
	gear becomes noisy.
	> Decreasing the pressure angle will increase the minimum number of teeth required on
11	the pinion to avoid interference/ undercutting.
11	A nencal gear has a normal pressure angle of 20 degrees, a nenx angle of 45 degrees, normal methyle of 4mm and has 20 tooth. Find the nitch diameter. (Nov/Dec 2016) PTI 5
	Solution : Pitch circle diameter (d) = (m, x 7)/ $\cos\beta_{\rm c} = (4x20)/\cos45 = 113.3 = 114$ mm
12	Differentiate double belical and herringhone gears (Nov/Dec 2015 Apr/May 2017) BTI 4
12	When there is groove in between the gears, then the gears are specifically known as double
	helical gears. When there is no groove in between the gears, then the gears is known as
	herringbone gears.
13	Write short notes on stub tooth system. (May/June2012)BTL1
	In this system, the thickness of tooth at top surface and its root is more compare to full depth
	tooth system. Also this kind of tooth possesses shorter addendum and larger pressure angle,
	usually 20° and thus interference problem may be eliminated. For standard stub tooth system, the
	tooth proportion are as Whole depth=1.8*module; Addendum==0.8*module;
	Dedendum=1.0*module; Working Depth=1.6*module; Clearance=0.2*module;
14	What are the advantages of helical gears? [(Nov/Dec 2012)BTL2
	Transmit more power

 Provide smooth and Soundless operation. 15 What are the profiles of a spur gear? (May/June 2016)BTL1 Two constant velocity tooth profiles are the most commonly used in modern times: the cycloid and the involute. 16 What is herringbone gear? (May/June 2016)BTL1 Herringbone gears, also called double helical gears, are gear sets designed to transmit power through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 ➢ Soundless operation. 15 What are the profiles of a spur gear? (May/June 2016)BTL1 Two constant velocity tooth profiles are the most commonly used in modern times: the cycloid and the involute. 16 What is herringbone gear? (May/June 2016)BTL1 Herringbone gears, also called double helical gears, are gear sets designed to transmit power through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 15 What are the profiles of a spur gear? (May/June 2016)BTL1 Two constant velocity tooth profiles are the most commonly used in modern times: the cycloid and the involute. 16 What is herringbone gear? (May/June 2016)BTL1 Herringbone gears, also called double helical gears, are gear sets designed to transmit power through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 Two constant velocity tooth profiles are the most commonly used in modern times: the cycloid and the involute. What is herringbone gear? (May/June 2016)BTL1 Herringbone gears, also called double helical gears, are gear sets designed to transmit power through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 the cycloid and the involute. What is herringbone gear? (May/June 2016)BTL1 Herringbone gears, also called double helical gears, are gear sets designed to transmit power through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 16 What is herringbone gear? (May/June 2016)BTL1 Herringbone gears, also called double helical gears, are gear sets designed to transmit power through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 Herringbone gears, also called double helical gears, are gear sets designed to transmit power through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 through parallel or, less commonly, perpendicular axes. The unique tooth structure of a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because,
 a herringbone gear consists of two adjoining, opposite helixes that appear in the shape of the letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because,
 letter 'V'.Double helical gears are used in many applications such as cranes, fluid pumps and power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 power transmission to the propulsion screws in military ships for a quieter and less vibration operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
 operation. 17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because.
17 State the advantages of Herringbone gear. (April/May 2015, 2013)BTL1 Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because,
Herringbone gears eliminate the existence of axial thrust load in the helical gears. Because,
in herringbone gears, the thrust force of the right hand is balanced by that of the left hand helix.
18 Why is a gear tooth subjected to dynamic load? (Nov/Dec 2014)BTL4
Dynamic loads are due to
➢ In accuracies of tooth spacing
Irregularities in tooth profiles
Elasticity of parts
Misalignment between bearings
Deflection of teeth under load
Dynamic unbalance of rotating masses.
19 Compare the features of spur and helical gears. (Nov/Dec 2012)BTL4
Advantages of the spur gear:
Spur gears are simplest, hence easiest to design and manufacture.
> A spur gear is more efficient if you compare it with helical gear of same size.
Easy to assemble
Advantages of the helical gear:
Silent operation
Helical gears can be used for transferring power between non-parallel shafts.
For same tooth size (module) and equivalent width, helical gears can handle more load
than spur gears because the helical gear tooth is effectively larger since it is diagonally
positioned.
20 Define the various pitch in a helical gear. (May/June 2012)BTL1
\succ Transverse circular pitch (P _t)
\blacktriangleright Normal circular pitch (P _n)
\blacktriangleright Axial Pitch (P _a)
\blacktriangleright Normal diametral pitch (P _d)
21 State the law of gearing. (or) State the conditions of correct gearing. (Nov/Dec2012, April
/May 2015)(or) What conditions must be satisfied in order that a pair of spur gears may

RI	REGULATION: 2017 ACADEMIC YEAR: 2019-2020		
	have constant velocity ratio?(May/June 2014)BTL1		
	The law of gearing states that for obtaining a constant velocity ratio, at any instant of teeth the		
	common normal at each point of contact should always pass through a pitch point (fixed point),		
	situated on the line joining the centres of rotation of the pair of mating gears.		
	The angular velocity ratio of the gears of a gear-set must remain constant throughout the mesh.		
22	State some materials used for manufacturing of gears. (May/June 2013)BTL1		
	Metallic gears: steel, cast iron and bronze. Non-metallic gears: wood, compressed paper and		
	synthetic resins.		
23	Define module. (April/May 2011, May/June 2013, Nov/Dec 2015)BTL1		
	Module, m this indicates the tooth size and is the number of mm of pitch circle diameter (p.c.d.)		
	per tooth. For gears to mesh, their modules must be equal. Gear ISO standards and design		
	methods are now normally based on the module. EG a gear of module 3 has 16 teeth, its pitch		
	circle diameter is: $3 \times 16 = 48$ mm. In a pair of spur gears, the module is 6 mm.		
24	What are the advantages of toothed gears over the other types of transmission		
	systems?BTL2		
	Advantages of gear drives over other drives, i.e. belt, rope and chain drives are		
	▶ It is very compact and need less space.		
	> It has a very high efficiency which is very useful in transmitting motion.		
	> The main advantage of gear drive is that it transmit same velocity ratio.		
	> Again a good advantage is that it is a very good reliable service.		
	> And last is that it can be used to transmit a very large power.		
25	What is pressure angle? (April /May 2015 & 2014, Nov/Dec 2014)BTL1		
	It is the angle which the line of action makes with the common tangent to pitch circles of		
	mating gears. Simply refers to the angle through which forces are transmitted between		
	meshing gears. Ideally 20° of pressure angle (involute system) is preferred because the tooth		
	acting as a beam is wider at the base.		
	PART * B		
1	A speed reducing unit using spur gear is to be designed. Power to be transmitted is 60 hp		
	and is continuous with moderate shock loads. The speeds of the shafts are 720 rpm and 144		
	rpm respectively. The centre distance is kept as small as possible. Select a suitable material		
	and design the gears. Give the details of the gears.(13M)(May/June 2016)BTL5		
	Answer: Page: 2,59 – Dr.A.Baskar		
	Gear ratio, i:(1M)		
	$i - \frac{N_1}{5}$		
	$l = \frac{1}{N_2} = 3$		
	Material:(1M)		
	C45 is selected for both pinion and wheel.		
	Design bending stress, $[\sigma_b] = 13734 \text{ X } 10^4 \text{ N/m}^2$		
	Design surface contact stress, $[\sigma_c] = 49050 \text{ X } 10^4 \text{ N/m}^2$		
	Gear life: Not Given		
	Design torque, [Mt]:(1M)		
JIT-JEPP /UNIT 1-	PIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/III rd Yr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS 5/QB+Keys/Ver1.0		

$$Torque transmitted, M_{\pi} = \frac{60 \times Power in watts}{2\pi N} = 593.648 \text{ N} - m$$

$$[M_{\pi}] = M_{\pi} \cdot k_{a} \cdot k = 771.742 \text{ N} - m$$
Calculation of Eq. [ob] and [oc]:(1M)
$$E_{eq} = 210915 \times 10^{6} \text{ N/m}^{2}$$

$$[\sigma_{e}] = 49050 \times 10^{4} \text{ N/m}^{2}$$
Centre distance, a:(1M)
$$a \ge (i + 1)^{3} \sqrt{\left(\frac{0.74}{[\sigma_{e}]}\right)^{2} \frac{E \times [M_{\pi}]}{i \times \psi}}$$
Assume, $\frac{b}{a} = 0.3$

$$a_{min} = 376 \text{ mm}$$
Number of teeth Z: and Z::(1M)
$$Z_{1} = 20 \text{ (assumed)}$$

$$Z_{2} = i. Z_{1} = 100.$$
Module, m:(1M)
$$m \ge 1.26 \sqrt{\frac{|M_{e}|}{y[\sigma_{0}] \psi dT_{1}}} = 16 \text{ mm}$$
Revised centre distance, a and number of teeth:(1M)
$$a \ge \frac{m(Z_{1} + Z_{2})}{2}$$

$$Z_{1} = 25 \text{ teeth; } Z_{2} = 105 \text{ teeth; } a = 378 \text{ mm}.$$
Face width, pitch circle diameter, pitch line velocity:(1M)
Face width, b = \psi_{0}a = 113.4 \text{ mm}
Pitch circle diameter, $d = 126 \text{ mm}.$
Pitch line yelocity, $v = 4.75 \text{ m/s}.$
Quality of genr:(1M)
$$g_{0} = \frac{(i + 1)}{amby} \times [M_{e}] \le [\sigma_{b}]$$

$$\sigma_{c} = 0.74 \times \frac{(i + 1)}{a} \times \sqrt{\frac{(i + 1)E[M_{e}]}{i.b}} \le [\sigma_{c}]$$

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

REGULATION: 2017

 $Z_1 = 20$ (assumed) $Z_2 = i$. $Z_1 = 60$. Module, m:(1M) $m \ge 1.26^{3} \frac{[M_{t}]}{y[\sigma_{b}]\psi Z_{1}} = 4 mm$ Revised centre distance, a and number of teeth:(1M) $a = \frac{m(Z_1 + Z_2)}{2}$ $Z_1 = 24$ teeth; $Z_2 = 72$ teeth; a = 192 mm. Face width, pitch circle diameter, pitch line velocity:(1M) Face width, $b = \psi$. a = 57.6 mm Pitch circle diameter, $d_1 = mZ_1 = 96$ mm. Pitch line velocity, v = 6.03 m/s. Quality of gear:(1M) IS quality 8 is selected. **Revision of design torque:** $[M_t] = M_t. k_d. k = 334.416 N$ Check for maximum induced bending stress, σ_b :(1M) $\sigma_b = \frac{(i+1)}{amby} \times [M_t] \le [\sigma_b]$ $\sigma_h = 15525 \times 10^4 N/m^2$ Design is safe. Check for maximum induced compressive stress, σ_c :(1M) $\sigma_c = 0.74 \times \frac{(i+1)}{a} \times \sqrt{\frac{(i+1)E[M_t]}{i.b}} \le [\sigma_c]$ $\sigma_c = 62697 \times 10^4 N/m^2$ Design is safe. Basic dimensions of pinion and wheel:(1M) **Pinion**: *Pitch circle diameter*, $d_1 = 96 mm$ *Height factor,* $f_0 = 1$ (*for full depth*) Tip circle diameter, $d_{c1} = (Z_1 + 2f_0)m = 104 mm$ Root circle diameter, $d_{f1} = (Z_1 + 2f_0)m - 2c = 86 mm$ Top depth, h = 2.25m = 9 mmWheel: Pitch circle diameter, $d_2 = 288 mm$ Tip circle diameter, $d_{c2} = (Z_2 + 2f_0)m = 296 mm$ Root circle diameter, $d_{f2} = (Z_2 + 2f_0)m - 2c = 278 mm$ Top depth, h = 2.25m = 9 mm

ACADEMIC YEAR: 2019-2020

	Face width, $b = \psi$. $a = 73.5$ mm
	Pitch circle diameter, $d_1 = mZ_1 = 140$ mm.
	Pitch line velocity, $v = 6.6$ m/s.
	Quality of gear:(1M)
	IS quality 8 is selected.
	Revision of design torque:
	$[M_t] = M_t \cdot k_d \cdot k = 329.389 N - m$
	Check for maximum induced bending stress, σ _b :(1M)
	$\sigma_b = \frac{(i+1)}{amby} \times [M_t] \le [\sigma_b]$
	$\sigma_b = 2711 \times 10^4 N/m^2$
	Design is safe.
	Check for maximum induced compressive stress, σc: (1M)
	$\sigma_c = 0.74 \times \frac{(i+1)}{a} \times \sqrt{\frac{(i+1)E[M_t]}{i.b}} \le [\sigma_c]$
	$\sigma_{c} = 30375 \times 10^{4} N/m^{2}$
	Design is safe.
	Basic dimensions of pinion and wheel:(1M)
	Pinion:
	Pitch circle diameter, $d_1 = 140 mm$
	Height factor, $f_0 = 1$ (for full depth)
	Tip circle diameter, $d_{c1} = (Z_1 + 2f_0)m = 150 mm$
	Root circle diameter, $d_{f1} = (Z_1 + 2f_0)m - 2c = 127.5 mm$
	$Top \ depth, h = 2.25m = 11.25\ mm$
	Wheel:
	Pitch circle diameter, $d_2 = 350 mm$
	Tip circle diameter, $d_{c2} = (Z_2 + 2f_0)m = 360 mm$
	Root circle diameter, $d_{f2} = (Z_2 + 2f_0)m - 2c = 337.5 mm$
	Top depth, $h = 2.25m = 11.25 mm$
4	A pair of helical gears subjected to moderate shock loading is to transmit 30 kW at 1500
	rpm of the pinion. The speed reduction ratio is 4 and the helix angle is 20°. The service is
	continuous and the teeth are 20° FD in the normal plane. For gear life of 10,000 hours,
	design the gear drive.(13M)(May/June 2016)BTL5
	Answer: Page: 2.156 – Dr.A.Baskar
	Gear ratio, i:(1M)
	$i = \frac{N_1}{N_2} = 4 \ (given)$
	Material:(1M)
	Assume 40 Ni2 Cr1 Mo 28 for both pinion and wheel (given).
	Design bending stress, $[\sigma_b] = 4000 \text{ kgf/cm}^2$

Design surface contact stress, $[\sigma_c] = 11000 \text{ kgf/cm}^2$ Gear life: (1M) Equivalent mean life, $N = 60nT = 90 \times 10^7$ cycles. **Design torque**, [M_t]:(1M) Torque transmitted, $M_t = \frac{60 \times Power \text{ in watts}}{2\pi N} = 190.99 \text{ N} - m$ $[M_t] = M_t \cdot k_d \cdot k = 248.28 N - m$ Calculation of E_{eq} , $[\sigma_b]$ and $[\sigma_c]$:(1M) $E_{eq} = 210915 \text{ X} 10^6 \text{ N/m}^2$ $[\sigma_b] = \frac{1.4k_{bl}\sigma_{-1}}{n_k k_{\sigma}} = 240.345 \times 10^6 N/m^2$ $[\sigma_c] = C_R HRCk_{cl} = 1049.64 \times 10^6 N/m^2$ Centre distance, a:(1M) $a \ge (i+1)^{3} \sqrt{\left(\frac{0.7}{[\sigma_{c}]}\right)^{2} \frac{E \times [M_{t}]}{i \times \psi}}$ Assume, $\frac{b}{a} = 0.3$ $a_{min} = 268.7 mm$ M) Number of teeth Z₁ and Z₂:(1M) $Z_1 = 20$ (assumed) $Z_2 = i. Z_1 = 80.$ Module, m:(1M) $m \ge 1.15 \cos \beta \int_{-\infty}^{3} \left| \frac{[M_t]}{y[\sigma_b]\psi Z_1} = 3 mm \right|$ Revised centre distance, a and number of teeth: $a = \frac{m(Z_1 + Z_2)}{2\cos\beta}$ $Z_1 = 34$ teeth; $Z_2 = 136$ teeth; a = 271.37 mm. Face width, pitch circle diameter, pitch line velocity:(1M) Face width, $b = \psi$. $a \neq 82 \text{ mm}$ Pitch circle diameter, $d_1 = mZ_1 / Cos\beta = 108.55$ mm. Pitch line velocity, v = 8.525 m/s. **Quality of gear:**(1M) IS quality 8 is selected. **Revision of design torque:** $[M_t] = M_t \cdot k_d \cdot k = 280.75 N - m$ Check for maximum induced bending stress, σ_b :(1M) $\sigma_b = \frac{0.7 \times (i+1) \times [M_t]}{amby} \le [\sigma_b]$ $\sigma_b = 31.65 \times 10^6 N/m^2$

RE	EGULATION: 2017 ACADEMIC YEAR: 2019-2020
	Design is safe.
	Check for maximum induced compressive stress, σ _c :(1M)
	$0.74 \times (i+1)$ $(i+1) \in [M]$
	$\sigma_c = \frac{0.74 \times (l+1)}{\sigma} \times \left \frac{(l+1)E[M_t]}{ih} \le [\sigma_c] \right $
	$\sigma_c = 387.5 \times 10^6 N/m^2$
	Design is safe.
	Basic dimensions of pinion and wheel:(1M)
	Pinion:
	Pitch circle diameter, $d_1 = 108.55 \text{ mm}$
	Height factor, $f_0 = 1$ (for full depth)
	Tip circle diameter, $d_{c1} = \left(\frac{Z_1}{2} + 2f_0\right)m = 114.55 mm$
	$(\cos\beta)$
	Root circle diameter, $d_{f1} = \left(\frac{Z_1}{2} + 2f_0\right)m - 2c = 101.05 mm$
	π $(\cos\beta)$
	1 op aeptn, n = 2.25m = 6.75 mm
	wheel:
	Pitch circle diameter, $d_2 = \frac{4\pi n}{\cos \beta} \times Z_2 = 434.18 mm$
	(Z_2)
	Tip circle diameter, $d_{c2} = \left(\frac{2}{\cos\beta} + 2f_0\right)m = 440.18 mm$
	(Z_2)
	Root circle diameter, $d_{f2} = \left(\frac{1}{\cos\beta} + 2f_0\right)m - 2c = 426.68 mm$
	$Top \ depth, h = 2.25m = 6.75 \ mm$
5	Design a helical gear drive to transmit a power of 15 kW at 1440 rpm to the following
	specifications: Speed reduction is 3, pressure angle is 20°, helix angle is 15°, material of both
	gears is C45 steel, allowable static stress is 180 N/mm ² , Young's modulus = 2×10^5
	N/mm ² .(13M)(Nov/Dec 2010)BTL5
	Answer: Page: 2.175 – Dr.A.Baskar
	Material:(1M)
	C45 Steel (given)
	Number of teeth Z ₁ and Z ₂ :(1M)
	$Z_1 = 20$ (assumed)
	$Z_2 = i. Z_1 = 60.$
	Tangential load, Ft:(1M)
	$F_t = \frac{Design \ power \ in \ watts}{12.488} = \frac{12.488}{12.488}$
	v_m m
	Dynamic Load, F _d :(1M)
	$F_d = F_t \cdot C_V$
	$F_d = \frac{12.488}{2} \times (1 + 260.25m)$
	m m m m

REGULATION: 2017

$a = \frac{m(Z_1 + Z_2)}{m(Z_1 + Z_2)}$
2
$Z_1 = 12$ teetn; $Z_2 = 24$ teetn; $a = 72$ mm.
Face width, plich circle diameter, plich line velocity: ($1W1$)
Face within, $D = \psi$. $a = 21.0 \text{ mm}$
Plich circle diameter, $u_1 = IIIZ_1 = 48$ IIIII. Ditab line velocity, $u_1 = 1,2006$ m/s
Plich line velocity, $v = 1.8096$ m/s.
Quality of gear: (TM)
IS quality 8 is selected.
Kevision of design torque: (110) $[M] = M k k = 224.41 N m$
$[M_t] = M_t \cdot K_d \cdot K = 554.41 N - M$
Check for maximum induced bending stress, $ob.(1W)$
$\sigma_b = \frac{(t+1)}{amby} \times [M_t] \le [\sigma_b]$
$a = 7012 \times 10^4 \text{ M/m}^2$
$O_b = 7012 \times 10$ N/M
Check for maximum induced compressive stress σ_{c} (1M)
Check for maximum induced compressive stress, oc.(IW)
$\sigma = 0.74 \times \frac{(i+1)}{(i+1)E[M_t]} \leq [\sigma]$
$b_c = 0.74 \times \frac{a}{a} \times \sqrt{\frac{i.b}{i.b}} \leq [b_c]$
$\sigma_c = 29486 \times 10^4 N/m^2$
Design is safe.
Basic dimensions of pinion and wheel:(2M)
Pinion:
Pitch circle diameter, $d_1 = 140 mm$
Height factor, $f_0 = 1$ (for full depth)
Tip circle diameter, $d_{c1} = (Z_1 + 2f_0)m = 150 mm$
<i>Root circle diameter</i> , $d_{f1} = (Z_1 + 2f_0)m - 2c = 127.5 mm$
Top depth, $h = 2.25m = 11.25 mm$
Wheel:
Pitch circle diameter, $d_2 = 350 \text{ mm}$
Tip circle diameter, $d_{c2} = (Z_2 + 2f_0)m = 360 mm$
Root circle diameter, $d_{f_2} = (Z_2 + 2f_0)m - 2c = 337.5 mm$
Top depth, $h = 2.25m = 11.25 mm$
Design a spur gear drive required to transmit 45 kW at a pinion speed of 800 rpm. The
velocity ratio is 3.5:1. The teeth are 20° full depth involute with 18 teeth on the pinion. Both
the pinion and gear are made of steel with a maximum safe static stress of 180 N/mm ² .
Assume medium shock conditions.(15M)(Nov/Dec 2015)BTL5
Answer: Page: 2.98 – Dr.A.Baskar
Material:(1M)
Steel for both ninion and wheel (given)

Steel for both pinion and wheel (given)

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

Number of teeth Z₁ and Z₂:(1M) $Z_1 = 18$ (given) $Z_2 = i. Z_1 = 63.$ Tangential load, Ft:(1M) $F_t = \frac{Design \ power \ in \ watts}{v_m} = \frac{77.586}{m}$ **Dynamic Load**, **F**_d:(1M) $F_d = F_t. C_V$ $F_d = \frac{77.586}{m} \times (1 + 125.7m)$ **Beam strength**, **F**_s:(1M) $F_s = [\sigma_b]m.b.Y = 584.1 \times 10^6 m^2$ Module, m:(2M) $F_s \ge F_d \text{ for safe design}$ $\frac{77.586}{m} \times (1 + 125.7m) = 584.1 \times 10^6 m^2$ Module, m = 8 mm. Face width, pitch circle diameter, pitch line velocity:(2M) Face width, b = 10 X m = 80 mmPitch circle diameter, $d_1 = mZ_1 = 144$ mm. Pitch line velocity, v = 6.032 m/s. Revision of beam strength, Fs:(1M) $F_s = [\sigma_b]m.b.Y = 37382 N$ Buckingham's dynamic load, Fd:(1M) $F_d = F_t + \left[\frac{0.164V_m(cb+F_t)}{0.164V_m + 1.485\sqrt{cb+F_t}}\right] = 26417 N$ Check for the design: $(F_d = 26417 \text{ N}) < (F_s = 37382 \text{ N})$ The design is safe. **Check for wear:**(1M) Wear load, $F_w = d_1 Qkb = 36056 N$ $(F_w = 36056 \text{ N}) > (F_d = 26417 \text{ N})$ The design is safe. **Basic dimensions of pinion and wheel:**(3M) Pinion: *Pitch circle diameter*, $d_1 = 144 \text{ mm}$ *Height factor*, $f_0 = 1$ (*for full depth*) Tip circle diameter, $d_{c1} = (Z_1 + 2f_0)m = 160 mm$ Root circle diameter, $d_{f1} = (Z_1 + 2f_0)m - 2c = 124 mm$ *Top depth*, h = 2.25m = 18 mm
RE	GULATION: 2017 ACADEMIC YEAR: 2019-2020
	Wheel:
	Pitch circle diameter, $d_2 = 504 mm$
	Tip circle diameter, $d_{c2} = (Z_2 + 2f_0)m = 520 mm$
	Root circle diameter, $d_{f2} = (Z_2 + 2f_0)m - 2c = 484 mm$
	Top depth, $h = 2.25m = 18 mm$
3	Design a pair of helical gears to transmit 10 kW at 1000 rpm of the pinion. Reduction ratio
	of 5 is required. Pressure angle is 20° and the helix angle is 15°. The material for both the
	gears is 40Ni2 Cr1 Mo28. Give the details of the drive in a tabular form.(15M)(Nov/Dec
	2016)BTL5
	Answer: Page: 2.149 – Dr.A.Baskar
	Gear ratio, i:(1M)
	$i = \frac{N_1}{N_1} = 5$ (given)
	N_2
	Material:(1M)
	40 Ni2 Cr1 Mo 28 for both pinion and wheel (given).
	Design bending stress, $[\sigma_b] = 392.4 \times 10^6 \text{ N/m}^2$
	Design surface contact stress, $[\sigma_c] = 10/9.1 \times 10^6 \text{ N/m}^2$
	Design torque [M.]:(1M)
	$60 \times Power in watts$
	Torque transmitted, $M_t = 30 \times 10000000000000000000000000000000000$
	$[M_t] = M_t \cdot k_d \cdot k = 124.141 N - m$
	Calculation of E_{eq} , $[\sigma_b]$ and $[\sigma_c]$:(1M)
	$E_{eq} = 210915 \text{ X } 10^6 \text{ N/m}^2$
	$[\sigma_b] = 392.4 \text{ X } 10^6 \text{ N/m}^2$
	$[\sigma_c] = 1079.1 \text{ X } 10^6 \text{ N/m}^2$
	Centre distance, a:(1M)
	$\sqrt[3]{(07)^2 E \times [M_{\star}]}$
	$a \ge (i+1) \left \left(\frac{\partial n}{\partial r_i} \right) \frac{2 + r_i r_i r_i}{i \times w} \right $
	$\sqrt{\frac{1}{2}}$
	Assume, $\frac{b}{a} = 0.3$
	$a_{min} = 105 mm$
	Number of teeth Z ₁ and Z ₂ :(1M)
	$Z_1 = 20$ (assumed)
	$Z_2 = i. Z_1 = 100.$
	Module, m:(1M)
	$3 \boxed{M_1}$
	$m \ge 1.15 \cos \beta \left[\frac{1}{v [\sigma,]\mu T} \right] = 2 mm$
	$\sqrt{y_{[0]}} \sqrt{y_{[0]}} \sqrt{y_{[1]}}$
	kevised centre distance, a and number of teeth: $(1M)$

UNIT III-BEVEL, WORM AND CROSS HELICAL GEARS

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth.Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demeritsterminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of theworm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helicalgears. PART * A Q.No. **Ouestions** 1 What is virtual or formative number of teeth in bevel gears? (Nov/Dec 2014, April/May 2017, May/June 2014)BTL1 An imaginary spur gear considered in a plane perpendicular to the tooth of the bevel gear at the larger end is known as virtual spur gear. The number of teeth z_v on this imaginary spur gear is called virtual number of teeth in bevel gears, $z_v = z/\cos \delta$ where z = actual number of teeth on the bevel gear and δ = pitch angle. 2 Define the following terms: (a) Cone distance (b) Face angle. (May/June 2014)BTL1 (a)Cone distance: In bevel gears, cone distance is the length of the pitch cone element. (b) Face angle: It is the angle subtended by the face of the tooth at the cone centre. 3 Why is the efficiency of worm gear drive comparatively low?BTL4 The efficiency of worm gear drive is lower because of power loss due to friction caused by sliding. In which gear drive, self-locking is available? (April/May 2015, 2013)BTL3 4 In the worm gear drive, self-locking is available. 5 Write the conditions of self-locking of worm gears in terms of lead and pressure angle in gear design. And also write the condition for over running drives. (Apr/May 2017)BTL3 > The drive is called self-locking, if $\mu \ge \cos \alpha$. tan γ The drive is called overrunning, if $\mu < \cos \gamma$. tan γ Why is multistart worm more efficient than the single start one?BTL4 6 The efficiency of the worm depends mainly on pressure angle (also known as pitch angle of the worm). For a single start worm this pressure angle will be less. In a multi start worm, this pressure angle can be increased (of the order 45°). That's why multi start worm is more efficient. 7 What is the difference between an angular gear and a miter gear? (Nov/Dec 2015)BTL4 > When the bevel gears connect two shafts whose axes intersect at an angle other than a right angle, then they are known as angular bevel gears. > When equal bevel gears (having equal teeth and equal pitch angles) connect two shafts whose axes intersect at right angle, then they are known as miter gears. 8 A pair of worm gears is designated as 2/54/10/5. Find the gear ratio. BTL5

	Solution: $(2/54/10/5)$: $(z_1/z_2/q/m_x)$ Therefore, Gear ratio, $i = z_2/z_1 = 54/2 = 27$
9	Why phosphor bronze is widely used for worm gears?BTL4
	Phosphor bronze has high antifriction properties to resist seizure. Because in worm gear drive,
	the failure due to seizure is more.
10	List out the main types of failure in worm gear drive. (Nov/Dec 2012)BTL2
	Seizure
	\blacktriangleright Pitting and rupture.
11	For transmitting large power, worm reduction gears are not generally preferred.
	Why?BTL4
	In worm drive, meshing occurs with sliding action. Since sliding occurs, the amount of
	heat generation and power loss are quite high.
12	In worm gear drive, only the wheel is designed. Why? (Apr/May 2011)BTL4
	Since always the strength of the worm is greater than the worm wheel, therefore only the worm
	wheel is designed.
13	What are the forces acting on bevel gear? (May/June 2013)BTL2
	> Tangential force
	> Separating force: It is resolved into two components, they are axial radial force.
14	Under what situation, bevel gears are used? (Apr/May 2011) BTL3
	Bevel gears are used to transmit power between two intersecting shafts.
15	Write some applications of worm gear drive. (Nov-Dec 2016)BTL2
	Where do we use worm gears? (May/June2013)
	It is commonly used in automotive differentials, Tuning Instruments, Elevators/Lifts, Gates and
	Conveyor Belts
16	What are the main types of failures in worm gear drives?(Nov/Dec2012)BTL2
	> Seizure
	➢ Pitting
	Surface wear
17	What is the helical angle of worm? (May/June 2016)BTL1
	In mechanical engineering, a helix angle is the angle between any helix and an axial line on its
	right, circular cylinder or cone. Common applications are screws, helical gears, and worm gears.
	The helix angle references the axis of the cylinder, distinguishing it from the lead angle, which
	references a line perpendicular to the axis. Naturally, the helix angle is the geometric
	complement of the lead angle. The helix angle is measured in degrees.
18	What is a crown gear? (Nov/Dec 2016, May/June 2013)BTL1
	A crown gear (or a contrate gear) is a gear which has teeth that project at right angles to the face
	of the wheel. In particular, a crown gear is a type of bevel gear where the pitch cone angle is 90
	degrees.
19	How bevel gears are manufactured? (May/June 2016)BTL1
	Bevel gears can be manufactured through the gear hobbing and machining process.
20	What kind of contact is required between worm and worm wheel? How does this differ
	from other gears? (Nov/Dec 2015)BTL4

R	EGULATION: 2017 ACADEMIC YEAR: 2019-2020
	Sliding contact is required between worm and worm wheel. For other gears Line contact is
	required for other gears.
21	What is a Zero Bevel Gears? (April/May 2015)BTL1
	Spiral bevel gears with curved teeth but with a zero degree spiral angle are known as zero bevel
	gears.
22	Mention the advantages of worm gear drive. (Nov/Dec 2014)BTL2
	Worm gears are used to transmit power between two non-intersecting, non-parallel shafts. Worm
	gears can be used for high speed reduction ratios as high as 300:1.
23	When do we employ crossed helical gear? (Nov/Dec 2012)BTL4
	Crossed helical gear sets are used to transmit power and motion between non-intersecting and
	non-parallel axes. Both of the gears that mesh with each other are involute helical gears, and a
	point contact is made between them. They can stand a small change in the center distance and
	the shaft angle without any impairment in the accuracy of transmitting motion.
24	List the various types of Bevel gears. (May/June 2012)BTL2
	Straight bevel gears
	Spiral bevel gears
	Zero bevel gears
	> Hypoid gears
25	What are the various losses in the worm gear drive? (May/June 2012)BTL2
	Worm drives have high power losses. A disadvantage is the potential for considerable sliding
	action, leading to low efficiency. They produce a lot of heat. High-ratio units have a smaller gear-
	tooth lead (helix) angle, which causes more surface contact between them. This higher contact
	causes higher friction and lower efficiency. Typical worm-gear efficiencies range from 49% for a
	300:1, double-reduction ratio, up to 90% for a 5:1, single-reduction ratio. For this reason, these
	units are usually more suitable for low ratios.
	PART * B
1	Design a bevel gear drive to transmit 3.5 kW with driving shaft speed is 200 rpm. Speed
	ratio required is 4. The drive is non-reversible. Pinion is made of steel and wheel made of
	CI. Assume a life of 25,000 hrs. (13M)(Nov/Dec 2016)BTL5
	Answer: Page: 3.26 – Dr.A.Baskar
	Gear ratio, i:(1M)
	$i = N_1 = A (gingn)$
	$l = \frac{1}{N_2} = 4 (given)$
	$\tan \delta_2 = i$
	$\delta_2 = 75.96^\circ; \ \delta_1 = 14.04^\circ$
	Material:(1M)
	Pinion: C45, Hardened steel.
	Tensile strength, $\sigma_u = 700 \text{ X } 10^6 \text{ N/m}^2$
	Yield strength, $\sigma_y = 360 \text{ X } 10^6 \text{ N/m}^2$
	Wheel: CI Grade 30.
	Tensile strength, $\sigma_u = 300 \text{ X } 10^6 \text{ N/m}^2$

	Pitch line velocity, $v = 0.98$ m/s.
	Quality of gear:(1M)
	IS quality 8 is selected.
	Revision of design torque:
	$[M_t] = M_t. k_d. k = 217.25 N - m$
	Check for maximum induced bending stress, σ_b :(1M)
	$R\sqrt{i^2+1}.[M_t]$ 1
	$\sigma_b = \frac{1}{(R - 0.5b)^2 mby} \cdot \frac{1}{\cos \alpha} \leq \lfloor \sigma_b \rfloor$
	$\sigma_b = 41.8 \times 10^6 N/m^2$
	Design is safe.
	Check for maximum induced compressive stress , σ _c :(1M)
	0.72 $(i^2 + 1)^3 E[M_t]$
	$\sigma_c = \frac{1}{(R - 0.5b)} \times \sqrt{\frac{i.b}{i.b}} \leq [\sigma_c]$
	$\sigma_c = 365 \times 10^6 N/m^2$
	Design is safe.
	Basic dimensions of pinion and wheel:(1M)
	Pinion:
	Reference angle, $\delta_1 = 14.04^{\circ}$
	Pitch circle diameter, $d_1 = 108 \text{ mm}$
	Tip circle diameter, $d_{a1} = m_t(Z_1 + 2\cos\delta_1) = 138 mm$
	Wheel:
	Reference angle, $\delta_2 = 75.96^{\circ}$
	Pitch circle diameter, $a_2 = 432 \text{ mm}$
2	1 lp circle alameter, $a_{a2} = m_t Z_2 = 642 \text{ mm}$
Ζ	A pair of cast from devel gears connects two shafts at right angles. The pitch diameters of the pinion and gear are 80 mm and 100 mm respectively. The teath profiles of the gears are
	$141/2^{\circ}$ composite form. The allowable static stress for both gears is 55 MPa. If the pinion
	transmits 2.75 kW at 1100 rnm find the module and number of teeth on each gear and
	check the design. Take surface endurance limits as 630 MPa and modulus of elasticity for
	cast iron as 84 kN/mm ² .(13M)(Nov/Dec 2009)BTL5
	Answer: Page: 3.55 – Dr.A.Baskar
	Material:(1M)
	Cast Iron (given) for both pinion and wheel.
	We have to design pinion.
	Gear ratio, i:(1M)
	$i = \frac{N_1}{N} = 1.25$
	$\tan \delta_i = i$
	$\delta_{11} = 51.34^{\circ} \cdot \delta_{1} = 38.66^{\circ}$
	Tangential load, $F_t:(1M)$

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

$$F_{t} = \frac{Design power in waits}{v_{m}} = \frac{3575}{4.608} = 775.82 N$$
Dynamic Load, Fd:(1M)
$$F_{d} = F_{t} \cdot N_{sf} \cdot k_{m} \cdot C_{v} = 1251 N$$
Strength of gear tooth, Fs:(1M)
$$F_{s} = [\sigma_{b}]m_{t} \cdot b \cdot Y\left(1 - \frac{b}{R}\right)$$

$$F_{s} = 0.294 \times 10^{6} \times m_{t} - 15.86 \times 10^{6} \times m_{t}^{2}$$
Transverse Module, m:(1M)
$$F_{s} \geq F_{d} \text{ for safe design}$$

$$0.294 \times 10^{6} \times m_{t} - 15.86 \times 10^{6} \times m_{t}^{2} = 1251$$
Module, m = 7 mm.
Face width, pitch circle diameter, pitch line velocity:(1M)
Face width, b = 10 X m = 20 mm
No. of teeth, mZ_{t} = 12, Z_{2} = 15.
Pitch circle diameter of pinion, $d_{1} = mZ_{1} = 80 \text{ mm}.$
Pitch circle diameter of wheel, $d_{2} = mZ_{2} = 100 \text{ mm}$ (given).
Pitch line velocity, v = 4.608 m/s.
Revision of beam strength, Fs:(1M)
$$F_{s} = [\sigma_{b}]m \cdot b \cdot Y\left(1 - \frac{b}{R}\right) = 1287 N$$
Buckingham's dynamic load, Fa:(2M)
$$F_{h} = F_{t} + \left[\frac{0.164V_{m}(cb + F_{t})}{0.164V_{m} + 1.485\sqrt{cb + F_{t}}}\right] = 2516.5 N$$
Check for the design.
(F_{a} = 2616.5 N) < (F_{a} = 1287 N)
The design's mot safe.
> down d_{2} are given and limited to 80 mm and 100 mm.
No. of teeth Z, to be minimum 12 and hence 'm,' cannot be increased.
B cannot be increased much, it will reduce 'Fs'. 'R' is also fixed 64 mm given.
No. the destrent.
(F_{w} = 4225N) > (F_{d} = 2516.5 N)
Basic dimensions of pinion and wheel:(2M)
Pinion:
Reference angle, $\delta_{1} = 38.66^{\circ}$
Pitch circle diameter, $d_{a1} = m_{t}(Z_{1} + 2cos\delta_{1}) = 94.93 mm$

RE	GULATION: 2017 ACADEMIC YEAR: 2019-2020
	Wheel:
	Reference angle, $\delta_2 = 51.34^{\circ}$
	Pitch circle diameter, $d_2 = 100 mm$
	Tip circle diameter, $d_{a2} = m_t Z_2 = 113.75 mm$
	The design is safe.
3	Design a pair of straight bevel gears for two shafts whose axes are at right angle. The power
	transmitted is 25 kW. The speed of pinion is 300 rpm and the gear is 120 rpm. Assume 15
	Ni2 Cr1 Mo15 steel for both the pinion and wheel. Use Hertz stresses method.(13M)BTL5
	Answer: Page: 3.42 – Dr.A.Baskar
	Gear ratio, i:(1M)
	N_1 25
	$i = \frac{1}{N_2} = 2.5$
	$\tan \delta_2 = i$
	$\delta_2 = 68.2^\circ; \ \delta_1 = 21.8^\circ$
	Material:(1M)
	Assumed: 15 Ni2 Cr1 Mo15 steel for both pinion and wheel.
	$[\sigma_{\rm b}] = 313.92 \text{ X} 10^6 \text{ N/m}^2$
	$[\sigma_c] = 931.95 \times 10^6 \text{ N/m}^2$
	Gear life. N:
	Not available
	Design torque [M.1.(1M)
	$60 \times Power in watts$
	Torque transmitted, $M_t = 3000000000000000000000000000000000000$
	$[M_t] = M_t \cdot k_d \cdot k = 1034.51 N - m$
	Calculation of E_{eq} , $[\sigma_b]$ and $[\sigma_c]$:(1M)
	$E_{eq} = 210.915 \text{ X } 10^9 \text{ N/m}^2$
	$[\sigma_b] = 313.92 \text{ X } 10^6 \text{ N/m}^2$
	$[\sigma_c] = 931.95 \text{ X} \ 10^6 \text{ N/m}^2$
	Cone distance, R:(1M)
	$R \ge \psi \sqrt{i^2 + 1}^{\circ} \left[\left(\frac{0.72}{(1 - 0.5)^{1/2}} \right) \frac{E \times [I_{t_1}]}{(1 - 0.5)^{1/2}} \right]$
	$\sqrt{((\psi - 0.5)[\sigma_c])}$ i
	Assume $\psi = \frac{R}{2} = 3$
	R = 164 mm
	Number of teeth Z_1 and Z_2 : (1M)
	$Z_1 = 20$ (assumed)
	$Z_2 = 1$, $Z_1 = 50$.
	I ransverse wodule, mt:(1M)
	$m_{av} \ge 1.28^{3} \left \frac{[M_{t}]}{\gamma[\sigma_{b}]\psi Z_{1}} \right = 4.42 \ mm$

$m_t = m_{av} + \frac{b}{2}\sin\delta = 6 mm$
Revision of cone distance, R and number of teeth:
$R = 0.5m_t Z_1 \sqrt{i^2 + 1} = 177.71 \ mm$
$Z_1 = 22$ teeth; $Z_2 = 55$ teeth;
Face width, pitch circle diameter, pitch line velocity:(1M)
Face width, $b = 10.m_t = 60 \text{ mm}$
Pitch circle diameter,
$d_{1av} = m_t Z_1 \left(\frac{R - 0.5b}{R}\right) = 129.77 \ mm$
Pitch line velocity, $v = 2.04$ m/s.
Quality of gear:(1M)
IS quality 8 is selected.
Revision of design torque:
$[M_t] = M_t. k_d. k = 1782.52 N - m$
Check for maximum induced bending stress, σ_b :(1M)
$\sigma_b = \frac{R\sqrt{i^2 + 1}, [M_t]}{(R - 0.5b)^2 m b \gamma} \cdot \frac{1}{\cos \alpha} \le [\sigma_b]$
$\sigma_h = 279 \times 10^6 N/m^2$
Design is safe.
Check for maximum induced compressive stress, σ_{c} :(2M)
$\sigma_c = \frac{0.72}{(R - 0.5b)} \times \sqrt{\frac{(l^2 + 1)^3 E[M_t]}{i.b}} \le [\sigma_c]$
$\sigma_c = 1077.8 \times 10^6 N/m^2$
Design is not safe.
Increase face width, $b = 1$,
$\therefore [M_t] = M_t \cdot k_d \cdot k = 1336.89 N - m$
$(i^2 + 1)^3 E[M]$
$\sigma_c = \frac{0.72}{(R - 0.5k)} \times \left \frac{(t + 1)^2 E[M_t]}{i k} \le [\sigma_c] \right $
$(R - 0.5b)$ $\sqrt{1.b}$
$\sigma_c = 830.9 \times 10^6 N/m^2$
Hence, design is safe.
Basic dimensions of pinion and wheel:(1M)
Pinion:
Reference angle, $\delta_1 = 21.8^{\circ}$
Pitch circle diameter, $d_1 = 132 mm$
Tip circle diameter, $d_{a1} = m_t(Z_1 + 2\cos\delta_1) = 143.14 \text{ mm}$
Wheel:
Reference angle, $\delta_2 = 68.2^{\circ}$
Pitch circle diameter, $d_2 = 330 \text{ mm}$

	Tip circle diameter, $d_{a2} = m_t Z_2 = 334.46 mm$
4	2 kW power is applied to a worm shaft at 720 rpm. The worm is of quadruple start with 50
	mm as pitch circle diameter. The worm gear has 40 teeth with 5 mm module. The pressure
	angle in the diametral plane is 20°. Determine: (i) the lead angle of the worm, (ii) velocity
	ratio and, (iii) centre distance. Also calculate efficiency of the worm gear drive and power
	lost in friction.(13M)(May/June 2014)BTL5
	Answer: Page: 3.94 – Dr.A.Baskar
	Lead angle of the worm, γ :(3M)
	Diameter factor, $q = \frac{d_1}{m_x} = 10$
	Velocity ratio, i:(2M) $y = \tan \frac{1}{q} = 21.0$
	Gear ratio, $i = \frac{1}{Z} = 10$
	Centre distance, a:(2M)
	$a = 0.5m_x(q + z + 2x) = 125 mm$
	Efficiency of the worm drive, η:(2M)
	$n = \frac{\tan \gamma}{\cos \gamma} = 87.11\%$
	$\tan(\gamma + \rho)$
	Power lost in friction:(2M)
	Power lost in friction = $(1 - \eta)P = 257.79$ watts
3	Design a worm gear drive to transmit 20 kW at 1440 rpm, speed of worm wheel is 60
	Answor: Pogo: 3 111 Dr A Boskor
	Gear ratio i·(1M)
	$i = \frac{n}{24}$
	$l = \frac{1}{n_1} = 24$
	Material; No. of threads on worm, Z; No.of teeth on worm wheel, z:(1M)
	Worm—steel
	Worm wheel – bronze (assumed)
	Z = 3 (assumed)
	Z = i.Z = 72 teeth.
	Design of worm wheel torque, $[M_t]:(1M)$
	Torque transmitted, $M_t = \frac{60 \times P}{2\pi n_1} \times \eta = 2546.48 N - m$
	$[M_t] = M_t. k_d. k = 2546.48 N - m$
	Design bending stress, $[\sigma_b]$ and surface compressive stress, $[\sigma_c]$:(1M)
	For steel and bronze combination, $[\sigma_c] = 156 \times 10^6 \text{ N/m}^2$
	For bronze wheel chill casting, $[\sigma_b] = 53.955 \times 10^{\circ} \text{ N/m}^2$
	INTIMUM CENTRE DISTANCE, a: (11V1)

 $a = \left(\frac{z}{q} + 1\right)^{3} \left| \left(\frac{540}{\frac{z}{q} \times [\sigma_{c}]}\right)^{2} \left\{ [M_{t}] \times 10^{5} \right\} \right|$ Assume, q = 11 (assumed) $a = 312.8 \, mm$ Axial Module, m_x:(1M) $m_{\chi} = 1.24 \sqrt[3]{\frac{[M_t]}{yqz[\sigma_b]}} = 8 mm$ **Revision of centre distance, a:**(1M) $a = 0.5m_{r}(q + z + 2x) = 332 mm$ Pitch diameters, pitch line velocity of worm, sliding velocity:(1M) Pitch diameter-worm. $d_1 = qm_x = 88 mm$ Pitch diameter-worm wheel, $d_2 = zm_x = 576 mm$ $v_s = \frac{v_1}{\cos \gamma} = 6.877 m/s$ Pitch line velocity, v = 6.635 m/s. Sliding velocity, **Revision of** $[\sigma_c]$:(1M) For steel-bronze combination, $v_s = 6.877$ m/s. Assume $[\sigma_c] = 146.2 \text{ X} \cdot 10^6 \text{ N/m}^2$ **Revision of design torque:** $[M_t] = M_t \cdot k_d \cdot k = 2546.5 N - m$ Check for induced bending stress, σ_b :(1M) $\sigma_b = \frac{1.9[M_t]}{m_s^3 az v} \le [\sigma_b]$ $\sigma_{h} = 23.9 \times 10^{6} N/m^{2}$ Design is safe. Check for induced compressive stress, σ_c :(1M) $\sigma_c = \frac{540}{\binom{z}{b}} \times \sqrt{\left[\frac{\frac{z}{b}+1}{a}\right]^3} \left\{ [M_t] \times 10^5 \right\} \le [\sigma_c]$ $\sigma_c = 146.2 \times 10^6 N/m^2$ Design is safe. **Check for efficiency**, η :(1M) $\eta = \frac{\tan \gamma}{\tan(\gamma + \rho)} = 92.63\%$

٦

	Basic dimensions of pinion and wheel: (1M)
	Worm:
	No. of starts, $Z = 3$
	Pitch diameter, $d_1 = 88 mm$
	<i>Height factor,</i> $f_0 = 1$
	Tip circle diameter, $d_{a1} = d_1 + 2f_0m_r = 104 mm$
	Root circle diameter, $d_{f_1} = d_1 - 2f_0m_r - 2c = 68.8 mm$
	Min Length $L = (125 \pm 0.09z)m_{\star} = 154.24 mm_{\star}$
	Worm Wheel:
	No. of teeth, $z = 72$
	Pitch diameter, $d_2 = 576 mm$
	Tip circle diameter, $d_{a2} = (z + 2f_0 + 2x)m_x = 592 mm$
	Root circle diameter, $d_{f2} = (z - 2f_0)m_x - 2c = 556.8 mm$
	Top depth, $h = 2.25m = 13.5 mm$
	PART * C
1	Design a pair of right angle bevel gears to transmit 15 kW at 75 rpm to another gear to run
1	at 250 rpm. Not less than 20 teeth are to be used on either gear. The pressure angle is 20°
	Assume a gear life of 12000 hrs (15M)(Nov/Dec 2015)BTI 5
	Answer: Page: 3 35 - Dr & Baskar
	Cear ratio i:(1M)
	N.
	$i = \frac{N_1}{N_2} = 3$
	$\tan \delta_i = i$
	$\delta = 7557^{\circ}, \delta = 1442^{\circ}$
	$b_2 = 75.57$, $b_1 = 14.45$
	C45 steel for both ninion and wheel (assumed)
	Tensile strength $\sigma_{\rm r} = 700 \times 10^6 {\rm N/m^2}$
	Vield strength, $\sigma_{\rm e} = 360 \times 10^6 \mathrm{N/m^2}$
	Gear life N(1M)
	Vite in number of cycles N = 60 X (rpm, n) X (Life in hrs. T) = 54X 10 ⁷ cycles
	Design torque $[M_{i}]$ (1M)
	$60 \times Power in watts$
	Torque transmitted, $M_t = \frac{3\pi N}{2\pi N} = 190.99 N - m$
	$[M_t] = M_t, k_d, k = 248.28 N - m$
	Calculation of E_{eq} , $[\sigma_b]$ and $[\sigma_c]$:(1M)
	$E_{eq} = 210.915 \text{ X } 10^9 \text{ N/m}^2$
	$1.4k_{hl}\sigma_{-1}$
	$[\sigma_b] = \frac{1}{n.k_{\sigma}} = 82.076 \times 10^6 \ N/m^2$
	$[\sigma_c] = C_R HRCk_{cl} = 593.97 \times 10^6 N/m^2$
	Cone distance, R:(1M)

 $R \ge \psi \sqrt{i^2 + 1} \sqrt[3]{\left(\frac{0.72}{(\psi - 0.5)[\sigma_c]}\right)^2 \frac{E \times [M_t]}{i}}$ Assume, $\psi = \frac{R}{h} = 3$ $R = 152 \, mm$ Number of teeth Z₁ and Z₂:(1M) $Z_1 = 20$ (assumed) $Z_2 = i. Z_1 = 60.$ Transverse Module, mt:(1M) $m_{av} \ge 1.28 \sqrt[3]{\frac{[M_t]}{y[\sigma_b]\psi Z_1}} = 4.33 \, mm$ $m_t = m_{av} + \frac{b}{7}\sin\delta = 6\ mm$ Revision of cone distance, R and number of teeth:(1/M) $R = 0.5m_t Z_1 \sqrt{i^2 + 1} = 187.74 \, mm$ $Z_1 = 20$ teeth; $Z_2 = 60$ teeth; Face width, pitch circle diameter, pitch line velocity:(1M) Face width, $b = 10.m_t = 60 \text{ mm}$ $d_{1av} = m_t Z_1 \left(\frac{R - 0.5b}{R}\right) = 101 \, mm$ Pitch circle diameter, Pitch line velocity, v = 3.966 m/s. Quality of gear:(1M) IS quality 6 is selected. **Revision of design torque:**(1M) $[M_t] = M_t \cdot k_d \cdot k = 412.54 N - m$ Check for maximum induced bending stress, σ_b :(1M) $\sigma_b = \frac{R\sqrt{i^2 + 1} [M_t]}{(R - 0.5b)^2 mby} \cdot \frac{1}{\cos \alpha} \le [\sigma_b]$ $\sigma_h = 73.527 \times 10^6 N/m^2$ Design is safe. Check for maximum induced compressive stress, σ_c :(1M) $\sigma_{c} = \frac{0.72}{(R - 0.5b)} \times \sqrt{\frac{(i^{2} + 1)^{3} E[M_{t}]}{i.b}} \le [\sigma_{c}]$ $\sigma_c = 557.27 \times 10^6 N/m^2$ Design is safe. Basic dimensions of pinion and wheel:(1M) **Pinion**: $\label{eq:rescaled} Reference\ angle, \delta_1 = 14.43^\circ$ JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS

/UNIT 1-5/QB+Keys/Ver1.0

	Pitch line velocity of worm,
	$v_{mg} = 226.195m_x = 1.81 \ m/s$
	Revision of beam strength , F _s :(1M)
	$F_s = 253.8 \times 10^6 \times m_x^2 = 16243.2 N$
	Revision of dynamic load, Fd:(1M)
	$F_d = \left[\frac{68.967}{m_x}\right] + 2600 = 11220.9 N$
	Check for the design:
	$(F_s = 16243.2 \text{ N}) > (F_d = 11220.9 \text{ N})$
	Wear load, F _w :(1M)
	$F_w = D_g. b. k_w = 32818.5 N$
	Check for the design:
	$(F_w = 32818.5 \text{ N}) > (F_d = 11220.9 \text{ N})$
	The design is safe.
	Check for efficiency, η:(1M)
	$n = \frac{\tan \gamma}{\cos \gamma} = 82\%$
	$\tan(\gamma + \rho)$
	Design is satisfactory.
	Basic dimensions of pinion and wheel:(2M)
	Worm:
	No. of starts, $Z = 3$
	Pitch diameter, $a_1 = 88 \text{ mm}$
	$Height factor, f_0 = 1$
	The circle diameter, $d_{a1} = d_1 + 2f_0m_x = 104 \text{ mm}$
	Root circle diameter, $d_{f1} = d_1 - 2f_0m_x - 2c = 68.8 mm$
	$Min \ Length, L = (12.5 + 0.09z)m_x = 154.24 \ mm$
	Worm Wheel:
	No. of teeth, $z = 72$
	Pitch diameter, $d_2 = 576 \text{ mm}$
	Tip circle diameter, $d_{a2} = (z + 2f_0 + 2x)m_x = 592 \text{ mm}$
	Root circle diameter, $d_{f2} = (z - 2f_0)m_x - 2c = 556.8 mm$
	Top depth, h = 2.25m = 13.5 mm
3	The input to worm gear shaft is 18 kW at 600 rpm, speed ratio is 20. The worm is to be of
	hardened steel and the wheel is made of chilled phosphor bronze. Considering wear and
	strength, design worm and worm wheel.(15M)(Nov/Dec 2015)B1L5
	Answer: Page: 3.134 – Dr.A.Baskar
	worm-nardened steel (given)
	worm wheel – chilled phosphor bronze (given) Design hereding stress (worm wheel) for shills the same $f = 1 - 00.1 \times 10^6 \text{ M/}^2$
	Design bending stress (worm wheel) for chilled bronze, $[\sigma_b] = 98.1 \text{ X} 10^{\circ} \text{ N/m}^2$

No. of threads on worm, Z and teeth on worm wheel, z:(1M) Z = 3 (assumed) Gear ratio, $i = \frac{n}{n_1} = 20$ (given) No. of teeth on wheel, z = i.Z = 60 teeth. **Diameter factor,** q and Lead angle, γ :(1M) Q = 11 (assumed) $\gamma = \tan^{-1}\left(\frac{Z}{a}\right) = 15.255^{\circ}$ Tangential load, Ft:(1M) $F_t = \frac{Design \ power \ in \ watts}{Pitch \ line \ velocity \ of \ worm \ gear} = \frac{124.14}{m_x}$ **Dynamic Load Fd:**(1M) $F_d = F_t \frac{6 + v_{mg}}{6} = \frac{124.14 + 3900.065m_x}{m_x}, N$ Beam strength, Fs:(1M) $F_s = [\sigma_b]m_x. b. Y$ $F_s = 317.25 \times 10^6 \times m_x^2, N$ Axial Module, m_x:(1M) $F_s \ge F_d \text{ for safe design}$ $317.25 \times 10^6 \times m_x^2 = \frac{124.14 + 3900.065m_x}{m_x}$ Module, $m_x = 8 \text{ mm}$. Face width, b; Pitch diameter, d1; pitch line velocity of worm:(2M) Face width, $b = 8.25 \text{ X} \text{ m}_x = 66 \text{ mm}$ Pitch diameter, $d_1 = qm_x = 88 \ mm$ Pitch line velocity of worm, $v_{mg} = 226.195 m_x = 1.508 \ m/s$ Revision of beam strength, Fs:(1M) $F_s = 317 \times 10^6 \times m_x^2 = 20304.32 N_s$ **Revision of dynamic load**, Fd:(1M) $F_d = \frac{124.14 + 3900.065m_x}{m_y} = 19417.565 \, N$ Check for the design: $(F_s = 20304.32 \text{ N}) > (F_d = 19417.565 \text{ N})$ Wear load, Fw:(1M) $F_w = D_a. b. k_w = 27348.71 N$ Check for the design: $(F_w = 27348.71 \text{ N}) > (F_d = 19417.565 \text{ N})$

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

Check for efficiency, η :(1M) $\eta = \frac{\tan \gamma}{\tan(\gamma + \rho)} = 87.78\%$ Design is satisfactory. Basic dimensions of pinion and wheel:(2M) Worm: No. of starts, $Z = 3$ Pitch diameter, $d_1 = 88 mm$ Height factor, $f_0 = 1$ Tim circle diameter $d_1 = -d_1 + 26 m = 104 mm$
$\eta = \frac{\tan \gamma}{\tan(\gamma + \rho)} = 87.78\%$ Design is satisfactory. Basic dimensions of pinion and wheel: (2M) Worm: No. of starts, Z = 3 Pitch diameter, d ₁ = 88 mm Height factor, f ₀ = 1 Tim circle diameter d ₁ = - d ₁ + 26 m = 104 mm
$\eta = \frac{1}{\tan(\gamma + \rho)} = 07.7670$ Design is satisfactory. Basic dimensions of pinion and wheel: (2M) Worm: No. of starts, Z = 3 Pitch diameter, d ₁ = 88 mm Height factor, f ₀ = 1 Tim cincle diameter d ₁ = d + 26 m = 104 mm
Design is satisfactory. Basic dimensions of pinion and wheel: (2M) Worm: No. of starts, Z = 3 Pitch diameter, $d_1 = 88 mm$ Height factor, $f_0 = 1$ Tim circle diameter $d_1 = d_1 + 2f m_2 = 104 mm$
Basic dimensions of pinion and wheel:(2M) Worm: No. of starts, $Z = 3$ Pitch diameter, $d_1 = 88 mm$ Height factor, $f_0 = 1$ Tim cincle diameter $d_1 = d_1 + 26 m = 104 mm$
Worm: No. of starts, $Z = 3$ Pitch diameter, $d_1 = 88 mm$ Height factor, $f_0 = 1$ Tim simple diameter $d_1 = d_1 + 26 m = 104 mm$
No. of starts, $Z = 3$ Pitch diameter, $d_1 = 88 mm$ Height factor, $f_0 = 1$ Tim simple diameters $d_1 = d_1 + 2f m_2 = 104 mm$
Pitch diameter, $d_1 = 88 \text{ mm}$ Height factor, $f_0 = 1$ Tim simple diameters $d_1 = d_1 + 26 \text{ mm} = 104 \text{ mm}$
Height factor, $f_0 = 1$
Tin sincle diameters $d = d + 2fm = 104$ mm
$T t p c t c t e a t a m e t e t, u_{a1} = u_1 + 2 J_0 m_x = 104 m m$
Root circle diameter, $d_{f1} = d_1 - 2f_0m_x - 2c = 68.8 mm$
Min Length, $L = (12.5 + 0.09z)m_x = 143.2 mm$
Worm Wheel:
No. of teeth, $z = 60$
Pitch diameter, $d_2 = 480 mm$
Tip circle diameter, $d_{a2} = (z + 2f_0 + 2x)m_r = 496 mm$
Root circle diameter, $d_{f2} = (z - 2f_0)m_x - 2c = 380.8 mm$
$Top \ depth, h = 2.25m = 13.5mm$

REGULATION: 2017 Subject Code:ME8651

Subject Name: Design Of Transmission Systems

UNIT IV-GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box -Speed reducer unit–Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

	PART * A
Q.No.	Questions
1	Calculate standard step ratio for six speed gear box with speed ranging between 100 and 560rpm.BTL5 $\phi = [N_{Max}/N_{Min}]^{1/n-1}$ $= [560/100]^{1/6-1}$ = 1.411
2	Comment on the number of gears to be used in the output shaft. (May/June 2012) BTL3 It is practiced in the gear box that output shaft is fixed with maximum of three gears.
3	 What are the methods of lubrication in speed reducers?BTL2 Splash or spray lubricating method and Pressure lubrication method.
4	List any two methods used for changing speeds in gear boxes. (Nov/Dec 2016)BTL2 Sliding mesh gear box and Constant mesh gear box
5	 Write any two requirements of a speed gear box.BTL2 Gear box should provide the designed series of spindle speeds. Gear box should transmit the required amount of power to the spindle.
6	Differentiate ray diagram and structural diagram. (or) What does the ray diagram of gear box indicates? (May/June 2012, Nov/Dec 2016) BTL4 The ray diagram is a graphical representation of the drive arrangement in general form. It serves the specific values of all the transmission ratios and speed of all the shafts in the drive. The structural diagrams are drawn from the structural formulae which is a graphical tool used to
	find the range ratio of transmission groups. The structural diagram gives information about the

RI	EGULATION: 2017 ACADEMIC YEAR: 2019-2020
	number of shafts and the number of gears on each shaft.
7	Write the structural formula for a six speed gear box.BTL3
	A typical ray diagram for a six speed gear box, for the preferred structural formula 3(1) 2(3), is
	shown below.
8	Select 3 pairs of gears with total teeth for each pair 60 and speed ratios 1, 1.41, and 2.BTL4
	$z_1 + z_2 = z_3 + z_4 = z_5 + z_6 = 60;$
	$i = z_2/z_1 = 1; i = z_4/z_3 = 1.41; i = z_6/z_5 = 2$
	$z_1=30; z_2=30; z_3=25: z_4=36: z_5=20: z_6=40$
9	State any three basic rules to be followed while designing a gear box.BTL1
	▶ The transmission ratio in a gear box is limited by $\frac{1}{4} \le i \le 2$.
	> For stable operation, the speed ratio of any stage should not be greater than 8. i.e., N $_{max}$ /
	$N_{\min} \leq 8.$
	▶ In all stages except in the first stage, $N_{max} \ge N_{input} > N_{min}$
10	What is the function of spacers in a gear-box?BTL1
	The function of spacers is to provide the necessary distance between the gears and the bearings.
11	List out the possible arrangements to achieve 16 speed gear box.BTL2
	\rightarrow 4 x 2 x 2 scheme
	$> 2 \times 4 \times 2$ scheme and
	$\geq 2 \times 2 \times 4$ schemes
12	What are the possible arrangements to achieve 12 speeds from a gear box? (April/May
	2011, May/June 2013)BTL3
	The possible arrangements are:
	\rightarrow 3 x 2 x 2 scheme
	\rightarrow 2 x 3 x 2 scheme and
	$ ightarrow 2 \times 2 \times 3$ scheme.
13	Sketch the kinematics layout of gears for 3 speeds between two shafts.BTL3
14	What are preferred numbers? (Apr/May 2011 2013 Nov/Dec 2014)BTI 2
	Name the series in which speeds of multi speed gear box are arranged. [May/June 2014]
	Preferred numbers are the conventionally rounded off values derived from geometric series.
	There are five basic series, denoted as R 5, R 10, R 20, R 40 and R 80 series.
15	What does the ray-diagram of gear box indicates? (May/June 2012, Apr/May 2017)BTL3
	The ray diagram is a graphical representation of the drive arrangement in general form. It
	serves to determine the specific values of all the transmission ratios and speeds of all the shafts

	in the drive					
16	In the drive. $\mathbf{W}_{\mathbf{U}} \neq \mathbf{U}_{\mathbf{U}} = \mathbf{U}_{\mathbf{U}} =$					
16	what is step ratio? (or) Define progression ratio. (Nov/Dec 2015, May/June 2014)B1L1					
	When the spindle speeds are arranged in geometric progression, then the ratio between the two					
	adjacent speeds is known as step ratio or progression ratio.					
17 Draw the ray diagram for 12 speed gear box. (May/June 2013)BTL3						
	9 1973					
	9 1573					
	0 1254					
	800					
	630					
	500					
	400					
	• 250					
	200					
	Stage 1 Stage 2 Stage 3 160					
18	What is a speed reducer?BTL1					
	Speed reducer is a gear mechanism with a constant speed ratio, to reduce the angular speed of					
	output shaft as compared with that of input shaft.					
19	Specify four types of gear box.(Nov/Dec 2014)BTL2					
	 Sliding mesh gear box, 					
	➢ constant mesh gear box,					
	 synchromesh gearbox, 					
	planetary gearbox.					
20	What is multispeed gear box? (May/June 2016)BTL1					
	A gearbox that converts a high speed input into a number of different speed output it is called a					
	multi-speed gear box. Multi speed gear box has more than two gears and shafts. A multi speed					
	gearbox reduces the speed in different stages.					
21	Why geometric progression is selected for arranging the speeds in gear box? (Apr/May					
	2017)BTL2					
	When the speeds are arranged in G.P, it has the following advantages over the other					
	progressions.					
	The speed loss is minimum					
	> No.of gears to be employed is minimum					
	➢ G.P provides a more even range of spindle speeds at each step.					
	> The lay out is comparatively very compact.					
	\blacktriangleright G.P m/c tool spindle speeds can be selected easily from preferred numbers, because					
	preferred numbers are in geometric progression.					
22	What is R20 series? (May/June 2016)BTL1					
	In industrial design, preferred numbers (also called preferred values, preferred					
	series or convenient numbers are standard guidelines for choosing exact product dimensions					
	within a given set of constraints. Product developers must choose numerous lengths, distances.					

RE	CGULATION: 2017 ACADEMIC YEAR: 2019-2020					
	diameters, volumes, and other characteristic quantities.					
	Preferred numbers represent preferences of simple numbers (such as 1, 2, and 5) and their					
	powers of a convenient basis, usually 10. The R5, R10 and R20 series refers to the Renard 5					
	(first-choice sizes 60 % increments), Renard 10 (second-choice sizes 25 % increments) and					
	Renard 20 (third-choice sizes 12 % increments) series of preferred numbers standardized in					
	ISO3.					
23	Write the significance of structural formula. (Nov/Dec 2015)BTL1					
	Structural formula is used to find the number of speeds (n) available at the spindle and through					
	no. Stages it can be achieved.					
	$n = p_1(X_1) . p_2(X_2) . p_2(X_3)$					
	p= stages in the gear box,					
	X = Characteristic of the stage.					
24	List four application where constant mesh gear box is used. (Nov/Dec 2012)BTL2					
	Vehicles which use this type of gearboxes are farm trucks, motorcycles, and heavy					
	machinery. The availability of such mechanisms like constant mesh gearbox which create					
	less noise and are cost effective.					
25	What are the conditions required for interchangeability of toothed Gears?					
	(Nov/Dec 2012)B1L3					
	For interchangeability of all gears, the set must have the same circular pitch, module,					
	diameter pitch, pressure, angle, addendum and dedendum and tooth thickness must be one					
	half of the circular pitch.					
1						
1	sketch three possible ray diagrams for a 6 speed gearbox with 2x5 arrangement. Choose the					
	2010) RTI 5					
	Answer: Page: 413 - Dr A Baskar					
	Answer, Fage, 7,15 Dr.A.Daskar					
	2(1) $2(2)$ 1 $2(1)$ $2(2)$ 1 $2(1)$ $2(2)$					
	2(1) $3(2)$ 1 $2(1)$ $3(2)$ 1 $2(1)$ $3(2)$					
	Ray diagram (i) Ray diagram (ii) Ray diagram (iii) (6M)					
	Three ray diagrams are drawn keeping the input speed same.(6M)					
	> Ray diagram (ii): Two output speeds are same as input speed in stage 2. This is not					
	preferable.					

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

ACADEMIC YEAR: 2019-2020> Ray diagram (i): One speed reduction is very high in stage 1. This is not preferable.
>> Ray diagram (iii): Do not have any such speeds and hence this is the preferable ray diagram.
$$\frac{N_{min}}{N_{nput}} \ge \frac{1}{4} and \frac{N_{max}}{N_{nput}} \ge 2 should be satisfied at each stageOverlapping speed gearbox: (1M)> Maximum possible speeds = Required number of speeds.> Sometimes: Required number of speeds.> Sometimes: Required number of speeds.> Sometimes: Required number of speeds (Maximum possible speeds)2A sliding mesh gearbox is to be used for 4 forward and 1 reverse species. First gear speedratio is 5.5 and reverse gear ratio is 5.8. Clutch gear on clutch shaft and/gear the constantmesh) on lay shaft has speed ratio of 2. Calculate the number of teeth on any gear should not be less than 18.Calculate actual gear ratios. Assume that the geometric progression for gear ratios, tog gear(fourth), third gear, second and first gear is 1:x:x2:x3. (13M)(Nov/Dec 20:4)BTL5Answer: Page: 4.33 – Dr.A.BaskarThe GP ratio:(1M)in = x3 = 5.5: x = 1.765.Gear ratios are:1:1.765:3.116:5.5Speed ratio, i = Speed of the first driver gearMax gear ratio, is:(1M)
$$u_{max} = \frac{Z_2}{Z_1} \times \frac{Z_3}{Z_2}$$

Zmin = 18 (given)
Let, $Z_7 = 18$ and $Z_{25} = 50$.
 $Z_1 = Z_3$ and $Z_2 = 46$
Second dear ratio, is:(1M)
$$u_2 = \frac{Z_2}{Z_1} \times \frac{Z_6}{Z_5} = 3.116$$

 $Z_1 + Z_2 = Z_7 + Z_8 = Z_5 + Z_6 = 69$
 $Z_3 = 27$ and $Z_6 = 42$
Third gear ratio, is:(1M)
$$u_3 = \frac{Z_2}{Z_1} \times \frac{Z_4}{Z_3} = 1.765$$

 $Z_1 + Z_2 = Z_7 + Z_8 = Z_5 + Z_6 = Z_7 + Z_8 = Z_8 + Z_6 = Z_8 + Z_8 = Z_8 + Z_8$$$

ACADEMIC YEAR: 2019-2020

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

		$N_3 = \lambda$	$N \times \frac{Z_1}{Z_2} \times \frac{Z_{11}}{Z_{12}}$	= 50 <i>rpm</i>	$N_4 = N >$	$\frac{Z_3}{Z_4} \times \frac{Z_7}{Z_8} = 31^{\circ}$	7.83 rpm
		$N_5 = N >$	$\left\langle \frac{Z_3}{Z_4} \times \frac{Z_9}{Z_{10}} \right\rangle =$	1251.13 rpm	$N_6 = N >$	$\times \frac{Z_3}{Z_4} \times \frac{Z_{11}}{Z_{12}} = 78$	3.20 rpm
		$N_7 = N$	$\times \frac{Z_5}{Z_6} \times \frac{Z_7}{Z_8} =$	127.02 rpm	$N_8 = N$	$\times \frac{Z_5}{Z_6} \times \frac{Z_9}{Z_{10}} = 3$	00 rpm
		$N_9 = N \times \frac{Z_5}{Z_5} \times \frac{Z_{11}}{Z_{12}} = 31.25 \ rpm$					
	Arranging	nging in ascending order:					
	Obtained	speeds: 31.	25, 50, 78.2	127.02. 203.2	3, 317.83, 500	0. 800. 1251.13	rpm.
	Percentag	e deviation	of obtainable	speeds from	the calculated	speeds	(1M)
	8	$\% deviation = \frac{N_{obt} - N_{Cal}}{N} \times 100$					()
			Speed No	Nobt (rpm)	N _{cal} (rpm)	% deviation	
			1	31.25	31.5	-0.79	
			2	50	50	0	
			3	78.2	80	-2.25	
			4	127.02	125	1.62	
			5	203.23	200	1.62	
			6	317.83	315	0.90	
			7	500	500	0	
			8	800	800	0	
			9	1251.13	1250	0.09	
2	Sketch t	he arrange	ements of a	six speed ge	earbox. The	minimum and	l maximum speeds
	required	are aroun	d 460 and 14	00 rpm. Driv	ve speed is 14	40 rpm. Const	ruct speed diagram
	of the g	earbox an	d obtain va	rious reduct	ion ratios.	Use standard	output speeds and
	standard	step ratio	Calculate n	umber of tee	eth in each g	ear and verify	whether the actual
	output sp	eeds are w	ithin $\pm 2\%$ of	f standard sp	eeds.(15M)(N	1ay/June 2014))BTL5
	Answer:	rage: 4.63	- Dr . A . Bask	аг			
	Step rati	$b, \phi = \left(\frac{N_m}{N_m}\right)$	$\frac{ax}{ax} \Big)^{\left(\frac{n-1}{n-1}\right)} = 1.$	2493(1M)			
	Range of	speeds:(1N	(N				
	R40 Serie	s:					
	450, 560,	710, 900, 1	120, 1400 rp	m.			
	Structural formula:(1M)						
		$1 \times 2(1) \times 3(2)$					

ACADEMIC YEAR: 2019-2020

Subject Name: Design Of Transmission Systems Subject Handler: Mr.S.Kanna & S.Vignesh

UNIT V – CAM, CLUTCHES AND BRAKES

Cam Design: Types-pressure angle and under cutting base circle determination-forces and surfacestresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes - external shoe brakes - Internal expanding shoebrake.

	PART * A					
Q.No.	Questions					
1	What are the desirable properties of friction material to be used for clutches?BPL2					
	A high and uniform coefficient of friction.					
	Good resiliency					
	> The ability to withstand high temperatures, together with good heat conductivity.					
	High resistance to wear, scoring and galling.					
	> Friction materials are basically composite materials made up of strands and fiber					
	composites.					
2	Classify clutches based on the coupling methods. (May/June 2014)BTL2					
	Positive contact clutches					
	Frictional clutches					
	Overrunning clutches					
	Magnetic clutches and					
	Fluid couplings.					
3	What is fade? (May/June 2012, May/June 2013)BTL1					
	When the brake is applied continuously over a period of time, the brake becomes overheated					
	and the coefficient of friction drops. This results in sudden fall of efficiency of the brake. This					
	phenomenon is known as 'fade' of 'fading'.					
4	Distinguish between coupling and a clutch. (Nov/Dec 2012)BTL4					
	Couplings are used as permanent connecting elements between two power transmitting					
	elements whereas clutches are used as temporary connecting elements. Thus periodical					
	engagement is possible in clutch connection.					
5	Why in automobiles, braking action when travelling in reverse is not as effective as when					
	moving forward? (April/May 2015)BTL2					
	When an automobile moves forward, the braking force acts in the opposite direction to the					
	direction of motion of the vehicle Whereas in reverse travelling the braking force acts in the					
	same direction to the direction of motion of the vehicle. So it requires more braking force to					
	apply brake.					
6	What is the axial force required at the engagement and disengagement of cone clutch?					
	(May/June2013)BTL2					
	For engagement: $W_e = W_n (1 + \mu \cot \alpha)$,					

	\succ For disengagement: W _d = W _n (1 - μ cot α).						
7	What is the function of a clutch in a transmission systems? (May/June 2016)BTL1						
	The clutch is a mechanical device which is used to connect or disconnect the source of power at						
	the operator's will.						
8	What is a self-locking brake? (Apr/May 2011, May/June 2013, Nov/Dec 2012)BTL1						
	When the frictional force is sufficient enough to apply the brake with no external force, then the						
	brake is said to be self-locking brake.						
9	What you meant by self-energizing brake? (Nov/Dec 2016, May/June 2014, 2013)BTL1						
	When the moment of applied force (F. l) and the moment of the frictional force (μ . R _N . c) are						
	in the same direction, then frictional force helps in applying the brake. This type of brake is						
	known as a self-energizing brake.						
10	How can pressure angle be reduced in cam design? (May/June 2012)BTL2						
	It can be reduced by increasing the cam size or by adjusting the offset. Higher the pressure						
	angle higher the side thrust and higher the chances of jamming the translating follower in its						
11	guide ways.						
11	If a multidisc clutch has 8 discs in driving shaft and 9 discs in driven shaft, then how						
	many number of contact surfaces it will have? (April/May 2015)B1L5						
	Given data : $n_1 = 8$; $n_2 = 9$ Solution : Number of point of contact surface $n = n + n + 1 - 8 + 0 + 1 - 16$						
10	Solution : Number of pair of contact surface, $n = n_1 + n_2 + 1 = 8 + 9 - 1 = 16$						
12	Single Plate eluteh						
	Multi plate Clutch						
	Cone Clutch						
	Centrifugal Clutch						
13	How does the function of a brake differ from that of a clutch? BTL4						
	Clutch used to engage and disengage the engine from the transmission system when applied.						
	Brake is used to stop the vehicle when applied due to frictional power.						
14	What is the significance of pressure angle in CAM design? (May/June 2016)BTL3						
	It is the measure of steepness of the cam profile. The angle between the direction of the						
	follower movement and the normal to the pitch curve at any point is called pressure						
	angle. Pressure angle varies from maximum to minimum during complete rotation.						
15	Mention a few applications of Cams.(Nov/Dec 2016)BTL2						
	Cam mechanisms are used in various areas of machine building, such as internal-combustion						
	engines, metal-cutting machines, and machines of the food industry, in which the cam						
	mechanism performs a programmed operation, as well as in automated machines, in which cam						
	mechanisms perform control functions, connecting and disconnecting working parts at the						
	proper moment.						
16	Differentiate between uniform pressure and uniform wear theories adopted in the design						
	of clutches.(Nov/Dec 2014)BTL4						
	For uniform pressure theory Mean radius of friction surface (R) = $2/3[r_1^3 - r_2^3/r_1^2 - r_2^2]$						
	For uniform wear theory Mean radius of friction surface (R) = $[r_1 + r_2]/2$						
RF	CGULATION: 2017 ACADEMIC YEAR: 2019-2020						
----	--	--	--	--	--	--	--
	r_1 = External radius of frictional surface						
	r_2 = Internal radius of frictional surface						
17	Double shoe brakes are preferred than single shoe brakes. Why? (April /May 2017)BTL4						
	If only one block is used for braking, then there will be side thrust on the bearing of wheel						
	shaft. This drawback can be removed by providing two blocks on the two sides of the drum.						
	The double shoes on the drum reduce the unbalanced force on the shaft.						
18	What are the effects of temperature rise in clutches? (May/June 2013)BTL2						
	Because the temperature rise beyond the permissible range in brakes will cause:						
	➢ Excessive wear						
	Distortion of the brake linings and						
	Surface cracks due to thermal stresses.						
19	Differentiate a brake and a dynamometer.(April /May 2017)BTL4						
	> Brake is a mechanical device by means of a body is retarded for slowing down or to						
	bring it to rest, by applying artificial frictional resistance.						
	> A dynamometer is a brake incorporating a device to measure the frictional resistance						
	applied. This is used for measuring the driving forces or torque transmitted and hence						
	the power developed by the machine.						
20	Name four materials used for lining of friction surfaces in clutches. (or) Name few						
	commonly used friction materials. BTL2						
	➢ Wood						
	> Cork						
	> Leather						
	Asbestos based friction materials and						
	Powdered metal friction materials.						
21	In a hoisting machinery, what are the different energies absorbed by a brake system?						
	(Nov/Dec 2014)BTL2						
	In hoists and elevators, the potential energy released by the objects during the braking period is						
	absorbed by the brake.						
22	In cone clutches semi-cone angle should be greater than 12 deg. Why? (May/June						
	2012)BTL4						
	The semi cone angle is kept greater than a certain value to avoid self-engagement; otherwise						
	disengagement of clutch would be difficult. This is kept around 12.5deg.if the angle is less than						
	this value than the clutch is liable to jam in engagement						
23	Sketch the internal shoe brake and name the various parts.(May/June 2012)BTL3						
	ANCHOR HYDRAULC PN BRAKE						
	CYLINDER						
	SECONDARY SECONDARY						
	SHOE						
	SHOE OF OF						
	and the second sec						
	RDATING ADJUSTER						
L	UNIT						

ACADEMIC YEAR: 2019-2020

	$\sin \alpha = \frac{r_{max} - r_{min}}{L}$					
	Already assumed.					
	$b = \frac{r_m}{2} = 0.0915 m$					
	$r_{max}^2 - r_{min} = 0.019 \ m$					
	Solving:(1M)					
	Inner radius of friction surface, $r_{min} = 0.1735$ m.					
	Outer radius of friction surface, $r_{max} = 0.1925$ m.					
	Axial force required to engage the clutch, QE:(2M)					
	$Q = p \times 2\pi r_m(b.\sin\alpha)$					
	$Q_n = \frac{Q}{N} = 8417 N$					
	$\sin \alpha$ $\Omega_{-} = \Omega_{-} (\mu \cos \alpha \pm \sin \alpha) = 3808 N$					
3	$Q_E = Q_n(\mu \cos u + \sin u) = 5000 N$ A 50 kg wheel 0.5 m in diameter turning at 150 rnm in stationary hearings is brought to					
5	rest by pressing a brake shoe radially against the rim with a force of 100 N. If the radius of					
	gyration of wheel is 0.2 m, how many revolution will the wheel make before coming to rest?					
	Assume that the coefficient of friction between shoe and rim has the steady value					
	0.25.(13M)(May/June 2016)]BTL5					
	Answer: Page: 5.152 – Dr.A.Baskar					
	Mass moment of inertia, I:(2M)					
	$I = mk^2 = 2.0 kg - m^2$					
	Angular velocity, ω:(2M)					
	$\omega = \frac{2\pi n}{c^2} = 15.708 \frac{rad}{rad}$					
	$60 \qquad S$					
	Energy stored in the rotating wheel, $E = \frac{1}{2}I\omega^2 = 246.74$ N $- m$ (2N1)					
	Braking torque, Mt:(4M)					
	Workdone during braking = Braking torque × Angular displacement during braking					
	D					
	Braking torque, $M_t = F \times \frac{D}{2} = 6.25N - m$					
	Angular displacement during braking, $\theta = Angle$ turned in one revolution \times					
	No. of revolutions made during braking before coming to rest(2M)					
	$\theta = 2\pi n_b$					
	$E = M_t \times \theta_b$					
	No. of revolutions, $n_b = 6.293$. (1M)					
4	A radial cam rotates at 1200 rpm with translating flat face follower rising 20 mm with					
	simple narmonic motion in 150° of cam rotation. The base circle radius is 38 mm. Check whether undergutting will occur (13M)(Nev/Dec 2016) BTL 5					
	Answer: Page: 5 40 - Dr A Baskar					
	An autor valocity of cam $\omega = \frac{2\pi N}{125} = 125.664 \text{ rad}/c(2M)$					
	Anymul verocity of cum, $\omega = \frac{1}{60} = 125.004 Tuu/S(2NI)$					

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

REGULATION: 2017

	For flat follower;
	$\rho_{cmin} = R_b + \left(y + \frac{1}{12}, \frac{d^2y}{dt^2}\right) > 0(3M)$
	For SHM;
	Acceleration $a = \frac{d^2 y}{dt^2} = \frac{h}{h} \left(\frac{\pi \omega}{dt}\right)^2 \cos \frac{\pi \theta}{dt} (3M)$
	The min constant in a constant $dt^2 = 2 \left(\beta \right)^{-1} \cos \beta \left(\frac{\partial \beta}{\partial t} \right)$
	The min acceleration occurs at $\theta = p$ and $y = n$.
	$a = \frac{-n}{2} \left(\frac{n\omega}{\beta}\right) \dots \cos \pi = \cos 180 = -1(2M)$
	$\rho_{cmin} = R_b + \left[h + \frac{1}{\omega^2} \cdot \left(\frac{-h}{2} \left(\frac{\pi\omega}{\beta}\right)^2\right)\right] > 0(2M)$
	$= 38 + \left[20 - \frac{20 \times \pi^2}{20 \times \pi^2}\right]$
	$\begin{bmatrix} 20 & 2 \times (2.618)^2 \end{bmatrix}$
	$ \rho_{c \min} = 43.6 \text{ which is } > 0; (positive)(1M) $
	Thus undercutting will not occur.
5	An automobile single plate clutch consists of two pairs of contacting surfaces. The inner and
	outer radii of friction are 120 mm and 250 mm respectively. The coefficient of friction is
	0.25 and the total axial force is 15 kN. Calculate the power transmitting capacity of the
	clutch plate at 500 rpm using: (i) Uniform wear theory and, (ii) Uniform pressure
	theory.(13M)(May/June 2013)BTL5
	Answer: Page: 5.87 – Dr.A.Baskar
	i) Uniform wear theory:
	Mean radius, $r_m = \frac{r_{min} + r_{max}}{2} = 0.185 m(2M)$
	Torque transmitted, $M_t = 2\mu Qr_m = 1387.5 N - m(2M)$
	Power transmitted, $P = \frac{2\pi n M_t}{60} = 72649 Watts(2M)$
	ii) Uniform pressure theory:
	<i>Mean radius,</i> $r_m = \frac{2}{3} \left[\frac{r_{max}^3 - r_{min}^3}{r_{max}^2 - r_{min}^2} \right] = 0.1926 \ m(3M)$
	Torque transmitted, $M_t = 2\mu Qr_m = 1444.59 N - m(2M)$
	Power transmitted, $P = \frac{2\pi n M_t}{60} = 75639 Watts(2M)$
	PART * C
1	A multi plate clutch with both sides effective transmits 30 kW at 360 rpm. Inner and outer
	radii of the clutch discs are 100 mm and 200 mm respectively. The effective coefficient of
	friction is 0.25. An axial load of 600 N is applied. Assuming uniform wear conditions, find
	the number of discs required and the maximum intensity of pressure developed.
	(15M)(May/June 2016)BTL5
	Answer: Page: 5.98 – Dr.A.Baskar
	Torque, M _t : (4M)
	Mean radius, $r_m = \frac{r_{min} + r_{max}}{2} = 0.15 m$

JIT-JEPPIAAR/MECH/Mr.S.KANNAN & Mr.S.VIGNESH/IIIrdYr/SEM 06 /ME8651/DESIGN OF TRANSMISSION SYSTEMS /UNIT 1-5/QB+Keys/Ver1.0

ME8691 COMPUTER AIDED DESIGN AND MANUFACTURING L T P C 3 0 0 3

OBJECTIVES:

- To provide an overview of how computers are being used in mechanical componentdesign
- To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.

UNITI INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design – CAD system architecture- Computer graphics – co-ordinate systems- 2D and 3D transformationshomogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM – Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM – CAD/CAM concepts —Types of production - Manufacturing models and Metrics – Mathematical models of Production Performance

UNITII GEOMETRIC MODELING

Representation of curves- Hermite curve- Bezier curve- B-spline curves-rational curves-Techniques for surface modeling – surface patch- Coons and bicubic patches- Bezier and B-spline surfaces. Solid modeling techniques- CSG and B-rep

UNITIII CAD STANDARDS

Standards for computer graphics- Graphical Kernel System (GKS) - standards for exchange images-Open Graphics Library (OpenGL) - Data exchange standards - IGES, STEP, CALS etc. communication standards.

UNITIV FUNDAMENTAL OF CNC ANDPART PROGRAMING

Introduction to NC systems and CNC - Machine axis and Co-ordinate system- CNC machine tools-Principle of operation CNC- Construction features including structure- Drives and CNC controllers-2D and 3D machining on CNC- Introduction of Part Programming, types - Detailed Manual part programming on Lathe & Milling machines using G codes and M codes- Cutting Cycles, Loops, Sub program and Macros- Introduction of CAM package.

UNITV CELLULAR MANUFACTURING ANDFLEXIBLEMANUFACTURINGSYSTEM(FMS)

Group Technology(GT),Part Families–Parts Classification and coding–Simple Problems in Opitz Part Coding system–Production flow Analysis–Cellular Manufacturing–Composite part concept–Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and Control– Quantitative analysis in FMS

9

9

9

9

9

Upon the completion of this course the students will be able to

- CO1 Explain the 2D and 3D transformations, clipping algorithm, Manufacturing models and Metrics
- CO2 Explain the fundamentals of parametric curves, surfaces and Solids
- CO3 Summarize the different types of Standard systems used in CAD
- CO4 Apply NC & CNC programming concepts to develop part programme for Lathe & Milling Machines
- CO5 Summarize the different types of techniques used in Cellular Manufacturing and FMS

TEXT BOOKS:

- 1. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-HillPublishingCo.2007
- 2. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India,2008.
- 3. Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, NewDelhi,2000.

REFERENCES:

- 1. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing management " Second Edition, Pearson Education, 1999.
- 2. Donald Hearn and M. Pauline Baker "Computer Graphics". Prentice Hall, Inc, 1992.
- 3. Foley, Wan Dam, Feiner and Hughes "Computer graphics principles & practice" Pearson Education-2003
- 4. William M Neumann and Robert F.Sproul "Principles of Computer Graphics", McGraw Hill Book Co. Singapore,1989.

Subject Code:ME8691 Subject Name: Computer Aided DesignAnd Manufacturing Subject Handler: Mr.M.Kalaimani &Mr. S.Vignesh

UNIT I – INTRODUCTION								
Product cycle- Design process- sequential and concurrent engineering- Computer aided design - CAD								
system	system architecture- Computer graphics - co-ordinate systems- 2D and 3D transformations-							
homog	homogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD							
and C.	and CAM – Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM –CAD/CAM							
Produc	os — Types of production - Manufacturing models and Metrics – Mathematical models of							
11000	PART * A							
Q.No.	Questions							
1	Mention any four applications of computer aided design in mechanical engineering. (or)							
	What is CAD? (or) What are the steps involved in CAD? BTL1- Nov/Dec 15							
	Computer Aided Design (CAD) is the technology concerned with the use if computer systems to							
	assign the creation, modification, analysis and optimization of a design. CAD process is the							
	subset of the design process.							
	The application of computer aided design in mechanical engineering cover all type of							
	manufacturing operation such as milling, turning, Wire cut EDM, punching, etc.							
	(a) Design engineering.							
	(b) Computer graphics.							
	(c) Geometric modelling.							
2	List the type of 2D geometric transformation (or) Define transformation?BTL1Nov/Dec 15							
	a) Windowing and viewing transformation							
	b) Clipping transformation							
	c) Reflection transformation							
	d) Zooming transformation.							
	e) Panning transformation.							
	f) Transmitting information on a network.							
· · · ·	g) Graphics libraries.							
	Transformation converts the geometry from one coordinate system to another coordinate system.							
	By means of transformation, the images can be enlarged in size or reduced, rotate or moved on							
	the screen.							
3	Generate the conical surface obtained by rotation of the line segment AB around the Z-axis							
	with A=(1,0,1) and B=(7,0,7). BTL3 - Nov/Dec 15							

	© Solution:						
	From given coordinates, the coordinate s matrix can be written by $\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 $						
	$\begin{vmatrix} A \\ B \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 7 & 0 & 7 \\ \end{vmatrix}$						
	$\begin{vmatrix} \sin\theta & -\cos\theta & 0 \\ \cos\theta & \sin\theta & 0 \end{vmatrix}$						
	$\begin{bmatrix} R_{xy} \end{bmatrix} = \begin{bmatrix} R_z \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & \theta & \theta \\ 0 & 0 & 1 & 0 \end{bmatrix}$						
	The resultant matrix after rotation is calculated by						
	$\begin{bmatrix} A' \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} R \end{bmatrix}$						
	$\begin{bmatrix} B' \end{bmatrix}^{-} \begin{bmatrix} B \end{bmatrix}^{L^* \times J}$						
	$\begin{bmatrix} \sin\theta & -\cos\theta & 0 \end{bmatrix}$						
	$\begin{bmatrix} A' \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix} \cos\theta \sin\theta & 0 & 0 \end{bmatrix}$						
	$\begin{bmatrix} B' \end{bmatrix}^{-} \begin{bmatrix} 7 & 0 & 7 & 1 \end{bmatrix} \begin{vmatrix} 0 & 0 & 1 & 0 \end{vmatrix}$						
	$\left(\begin{array}{c} 0 \end{array} \right) \left[0 \end{array} \right] \left[0 \right] \left[$						
	$\left[A'\right] \left[\sin\theta - \cos\theta + 1 \right]$						
	$\begin{bmatrix} B' \end{bmatrix}^{=} \begin{bmatrix} 7\sin\theta & -7\cos\theta & 7 & 1 \end{bmatrix}$						
4	List the various stages in life cycle of a product. May/June'16 (or) What are the types of						
	product process? BTL1						
	Product cycle is the process of managing the entire life cycle of a product from starting, through						
	design and manufacture, to repair and removal of manufactured products.						
	This product undergoes the following two process.						
	(a) Design process.						
	(b) Manufacturing process.						
5	What is the design process? Mention the steps involved in shigelys model for the design						
	process. (or) Mention some design models included in design process? BTL1, May/June'16						
	Product design is the process of creating a new product to be sold by a business to its customers.						
	It is essentially the efficient and effective generation and development of ideas through a process						
	that leads to new products.						
	(a) Shighely model.						
	(b) Ohsuga model.						
	(c) Earle model.						
	(d) Paul bietz model.						
6	What is homegeneous accuding to 9 New/Dec/16 DTI 1						
0	what is nomogeneous coordinate? Nov/Dec 16, B1L1						

	Homogeneous coordinates are ubiquitous in computer graphics because they allow common							
	vector operations such as translation, rotation, scaling and perspective projection to be							
	represented as a matrix by which the vector is multiplied. $P'=P \times M_1+M_2$							
	(a) For translation:							
	$P' = P \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} Tx \\ Ty \end{bmatrix}$							
	Where M_1 = identity matrix or unit matrix which is denoted by T							
	$M_2 = Translation matrix.$							
	(b) For rotation:							
	$P' = P \times \begin{array}{ccc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array} + \begin{array}{ccc} 0 \\ 0 \end{array}$							
	Where M_1 = rotational matrix which is denoted by R.							
	$M_2 = 0$							
7	What do you mean by synthesis of design? BTL1, Nov/Dec'16							
	Design Synthesis is the process of taken the functional architecture developed in the Functional							
	Analysis and Allocation step and decomposing those functions into a Physical Architecture (a set							
	of product, system, and/or software elements) that satisfy system required functions.							
	The following process are involved in synthesis of design:							
	(a) Design need.							
	(b) Design specification.							
	(c) Feasibility study with collecting design information.							
8	State any two benefits of CAD. BTL1 May/June'17							
	a) Easy editing: Drawing editing and modifications can be easily and quickly done.							
	b) Copies of the same drawing can be duplicated without sacrificing image quality.							
	c) High quality: Created drawings are more neat, precise and sharp.							
	d) Drawings can be plotted quickly in different scales.							
	e) Information about length, area, perimeter, volume, mass are calculated easily.							
	f) Compact storage: Drawings can be stored in CDs, DVDs. Or hard disks.							
	g) Three dimensional can be seen from any view point for better visualization.							
9	Mention some advantages of computer graphics?BTL2							
	a) Concurrent Engineering is a methodology of reconstructing the product development							
	activity in a manufacturing organization using a cross functional team approach.							
	b) Product responsibility lie on the team of multi-disciplinary group.							
	c) Integration of design, process planning and production will be achieved.							
	d) Most of the modification changes are carried out in the planning stage itself.							
	e) Rapid prototyping and frequently review of design and development process.							
10	Mention some advantages of computer graphics? BTL1							

	a) Various views of the object such as orthographic, isometric, axonometric or
	perspective projections can be easily created.
	b) Accurate drawing can be made.
	c) Sectional drawings can be easily created.
	d) Modification of geometric model of objects is easy.
	e) The object drawings can be denoted by its geometric model in three dimensions. Ie.,X,
	Y and Z coordinates.
11	List out the types of computer graphics? And write its applications? BTL2
	Types:
	a) Passive computer graphics.
	b) Interactive computer graphics.
	Application:
	a) Paint programs: it allows rough free hand sketching. It is stored as bitmaps and easily
	can be edited.
	b) Design program: it supports more than the paint program particularly for drawing
	curved lines. The images are usually stored vector based formats. And it is called as
	draw program.
	c) Presentation graphics software: bar chart, pie chart, graphics and other types of images
	for slide show and reports are created. The charts based data imported from spread
	sheet application.
	d) Cad software: it enables architects and engineer to draft design.
12	Define modelling and viewing? BTL1
	a) Modelling is the process of creating an object in the computer by using the basic
	primitives such as points, lines, arc, circle, edges, area, surface, and volumes.
	b) Viewing refers to looking of the model in various angles, zooming, orthographic and
	isometric.
13	Define clipping and write its applications? BLT1
	Clipping is the process of determining the visible portion of a drawing lying within a window
	and discarding the rest.
	a) Identify the visible surface in three dimensional views.
	b) Displaying multi window environment.
	c) Antialiasing line segments or object boundaries.
	d) Creating objects using solid modeling procedures.
	e) Drawing and painting operation.
14	State some advantages and disadvantages of DDA algorithm. BLT1
	Advantages:
	a) It is the simplest algorithm and it does not need special skill for implementation.
	b) It is far method to calculate pixel position than the direst use of straight line equation
	which is given by $y = mx + c$. it eliminates the multiplication of necessary increments

	applied in x or y directions to find the pixel positions along the line path.						
	Disadvantage:						
	a) Floating point arithmetic in DDA algorithms still time consuming.						
	b) The algorithm is oriented dependent. Therefore, end point accuracy is poor.						
15	Define zooming and scaling? BLT1						
	Zooming transformation is a combination of scaling, translation and clipping transformation						
	processes.						
	Zooming = scaling + Translation + clipping.						
	Scaling is the transformation applied to change the scale of an entity. It is done by increasing the						
	distance between points of the drawing.						
16	What is concentration transformation and what is meant by working station						
	transformation? BLT1						
	a) It is a single transformation by combining many transformations linked one after the						
	other to perform the final task.						
	b) The transformation which maps the normalized device coordinates to physical devices						
17	coordinates is called workstation transformation.						
17	what is concurrent Engineering? May/June'17 write some characteristics of concurrent engineering?BLT1						
	Concurrent engineering is a methodology of restricting the product development activity in a						
	manufacturing organization using a cross functional team approach.						
	a) Product responsibilities lies on the team of multi-disciplinary group.						
	b) Integration of design, process planning and production will be achieved.						
	c) Product lead time will be less because cross functional activities are started						
	simultaneously.						
	d) Most of the modification charges are carried out in the planning stages itself.						
	PART * B						
1	Rotate the rectangle (0,0), (2,0), (2,2), (0,2) shown in fig.1, 30° counter clockwise about its						
	centroid and the new coordinate of the rectangle. BTL5 - N/D'15 (13 marks)						

MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

In the conventional manufacturing method both design and manufacturing are separated. Because of this quality may be lost and design modifications cannot be possible at the last stage of production.

To achieve this in the product planning stage itself a cooperation work between design and manufacturing and other specialists has to be made. It is known as concurrent engineering or simultaneous engineering or parallel engineering.

For example, planning activity is made as concurrent shown in fig. Therefore an intensive team work between product development, production planning and manufacturing team is essential for effective implementation of concurrent engineering in an organisation figure shows:

and $\alpha = 26.57^{\circ}$ similarly, $\sin \alpha = \frac{AD}{DE} = \frac{2}{4.472} = 0.447$ $R_{26.57^{\circ}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha & 0 \\ 0 & -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0.894 & 0.447 & 0 \\ 0 & -0.447 & 0.894 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Step 3: Then, the line is rotated at an angle of ϕ counter clockwise about y-axis to coincide with z-axis. Similarly, the angle ϕ is calculated using trigonometric relations of cuboid. $\cos\phi = \frac{\text{Diagonal value of DE}}{\text{Diagonal length of cuboid, }L}$ In cuboid, AB = a = 1, DE = $\sqrt{b^2 + c^2} = \sqrt{2^2 + 4^2} = 4.472$ and $L = \sqrt{a^2 + b^2 + c^2} = \sqrt{1^2 + 2^2 + 4^2} = 4.583$ $\therefore \cos\phi = \frac{4.472}{4.583} = 0.976$ and $\phi = 12.58^{\circ}$ similarly, $\sin\phi = \frac{AB}{Diagonal length of cuboid, L} = \frac{1}{4.583} = 0.218$ By considering xz plane, the matrix can be written as $R_{12.58^{\circ}} = \begin{bmatrix} \cos\phi & 0 & -\sin\phi & 0\\ 0 & 1 & 0 & 0\\ \sin\phi & 0 & \cos\phi & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.976 & 0 & -0.218 & 0\\ 0 & 1 & 0 & 0\\ 0.218 & 0 & 0.976 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$ Step 4: Next, the rectangle is rotated 30° counter clockwise about z axis. $R_{30^{\circ}} = \begin{vmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0.866 & 0.5 & 0 & 0 \\ -0.5 & 0.866 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$

Step 5: Next, the line is back-rotated at an angle of 12.58° clockwise ($\phi = -12.58^\circ$) about z-axis so that it will come to original position. Since, $\cos(-\phi) = \cos\phi$ and $\sin(-\phi) = -\sin(\phi)$,

	$\left[\cos\left(-\phi\right)\right]$	0	$-\sin(-\phi)$	0]	0.976	0	0.218	0]
D	0	1	0	0	0	1	0	0
$R_{(-12.58^{\circ})} =$	$\sin(-\phi)$	0	$\cos(-\phi)$	0	= -0.218	0	0.976	0
	0	0	0	1	L O	0	0	1

Step 6:

Next, the axis is back-rotated at an angle of 26.57° clockwise ($\phi = -26.57^{\circ}$) about yz-plane so that it will come to original position.

	[1	0	0	0]	_ ∏ 1	0	0	0]
D C	0	$\cos(-\alpha)$	$\sin(-\alpha)$	0	0	0.894	-0.447	0
$R_{-26.57^{\circ}} =$	0	$-\sin(-\alpha)$	$\cos(-\alpha)$	0	0	0.447	0.894	0
3	0	0	0	1	0	0	0	1
	-	7	1	-		· · · ·		2.7

Step 7:

Last, the line is back-translated to initial position. So, the back-translation matrix of line EF can be written as

📈 O the Shering a sea an an anna an Anna an Anna an A

	[1	Ó.	0	0	a walk works to be hard, the product of
T	0	1	0	0	
$I_{(0,2,2)} =$	0	0	1:	0	
	0	2	2	1	

Concatenated transformation matrix is calculated by

$$T_{c} = T_{(0,-2,-2)} \cdot R_{26.57^{o}} \cdot R_{12.58^{o}} \cdot R_{30^{o}} \cdot R_{(-12.58)^{o}} \cdot R_{(-26.57^{o})} \cdot T_{(0,2,2)}$$

$$T_{c} = \begin{bmatrix} 0.9312 & 0.1634 & -0.3256 & 0 \\ -0.1743 & 0.9846 & -0.0044 & 0 \\ 0.3199 & 0.0609 & 0.9454 & 0 \\ -0.2919 & -0.0909 & 0.1179 & 1 \end{bmatrix}$$
The transformed matrix is calculated by

		[$P' = [P][T_c] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 2 & 0 & 1 \\ 0 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.92 \\ -0.1 \\ 0.3 \\ -0.2 \end{bmatrix}$ $P' = \begin{bmatrix} -0.2913 & -0.0909 & 0.1179 \\ 1.5712 & 0.2359 & -0.5334 \\ 1.2226 & 2.2051 & -0.5421 \\ -0.6399 & 1.8783 & 0.1092 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		N	ew coordinates are given below.	n an in the second s				
			S' (- 0.2913, - 0.0909, 0.1179), T' (1	1.5712, 0.2359, -0.5334), U' (1.2226,				
		2.20	951, -0.5421) and V' (-0.6399, 1.8783, 0	0.1092) Ans. 🖜				
ŀ	5	Compare	and contrast sequential and concurr	ent Engineering with suitable examples?				
		BTL4 M/	(J'17 (8 marks)					
		S.No	Sequential Engineering	Concurrent Engineering				
		1	Sequential engineering is the term used	Concurrent Engineering is the term used				
			to explain the method of production in a	to explain the method of production in				
			linear system. The various steps are	non-linear system. It is also called as				
			done one after another, with all	parallel engineering.				
			attention and resources focused on that					
			single task.	Consumment anning is a method by				
		Z	sequential engineering is a system by	which several groups within an				
			works sequentially to create new	which several groups within an				
			products and services	create new products and services				
		3	The sequential engineering is a linear	The concurrent engineering is a non-				
			product design process during which all	linear product design process during				
			stages of manufacturing operate in	which all stages of manufacturing operate				
			serial.	at the same time.				
		4	Both process and product design run in	Both product and process design run in				
			a serial and take place in the different	parallel and take place in the same time.				
			time.					
		5	Process and product are not matched to	Process and product are coordinated to				
			attain optimal matching.	attain optimal matching of requirements				
				for effective quality and delivery.				
		6	Decision making done by only group of	Decision making involves full team				
			experts.	involvement.				

between the device and the computer.

The device is basically a free moving pen shaped stylus, connected to a tablet.

(d). Light pens:

- Lockheed's CAD/CAM software utilized this device to carry out the graphic input.
- ◆ A light pen looks like a pen and contains a photocell, which emits an electronics signal.
- When the pen is pointed at the monitor screen, it senses light, which is converted to signal.
- The signal is sent to another computer for determination of the exact location of the pen on the monitor screen.

(e). Touch sensitive screens:

- This device is embedded in the monitor screens, usually, in the form of an overlay.
- ✤ The screen senses the physical contact of the user.
- The new generation of the laptop computer is a good example of this device

(f). Other graphic input devices:

- In additional to the devices described above, some CAD software will accept input via image scanners, which can copy a drawing or schematic with a camera and light beam assembly and convert it into a pictorial database.
- ✤ Resolution.
- ✤ Accuracy.
- ✤ Repeatability.
- ✤ Linearity.

(g). Output devices:

- After creating CAD modelling we often need a hard copy, using an output device plotters and printers are used for this purpose.
- ✤ A plotter is often used to produce large drawings and assemblies, whereas laser jet printer is adequate to provide a 3D view of a model.
- Most CAD software require a plotter for producing a shaded or a rendered view.

7 Describe various stages of design process with an example. BTL4 - N/D'16 (8 marks)

UNIT II – GEOMETRIC MODELING

Representation of curves- Hermite curve- Bezier curve- B-spline curves-rational curves-Techniques for surface modeling – surface patch- Coons and bicubic patches- Bezier and B-spline surfaces. Solid modeling techniques- CSG and B-rep

	PART * A					
Q.No.	. Questions					
1	What do you mean by zero order, first order and second order continuity? BTL1					
	a) Zero order continuity (C^0) means simply that the curves meet.					
	b) First order continuity (C^1) means that the first parametric derivatives of the coordinate					
	function for two successive curve sections are equal at their joining points.					
	c) Second order (C^2) refers that both first and second parametric derivatives of two					
	curves sections are the same at the intersection.					
2	State limitations of B-spline curve? BTL1					
	a) The number of specified polygon vertices fixes the order of the resulting polynomial					
	which defines the curve. The only way to reduce the degree of the curve is to reduce the					
	b) Bezier curve is considered as a single curve controlled by all control points. Because of					
	b) Bezier curve is considered as a single curve controlled by an control points. Because of this with an increase in the number of control points, the order of the polynomia					
	representing the curve increases. It increases the complexity of the curve and its					
	calculation					
	c) A change in one vertex is felt throughout the entire curve because of the global nature of					
	the Bernstein basis. It means that the value of blending function is non-zero for all					
	parametric values over the entire curve.					
3	Write down hermite matrix and What are limitations of hermite curves? BTL2 N/D'15					
	Hermite curve = -3 3 $-1-1$					
	1 0 0 0					
	The curve is defined by two data points that he at the beginning at the end of the curve, along with the slopes at these points. When two and points and their slope define a curve, the curve is					
	called a hermite cubic curve					
4	State the advantages of rotational splines? BTL1					
	a) Rotational splines have the following two important advantages compared to non-rotation					
	splines.					
	b) Kational splines provide an exact representation for quadratic curves (conics) such as circle					
	and empses. Non-rotational spines which are polynomial can only approximate comes. It allows graphics packages to model all curve shapes with one representation retational galines					
	anows graphics packages to model an curve snapes with one representation rotational splines					

	withou	ut needing a library of curv	e functions to handle diff	erent design shapes.				
	c) Rational splines are invariant with respect to a perspective viewing transformation. It means,							
	we can apply a perspective viewing transformation to control points of the rotational curve							
	and we will obtain the correct view of the curve. Non-rational splines, on the other hand, are							
	not invariant with respect to a perspective viewing transformation.							
5	Differentiate between analytical curves, interpolated curves and approximated curves.							
	BTL1 N/D)'15						
	S.No	Analytical curves	Interpolated curves	Approximated curves				
	1	These curves are	An interpolated curve	These curves provide the				
		represented by a simple	is drawn by	most flexibility in drawing				
		mathematical equation.	interpolating the given	curves of very complex				
			data points.	shapes.				
	2	They have a fixed form	Those ourwes have	The model of a curred				
		and connect he modified	and limited	automobile fonder con be				
		and cannot be mounted	Some minited	automobile lender can be				
		to achieve a shape that	flexibility in shape	easily created with the help				
		violates the	creation.	of approximate curves and				
		mathematical equations.		surfaces.				
6	What are	the advantages and disad	vantages of wire frame	modelling? BTL2- M/J/16				
	a)	Advantages of this type of	model include ease of ci	reation and low level hardware and				
	software requirements. Additionally, the data storage requirements are slow.							
	b) The main disadvantage of a wire frame model is that it can be very confusing to							
	visualize. For example, a blind hole in a box may look like a solid cylinder.							
7	What is c	alled plane surface? How	w is ruled surface prod	uced? How is tabulated surface				
	generated	? How are coons surface g	generated? BLT1					
	a) The	e most elementary and sim	plest form of the surface	e types is the plane surface which				
	may be defined between two parallel straight lines through three points or through a line							
	and	l a point.						
	b) A ruled surface is produced by linear interpolation between two different boundary curves							
	that	t define the surface.						
	It is surface generated by translating a planar curve for a given distance along a							
	specified direction.							
		A coon's patch or surfa	ace is generated by the int	terpolation of four edges curves.				
8	Define curve and State advantages of Bezier Curves. BTL 1 M/J'16							
	Curve is a continuous map from one dimensional space to n dimensional space. The curve is a							
	straight line if and only if all the control points are collinear. The start and end of the curve is							

	tangent to the first and last section of the Bezier polygon, respectively. A curve can be split at any			
	point into two sub curves, or into arbitrarily many sub curves, each of which is also a Bezier			
	curve.			
9	Mention the advantages of CGS? BTL2			
	a) It creates fully valid geometrical solid model.			
	b) Complex shapes may be development relatively quicker with the available set of			
	primitives.			
	c) Less skill is enough.			
	d) The data file of CSG is concise.			
	e) CSG guarantees automatically in which objects drawn by CSG are valid.			
	f) CSG is more user friendly.			
	g) Algorithms for converting CSG into B-rep have been developed.			
10	Why B-rep modelling approach are widely followed than CSG approach? BTL2 N/D'16			
	Boundary Representation (B - Rep) approach allows the designer to draw a boundary or an			
	outline of an object in the CRT screen for displaying various views like left side view, top view,			
	and front view. The boundaries of the views are interlinked with edges, faces and vertices.			
11	What are the disadvantages of CSG? BTL1			
	a) More computational effort and time are required whenever the model is to be			
	displayed in the screen.			
	b) Getting fillet, chamfer and taperness in the model are very difficult.			
	c) CSG database contains information about a solid in an unevaluated form.			
	d) The validity of a feature of an object cannot be assessed without evaluating the entire			
	tree.			
	e) The tree is not unique for the same part design.			
12	Why B-rep scheme is more widely used? BTL1			
	a) In CSG, the number of basis primitives available is limited but it is not so in B-rep.			
	b) The performance of B-rep scheme is very much superior to that of CSG scheme for			
	complex engineering models.			
	c) Conversion of CGS to B-rep is possible but the conversion from B-rep to CSG is not			
	possible.			
	d) Combining the wire frame and surface model is possible only through B-rep solid			
	representation.			
13	State any four advantages and disadvantages of B-rep? BTL2			
	a) Advantages: computational effort and time required to display the model are less			
	compared with CSG.			
	b) Combining wireframe and surface model are possible.			
	c) Complex engineering objects can be easily modelled compared with CSG, Examples			
	are aircraft fuselage and automobile body styling.			
	d) The information is complete especially for adjacent topology relation.			

	e)	Disadvantage: The data to be stored is more and hence, it requires more memory. So,					
		it is not suitable for tool path generation.					
	f)	Sometimes, geometrically valid solids are not possible.					
	g)	There is no guarantee for the created objet to check	k whether it is valid or not.				
	h)	It is generally less robust than the half space metho	od.				
14	What are	the rules to be followed in topological consistency? BTL1					
	a)	Face should be bound by a simple loop of edges as	and they should be not intersected by				
		itself.					
	b)	Each edge should exactly adjoin two faces and each edge should have a vertex at each					
		end.					
	c)	At least three edges, it should meet at each vertex.	At least three edges, it should meet at each vertex.				
15	What is t	t is the significance of CGS? BTL1 - M/J'17					
	a)	Constructive solid geometry (CGS) is one of the most popular methods of representing					
		and building complex solids.					
	b)	In this scheme, simple primitives are combined in certain order by means of					
		regularized Boolean set operators which are directly included in the representation.					
16	Define qu	uadratic Bezier curve. BTL1 M/J'17					
	a) The shape of Bezier curve is controlled by its defining points only.						
	b) The curves do not pass through the given data points. Instead, these points are used to						
	,	control the shape of the resulting curves.					
	c)	Flexibility of Bezier curve is more.					
17	Write do	wn the difference between Bezier curve and cubic	c spline curves? BTL1				
	S	S.No Bezier curve	Cubic spline curve				
		1 The shape of Bezier curve is controlled Firs	st order derivatives are used in the				
		by its defining points.	ve development.				
		2 The curve does not pass through the The	e curves pass through the given				
		given data points. Instead, these points data	a points exactly.				
		are used to control the shape of the					
	resulting curves.						
		3 Bezier curve permits higher order The	e order or the degree of cubic				
Ť		s bezier curve permits inglier order of spli	ine is fixed one. It is always cubic				
		Bezier curve is variable and it is for	a spline segment				
		depending on the number of defining	a spinie segment.				
		data points. For example, $n + 1$ points					
		data points. For example, $n + 1$ points					
	4 The snape of the Bezier curve is it is not much smoother as Bezier						
---	--	--	--				
	smoother than the cubic spline curve curve.						
	because of its higher order continuity.						
	PART – B						
1	Briefly explain the different schemes used to generate a solid model. N/D'15 (or) Explain in						
	detail B-rep solid modelling approach. BTL5 - N/D'16, (13 marks)						
	A representation scheme is defining as a relation which maps a valid point set into a valid						
	model. For example, a constructive solid geometry (CSG) scheme maps the valid primitive into						
	the valid solid via Boolean operations. It possesses the following properties,						
	• It is closed regular set. There should not be any dangling portions.						
	• It is a semi - analytic set. It does not oscillate infinitely fast anywhere in the set.						
	Out of which, the following two basic approaches are important from our subject point of view.						
	(1) Constructive solid geometry (CSG)						
	(2) Boundary representation (B - rep)						
	1. Constructive solid geometry (CSG):						
	Constructive solid geometry (CSG) is one of the most popular methods of representing and						
	building complex solids. The type of Boolean operations is used in CSG are Union (U),						
	difference (-), and intersection (^).						
	Simple Boolean operations have been already described in earlier topics of this chapter						
	The data representation of CSG objects is represented by a binary tree. Directed graph scheme i						
	used to store the model in the data structure						
	The general form of the tree – type data structure used in CSG approach is shown in						
	figure 2.41. Any node may have one parent node and two child node.						
	A balanced tree can be defined as a tree whose left and right subtrees have almost an equa						
	number of nodes. The creation of balanced or an unbalances tree is entirely dependent on the use						
	and it is related to how the primitives are combined.						

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

For example, to create a model as shown in figure 2.43, four primitives – two rectangular blocks and two cylinders are required.

To create the final object following Boolean operation has to be carried out. Applying the same operation to two objects which are initially the same can yield two different results as shown in figure 2.44.

The object shown in may be defined by different CSG operations shown in (b) and (c). The modification of the top face of (b) and (c) upward yields different objects shown in (d) and (e).

It is illustrated with a simple example of tetrahedron shown in figure 2.45 (a). The tetrahedron is composed of four vertices namely A, B, C and D. the coordinate of these vertices is stored in the database.

Figure 2.45 (b) shows how the vertices are connected to form edges (a, b, c, d, e, and f) and how these edges are connected together to form the face (ABC, BCD, ACD, ABD) which makes the complete solid of tetrahedron.

For better understanding of the difference between CSG and B-ref schemes the information contained in a same solid both in the schemes are given in figure 2.46.

As stated earlier, in B-ref scheme, the solid is made of a set of faces. These faces are subsets of closed and orientable surfaces.

A closed surface is one and it is continuing without break. In an orientable surface, it is possible to distinguish two sides by using the direction of the surface normal to point inside or outside the solid model. Each face is bounded by edges and each edge is bounded by vertices.

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

Manufacturing

- Parts classification
- Process planning
- NC data generation and verification
- Robot program generation

Production Engineering

- Bill of materials
- ✤ Material requirement
- Manufacturing resource requirement
- ✤ Scheduling

Inspection and quality control

- Program generation for inspection machines
- Comparison of produced parts with design

WIRE FRAME MODELING

It uses networks of interconnected lines (wires) to represent the edges of the physical objects being modeled

Also called 'Edge-vertex' or 'stick-figure' models

Two types of wire frame modeling:

1. 2 ¹/₂ - **D** modeling

2. 3 – D modeling

3-D Wire frame models: These are

Simple and easy to create, and they require relatively little computer time and memory; however, they do not give a complete description of the part.

They contain little information about the surface and volume of the part and cannot distinguish the inside from the outside of part surfaces.

They are visually ambiguous as the model can be interpreted in many different ways because in many wire frame models hidden lines cannot be removed.

Section property and mass calculations are impossible, since the object has no faces attached to it. It has limited values a basis for manufacture and analysis

2¹/₂ - D Wire frame models:

Two classes of shape for which a simple wire-frame representation is often adequate are those shapes defined by projecting a plane profile along its normal or by rotating a planar profile about an axis.

Such shapes are not two-dimensional, but neither do they require sophisticated threedimensional schemes for their representation. Such representation is called $2\frac{1}{2}$ - D.

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

and last vertices.

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

t=0

Cubic Bezier curves and Quadratic Bezier curves are very common. Higher degree Bezier curves are highly computational to evaluate.

When more complex shapes are required, Bezier curves in low order are patched together to produce a composite Bezier curve. A composite Bezier curve is usually described to as a 'path' in vector graphics standards and programs.

For smoothness assurance, the control point at which two curves meet should be on the line between the two control points on both sides.

Linear Bezier curves

The given points P0 and P1, a linear Bezier curve is merely a straight line between those two points. The Bezier curve is represented by P_0

$$\mathbf{B}(t) = (1-t)^{3}\mathbf{P}_{0} + 3(1-t)^{2}t\mathbf{P}_{1} + 3(1-t)t^{2}\mathbf{P}_{2} + t^{3}\mathbf{P}_{3} , t \in [0,1]$$

Quadratic Bezier curves

As shown in the figure, a quadratic Bezier curve is the path defined by the function B(t), given points P0, P1, and P2,

$$\mathbf{B}(t) = (1-t)[(1-t)\mathbf{P}_0 + t\mathbf{P}_1] + t[(1-t)\mathbf{P}_1 + t\mathbf{P}_2] , t \in [0,1]$$

This can be interpreted as the linear interpolate of respective points on the linear Bezier curves from P0 to P1 and from P1 to P2 respectively. Reshuffle the preceding equation gives:

$$\mathbf{B}(t) = (1-t)^2 \mathbf{P}_0 + 2(1-t)t \mathbf{P}_1 + t^2 \mathbf{P}_2 , t \in [0,1].$$

The derivative of the Bezier curve with respect to the value 't' is

$$\mathbf{B}'(t) = 2(1-t)(\mathbf{P}_1 - \mathbf{P}_0) + 2t(\mathbf{P}_2 - \mathbf{P}_1).$$

From which it can be finished that the tangents to the curve at P0 and P2 intersect at P1. While 't' increases from zero to one, the curve departs from P0 in the direction of P1, then turns to land at P2 from the direction of P1.

The following equation is a second derivative of the Bezier curve with respect to 't':

$$\mathbf{B}''(t) = 2(\mathbf{P}_2 - 2\mathbf{P}_1 + \mathbf{P}_0).$$

A quadratic Bezier curve is representing a parabolic segment. Since a parabola curve is a conic JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND

MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

 section, a few sources refer to quadratic Beziers as 'conic arcs'. Derive the transformation matrix for a Hermite Curve. BTL5 - N/D'16 (8 marks) AHermitecurveisasplinewhereeverypieceisathirddegreepolynomialdefinedinHermite form: that is, by its values and initial derivatives at the end points of the equivalent demain interval. Cubic
6 Derive the transformation matrix for a Hermite Curve. BTL5 - N/D'16 (8 marks) AHermitecurveisasplinewhereeverypieceisathirddegreepolynomialdefinedinHermite form: that is, by its values and initial derivatives at the end points of the equivalent domain interval. Cubic
by its values and initial derivatives at une end points of the equivalent domain interval. Cubic Hermite splines are normally used for interpolation of numeric values defined at certain dispute valuesx1, x2, x3,,xn,toachieveasmoothcontinuousfunction. The datashouldhavethepreferred function value and derivative at each Xk. The Hermite formula is used to every interval (Xk, Xk+1) individually. The resulting spline become continuous and will have first derivative. Cubic polynomial splines are specially used in computer geometric modeling to attain curves that pass via defined points of the plane in3Dspace. In these purposes, each coordinate of the plane is individually interpolated by a cubic spline function of a divided parameter 't'. Cubic splines can be completed to functions of different parameters, in several ways. Bicubic splines are frequently used to interpolate data on a common rectangular grid, such as pixel values in a digital picture. The following vectors needs to compute a Hermite curve: • P1: the start point of the Hermite curve • T1: the tangent to the start point. • P2: the endpoint of the Hermite curve • T2: the tangent to the endpoint Thesefourvectorsarebasicallymultiplied with four Hermitebasis functions h1(s), h2(s), h3(s) and, h4(s) and added together. h1(s) = $2s^3 - 3s^2 + 1$ h2(s) = $s^3 - 2s^2 + s$ h4(s) = $s^3 - s^2$

UNIT III CAD STANDARDS			
Standards for computer graphics- Graphical Kernel System (GKS) - standards for exchange images-			
Open	Open Graphics Library (OpenGL) - Data exchange standards - IGES, STEP, CALS etc		
comm	unication standards.		
	PART * A		
Q.No.	Questions		
1	What is meant by CAD data exchange? Mention its importance. BTL1 N/D'15		
	CAD data exchange involves a number of a software technologies and methods to		
	translate data from one computer-aided design system to another CAD file format. The exchange		
	process targets primarily the geometric information of the CAD data but it can also target other		
	aspects such as metadata, knowledge, manufacturing information, tolerances and assembly		
	structure. There are three options available for CAD data exchange: direct model translation,		
	neutral file exchange and third-party translators.		
2	What are the importance's of standards in CAD? BTL1 M/J'16		
	 Openness, accessibility: availability and willingness to respond. 		
	• Truthfulness: unconditional honesty is the only policy.		
	• No secrets: our behaviour, our attitudes, our plans and positive.		
	• In the engineering world, CAD is extremely important and widely used to design and		
	develop products to be used by consumers.		
	• This knowledge is a hot commodity for those employing engineers, because of its benefits		
	in the engineering workplace.		
3	Write any three CAD Standards for exchange of modelling data. BTL1 - M/J'16		
	• Graphics Kernel System (GKS)		
	Initial Graphics Exchange Specification		
	• DXF (Drawing/Data Exchange Format)		
	• STEP (Standard for the Exchange of Product model data)		
4	State the needs for data exchange standards. BTL1 N/D'16		
	CAD data exchange is a modality of data exchange used to translate data between different		
	Computer-aided design (CAD) authoring systems or between CAD and other downstream CAx		
	systems. Data exchange allows data to be shared between different computer programs. It is		
	similar to the related concept of data integration except that data is actually restructured (with		
	possible loss of content) in data exchange. There may be no way to transform an instance given		
	all of the constraints.		
5	What is GKS cell array? BTL1 N/D^2 16		
	The GKS cell array function displays raster like images in a device-independent manner. The		
	cell array function takes the two corner points of a rectangle that you specify, a number of		

	divisions (M) in the X direction and a number of divisions (N) in the Y direction. It then		
	partitions the rectangle into M x N sub-rectangles called cells. You assign each cell a color and		
	create the final cell array by coloring each individual cell with its assigned color. At level 0A, cell		
	array has no associated attributes.		
6	Define Graphical Kernel system? BTL1 M/J'17		
	GKS basically a set of procedures which can be called by user programs to carry out certain		
	generalized functions such as arc, circle, ellipse etc. GKS is defined in terms of number of levels		
describing the level of support in terms of facilities. Graphical Kernel System provides			
	drawing features for two dimensional vector graphics suitable for charting and similar duties.		
7	What is open graphics library? BTL1 M/J'17		
	Open GL draws primitives into a structured buffer focus to a various selectable mode. Eve		
	point, line, polygon, or bitmap are called as a primitive. Each mode can be modified separately;		
	the parameters of one do not affect the parameters of others. Open graphics Library (Open GL) is		
	a cross language multi-platform Application Programming Interface (API) for rendering 2D and		
	3D vector graphics. It is extensively used in the field of CAD, virtual reality, scientific		
	visualization, information visualization, flight simulation and video games.		
8	Mention the need for graphic standards. BTL2		
	\checkmark There is need for portability of the geometric model among different hardware platforms.		
	\checkmark Where there is situation to exchange drawing database among software packages.		
	\checkmark There is need for exchanging graphic data between different computer systems.		
	\checkmark To understand the graphic kernel system and its extension for developing the graphic		
	software systems.		
9	What are the features of GKS? BTL2		
	\checkmark It is an independent device. So it can work with all types of input and output devices.		
	\checkmark All text and annotation can be prepared and stored in natural languages.		
	✓ Graphic functions are defined for both 2D and 3D.		
	✓ It includes all types of display elements.		
	✓ GKS supports picture data into two routines.		
10	Classify GKS. BTL1		
	✓ Control function		
Ť	✓ Output function		
	✓ Output primitives		
	✓ Segment function		
	✓ Transformation		
	✓ Input function		
	✓ Meta file function		
11	List down the output primitives in GKS. BTL2		
	✓ Polyline		
	✓ Polymakers		

	✓ Text			
	✓ Fill area			
12	State the segment used in GKS inquiry functions. BTL1			
	✓ Segment storage			
	✓ Segment creation, deletion and renaming			
	✓ Segments name			
	✓ Segment association, copying and insertion			
	✓ Pick identifier			
	✓ Segment redrawing			
13	What are the reasons and requirements of exchanging data? BTL1			
	\checkmark All use the same CAD packages.			
	✓ Special translator application is used to change the data from one format to another format			
	\checkmark A neutral format is used to data exchange.			
	Requirements for the Exchange			
	Shape data: both geometric and topological information, part and form features. Fonts, color,			
	annotation are considered part of the geometric information. • Non-shape data: graphics data such			
	as shaded images, and model global data as measuring units of the database and the resolution of			
	storing the database numerical values.			
	Design data: information that designers generate from geometric models for analysis purposes.			
	Mass property and finite element mesh data belong to this type of data.			
	Manufacturing data: information as tooling, NC tool paths, tolerancing, process planning, tool			
	design, and bill of materials (BOM).			
14	Brief about DXF format. BTL2			
	DXF/DWG: DXF formats were developed by AutoDesk.			
	• After creating drawings, designers can export data in DXF/DWG formatted files and import the			
	2D geometric data contained in a DXF/DWG file into other drawing tools.			
	DXF File Structure:			
	Header Section			
	Tables Section			
	Block Section			
	Entities Section			
15	Explain the IGES file structure and format. BTL1			
	1. Global section (G) – The Global Section includes properties and descriptions of the pre-			
	processor and information that are needed by postprocessor to interpret the file. It is recognize by			
	letter "G" in the IGES file.4. Directory section (D) – Index for the file and attribute information			
	like colour, line type etc.			
	2.Data Entry Section (D) -Directory entry section defines the attributes or features of the entity			
	like line, color, transformation matrix, etc.			
	3. For every geometric element within an IGES file there is one Directory Entry. This consists of			

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

	two 80-character lines i.e. 20 right-justified fields of 8 characters each			
	4. Parameter Entry section (P) Directory entry section defines the attributes or features of the			
	entity like line, color, transformation matrix, etc. For every geometric element within an IGES			
	file there is one Directory Entry. This consists of two 80-character lines i.e. 20 right-justified			
	fields of 8 characters each			
	5. Terminate section – The terminal section contains only one record which shows the number			
	records in each section. This is used for checking purpose.			
16	Brief about STEP (Standard for the Transfer and Exchange of Product model			
	data)file.BTL1			
	The broad scope of STEP is as follows:			
	- The standard method of representing the information necessary to completely define a prod			
	throughout its entire life, i.e., from the product conception to the end of useful life			
	- Standard methods for exchanging the data electronically between two different systems.			
	STEP AP203 / AP214 format (Standard for the Exchange of Product model data)			
	• It supports geometry and assembly structures and handles topology (shells, solids) on export and			
	import.			
	• STEP files are human readable			
	• Other STEP APs are available. e.g. electronics data			
17	State the importance of PDES. BTL2			
	PDES (PRODUCT DATA EXCHANGE STANDARD)			
	 (Then Product Data Exchange Using STEP) To support any industrial application such as mechanical, electric, plant design, and archite and engineering construction 			
	• To inc	lude all four types of data which is relev	ant to the entire life-cycle of a product: design,	
	analysis, manufacturing, quality assurance, testing, support, etc. PDES is a much			
	compreh	nensive and complex standard than IGES of	or any other predecessors	
18	Compa	re the shape based and product data ba	sed exchange standards. N/D'15	
	S. No.	Shape based exchange standards	Product data based exchange standards	
	1	All data exchange files are neutral	It has specific file formats	
	1	files.	it has specific the formats.	
Ť			It consists of a three layered architecture	
	2	It has section of header, table, block,	such as application, logical and physical	
		entities and end	layers.	
		These files do not have any software	These file must have any software specific	
	3	specific function.	function.	
	4	Example, DXF and IGES	Example, STEP, SDF, EDIF. and PDES.	
	PART-B			

Write a notes on (i) Open graphics Library (Open GL) BTL5 N/D'15 1 (16) Open graphics Library (Open GL) is a cross language multi-platform Application Programming Interface (API) for rendering 2D and 3D vector graphics. API is typically used to interact with a Graphics Processing Unit (GPU) to obtain hardware accelerated rendering. It is extensively used in the field of CAD, virtual reality, scientific visualization, information ٠ visualization, flight simulation and video games. It describes an abstract of API for drawing 2D and 3D graphics. Although it is possible for the API to implement entirely in software, it is mainly designed to implement in hardware. API is defined as a number of functions which may be called by the client program alongside a number of named integer constants. • Open GL ES 2.0, for 3D rendering from within a web browser, the C bindings WGL, GLX and CGL, the binding provided by IOS and the Java and C bindings provided by android. In addition to language independent, Open GL is also an independent platform. The • specification explains obtaining and managing an OpenGL context. For the same reason, Open GL is purely concerned with rendering provide no APIs related to input, audio or windowing. **Features of Open GL** (i) Based on IRIS GL: Open GL is supported on silicon graphics Integrated Raster Imaging System (IRIS), Graphics Library (IRIS GL). (ii) Low-level: A critical target of Open GL is to suggest device independence while still permitting the total contact to hardware. (iii) Fine grained control: Due to minimize the needs of application utilizing, the Application Programmers Interface (API) must save and present its information. (iv) Modal: A model API arises in executions in which process function in parallel on various primitives. (v) Geometry and images: Open GL supports to manage both 3D and 2D geometry. An API for utilizing with geometry should also provide guidance for reading, writing and copying images because geometry and images are regularly joint when a 3D view is laid over a background image. Advantages: • Industry standard • Reliable and portable • Easy to use • Well documented

Simplified software development, speeds time to market

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

ſ		DMIS (Dimensional Measurement Interface Specification)
		VDI (Virtual Device Interface)
		• VDM (Virtual Device Metafile)
		GKSM (GKS Metaflie)
		NAPLPS (North American Presentation Level Protocol Syntax)
ľ	3	Explain the IGES structure and methodology with suitable examples? Explain IGES file
		format. BTL5 N/D'15, N/D'16, M/J'17 (16)
		However, the IGES is the most comprehensive standard and is designed to transmit the entire
		product definition including that of manufacturing and any other associated information. A brief
		description of the IGES version 3.0 is given below highlighting the philosophy of the conversion
		methodology.
		In IGES the records are present with 80 column fields, with columns 1 to 72 providing the
		data and columns 73 to 80 providing a sequence number for the record with identification as to
		the location of the sub-section. This sequence number is utilized as a pointer for the data. The
		IGES file consists of the following 6 sub sections.
		(a). Flag Section:
		This is optional and used to indicate the form in which the data is specified, Originally,
		the initial versions contained the data in ASCII format with a very detailed structure. This has
		been criticized by a number of people in view of the very large sizes. From version 3.0 onwards
		the format has been standardized in the following three modes.
		• ASCII mode – default option.
		Binary form.
		Compressed ASCII form.
		IGES specification defines the format of the file, language format, and the product definition
		data in these formats. The product definition includes geometric, topological, and non-geometric
		data. The geometry part defines the geometric entities to be used to define the geometry. The
		topology part defines the entities to describe the relationships between the geometric entities. The
		geometric shape of a product is described using these two parts (i.e. geometry and topology). The
		non-geometric part can be divided into annotation, definition, and organization. The annotation
		category consists of dimensions, drafting notations, text, etc. The definition category allows users
		to define specific properties of individual or collections of entities. The organization category
		defines groupings of geometric, annotation, or property elements.
		An IGES file consists of six sections: Flag, Start, Global, Directory Entry, Parameter Data, and
		internate. Each entity instance consists of a directory entry and parameter data entry. The
		directory entry provides an index and includes attributes to describe the data. The parameter data
		defines the specific entity. Parameter data are defined by fixed length records, according to the

corresponding entity. Each entity instance has bi-directional pointers between the directory entry

and the parameter data section. The size of IGES files and consequently the processing time are practical problems. IGES files are composed of fixed format records and each entity has to have records in both the directory entry section and the parameter data section with bi-directional pointers. This causes also errors in pre- and post-processor implementations.

The other two option provided will help in reducing the bulk of the drawing exchange file size. The sequence number has a starting character signifying the sub section, they are

1. S for Start section.

2. G for Global section.

3. D for Directory entry section.

4. P for Parameter entry section.

5. T for terminate section.

(b). Start section:

This section contains a man-readable prologue to the file. The information contained in this section is essentially for the person who would be post processing this for any other application.

Any number of lines can be contained in this section. A sample listening an IGES file for the drawing shown.

(c). Global Section:

This contains information about detail of the product, the person originating the product, name of the company originating it, date, the detail of the system which generated it, drafting standard used and some information required for its post processing on the host computer.

(d). Directory entry section:

For each entity present in the drawing is fixed in the size and contains 20 fields of 8 characters each. The purpose of this section is to provide an index for the file and to contain attribute information.

Some of the attribute information such as color, line type, transformation matrix, etc., may be present directly or through a pointer (to a record in the same file) where the necessary information is stored.

It also contains the pointer to the parameter data section entry which actually contains the requisite parameter data.

(e). Parameter data section.

This contains the data associated with entities. A free format is allowed for maximum convenience. It may contain any number of records. The total number of entities that are present in IGES version 5.1.

(f). Terminate section:

This contains the sub total of the records presented in each of the earlier sections. This would always contain a single record.

4 Write a short note on STEP? BTL5 M/J'17 (16)

New CAD data standard is developed through world wide effort known as STEP in year

1997. The ability to share data across application, across vendor, platforms and between contractors, suppliers and customers is the main objective of STEP standard.

STEP seeks to address a number of limitations of IGES. In IGES does not clearly between the logical specification of the standard (the meaning of the data fro CA system point of view), the applications requirements (how the data will be used in particular application) and the physical specification for the storage of data in exchange files.

Data loss:

Similar to any language translation, there is always information loss during the product data information translation.

Examples:

i. A design tolerance is captured as a text string placed on a drawing and its numerical values are lost.

ii. Circular cylinders (a hole) is represented by NURBS.

iii. The offset information is lost in offset surfaces.

The board scope of STEP is as follows:

i. The standard method of representing the information necessary to completely define a product throughout its entire life, ie., from the product conception to the end of useful life.

ii. Standard methods for exchanging the data electronically between two different systems.

STEP uses the formal model for the data exchange which is described using an information modelling language called EXPRESS. It is both human readable and computer processable. STEP has three layers architecture which enables the multiple application views and implements to be defined.

The STEP documentation has eight major areas which are described below.

1. Introductory:

It contains the details about general introduction and overview of the standard. It forms the part 1 of the ISO standard 10303. It comprises of part 1 which has overview and general principles.

2. Description method:

When compared to other standard, the application protocols are planned to reach vendors. So a new descriptive formal information modelling language called EXPRESS is developed and defined. It is given in part 11 to 13.

3. Implementation method:

It describes how express map physical files and storage mechanisms are represented for the data exchange. In refers the actual implementation level. These details are given in part 21 to 26.

4. Conformance testing methodology and frame work:

It provides the methods for testing implementation and test suits to be used during conformance tasting. It also gives the specification for conformance testing of the processors, guidance for creating abstract – test suites and the responsibilities of testing laboratories. These details are given in part 31 to 35.

5. Integrated – generic resources:

It contains the specifications of the information models about generic resources such as geometry and structure representation. The specifications are geometric and topological representation, product structure organization, materials, visual presentation, tolerances, form features and process structures, and properties.

These details are given in part 41-99

6. Application information models:

They specify the information models used for the particular application areas such as draughting, finite element analysis, kinematic, building core model and engineering analysis core. The details are given in part 101.

7. Application protocols:

In described implementations of STEP specific to a particular industrial application and they are associated with implementation methods to form the basis of a STEP implementation which provides test suits for each of the application protocol.

It is also defining the context for the use of product data for a specific industrial need. More complex models are used to illustrate the specific product data application.

It uses the integrated information resources in well-defined combination and configuration to represent a particular data model of some phase of product life. The information is given in 201.

8. Application interpreted control:

It describes the various model entity construct and specific modelling approach. They relate

to the specific resources useful for defining the geometric structures useful for applications. In this case, the information can be reused. So it makes the process easier to express the identical semantics in more than one application protocol.

5 Explain about various layers of GKS. BTL5 N/D'15, N/D'16 (16)

Graphical Kernel System (GKS) provides a set of functions for the purpose of generating 2D pictures on vector graphics and/or raster devices. It also supports operator input and interaction by supplying basic functions for graphical input, picture segmentation and subsequent storage, retrieval and dynamic modification of graphical information.

Different Layers of GKS

GKS provides a functional interface between an application program and a configuration of graphical input and output devices. The functional interface contains all basic functions for interactive and non-interactive graphics on a wide variety of graphical equipment.

The geometric information (coordinates) contained in the output primitives, attributes and logical input values can be subjected to transformations. These transformations perform mapping between three coordinate systems, namely:

(a) World Coordinates (WCS) used by the application programmer to describe graphical information to GKS.

(b) Normalized Device Coordinates (NDC) used to define a uniform coordinate system for all workstations.

(c) Device Coordinates (DC), one coordinate system per workstation, representing its display surface coordinates. Input containing coordinates are expressed to GKS by the device using DC values.

Output primitives and attributes are mapped from WC to NDC by normalization transformation, from NDC to NDC by segment transformation (as indicated by a transformation matrix defining rotation, scaling and shift factors) and from NDC to DC by workstation transformation. Input from the display surface (expressed in DC) is mapped by an inverse workstation transformation from DC to NDC and by one of the inverse normalization transformation from NDC to WC.

Output primitives and primitive attributes may be grouped together in a segment. Segments

	are units for manipulation and change. Manipulation includes creation, deletion, and renaming		
	while change includes transforming a segment, changing its visibility and also highlighting		
	segments, i.e., causing segments to "flash". Segments also form the basis for workstation		
	independent storage of pictures at run time.		
	GKS primitives		
	 GKS output primitive is a collection of functions to display 2D images. 		
	 It consists of Line, polygon, Spline, Dimension, Text etc., 		
	 Attributes refer the Parameters Such as Colour , line Style etc., 		
	 Circle is a primitive, its attributes may be Colour, line width and line type. 		
	 POLYLINE to draw a set of connected straight-line vectors 		
	POLYMARKER to draw a set of markers or shapes		
	 FILL AREA to draw a closed polygon with interior fill 		
	* TEXT to create characters		
	• GDP (Generalized Drawing Primitive) to specify the standard drawing entities like circle, ellipse etc.		
	✤ The attribute functions define the appearance of the image e.g. color, line-type etc.		
	♦ Current level of GKS is GKS-3D, which provides several other functions. GKS-3D is an		
	extension to GKS, which allows the production of 3-D objects.		
6	Write short note on : Drawing Exchange Format (DXF) Standard. BTL5 M/J'16 (8)		
	DXF (Data eXchange Format) was originally developed by Autodesk, Inc., the vendor of		
	AutoCAD. It has become a "de-facto" standard among most CAD vendors and is in wide use to		
	exchange 2D/3D wireframe data. All implementations of AutoCAD accept this format and are		
	able to convert it to and from their internal representation. A DXF file is a complete representation		
	of the AutoCAD drawing database thus some features or concepts can't be used by other CAD		
	systems. The DXF version R13 supports wireframe, surface, and solid representations.		
	A DXF file consists of four sections: Header, Table, Block, and Entity section. The header section		
	contains general information about the drawing. Each parameter has a variable name and an		
	associated value. The table section contains definitions of line types, layers, text styles, views, etc.		
	The block section contains entities for block definitions. These entities define the blocks used in		
	the drawing. The format of the entities in the block section is identical to entities in the entity		
	section. The entity section contains the drawing entities, including any block references. Items in		
	the entity section exist also in the block section and the appearance of entities in the two sections		
	is identical. Variables, table entries, and entities are described by a group that introduces the item,		
	giving its type and/or name, followed by multiple groups that supply the values associated with the		

item. In addition, special groups are used for separators such as markers for the beginning and end of sections, tables, and the file itself. Group codes are used to describe the type of the value, and the general use of the group.

UNIT IV FUNDAMENTAL OF CNC ANDPART PROGRAMING

Introduction to NC systems and CNC - Machine axis and Co-ordinate system- CNC machine tools-Principle of operation CNC- Construction features including structure- Drives and CNC controllers- 2D and 3D machining on CNC- Introduction of Part Programming, types - Detailed Manual part programming on Lathe & Milling machines using G codes and M codes- Cutting Cycles, Loops, Sub program and Macros- Introduction of CAM package.

PART * A

Q.No.	Questions		
1.	List the differences between NC and CNC.BTL 1NC stands for Numerical Control whereas CNC stands for Computer Numerical Control.In NC Machine the programs are fed into the punch cards. The cost of the NC machine isless as compared with the computer control machines.		
	Define linear bearings.BTL 1		
2	A linear-motion bearing, or linear slide is a bearing designed to provide free motion in one direction. There are many different types of linear motion bearings. Motorized linear slides such as machine slides, XY tables, roller tables and some dovetail slides are bearings moved by drive mechanisms		
	Mention the type of ball screws. BTL 3		
3	A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw .		
	Define feed drives. BTL 1		
4	Feed drive Computer. An optical drive that grabs the disc after it is partially inserted in the slot and pulls it onto the drive spindle.		
	Discuss the types of motion control system used in NC machines. BTL 1		
5	Numerical control (NC) (also computer numerical control (CNC)) is the automated control of machining tools (drills, boring tools, lathes) by means of a computer. An NC machine alters a blank piece of material (metal, plastic, wood, ceramic, or composite) to meet precise specifications by following programmed instructions and without a manual operator.		
	Express the meaning of APT language. BTL 2		
6	APT or Automatically Programmed Tool is a high-level computer programming language most commonly used to generate instructions for numerically controlled machine tools APT is a		
	Discuss closed loop NC system with onen loop system BTL 1		
7	In CNC systems, open and closed loop systems describes the two primary types of control systems: Open Loop: Refers to a system using a stepper motor, where the communication between the controller system and motor is one way This is considered a drawback to theopen loop system.		
	Give the uses of preparatory function. How is it important in CNC programming? BTL 3		
8	Preparatory Functions. Preparatory functions are G codes. These codes are the most important functions in CNC programming because they direct the CNC system to process the coordinate data in a particular manner. Some examples are rapid traverse, circular interpolation, linear interpolation, and drilling.		

	Illustrate the limitations of CNC machine tools. BTL 2
	The computer numerical control includes machine tool and also non-machine tools. The CNC
	system are mainly used in the milling machine, lathe machine, drill press, grinding, sheet metal
	process, laser machine working. There is an automatic changing of the cutting tool operation that
9	is developed in the CNC machining process. In Non-machine tools it includes the welding
	machines, electronic assembly, coordinate measuring machine, and tape laying, filament winding
	a) Short production runs
	b) On conventional machining it requires expensive jugs and fixtures
	c) Parts with complicated outlines
	Examine - canned cycle. BTL 3
	A canned cycle is a way of conveniently performing repetitive CNC machine operations. Canned
10	cycles automate certain machining functions such as drilling, boring, threading, pocketing, etc
	Canned cycles are so called because they allow a concise way to program a machine to produce a
	feature of a part.
11	Define NC. BTL 1
11	Numerical control, popularly known as the NC is very commonly used in the machine tools. In other words, the numerical control machine is defined as the machined that is controlled by the
	set of instructions called as the program
	Explain the major elements of NC machines. BTL 1
12	The machine tool can be any machine like lathe, drilling machine, milling machine etc. The
	machine tool is the controlled part of the NC system. In case of the CNC machines, the
	microcomputer operates the machine as per the set of instructions or the program.
	Compare the different NC machines. BTL 4
13	The machine tool can be any machine like lathe, drilling machine, milling machine etc. The
	machine tool is the controlled part of the NC system. In case of the CNC machines, the
	microcomputer operates the machine as per the set of instructions or the program.
	Compare incremental and absolute system. BIL I Measurement solutions come in two flavors: Absolute and incremental With an absolute
14	measurement system the system will generate an absolute signal e.g. the position An
	incremental system, the system will generate an absolute signal, e.g. the position. The incremental system counts the number of steps between two positions. The clock isan absolute
	measurement system, it will tell you a point in time.
	Explain the role of computer for NC machine tool.BTL 4
	CNC is a computer assisted process to control general purpose machines from instructions
15	generated by a processor and stored in a memory system The controller uses a permanent
	resident program called an executive program to process the codes into the electrical pulses that
	control the machine.
	PART * B
1	Describe the spindle drives used in CNC machine tools. (13M) (Nov.2017) BTL 2
	Answer: Page 460Dr B DANNEEDDHASS
	Allower I age 70/DI.M.I AIMLEMDIADD

DRIVE SYSTEMS

Basically the NC and CNC components are divided into two groups. They are

- 1. Electromechanical devices
- 2. Digital Circuits

Every system includes a drive which converts the electrical command signals to mechanical motions. These are known as *electromechanical devices*. Drives for NC and robot systems are hydraulic actuators, DC motors or stepping motors. The selection depends upon the power requirements of the machine tool and the power sources available.

Principles of operation

The DC motor is actually a DC machine which can function either as a motor or as a generator. The principle of operation of a DC machine is based on the rotation of an armature winding within a magnetic field. The armature is the rotating member, or rotor, and the field winding is the stationary member, or stator. The armature winding is connected to a commutator which is a cylinder of insulated copper segments mounted on the *rotor* shaft. Stationary carbon brushes which are connected to the machine terminals are held against the commutator surface and enable the transfer of a DC current to the rotating winding as illustrated in fig

Diagram(4M) Principle(4M)Construction(3M)Advantages and Disadvantages(2M)

SLIDE MOVEMENT ELEMENT

Precise positioning and repeatability of machine tool slides are the major functional requirements of CNC machines. The inaccuracies that are caused are mainly due to the stick slip motion when plain (metal to metal contact) slideways are used.

To fulfill the requirements of elimination of stick-slip, there are different slideway systems such as rolling friction slideways and slideways with low friction. These have low wear negligible stick-slip, good vibration damping easy machinability, low price and low coefficient of friction properties.

2 Discuss about slide ways used in CNC machine tools. (13M) (Nov. 2017) BTL 3

Answer: Page 477Dr.R.PANNEERDHASS

Diagram(4M) Principle(4M) Construction(3M) Advantages and Disadvantages(2M) Combinations of Machine Tool Slideway Systems

	Table	2		
	Plain	Rolling friction		
	(Metal to metal)	Linear motion system		
	CI - C1	with recirculating bars		
	CI - Steel	recirculating rollers.		
	Steel-Steel			
	Plastic - Cl			
	Plastic - Steel			
The Re	The Requirement of a Good Slideway System			
A good sl	A good slideway system must possess:			
1. Low	co-efficient of friction a	t varying slide velocities.		
2. Min effic	imum difference between cient - positive slope for t	n static and dynamic friction c friction - velocity characteristic		
3. Low	rate of wear.			
4. High	n stiffness at the sliding jo	pints.		

3	Describe various type of CNC machine based on tool motion. (13M) (May 2017) BTL 3 Answer: Page 440 Dr.R.PANNEERDHASS		
	Point to point system:		
	Tool is accurately located at some specified position. The spindle is first brought to the starting point, then moved to the next location (hole 1 along the marked path). On that location drilling operation is performed and then tool moves to next location. Straight line system:		
	The cutting tool can be moved along a straight line only which is parallel to the principal axes		
	of motion It is not possible to combine the motion of axes. Hence the tool motion is only		
	along the X- axis, Y-axis and Z-axis. Due to this angular cuts cannot be produced.		
	Continuous system:		
	In this there is relative motion between the tool and workpiece during the whole operation.		
	Due to this relative motion, different curves and profiles can be cut. Actually, it is a		
	combination of point to point and straight cut system.		
	a) Diagram(4M)		
	b) Principle(4M)		
	c) Construction(3M)		
	Advantages and Disadvantages(2M)		
4	Explain the M code and G code with respect to manual part programming: (13M) (May		
	2017) BTL 3		
	Answer: Page 469, 47/Dr.R.PANNEERDHASS M-codes are miscellaneous machine commands that do not command axis motion. The		
	format for an M-code is the letter M followed by two to three digits: for example:		
	[M02 End of Program]		
	[M03 Start Spindle- Clockwise]		
	[M04 Start Spindle- Counter Clockwise]		
	[M05 Stop Spindle]		
	Tool path 45' Worspices Worspices Tool path Tool path Tool path X		
	Starting point x Fig. 7.4 (b) : Straight cut system Fig. 7.4 (a) : Point to point system Fig. 7.4 (c) : Continuous path system		
	[M07 Coolant On]		
	[M53 Retract Spindle] (raises tool spindle above current position to allow operator to do whatever		
	they would need to do)		
	M Codes are essential in ALL CNC programs to ensure a functioning line of code. All complete		

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

way as to eliminate or to reduce the error to a minimum. In this case, the JIT-JEPPIAAR/N system is a negative feed back one.

MAIO alida

Every control process, and NC system tool, may be designed as an open-or a closed-loop control. The term open-loop control means that, since the loop is open there is no feed back and the action of the controller has no reference to the result it produces.

-

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0


```
N1 G01 X20 Z-23;
    G01 X36 Z-23;
   G03 X50 Z-37 R8;
   G01 X50 Z-45;
   G01 X54.56 Z-85;
   G02 X80 Z-95 R10;
   G01 X80 Z-120;
   G01 X100 Z-130:
   G01 X100 Z-150;
N2 G01 X100 Z-150;
   G28 U0 W0;
M06 T06; //T06 THREAD CUTTING TOOL//
M03 S1500;
G01 X22 Z1:
G76 P010060//G76-THREAD CUTTING, P010060(01-NO O SPINGS PASSES,00-THREAD RUNO UT, 60-FL
FEED);
G76 X 00 Z -20 P919 Q150 F1.
G28 U0 W0;
MO6 T05:
M03 $1500;
G01 X40 Z-32;
G01X17 Z-32;
G28 U0 W0;
M06 T02;
M03 S1500;
G01 X18 Z-2;//CHAMFER//
G28 U0 W0:
M05;
M30:
```

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

JIT-JEPPIAAR/MECH/Mr.S.VIGNESH & Mr.M.KALAIMANI/IIIrdYr/SEM 06 /ME8691/COMPUTER AIDED DESIGN AND MANUFACTURING/UNIT 1-5/QB+Keys/Ver1.0

Т

	UNIT V CELLULAR MANUFACTURING ANDFLEXIBLE MANUFACTURINGSYSTEM(FMS)
	Group Technology (GT),Part Families–Parts Classification and coding–Simple Problems in Opitz Part Coding system–Production flow Analysis–Cellular Manufacturing–Composite part concept–Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and Control– Quantitative analysis in FMS
Q.No.	Questions
	PART - A
1	Define Group Technology (GT). (BTL1) Identical or similar components grouped processed together during design, process planning and manufacturing so that a wide variety of components can be manufactured, at the least expense of time, inventory, man hours and material handling.
2	 List out the stages in Group Technology.(BTL2) Production planners to setup the GT database. Grouping the parts or components into part-families with some similar characteristics. Re-design the shop-floor arrangement according to common shape, function or manufacturing process and tooling.
3	Define Part family. (BTL1) collection of parts which are similar in terms of geometricshape, size, and similar processing steps required in manufacturing, so flow of materials through the plant improves"
4	List the general methods used for grouping parts into families.(BTL2)
	 Visual Inspection Parts classification and coding system Production flow analysis.
5	What is Production Flow Analysis (PFA)?(BTL1) Identifying part families and associated machine groupings that uses the information contained on production route sheets rather on part drawings.
6	List the steps involved in PFA.(BTL2) Data Collection Sortation of process routings Preparation of PFA chart
7	Cluster analysis. List out the 3 basic code structures used in CT applications (BTI 1)
7	 Hierarchical codes Attribute codes Decision tree-codes.
8	What is the main difference between hierarchical codes and attribute code structures?(BTL1) Interpretation of each symbol in the sequence depends on the value of preceding symbols. Whereas in attribute/polycode structure, the interpretation of each symbol in the sequence does not depend on the value of preceding symbols.
9	 List any six coding systems that are widely recognized in industries.(BTL2) Optiz classification system MICLASS system

	DCLASS system
	• KK-3 System
	• CODE system
	• CUTPLAN system
10	What is cellular manufacturing?(BTL1)
	Application of GT in which dissimilar machines have been aggregated into cells, each of which is
	dedicated to the production of a part family.
11	List any four design considerations guiding the cell formation.(BTL2)
	• Parts/products to be fully completed in the cell.
	Higher operator utilization
	• Fewer operations than equipment
	• Balanced equipment utilization in the cell.
12	What is Process planning?(BTL1)
	• Preparing a set of instructions that describe how to fabricate apart or build an assembly
	which will satisfy engineering design specifications.
	• Systematic determination of the methods by which product is to be manufactured, economically
	and competitively.
13	List the activities associated with process planning. (BTL2)
	• Analyzing finished part equipment's
	• Determining operating sequence
	• Selecting machines
	• Selecting material parameters
	 Calculating process times
	 Documenting process times
14	What is meant by CAPP?(BTL1)
	CAPP refers to computer aided process planning. CAPP is used to overcome the drawbacks
	of manual process planning. With the use of computers in the process planning, one can reduce the
	routine clerical work of manufacturing engineers. Also it provides the opportunity to generate rational,
	consistent and optimal plans.
	What are the approaches the CAPP will recognize?(BTL1)
15	• Two approaches to CAPP are traditionally recognized: the variant approach and the
15	generative approach.
	Many CAPP systems combine both approaches.
16	Why CAPP systems are called as variant system?(BTL1)
	• The investment is less and the development time is shorter. Especially for medium sized
	companies which want to establish their own research groups.
	• The development costs and hardware costs are lower. Especially for some small companies
	where the products do not vary much and who still have process planners.
17	Give the main component of generative CAPP systems.(BTL1)
	CAPP system contains of two main components.
	Manufacturing data base (part description, machine tool library etc.)
	Decision logic (to represent the process planner)
18	List out the basic approaches of CAPP. (BTL1)
	Retrieval (or variant) CAPP system
	Generative CAPP system.
19	List out the results of Process Planning?(BTL1)
	• Routings which specify operations, operation sequences, work centers, standards, tooling and

	 fixtures. Process plans which typically provide more detailed, step-by-step work instructions including dimensions related to individual operations, machining parameters, set-up instructions, and quality assurance checkpoints. Fabrication and assembly drawings to support
20	List out the factors should be considered in selection of tooling.(BTL1)
	• The type and amount of the material to be cut.
	The surface finish required
	• The rigidity and shape of the part.
	• The capacity and condition of the available equipment
21	List out the prerequisites for process planning.(BTL1)
	• Part list
	• Annual demand/ batch size
	Accuracy and surface finish requirement
	• Equipment details
	• Data on cutting fluids, tools, jigs and fixtures, gauges.
	• Standard available stock sizes.
	• Machining data, data on handling and setup.
22	What is the weakness of PFA?(BTL1)
	Data used are derived from production route-sheets. But the process-sequences have been prepared by
	different process lanners and the difference is reflected on to these route-sheets.
23	List some commercially available CAPP. (BTL2)
	• Some of the commercial variant CAPP systems include CUTPLAN. COMCAPP V, DCLASS
	and INTELLICAP.
	 Some of the commercial generative CAPP systems include AUTAP, CMPP, GENPLAN and
	LO CAM.
24	What is CMPP?(BTL1)
	CMPP stands for computer-managed process planning. It is a commercial generative process planning
	System capable of automatically making process decisions.
	TAKI – D
1	Explain the various DCCLASS coding systems. (BTL2)
	Answer: Page.1.68 - Dr.V.Jayakumar
	• The first segment (three digits) is used to denote the basic shape. (2M)
	• The second segment (4 th digit) is used to specify the complexity of the parts. (2M)
	• The third segment (5 th digit) is used to specify the overall size of the coded part.(2M)
	• The fourth segment (6 th digit) represents precision.(2M)
	• The final segment (two digits) is used to denote the material type.(2M)
	Explanation of coding system (3M)

3	Give the form code for the part family using any one coding system. (BTL2) Answer:Page.1.68 - Dr.V.Jayakumar
	Coding is a systematic process of establishing an alphanumeric value for parts based on selected part features. Classification is the grouping of parts based on code values.(3M) Design and manufacturing attributes (2M)
	• Systems based on part design attributes
	• Systems based on part manufacturing attributes
	• Systems based on both design and manufacturing attributes.
	Coding system (2M)
	Hierarchical codes
	Attribute codes
	Decision tree codes
	Explanation of any one system : OPTIZ / MICLASS / DCLASS (6M)
4	Discuss how group technology is used in designing manufacturing cells. (BTL2)
	Answer:Page.1.68 - Dr.V.Jayakumar
	• Once parts have been grouped into part families by parts classification and coding or
	production flow analysis, the next problem would be determining how to arrange the
	Example a substant and the second of the sec
	• <u>Facility layout</u> , also known as plant layout, felers to the physical alrangements of production facilities. It is the configuration of departments work centers and
	equipment in the conversion process (2M)
	• The objective of facility layout is to design a physical arrangements that most
	economically meets the required output quantity and quality.(2M)
	There are three basic ways to arrange machines in a shop. They are (2M)
	• Line (or product) layout,
	• Functional (or process) layout
	• Group (or combination) layout.
	Explanation of any one layout (5M)
	PART – C
1.	Discuss ERP with suitable modules. (BTL3)
	Answer: Page 2.78 -Dr.V.Jayakumar
	ERP : Enterprise Resource Planning (2 M)
	List of different Modules: Finance module
	Manufacturing module
	• Distribution module
	• Service module
	• Transportation module
	• Process module
	• Project module
	• 100ls module(5M) Exploration of any two modules
	• Accounting oriented information system
	 Accounting – offented information system Effective planning and control (SM)
	• Effective planning and control (8M)

2	Briefly discuss various benefits of implementing a GT in a firm. Also bring out the adv
	and limitations of using group technology. (BTL3)Answer:Page.1.68 - Dr.V.Jayakumar
	Benefits of group technology
	Product design
	• Tooling and setups
	Materials handling
	Production and inventory control
	Process planning
	• Management and employees(5 M)
	Advantages of GT
	GT facilitates: efficient retrieval of similar parts
	• GT encourages standardization of designs, tooling, fixing and setups
	• GT facilities: Development of a computer-aided process planning (CAPP)
	• Times and costs for material handling and waiting between stages are reduced.
	• Production planning and control is simplified
	• Part and product quality are improved
	 Better employee involvement and increases workers satisfaction(10 M)
3	Discuss arranging machines in a GT Cell in detail with holier method. (BTL3)
	After part-machine groupings have been identified (by rank order clustering algorithm) a
	problem is to arrange the machines into the most logical sequence.
	Design the cellular manufacturing system are:
	• The determination of the most logical machine sequence in each cell
	• The development of a feasible layout plan for each cell
	Literature to determine the most logical machine in a GT Cell, the Holier method 2 (7M)
	Procedure of Holier method
	Develop the From TO chart from part routing data
	 Calculate the "'From/To ratio" for each machine
	 Arrange Machines in a GT Cell in order of decreasing "From/To ratio" (4M)
	Performance measures for Machine sequences in a GT Cell
	• Percentage of In sequences in a GT Cell
	• Percentages of Bypassing moves
	• Percentages of backtracking moves. (4M)
4	Explain composite part concept in cellular manufacturing. (May/June 2013).(BTL2)
	Answer:Page.1.68 Dr.V.Jayakumar
	A composite part is a hypothetical part which includes all of the design and manufacturing
	attributes of a family. The composite is a single hypothetical part that can be completely
	processed in manufacturing cell .(3M)
	Let us consider that there are four number of parts as shown in figure a, all of whom have
	similar machining operations to be done, Then it is possible to construct a new composite part
	as shown in figure b that has all the features identified in the four parts from figure b(4 M)

ME8692

FINITE ELEMENT ANALYSIS

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVES:

- To introduce the concepts of Mathematical Modeling of Engineering Problems.
- To appreciate the use of FEM to a range of Engineering Problems.

UNIT I INTRODUCTION

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

UNIT II ONE-DIMENSIONAL PROBLEMS

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order elements – Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation –Transverse deflections and Natural frequencies of beams.

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation – Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems – Torsion of Non circular shafts – Quadrilateral elements – Higher Order Elements.

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements.

UNIT V

ISOPARAMETRIC FORMULATION

Natural co-ordinate systems – Iso parametric elements – Shape functions for iso parametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students can able to understand different mathematical Techniques used in FEM analysis and use of them in Structural and thermal problem

TEXT BOOK:

1. Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005

2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi,2007.

REFERENCES:

1. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004

2. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. I.d., 2002

3. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and

Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002. 4. Chandrupatla&Belagundu, "Introduction to Finite Elements in Engineering", 3rd

Edition, Prentice Hall College Div, 1990

5. Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons,2005 (Indian Reprint 2013)

Subject Code: ME8692Year/Semester: III /06Subject Name: Finite Element AnalysisSubject Handler: Mr.S.Arun & Mr.D. ArunkumarUNIT I INTRODUCTION

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

	PART * A
Q.No.	Questions
1.	What should be considered during piecewise trial functions? (APRIL 2011) BTL1 Continuity of the field variable and its derivatives at the junctions are considered.
2	 Mention the basic steps of Rayleigh-Ritz method. (APRIL 2011)BTL1 Basic steps of Rayleigh-Ritz method are, ' Assume a displacement field Evaluation of the total potential Setup and solve the system of equations.
3	What is meant by node or joint?(APRIL 2019)BTL1 Each kind of finite element has a specific structural shape and is interconnected with the adjacent element by nodal point or nodes. At the nodes, degrees of freedom are located. The forces will act only at nodes at any others place in the element.
4	What is the basic of finite element method? BTL1 Discretization is the basis of finite element method. The art of subdividing a structure in to convenient number of smaller components is known as discretization.
5	 What are the types of boundary conditions?(APRIL 2019)BTL1 Primary boundary conditions Secondary boundary conditions
6	 State the methods of engineering analysis. (APRIL 2010) BTL1 Experimental methods Analytical methods Numerical methods or approximate methods
7	 State the three phases of finite element method.(APRIL 2019)BTL1 Preprocessing Analysis Post Processing
8	What is nonstructural problem? (APRIL 2014) BTL1 Temperature or fluid pressure at each nodal point is obtained. By using these values properties such as heat flow fluid flow for each element can be calculated.
9	What is structural problem? (APRIL 2013) BTL1 Displacement at each nodal point is obtained. By these displacements solution stress and strain in each element can be calculated.
10	 What are the methods are generally associated with the finite element analysis? BTL1 Force method

	• Displacement or stiffness method.
11	Explain stiffness method. BTL1
	Displacement or stiffness method, displacement of the nodes is considered as the unknown of the
	problem. Among them two approaches, displacement method is desirable.
	What is meant by post processing? BTL1
12	Analysis and evaluation of the solution result is referred to as post processing. Postprocessor
	computer program help the user to interpret the result by displaying them in graphical form.
	Name the variation methods. B1L1
13	• Ritz method
	• Ray-Leigh Ritz method
	What is meant by degrees of freedom? BILI When the force or reaction act at nodel point node is subjected to deformation. The deformation
14	includes displacement rotation and or strains. These are callectively known as degrees of
	freedom
	What is meant by discretization and assemblage? BTV1
1.5	The art of subdividing a structure in to convenient number of smaller components is known as
15	discretization. These smaller components are then put together. The process of uniting the various
	elements together is called assemblage.
	What is truss element? BTL1
17	The truss elements are the part of a truss structure linked together by point joint which transmits
	only axial force to the element.
	What is Aspect ratio? BTL1
10	• It is defined as the ratio of the largest dimension of the element to the smallest dimension.
18	• In many cases, as the aspect ratio increases the in accuracy of the solution increases.
	• The conclusion of many researches is that the aspect ratio should be close to unity as
	possible What is Dayleigh Diversity of 20TL 1
	What is Kayleigh-Kitz method which is useful for solving complex structural problem
19	an approach method which is useful for solving complex structural problem,
	available.
	What are the h and p versions of finite element method? BTL1
	• It is used to improve the accuracy of the finite element method.
20	In h version, the order of polynomial approximation for all elements is kept constant and
20	the numbers of elements are increased.
	• In p version, the numbers of elements are maintained constant and the order of polynomial
	approximation of element isincreased.
	PART * B
	Find the nodal displacement and elemental stresses for the bar shown in fig.(13M) (APRIL
1	2015,APRIL 2019) BTL3
	Answer: page – 1.07 Dr. S.Senthil

Substitute a_0 and a_1 value in equation (1), $(1) \Rightarrow y(x) = -2a_2xL + a_2x^2$ $y(x) = a_2 [x^2 - 2x L]$ $\Rightarrow \frac{dy}{dx} = a_2 (2x - 2L)$ $\frac{d^2y}{dx^2} = 2a_2$... (2) Residual, R = A E $\frac{d^2y}{dx^2} + q_0 = 0$ We know that, the subnur trabay and $\Rightarrow A E (2 a_2) + q_0 = 0$ $A E 2 a_2 = -q_0$ $a_2 = \frac{-q_0}{2 \,\mathrm{AE}}$ Substitute a_2 value in equation (2), $\Rightarrow y(x) = \frac{-q_0}{2AE} [x^2 - 2xL]$ (6M) We know that, linearly varying pressure acting on the side J, K,N =0 Determine the expression for the deflection and bending moment in a simply supported beam subjected to uniformly distributed load over the entire span. Find the deflection and moment at midspan and compare with exact solution using Rayleigh Ritz method Use $y = a_1 \sin(\pi x/l)$ + $a_2 \sin(3\pi x/l)$. (13M) (NOVEMBER 2008)BTL2 Answer: page – 1.18 Dr. S.Senthil 4 To find : 1. Deflection and Bending moment at midspan. 2. Compare with exact solutions. **SOLUTION**

Solution: We know that, for simply supported beam, the Fourier series, $y = \sum_{n=1}^{\infty} a \sin \frac{n\pi x}{l}$ is the approximating function. To make this series more simple let us consider only two terms. Deflection, $y = a_1 \sin \frac{\pi x}{l} + a_2 \sin \frac{3\pi x}{l}$ where, a_1 , a_2 are Ritz parameters. We know that, Total potential energy of the beam, $\pi = U - H$ where, $U \rightarrow Strain energy$. $H \rightarrow$ Work done by external force. The strain energy, U, of the beam due to bending is given by, $U = \frac{EI}{2} \int \left(\frac{d^2y}{dx^2}\right)^2 dx$ (7M) $y_{max} = \frac{4\omega l^4}{FL\pi^5} \sin \frac{\pi \times \frac{l}{2}}{l} + \frac{4\omega l^4}{243 FL\pi^5} \sin \frac{3\pi \frac{l}{2}}{l}$ $y_{max} = \frac{4\omega l^4}{E I \pi^5} \sin \frac{\pi}{2} + \frac{4\omega l^4}{243 E I \pi^5} \sin \frac{3\pi}{2}$ $y_{max} = \frac{4\omega l^4}{E l \pi^5} - \frac{4\omega l^4}{243 E l \pi^5}$ $= \frac{4\omega/4}{EL\pi^5} \left[1 - \frac{1}{243} \right] \qquad \left[\because \sin\frac{\pi}{2} = 1; \ \sin\frac{3\pi}{2} = -1 \right]$ $= \frac{4\omega l^4}{EL\pi^5} (0.9958) = \frac{3.98 \omega l^4}{EL\pi^5}$ (6M) Explain brieffy General steps of the finite element analysis. (13M) (NOVEMBER 2014)BTL Answer: page – 1.27 Dr. S.Senthil 5 **Step 1: Discretization of structure** A bar and beam elements are considered as one dimensional element has two nodes, one at each end as shown. 2 1

(iv) Galerkin's method: In this method, the trial function itself is considered as the weighting function, w. $\int_{0}^{10} w_{i} R \, dx = 0 \qquad \dots (7)$ => Here, the trial function is, $y = w_i = a_1 x (10 - x)$ Substitute w, and R values in equation (7), $\Rightarrow \int_{0}^{10} a_1 x (10 - x) \times (-2 a_1 + 50) dx = 0$ $\Rightarrow a_1 \int_{0}^{10} x (10 - x) \times (-2 a_1 + 50) dx = 0$ $\Rightarrow a_1 \int_{0}^{10} (10 x - x^2) (-2 a_1 + 50) dx = 0$ $\Rightarrow a_1 \int_{0}^{10} \left[-20 a_1 x + 500 x + 2 a_1 x^2 - 50 x^2 \right] dx = 0$ $\Rightarrow a_1 \left[-20 a_1 \frac{x^2}{2} + 500 \frac{x^2}{2} + 2 a_1 \frac{x^3}{3} - 50 \frac{x^3}{3} \right]_0^{10} = 0$ $\Rightarrow \quad \frac{-20 a_1}{2} [10^2 - 0] + \frac{500}{2} [10^2 - 0] + \frac{2 a_1}{3} [10^3 - 0] - \frac{50}{3} [10^3 - 0] = 0$ $\Rightarrow -10 a_1 [100] + 250 [100] + \frac{2 a_1}{3} [1000] - \frac{50}{3} [1000] = 0$ \Rightarrow -1000 a_1 + 25,000 + 666.66 a_1 - 16,666.66 = 0 \Rightarrow -333.33 $a_1 = -8333.33$ \Rightarrow $a_1 = 25$... (8) The trial function is, y = 25 x (10 - x)From equations (3), (4), (6) and (8), we know that the value of parameter a_1 is same for all the four methods. (9M) Determine the expression for the deflection and bending moment in a simply supported beam subjected to uniformly distributed load over the entire span. Find the deflection and moment at midspan and compare with exact solution using Rayleigh Ritz method Use y =2 a1sin $(\pi x/l)$ + a2 sin($3\pi x/l$). (15M) (November 2008, APRIL 2019)BTL2 Answer: page – 1.12 Dr. S.Senthil

To find: 1. Deflection and Bending moment at midspan. 2. Compare with exact solutions. Solution: We know that, for simply supported beam, the Fourier series, $y = \sum_{n=1}^{\infty} a \sin \frac{n \pi x}{l}$ is the approximating function. To make this series more simple let us consider only two terms. Deflection, $y = a_1 \sin \frac{\pi x}{l} + a_2 \sin \frac{3\pi x}{l}$... (1) where, a_1 , a_2 are Ritz parameters. We know that, Total potential energy of the beam, $\pi = U - H$... (2) where, $U \rightarrow Strain energy$. H → Work done by external force. The strain energy, U, of the beam due to bending is given by, $U = \frac{EI}{2} \int \left(\frac{d^2y}{dx^2}\right)^2 dx$... (3) (5M) $\int_{0}^{l} a_{1}^{2} \sin^{2} \frac{\pi x}{l} dx = \frac{a_{1}^{2} l}{2}$ $\int_{0}^{l} 81 a_{2}^{2} \sin^{2} \frac{3\pi x}{l} dx = \frac{81 a_{2}^{2} l}{2}$ $\int_{-\infty}^{1} 18 a_1 a_2 \sin \frac{\pi x}{l} \sin \frac{3\pi x}{l} = 0$... (8) Substitute (6), (7) and (8) in equation (5), $U = \frac{EI}{2} \frac{\pi^4}{l^4} \left[\frac{\alpha_1^2 l}{2} + \frac{81 \alpha_2^2 l}{2} + 0 \right]$ (5) ⇒ $U = \frac{EI\pi^4 l}{4 l^4} [a_1^2 + 81 a_2^2]$ Strain energy, U = $\frac{EI \pi^4}{4 I^3} [a_1^2 + 81 a_2^2]$... (9) We know that, Work done by external force, H = $\int_{0}^{l} \omega y \, dx = \int_{0}^{l} \omega \left(a_1 \sin \frac{\pi x}{l} + a_2 \sin \frac{3\pi x}{l} \right) dx$ (5M)

UNIT II ONE-DIMENSIONAL PROBLEMS

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation –Transverse deflections and Natural frequencies of beams.

PART	PART * A	
Q.No.	Questions	
	When do we resort to 1 D quadratic spar elements? (APRIL 2011) BTL1	
1	(i) Better accuracy.	
1.	(ii) Representation of curved boundaries.	
	(iii) Faster convergence.	
	What is the difference between static and dynamic/analysis?(APRIL 2019) BTL1	
	a. Static analysis:	
	The solution of the problem does not vary with time is known as static analysis	
2	Example: stress analysis on a beam	
	b. Dynamic analysis: The solution of the problem veries with time is known as dynamic analysis	
	Example: vibration analysis problem	
	Differentiate between global and local aves BTL	
	a Local axes are established in an element. Since it is in the element level, they change with the	
3	change in orientation of the element. The direction differs from element to element.	
_	b. Global axes are defined for the entire system. They are same indirection for all the elements	
	even though the elements are differently oriented.	
	Name any four FEA software. BTL1	
4	a. ANSYS	
·	b. NASTRAN	
	c. COSMOS	
5	List the two advantages of post processing. BILI	
3	a. Required result can be obtained in graphical form.	
	During discretization mention the places where it is necessary to place anode? BTL1	
	a. Concentrated load acting point	
6	b. Cross-section changing point	
0	c. Different material interjections	
	d. Sudden change in point load	
	Distinguish between potential energy function and potential energy functional. BTL1	
7	If a system has finite number of degree of freedom (q1, q2,and q3), then the potential energy	
	expressed as,	
	$\pi = f(q1, q2, and q3)$	
	It is known as function. If a system has infinite degrees of freedom, then the potential	

	What are the types of loading acting on the structure? BTL1
8	a. Body force (f)
	b. Traction force (T)
	c. Point load (P)
	Define traction force. BTL1
0	Traction force is defined as distributed force acting on the surface of the body. Unit: Force per
7	unit area.
	Example: Frictional resistance, viscous drag, surface shear
	Define the body force. BTL1
10	A body force is distributed force acting on every elemental volume of the body Unit: Force per
10	unit volume.
	Example: Self weight due to gravity
11	What is point load? BTL1
	Point load is force acting at a particular point which causes displacement
	What are the basic steps involved in the finite element modeling. (NOVEMBER 2009)BTL1
12	a. Discretization of structure.
	b. Numbering of nodes.
	What is discretization? BTL1
13	The art of subdividing a structure in to a convenient number of smaller components is known as
	discretization.
	What are the classifications of coordinates?(APRIL 2011) BTL1
14	a. Global coordinates
11	b. Local coordinates
	c. Natural coordinates
	What is Global coordinates? BTL1
15	The points in the entire structure are defined using coordinates system is known as global
	coordinate system.
17	How do you calculate the size of the global stiffness matrix?(APRIL 2011) BTL1
	Global stiffness matrix size = Number of nodes X Degrees of freedom per node
	What is natural coordinates? B1L1
18	A natural coordinate system is used to define any point inside theelement by a set of
	dimensionless number whose magnitude neverexceeds unity. This system is very useful in
	assembling of suffices matrices.
	Define shape function. BILI
	Approximate relation $\phi(x,y) = N1(x,y) \phi_1 + N2(x,y) \phi_2 + N3(x,y) \phi_3$
19	where ϕ_1 , ϕ_2 , and ϕ_3 are the values of the field variable at the nodes N1, N2, and N3 are the
	interpolation functions. $N_1 = N_2$ and N_2 are also called share functions because they are used to supress the assumption of
	N1, N2, and N5 are also called shape functions because they are used to express the geometry of shape of the element
	Shape of the element.
20	what are the characteristic of shape function ((APRIL 2019)B1L1
20	a. It has unit value at one notal point and zero value at other nodalpoints.
	D. The sum of shape function is equal to one.
1	Find the nodal displacement developed in the planer truss shown in figure when a


```
Answer: page – 2.17 Dr. S.Senthil
```


^{5/}QB+Keys/Ver1.0

5

- that produces significant bending effects as opposed to twisting or axial effects. An elemental length of a long beam subjected to arbitrary loading is considered for analysis.
- For this elemental beam length L, we assign two points of interest, i.e., the ends of the beam, which become the nodes of the beam element.
 - The bending deformation is measured as a transverse (vertical) displacement and a rotation (slope). Hence, for each node, we have a vertical displacement and a rotation (slope) two degrees of freedom at each node.
- For a single 2- noded beam element, we have a total of 4 degrees of freedom. The associated "forces" are shear force and bending moment at each node.(6M)

REGULATION :2017

JIT-JEPPIAAR/MECH/Mr.S.Arun & Mr.D.Arunkumar /III Yr/SEM 06/M8692/FINITE ELEMENT ANALYSIS/UNIT 1-5/QB+Keys/Ver1.0

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems – Torsion of Non circular shafts –Quadrilateral elements – Higher Order Elements.

PART	'*A
Q.No.	Questions
1.	 What are higher order elements and why are they preferred? (APRIL 2011) BTL1 For any element, if the interpolation polynomial is the order of two or more, that element is known as higher order elements. It is used to represent the curved boundaries. The number of elements is reduced when compared with straight edge elements to model geometry
2	 State the properties of stiffness matrix. BTL1 It is a symmetric matrix. The sum of elements in any column must be equal to zero It is an unstable element. So, the determinant is equal to zero.
3	Write down the expression of shape function N and displacement u for one dimensional bar element.(APRIL 2011) BTL1 U= N1u1+N2u2 N1= 1-X / 1 N2 = X / 1
4	Define total potential energy. Total potential energy $\mathbf{r} = $ Strain energy (U) + potential energy of the external forces(w)
5	State the principle of minimum potential energy. (November 2015)BTL1 Among all the displacement equations that satisfied internal compatibility and the boundary condition those that also satisfy the equation of equilibrium make the potential energy a minimum is a stable system.
6	What is truss? BTL1 A truss is defined as a structure made up of several bars, riveted or welded together.
7	 States the assumption are made while finding the forces in a truss.(APRIL 2012) BTL1 All the members are pin jointed. The truss is loaded only at the joint The self weight of the members is neglected unless stated.
8	State the principles of virtual energy? BTL1 A body is in equilibrium if the internal virtual work equals the external virtual work for the every kinematically admissible displacement field
9	What is essential boundary condition? BTL1 Primary boundary condition or EBC Boundary condition which in terms of field variable is known as Primary boundary condition.
10 IIT-	Naturalboundary conditions? BTL1 Secondary boundary natural boundary conditions which are in the differential form of field variable is known as secondary boundary condition

	How do you define two dimensional elements?(APRIL 2013) BTL1					
11	• Two dimensional elements are defined by three or more nodes in a two dimensional					
	plane.					
	• The basic element useful for two dimensional analysis is the triangular element.					
12	What is CST element? BTL1					
	• Three noded triangular elements are known as CST.					
	• It has six unknown displacement degrees of freedom (u1, v1, u2, v2, u3, v3).					
	The element is called CST because it has a constant strain throughout it.					
	What is LST element?(November 2012)BTL1					
13	Six nodded triangular elements are known as LST.					
15	It has twelve unknown displacement degrees of freedom.					
	• The displacement function for the elements are quadratic instead of linear as in the CST.					
	What is QST element?(November 2012)BTL1					
14	Ten nodded triangular elements are known as Quadratic strain triangle. It is also called as cubic					
	displacement triangle.					
1.5	What meant by plane stress analysis? BTL1					
15	Plane stress is defined to be a state of stress in which the normal stress and shear stress directed					
	Define plane strain analysis (Nevember 2015)					
16	Define plane strain analysis. (November 2015) B L1 Dana strain is defined to be state of strain normal to the xy plane and the shear strains are					
10	assumed to be zero					
	State the assumption in the theory of pure torsion. (November 2012)BTL1					
	• The material of the shaft is homogeneous, perfectly elastic and obeys Hooks law					
	 Twist is uniform along the length of the shaft. 					
17	 The stress does not exceed the limit of proportionality 					
	Strain and deformation are small					
	Write down the stress-strain relationship matrix for plane strain condition. (November					
	2012) BTL 1					
	For plane strain problems, stress-strain relationship matrix is					
	r(1-v) v 01					
	E = E = v (1-v) = 0					
18	$[D] = \frac{1}{(1+v)(1-2v)} \begin{bmatrix} 0 & 0 & 1-2v \end{bmatrix}$					
	Where $\mathbf{E} = \mathbf{Y}_{oungs}$ modulus					
	and the second sec					
	V = Poisson's ratio					
10						
19	Write a strain-displacement matrix for CST element. (November 2012) BTL2					

Strain-displacement matrix for CST element is, $[B] = \frac{1}{2A} \begin{bmatrix} q_1 & 0 & q_2 & 0 & q_3 & 0\\ 0 & r_1 & 0 & r_2 & 0 & r_3\\ r_1 & q_1 & r_2 & q_2 & r_3 & q_3 \end{bmatrix}$ Where, A = Area of the element Write down the expression for the shape function for a constant straintriangular element.BTL2 For CST element, Shape function,
$$\begin{split} N_1 &= \frac{p_1 + q_1 x + r_1 y}{2A} \\ N_2 &= \frac{p_2 + q_2 x + r_2 y}{2A} \\ N_2 &= \frac{p_2 + q_2 x + r_2 y}{2A} \end{split}$$
20 Where, $p_1 = x_2 y_3 - x_3 y_2$ $p_2 = x_3 y_1 - x_1 y_3$ $p_3 = x_1 y_2 - x_2 y_1$ $q_3 = y_1 - y_2;$ $r_3 = x_2 - x_1;$ PART * B Derivation of stiffness matrix and finite element equation for a truss element.(13M) (NOVEMBER 2009) BTL2 Answer: page – 3.07 Dr. S.Senthil There are two joints for an arbitrarily inclined single truss element (at an angle θ , positivecounter-clockwise from +vex-axis). For each joint *i*, there are two degrees of freedom, i.e., a joint can have horizontal displacement (u1) and vertical displacement (v1). Hence, for asingle truss element, there are 4 degrees of freedom. The nodal displacement degrees offreedom and the nodal force degrees of freedom are shown in the following figure. 1 y, (3M) Note that the deformations occurring in the truss members are so small that they are only axial. The axial displacement of the truss can be resolved along horizontal x-axis and vertical y-axis. But in our derivation, let us resolve the horizontal and vertical displacements (in xy-axes) of a joint along and perpendicular to the truss member (in $x y \square$ -axes). Refer to the Figure in the next page. Note sin θ component acting towards negative $y \Box$ -direction and all other components

JIT-JEPPIAAR/MECH/Mr.S.Arun & Mr.D.Arunkumar /III Yr/SEM 06/M8692/FINITE ELEMENT ANALYSIS/UNIT 1-5/QB+Keys/Ver1.0

y (4,7) (3,5,5) (7,4) (2,3) (7,4)	
Given data:	
$ \begin{array}{rcrr} x_1 &=& 2 \\ x_2 &=& 7 \\ x_3 &=& 4 \\ x &=& 3.5 \end{array} $	$y_1 = 3$ $y_2 = 4$ $y_3 = 7$ y = 5
To find: Shape functions N_1 , N_2 and N_3 at the interval	erior point P
Solution: We know that,	
$x = (x_1 - x_3)N_1 + (x_2 - x_3)N_2 + x_3$	(1)
$y = (y_1 - y_3)N_1 + (y_2 - y_3)N_2 + y_3$	(2)
Substituting the co-ordinates values,	
$3.5 = (2 - 4)N_1 + (7 - 4)N_2 + 4$	(3
$5 = (3 - 7)N_1 + (4 - 7)N_2 + 7$	(4)
Equation (3) becomes,	
$3.5 = -2N_1 + 3N_2 + 4$	
$-0.5 = -2N_1 + 3N_2$	
$_{*}$ $2N_1 - 3N_2 = 0.5$	(5)
Equation (4) becomes,	
$5 = -4N_1 - 3N_2 + 7$	(5M)

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements.

PART * A

Q.No.	Questions				
	What is axisymmetric element?(MAY 2008)BTL1				
1.	Many three dimensional problem in engineering exhibit symmetry about an axis of rotation such				
	type of problem are solved by special two dimensional element called the axisymmetric element				
	a. The problem domain must be symmetric about the axis of revolution				
2	b All boundary condition must be symmetric about the axis of revolution				
	c. All loading condition must be symmetric about the axis of revolution				
	What is the purpose of Isoparametric element? BTL1				
2	It is difficult to represent the curved boundaries by straight edges finite elements. A large				
3	number of finite elements may be used to obtain reasonable resemblance between original body				
	and the assemblage.				
	Define super parametric element.(MAY 2008)BTL1				
4	If the number of nodes used for defining the geometry is more than of nodes used for defining				
	the displacement is known as super parametric element.				
_	Define sub parametric element. BTL1				
Э	If the number of nodes used for defining the geometry is less than number of nodes used for defining the displacement is known as sub parametric element.				
	What is meant by Isoparametric element? PTL 1				
6	If the number of nodes used for defining the geometry is same as number of nodes used for				
0	defining the displacement is known as Isoparametric element.				
	Is beam element an Isoparametric element?(MAY 2009)BTL1				
7	Beam element is not an Isoparametric element since the geometry and displacement are defined				
	by different order interpretation functions.				
8	What is simple natural coordinate? BTL1				
0	A simple natural coordinate is one whose value between -1 and 1.				
9	Give example for essential boundary conditions.				
-	The geometry boundary condition are displacement, slope.				
	Write down the shape functions for 4 noded rectangular elements using natural				
10	coordinate system. (MAY 2010)B1L1 N1 = 1 (1 + x)(1 + x)				
	$N_1 = 1$ (1-0)(1-1) $N_2 = 1$ (1+0)(1-1)4 4 $N_3 = 1$ (1+0)(1+1) $N_4 = 1$ (1-0)(1+1)4 4				
	$\frac{1}{1} \frac{1}{1} \frac{1}$				
11	The natural boundary conditions are bending moment shear force				
	What is meant by degrees of freedom? BTL1				
12	When the force or reaction act at nodal point node is subjected to deformation. The deformation				
	includes displacement rotation, and or strains. These are collectively known as degrees of				
	freedom.				
IIT-	JIT-JEPPIAAR/MECH/Mr.S.Arun & Mr.D.Arunkumar /III Yr/SEM 06/M8692/FINITE ELEMENT ANALYSIS/UNIT 1-				

JIT-JEPPIAAR/MECH/Mr.S.Arun & Mr.D.Arunkumar /III Yr/SEM 06/M8692/FINITE ELEMENT ANALYSIS/U 5/QB+Keys/Ver1.0

	What is QST element? BTL1
13	Ten noded triangular elements are known as Quadratic strain triangle. It is also called as cubic
	displacement triangle.
14	<pre>Write down the stiffness matrix equation for two dimensional CST elements.(MAY 2012)BTL1 Stiffness matrix [K]=[B]T[D][B] [B]T -Strain displacement [D]-Stress strain matrix [B]-Strain displacement matrix</pre>
15	 State the assumptions made in the case of truss element. (MAY 2008) The following assumptions are made in the case of truss element, All the members are pin jointed. The truss is loaded only at the joints The self weight of the members are neglected unless stated
	PART * B
1	Answer: page – 4.17 Dr. S.Senthil $ \begin{array}{c} $
	Displacement, $\{u\} = \begin{cases} w_1 \\ u_2 \\ w_2 \\ u_3 \\ w_1 \end{cases}$
	(6M)

Displacement function for axisymmetric triangular element is given by,
Displacement function,
$$u(r, z) = \begin{bmatrix} u(r, z) \\ w(r, z) \end{bmatrix} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_3 \\ u_3 \\ u_3 \end{bmatrix}$$

or
We can write, $u = N_1 u_1 + N_2 u_2 + N_3 u_3$... (3.164)
 $w = N_1 u_1 + N_2 u_2 + N_3 u_3$... (3.165)
The strain components are,
Radial strain, $e_r = \frac{\partial u}{\partial r} = \frac{\partial N_1}{\partial r} u_1 + \frac{\partial N_2}{\partial r} u_2 + \frac{\partial N_3}{\partial r} u_3$
 $\Rightarrow \boxed{e_r = \frac{\partial N_1}{\partial r} u_1 + \frac{\partial N_2}{\partial r} u_2 + \frac{\partial N_3}{\partial r} u_3}$... (3.166)
Circumferential strain, $e_0 = \frac{u}{r}$
 $\boxed{e_0 = \frac{N_1}{r} u_1 + \frac{N_2}{\partial z} u_2 + \frac{\partial N_3}{\partial z}}$... (3.167)
Longitudinal strain, $e_r = \frac{\partial w}{\partial z}$
 $\Rightarrow \boxed{e_r = \frac{\partial N_1}{\partial z} u_1 + \frac{\partial N_2}{\partial z} u_2 + \frac{\partial N_3}{\partial z}}$... (3.168)
Shear strain, $\gamma_{rz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r}$
 $\boxed{\frac{\gamma_{rz}}{2} = \frac{\partial N_1}{\partial z} u_1 + \frac{\partial N_2}{\partial z} u_2 + \frac{\partial N_3}{\partial z} u_3 + \frac{\partial N_1}{\partial r} u_7 + \frac{\partial N_2}{\partial r} u_2 + \frac{\partial N_3}{\partial r}} \\ = \frac{\binom{e_r}{\gamma_{rz}}}{\frac{\partial N_1}{\partial z} u_1 + \frac{\partial N_2}{\partial z} u_2 + \frac{\partial N_3}{\partial z} u_3 + \frac{\partial N_1}{\partial r} u_1 + \frac{\partial N_2}{\partial r} u_2 + \frac{\partial N_3}{\partial r} u_3}$... (3.169)
Arranging equations (3.166), (3.167), (3.168) and (3.169) in matrix form,
 $\Rightarrow \begin{cases} e_r \\ e_0 \\ e_z \\ v_{rz} \\ v_{rz} \end{cases} = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_2}{\partial x} & 0 & \frac{\partial N_3}{\partial z} & 0 \\ 0 & \frac{\partial N_1}{\partial z} & \frac{\partial N_2}{\partial z} & 0 & \frac{\partial N_3}{\partial z} & \frac{\partial N_3}{\partial z} \\ 0 & \frac{\partial N_3}{\partial z} & \frac{\partial N_3}{\partial z} & \frac{\partial N_3}{\partial z} & \frac{\partial N_3}{\partial z} \\ u_3 \end{bmatrix} \begin{cases} u_1 \\ u_1 \\ u_2 \\ u_3 \\ u_3 \end{bmatrix}$... (3.170)
 $u_3 \\ u_3 \end{bmatrix}$

Substitute
$$\frac{\partial N_1}{\partial r}$$
, $\frac{\partial N_2}{\partial r}$, $\frac{\partial N_3}{\partial r}$, $\frac{N_1}{r}$, $\frac{N_2}{r}$, $\frac{N_3}{r}$, $\frac{\partial N_1}{\partial z}$, $\frac{\partial N_2}{\partial z}$ and $\frac{\partial N_3}{\partial z}$ values in equation (3.170).

$$(3.170) \Rightarrow \begin{cases} e_0 \\ e_2 \\ \gamma_{rz} \end{cases} = \frac{1}{2\Lambda} \begin{bmatrix} \frac{\beta_1}{r} + \frac{\beta_1 + \frac{\gamma_1 z}{r}}{r} & 0 & \frac{\beta_2}{r} + \frac{\beta_2 + \frac{\gamma_2 z}{r}}{r} & 0 & \frac{\alpha_3}{r} + \frac{\beta_3 + \frac{\gamma_3 z}{r}}{r} & 0 \\ 0 & \gamma_1 & 0 & \gamma_2 & 0 & \gamma_3 \\ \gamma_1 & \beta_1 & \gamma_2 & \beta_2 & \gamma_3 & \beta_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_3 \\ u_3 \end{bmatrix} \qquad (M4)$$
Derive the Stress Strain Relationship matrix for the Axis mmetric triangular element.
(13M) (November 2013) BTL2
Answer: page - 4.27 Dr. S.Senthil
 $\sigma_r = \frac{E}{(1+v)(1-2v)} [e_r(1-v)+ve_r+ve_s]$
 $\sigma_z = \frac{E}{(1+v)(1-2v)} [ve_r+(1-v)e_r+ve_s]$
 $\tau_{rz} = \frac{E}{(1+v)(1-2v)} [ve_r+(1-v)e_r]$
 $\tau_{rz} = \frac{E}{(1+v)(1-2v)} [ve_r+(1-v)e_r] + x_{e_z}$ (3M)
Substitute $x = r$ and $y = 0$ in the above equations,
 \Rightarrow Radial stress, $\sigma_r = \frac{E}{(1+v)(1-2v)} [ve_r+(1-v)e_0 + ve_s] ...(3.172)$
Circumferential stress, $\sigma_r = \frac{E}{(1+v)(1-2v)} [ve_r+(1-v)e_0 + ve_s] ...(3.173)$
Longitudinal stress, $\tau_{rz} = \frac{E}{(1+v)(1-2v)} [ve_r+ve_r+(1-v)e_s] - ...(3.174)$
Shear stress, $\tau_{rz} = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & v & 0 \\ v & v & 1-v & 0 \\ 0 & 0 & 0 & \frac{1-2v}{2} \end{bmatrix} \begin{cases} e_r \\ e$

	Co-ordinates:	$r = \frac{r_1}{r_1}$	$r_{2} + r_{3} + r_{3}$	$=\frac{20+40}{3}$	0+30				
		r = 30	mm						
		$z = \frac{z_1}{z_1}$	$\frac{+z_2+z_3}{3}$	$=\frac{40+4}{3}$	$\frac{0+60}{3}$				
		z = 46.	667 mm]					
		$\alpha_1 = r_2 z$	$z_3 - r_3 z_2$	= (40 ×	60) - (30	× 40)			
		$\alpha_1 = 120$	00 mm ²						
		$\alpha_2 = r_3 z$	$r_1 - r_1 z_3$	= (30 ×	40) - (20	× 60)			
		$\alpha_2 = 0$)	
		$\alpha_3 = r_1 z$	$r_2 - r_2 z_1$	= (20 ×	40) - (40	× 40)			
		$\alpha_3 = -8$	00 mm ²						
		$\beta_1 = z_2 \cdot$	$-z_3 = 40$	0 - 60					
		$\beta_1 = -2$	0 mm						
				ļ			(5M)	
	Result: Strain-Displaceme	ent matrix						-0220	
		Γ-0.05	0	0.05	0	0	0	7	
	(B)	= 0.0111	0	0.0111	0	0.0111	0 05		
		0 L -0.025	-0.025 -0.05	0 -0.025	0.025	0.05	0.03]	
									$(2\mathbf{M})$
		/							(2111)
	PART * C								
1	For the element show 0.25. The co-ordinate Answer: page – 4.26 l	vn in fig, d s shown in f Dr. S.Senth	letermin fig are ii il	e the stir 1 millime	ffness m eters. (15	atrix. 7 5M) (No	fake I vemb	E = 200 er 2013)Gpa and v = 5) BTL2

UNIT V ISOPARAMETRIC FORMULATION

Natural co-ordinate systems – Iso parametric elements – Shape functions for iso parametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software.

PART * A		
Q.No	Questions	
1.	What meant by plane stress analysis?(November 2014)BTL1 Plane stress is defined to be a state of stress in which the normal stress and shear stress directed perpendicular to the plane are assumed to be zero.	
2	Define plane strain analysis. BTL1 Plane strain is defined to be state of strain normal to the x,y plane and the shear strains are assumed to be zero.	
3	What is truss element? BTL1 The truss elements are the part of a truss structure linked together by point joint which transmits only axial force to the element.	
4	 List the two advantages of post processing. (November 2013) BTL1 a. Required result can be obtained in graphical form. b. Contour diagrams can be used to understand the solution easily and quickly. 	
5	What are the h and p versions of finite element method?(NOVEMBER 2019)BTL1 It is used to improve the accuracy of the finite element method. In h version, the order of polynomial approximation for all elements is kept constant and the numbers of elements are increased. In p version, the numbers of elements are maintained constant and the order of polynomial approximation of element is increased.	
6	 During discretization, mention the places where it is necessary to place a node? BTL1 a. Concentrated load acting point b. Cross-section changing point c. Different material inter junction point d. Sudden change in point load 	
7	What is the difference between static and dynamic analysis? BTL1 Static analysis: The solution of the problem does not vary with time is known as static analysis Example: stress analysis on a beam Dynamic analysis: The solution of the problem varies with time is known as dynamic analysis Example: vibration analysis problem.	
8	What is meant by discretization and assemblage? BTL1 The art of subdividing a structure in to convenient number of smaller components is known as discretization. These smaller components are then put together. The process of uniting the various elements together is called assemblage.	
9	What is Rayleigh-Ritz method?(November 2014)BTL1 It is integral approach method which is useful for solving complex structural problem, encountered in finite element analysis. This method is possible only if a suitable function is available.	

	How do you define two dimensional elements? BTL1
10	Two dimensional elements are defined by three or more nodes in a two dimensional plane. The
	basic element useful for two dimensional analysis is the triangular element.
	State the principles of virtual energy? (November 2015) BTL1
11	A body is in equilibrium if the internal virtual work equals the external virtual work for the
	every kinematically admissible displacement field.
12	Define Eigen value problem. BTL1
	The problem of determining the constant is called eigen value problem.
10	What is non-homogeneous form? BTL1
13	When the specified values of dependent variables are non-zero, the boundary condition said to
	be non-homogeneous.
1.4	What is homogeneous form? BTL1
14	when the specified values of dependent variables is zero, the boundary condition are said to be
	nomogeneous.
15	An initial value problem is one in which the dependent variable and meribly is derivatives are
15	An initial value problem is one in which the dependent valiable and possibly is derivatives are specified initially.
	Define boundary value problem BTI 1
16	A differential equation is said to describe a boundary value problem if the dependent variable
10	and its derivatives are required to take specified values on the boundary
	PART * B
	For the isonarametric quadrilateral element shown in fig determine the local co-
	ordinates of the point P which has Cartesian co-ordinates (7.4), (13M)(November
	2014)BTL2
	Answer: page – 5.17 Dr. S.Senthil
	(8.6)
	(0, 0)
	3/
1	(2, 5)
	14 P.
	(7.4)
	N A STATE TO A STATE OF A STATE O
	1 2
	(3, 1) (6, 1)

 \Rightarrow 16 = 13 + 9 η + ε + $\varepsilon\eta$ \Rightarrow 9 η + ε + $\varepsilon\eta$ = 3 ... (4) Equation (4) multiplied by (-3), $-27 \eta - 3 \varepsilon - 3 \varepsilon \eta = -9$... (5) Solving equation (3) and (5), $\eta + 9\varepsilon + 3\varepsilon\eta = 9$ $-27 \eta - 3 \epsilon - 3 \epsilon \eta = -9$ Solving, $-26\eta + 6\varepsilon = 0$ $-26\eta = -6\varepsilon$ \Rightarrow $\varepsilon = 4.3333 \eta$... (6) Substitute & value in equation (3), $\eta + 9 (4.3333 \eta) + 3 (4.3333 \eta) \times \eta = 9$ (3) ⇒ $\eta + 39 \eta + 13 \eta^2 = 9$ \Rightarrow 13 η^2 + 40 η = 9 $\Rightarrow 13 \eta^2 + 40 \eta - 9 = 0$ $\eta = \frac{-40 \pm \sqrt{(40)^2 - 4(13)(-9)}}{2(13)}$ $[a x^2 + b x + c = 0; \text{ Roots: } \frac{-b \pm c}{2}$ -40 + 45.47526 $\eta = 0.210587$ Substitute n value in equation (6), $\Rightarrow \epsilon = 4.33333 \times 0.210587$ $\epsilon = 0.912545$ Result: Local co-ordinates of the point P, $\eta = 0.210587$ $\varepsilon = 0.912545$ (5M) Evaluate the integeral $I = \int_{-1}^{1} (2 + x + x^2)$ and compare with exact solution.(13M)BTL2 2 Answer: page – 5.137 Dr. S.Senthil

ACADEMIC YEAR: 2019-2020

Integral, I = $\int x^2 dx$ Given: $\Rightarrow f(x) = x^2$ To find: Evaluate the integral by using Gaussian quadrature. Solution: We know that, the given integrand is a polynomial of order 2. So for exact integration, 2n-1 = 2 $\Rightarrow 2n = 3$ \Rightarrow $n = \frac{3}{2} = 1.5$ The calculated number of sampling points should be rounded upto the nearest integer value. So, $n = 1.5 \approx 2$, *i.e.*, in this problem, we should use two sampling points. For two point Gaussian quadrature, $x_1 = +\sqrt{\frac{1}{3}} = 0.577350269$ $x_2 = -\sqrt{\frac{1}{3}} = -0.577350269$ [Refer Table 3.1] $w_2 = 1$ We know that, $f(x) = x^2$ $\Rightarrow f(x_1) = x_1^2 = (0.577350269)^2$ (8M)

REGULATION :2017

$$u = \begin{cases} u \\ v \end{cases} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{bmatrix} \begin{cases} u_1 \\ v_2 \\ v_2 \\ u_3 \\ v_4 \\ v_4 \end{cases}$$

The displacement function *u* for isoparametric quadrilateral element is given by,
$$u = \begin{cases} x \\ y \end{cases} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{bmatrix} \begin{cases} x_1 \\ y_2 \\ y_2 \\ x_3 \\ y_4 \\ y_4 \end{cases}$$

We have to express the derivatives of a function in *x*, *y* co-ordinates in terms of its derivatives in ε , η co-ordinates. This can be done as follows:
(5M)

Let
$$f = f(x, y)$$

 $f = f(x(\varepsilon, \eta), y(\varepsilon, \eta)]$
The relationship between natural co-ordinates and global co-ordinates can be calculated
by using chain rule of partial differentiation.
 $\Rightarrow \frac{\partial f}{\partial \varepsilon} = \frac{\partial f}{\partial x} \times \frac{\partial x}{\partial \varepsilon} + \frac{\partial f}{\partial y} \times \frac{\partial y}{\partial \varepsilon}$
 $\frac{\partial f}{\partial \eta} = \frac{\partial f}{\partial x} \times \frac{\partial x}{\partial \varepsilon} + \frac{\partial f}{\partial y} \times \frac{\partial y}{\partial \varepsilon}$
 $\frac{\partial f}{\partial \eta} = \frac{\partial f}{\partial x} \times \frac{\partial x}{\partial \eta} + \frac{\partial f}{\partial y} \times \frac{\partial y}{\partial \eta}$
Arranging the above equations in matrix form,
 $\Rightarrow \left\{ \frac{\partial f}{\partial \varepsilon} \right\} = \left[\frac{\partial x}{\partial x} \frac{\partial y}{\partial \varepsilon} \right] \left\{ \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \right\}$
 $\Rightarrow \left\{ \frac{\partial f}{\partial \varepsilon} \right\} = [J] \left\{ \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \right\} \qquad \dots (5.30)$
where J is the Jacobian matrix.
 $\left[J \right] = \left[\frac{\partial x}{\partial \theta} \frac{\partial y}{\partial \eta} \right] \Rightarrow \left[J \right] = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \qquad \dots (5.31)$
where, $J_{11} = \frac{\partial x}{\partial \varepsilon}; \quad J_{12} = \frac{\partial y}{\partial \eta}$
We know that,
 $x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$
 $y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4 \end{bmatrix} \qquad \dots (5.32)$
 $J_{11} = \frac{\partial x}{\partial \varepsilon} = \frac{\partial N_1}{\partial \varepsilon} x_1 + \frac{\partial N_2}{\partial \varepsilon} x_2 + \frac{\partial N_4}{\partial \varepsilon} x_3 + \frac{\partial N_4}{\partial \varepsilon} y_4 \qquad \dots (5.34)$

We know that,
$$f(x) = x^4 - 3x + 7$$

 $f(x_1) = x_1^4 - 3x_1 + 7$
 $= (0.774596669)^4 - 3 (0.77459669) + 7$
 $f(x_1) = 5.036209992$
 $\Rightarrow w_1 \times f(x_1) = 0.555555 \times 5.036209992$
 $\boxed{w_1 / f(x_1) = 2.797891}$...(1)
 $f(x_2) = x_2^4 - 3 (x_2) + 7 = (0)^4 - 3(0) + 7$
 $f(x_2) = 7$
 $\Rightarrow w_2 f(x_2) = 0.888888 \times 7$
 $\boxed{w_2 f(x_2) = 6.222216}$ (2)
 $f(x_3) = (x_3)^4 - 3 (x_3) + 7$
 $= (-0.774596669)^4 - 3 (-0.774596669) + 7$
 $f(x_3) = 9.683790008$
 $\Rightarrow w_3 f(x_3) = 0.555555 \times 9.683790008$
 $\boxed{w_3 f(x_3) = 5.579877}$...(3) (6M)
Adding equations (1), (2) and (3),
 $w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3) = 2.797891 + 6.222216 + 5.379877$
 $= 14.399984$
Result: $\int_{-1}^{1} (x^4 - 3x + 7) dx = [\frac{x^5}{5}]_{-1}^{-1} - 3[\frac{x^2}{2}]_{-1}^{+1} + 7[x_1]_{-1}^{+1}$
 $= \frac{1}{5}[(1)^5 - (-1)^5] - \frac{3}{2}[(1)^2 - (-1)^2] + 7(1 - (-1)]$
 $= \frac{1}{5}[2] - 0 + 7(2) = 14.4$ (2M)
Evaluate the integral by applying $I = \int_{-1}^{1} \frac{\cos x}{1 + x^2} dx^3$ point Gaussian quadrature (15M)(November 2011)BTL2

Answer: page – 5.137 Dr. S.Senthil

$$f(x_2) = 2.7203987$$

$$w_2 f(x_2) = 1 \times 2.7203987$$

$$w_2 f(x_2) = 1 \times 2.7203987$$

$$w_2 f(x_2) = 2.7203987$$
... (2)
Adding (1) and (2),
$$\Rightarrow w_1 f(x_1) + w_2 f(x_2) = 6.065265 + 2.7203987 = 8.7856$$

$$\Rightarrow \int_{-1}^{1} \left(3 e^x + x^2 + \frac{1}{x+2}\right) dx = 8.7856 \text{ for two point Gauss quadrature.}$$
Exact solution:
$$I = \int_{-1}^{1} \left(3 e^x + x^2 + \frac{1}{x+2}\right) dx$$

$$= 3 \left[e^x\right]_{-1}^{+1} + \left[\frac{x^3}{3}\right]_{-1}^{+1} + \left[\ln(x+2)\right]_{-1}^{+1}$$

$$= 3 \left[e^x\right]_{-1}^{+1} + \left[\frac{x^3}{3}\right]_{-1}^{+1} + \left[\ln(x+2)\right]_{-1}^{+1}$$

$$= 3 \left[e^{x-1} - (e^{-1})\right] + \frac{1}{3} \left[1^3 - (-1)^3\right] + \left[\ln(1+2) - \ln(-1+2)\right]$$

$$= 3 \left[2.718 - 0.3678\right] + \frac{1}{3} \left[1+1\right] + \ln(3) - \ln(1)$$

$$\Rightarrow \int_{-1}^{1} \left(3 e^x + x^2 + \frac{1}{x+2}\right) dx = 8.8158$$
Result:
1. One point Gauss quadrature
$$\int_{-1}^{1} \left(3 e^x + x^2 + \frac{1}{x+2}\right) dx = 8.7856$$
3. Exact solution
$$\int_{-1}^{1} \left(3 e^x + x^2 + \frac{1}{x+2}\right) dx = 8.7856$$
3. Exact solution
$$\int_{-1}^{1} \left(3 e^x + x^2 + \frac{1}{x+2}\right) dx = 8.8158$$
(7M)

ME8693

HEAT AND MASS TRANSFER

L T P C 3 2 0 4

OBJECTIVES:

- To understand the mechanisms of heat transfer under steady and transient conditions.
- To understand the concepts of heat transfer through extended surfaces.
- To learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass transfer.

(Use of standard HMT data book permitted)

UNIT I CONDUCTION

General Differential equation of Heat Conduction– Cartesian and Polar Coordinates – One Dimensional Steady State Heat Conduction — plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler's charts.

UNIT II CONVECTION

Free and Forced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes.

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors - Analysis – LMTD method - NTU method.

UNIT IV RADIATION

Black Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation through gases.

UNIT V MASS TRANSFER

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy –Convective Mass Transfer Correlations.

TOTAL : 75 PERIODS

9+6

9+6

9+6

9+6

9+6

OUTCOMES:

Upon the completion of this course the students will be able to

CO1: Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems

CO2: Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems

CO3: Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems

CO4: Explain basic laws for Radiation and apply these principles to radiative heat transfer between different types of surfaces to solve problems

CO5: Apply diffusive and convective mass transfer equations and correlations to solve problems for different applications

TEXT BOOKS:

1. Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000

2. Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition 2015

REFERENCES:

1. Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 1998.

2. Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 1998.

3. Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 2002

4. Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.

5. R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2009

Subject Code : ME6502 Subject Name: Heat and Mass Transfer Subject Handler: Dr.B.Rajeshkumar & S.Gejendhiran

	UNIT I CONDUCTION	
General Differential equation of Heat Conduction– Cartesian and Polar Coordinates – One Dimensional Steady State Heat Conduction — plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler's charts		
PART * A		
Q.No.	Questions	
1.	Define Heat Transfer. BTL1 Heat transfer can be defined as the transmission of energy from one region to another region due to temperature difference.	
2	What are the modes of Heat Transfer?(Nov 2018, Dec 2016, May 2013)BTL2	
-	Conduction, Convection, Radiation	
	Define Conduction. BTL2	
3	Heat conduction is a mechanism of heat transfer from a region of high temperature to a region of low temperature within a medium (solid, liquid or gases) or between different medium in direct physical contact.	
	In condition energy exchange takes place by the kinematic motion or direct impact of molecules. Pure conduction is found only in solids.	
	Explain Convection (Apr 2012). BTL1	
4	Convection is a process of heat transfer that will occur between a solid surface and a fluid medium when they are at different temperatures.	
	Convection is possible only in the presence of fluid medium.	
5	Define Radiation. BTL1	
	The heat transfer from one body to another without any transmitting medium is known as radiation. It is an electromagnetic wave phenomenon.	
6	State Fourier's Law of conduction. (Dec 2019, May 2017, Dec 2016, May 2014) BTL1	
	The rate of heat conduction is proportional to the area measured – normal to the direction of heat flow and to the temperature gradient in that direction.	

	$Q\alpha - A\frac{dT}{dx}$, $Q = -KA\frac{dT}{dx}$, where A – are in m ² ,
	$\frac{dT}{dx}$ - Temperature gradient in K/m, K – Thermal conductivity W/mK.
7	Define Thermal Conductivity.(Dec 2016, May 2015) BTL2
,	Thermal conductivity is defined as the ability of a substance to conduct heat.
	Write down the equation for conduction of heat through a slab or plane wall, BTL3
8	Heat transfer $Q = \frac{\Delta T_{overall}}{R}$, Where $\Delta T = T_1 - T_2$ $R = \frac{L}{KA}$ - Thermal resistance of slab, L = Thickness of slab
	K = Thermal conductivity of slab, $A =$ Area
	State Newton's law of cooling or convection law. (Nov 2018, Dec 2016, May 2013)BTL2
	Heat transfer by convection is given by Newton's law of cooling
9	$Q = hA (T_s - T_{\infty})$ Where , A – Area exposed to heat transfer in m ²
	h - heat transfer coefficient in W/m ² K, T_s – Temperature of the surface in K
	T_{∞} - Temperature of the fluid in K.
10	Write down one dimensional, steady state conduction equation without internal heat generation. BTL3 $\frac{\partial^2 T}{\partial x^2} = 0$
	Write down the general equation for one dimensional steady state heat transfer in slab or plane wall without heat generation. BTL3
11	$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \frac{I}{\infty} \frac{\partial T}{\partial t}$
	Where, α thermal diffusivity, Temperature gradient
	Define overall heat transfer co-efficient. [April '12] BTL2
12	The overall heat transfer by combined modes is usually expressed in terms of an overall conductance or overall heat transfer co-efficient 'U'.
	Heat transfer $Q = UA \Delta T$.

13	Write down the general equation for one dimensional steady state heat transfer in slab with heat generation [Oct '16] BTL3
	a^2T a^2T a^2T a^2T a^2T
	$\frac{\partial T}{\partial x^2} + \frac{\partial T}{\partial y^2} + \frac{\partial T}{\partial z^2} + \frac{q}{K} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$
14	What is critical radius of insulation (or) critical thickness? [Oct. '17] BTL2
	Critical radius = r_c Critical thickness = $r_c - r_1$
	Addition of insulating material on a surface does not reduce the amount of heat transfer rate always. In fact under certain circumstances it actually increases the heat loss up to certain thickness of insulation. The radius of insulation for which the heat transfer is maximum is called critical radius of insulation, and the corresponding thickness is called critical thickness.
	Explain fins (or) Extended surfaces. BTL2
15	It is possible to increase the heat transfer rate by increasing the surface of heat transfer. The surfaces used for increasing heat transfer are called extended surfaces or sometimes known as fins.
	Define Fin efficiency. [Nov. '16, Oct. '17] BTL4
16	The efficiency of a fin is defined as the ratio of actual heat transfer by the fin to the maximum
10	
	$\eta_{fin} = \frac{\mathcal{Q}_{fin}}{\mathcal{Q}_{\max}}$
	Define Fin effectiveness. [Apr. 2012] BTL2
17	Fin effectiveness is the ratio of heat transfer with fin to that without fin
	Fin effectiveness = $\frac{Q_{with fin}}{Q_{without fin}}$
10	What is meant by Transient heat conduction or unsteady state conduction? BTL2
18	If the temperature of a body varies with time, it is said to be in a transient state and that type of conduction is known as transient heat conduction or unsteady state conduction.
	Explain Lumped heat analysis?[Oct. 16] BTL2
19	In a Newtonian heating or cooling process the temperature throughout the solid is considered to be uniform at a given time. Such an analysis is called Lumped heat capacity analysis.
	What is the significance of Biot number? [Nov.12] BTL2
20	Biot number is used to find Lumped heat analysis, semi-infinite solids and infinite solids
	If $B_i < 0.1 L \rightarrow$ Lumped heat analysis

Since the rod is long, it is treated as long fin. So, temperature distribution

8

$$\frac{1 - 1_{\infty}}{T_{b} - T_{\infty}} = e^{-mx}$$
(2M)

$$\Rightarrow \frac{373 - 298}{423 - 298} = e^{-m \times (0.20)}$$

$$\Rightarrow 0.6 = e^{-m \times (0.20)}$$

$$\Rightarrow \ln (0.6) = -m \times (0.20)$$

$$\Rightarrow - 0.51 = -m \times (0.20)$$

$$\boxed{m = 2.55 \text{ m}^{-1}}$$
(4M)
We know that,

^{5/}QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

	$\frac{T_x - T_{\infty}}{T_0 - T_{\infty}} = 0.97$	(2M)
	Y axis = $\frac{T_x - T_{\infty}}{T_0 - T_{\infty}} = 0.97$ $\Rightarrow \frac{T_x - T_{\infty}}{T_0 - T_{\infty}} = 0.97$ $\Rightarrow \frac{T_x - 333}{550.6 - 333} = 0.97$ $\Rightarrow \overline{T_x = 544 \text{ K}}$ Temperature inside the plate 1.25 cm from the mid plane is 544	С К. (2М)
	W/mK is covered with two layers of insulation each having a thickness of 55 conductivity of the first insulation material is 0.05 W/mK and that of th W/mK. The temperature of the inside tube surface is 240°C and that of the the insulation is 60°C.Calculate the loss of heat per meter length of pipe temperature between the two layers of insulation. (May '12) (13 M) BTL4 Answer: Page 1.126-Dr.S.Senthil Heat flow through composite cylinder is given by	mm. The thermal ne second is 0.11 outside surface of and the interface
14	$Q = \frac{\Delta T_{overall}}{R}$ Where	(2M)
	$\Delta T = T_a - T_b(or) T1 - T4$	(2M)
	$R = 1/2\pi L \left(\frac{ln\frac{r_2}{r_1}}{K_1} + \frac{ln\frac{r_3}{r_2}}{K_2} + \frac{ln\frac{r_4}{r_3}}{K_3} \right)$	(2M)
	$Q/L = \frac{T_1 - T_4}{1/2\pi L \left(\frac{ln\frac{r_2}{r_1}}{K_1} + \frac{ln\frac{r_3}{r_2}}{K_2} + \frac{ln\frac{r_4}{r_3}}{K_3} \right)} = 75.83 \text{ W/m}$	(5M)
	$Q/L = \frac{T_1 - T_2}{1/2\pi L \left(\frac{ln\frac{r_2}{r_1}}{K_1}\right)} = \implies T_2 = 512.7 \text{ K}$	(1M)

Q/L =
$$\frac{T2-T3}{1/2\pi L} \left(\frac{m_{T2}^2}{K_2}\right)^{-1}$$
 T₃=372.7 K
 (1M)

 (i) An electric current is passed through a plane wall of thickness 150 mm which generates heat at the rate of 50000 W/m3. The convective heat transfer coefficient between wall and ambient air is 65 W/m2K, ambient air temperature is 28°C and the thermal conductivity of the wall material is 22 W/mK. Calculate (i) Surface temperature (ii) Maximum temperature in the wall. (6M) BTL4

 Answer: Page 1.187-Dr.S.Senthil
 $T_w = T_w + \frac{qL^2}{2h} = 358.6 \text{ K}$
 (3M)

 $T_{max} = T_w + \frac{qL^2}{2h} = 364.9 \text{ K}$
 (3M)

 (ii) A copper wire of 40 mm diameter carries 250A and has a resistance of 0.25 x 10⁴ ohm cm/length surface temperature of copper wire is 15% C and the ambient air temperature is 10°C. If the thermal conductivity of the copper wire is 175 W/mK, Calculate (i) Heat transfer coefficient between wire surface and ambient air, (ii) Maximum temperature in the wire. (6M) BTL4

 Answer: Page 1.196-Dr.S.Senthil
 $Q = I^2 R = 1.562 W/cm = 156 W/m$, $q = \frac{q}{V} = 124140 \frac{w}{m^3}$ (1M)

 $T_{max} = T_w + \frac{qr^2}{4k} = 523.07 \text{ K}$
 (3M)

 Surface temperature, $T_w = T_w + \frac{rg}{2h} = 5.17 W/m^2 K(3M)$
 (3M)

 1
 A wall is constructed of several layers. The first layer consists of masonry brick 20 cm. thick of thermal conductivity 0.66 W/mK, the second layer consists of 3 cm thick line stone of thermal conductivity 0.66 W/mK. The first coefficient on the interior and exterior of thermal conductivity 0.68 W/mK and the outer layer consists of 1.2 cm thick line stone of thermal conductivity 0.58 W/mK and the outer layer consists of 3 cm th

REGULATION: 2017

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

$$\Rightarrow \frac{T_{r} - T_{c}}{T_{0} - T_{c}} = 0.84$$

$$\Rightarrow \frac{T_{r} - 1093}{1073 - 1093} = 0.84 \quad (6M)$$

$$\Rightarrow [T_{r} = 1076.2 K]$$
1. Time required for the axis temperature to reach 800°C is 2945.9 s.
2. Temperature (T_{r}) at a radius of 5.4 cm is 1076.2 K

UNIT II CONVECTION

Free and Forced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes.		
PART * A		
Q.No.	Questions	
1.	Define Reynolds number (Re). BTL1 It is defined as the ratio of inertia force to viscous force. $Re = \frac{Inertia \text{ force}}{Viscous \text{ force}}$	
2	Define Prandtl number (Pr). BTL1 It is the ratio of the momentum diffusivity of the thermal diffusivity. $Pr = \frac{Momentum diffusivity}{Thermal diffusivity}$	
3	Define Nusselt number (Nu). BTL1 It is defined as the ratio of the heat flow by convection process under an unit temperature gradient to the heat flow rate by conduction under an unit temperature gradient through a stationary thickness (L) of metre. Nusselt number (Nu) = $\frac{Q_{conv}}{Q_{cond}}$.	
4	What is Grashoff number? BTL1It is defined as the ratio of product of inertia force and buoyancy force to the square of viscousforce. $Gr = \frac{\text{Inertia force } \times \text{Buyoyancy force}}{(\text{Viscous force})^2}$	
5	ExplainNewtonion and non – Newtonion fluids? BTL2 The fluids which obey the Newton's Law of viscosity are called Newtonion fluids and those which do not obey are called non – newtonion fluids.	
6	 What is meant by laminar flow and turbulent flow? BTL2 Laminar flow: Laminar flow is sometimes called stream line flow. In this type of flow, the fluid moves in layers and each fluid particle follows a smooth continuous path. The fluid particles in each layer remain in an orderly sequence without mixing with each other. Turbulent flow: In addition to the laminar type of flow, a distinct irregular flow is frequency observed in nature. This type of flow is called turbulent flow. The path of any individual particle is zig – zag and irregular. Fig. shows the instantaneous velocity in laminar and turbulent flow. 	
7	State Newton's law of convection. BTL2 Heat transfer from the moving fluid to solid surface is given by the equation $Q = h A (T_w - T_\infty)$, This equation is referred to as Newton's law of cooling. Where , h – Local heat transfer coefficient in	

	W/m ² K, A – Surface area in m ² , T_w – Surface (or) Wall temperature in K, T_∞ - Temperature of fluid in K.
8	Define free or natural convection. (AUMay2004,Dec2004,June 2006, May 2004)BTL2 If the fluid motion is produced due to change in density resulting from temperature gradients, the mode of heat transfer is said to be free or natural convection.
9	Define forced convection. (AU May 2004, Dec 2004, June 2006, May 2004) BTL2 If the fluid motion is artificially created by means of an external force like a blower or fan, that type of heat transfer is known as forced convection.
10	Define boundary layer thickness. BTL2 The thickness of the boundary layer has been defined as the distance from the surface at which the local velocity or temperature reaches 99% of the external velocity or temperature.
11	Give the form of equation used to calculate heat transfer for flow through cylindrical pipes. BTL3 Nu = 0.023 (Re) ^{0.8} (Pr) ⁿ , n = 0.4 for heating of fluids, n = 0.3 for cooling of fluids
12	Name the dimensionless parameters used in forced convection. BTL2 1. Reynolds number (Re) 2. Nusselt number (Nu) 3. Prandtl number (Pr)
13	Define hydrodynamic boundary layer. BTL2 In hydrodynamic boundary layer, velocity of the fluid is less than 99% of free stream velocity.
14	Explain thermal boundary layer. BTL2 In thermal boundary layer, temperature of the fluid is less than 99% of free stream velocity.
15	Define Stanton number (St). BTL1 It is the ratio of Nusselt number to the product of Reynolds number and Prandtl number. $St = \frac{Nu}{Re \times Pr}$
16	Indicate the significance of boundary layer. BTL2 In boundary layer concept the flow field over a body is divided into two regions: (i) A thin region near the body called the boundary layer where the velocity and the temperature gradients are large. (ii) The region outside the boundary layer where the velocity and the temperature gradients are very nearly equal to their free stream values.
17	An electrically heated plate dissipates heat by convection at a rate of 8000 W/m ² in to the ambient air at 25°C. If the surface of the hot plate is at 125°C, calculate the heat transfer coefficient for convection between the plate and air. (Nov 2018, Dec 2016, May 2013)BTL 4.
	Heat Transfer Q=hA(Tw-T α), 8000= h x 1 (398-298) = 80 W/m ² K.

Answer: Page 2.30-Dr.S.Senthil

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

REGULATION : 2017

Bulk mean temperature
$$T_m = \frac{T_{mi} + T_{mo}}{2}$$

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0
REGULATION: 2017

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors - Analysis – LMTD method - NTU method.

	PART * A
Q.No.	Questions
1	Define boiling. BTL1
1.	The change of phase from liquid to vapour state is known as boiling.
2	What is meant by condensation? BTL2
2	The change of phase from vapour to liquid state is known as condensation.
	Give the applications of boiling and condensation. BTL2
3	Boiling and condensation process finds wide applications as mentioned below.
	1. Thermal and nuclear power plant.
	 Refrigerating systems Process of heating and cooling Air conditioning systems
	Define pool boiling. BTL2
4	If heat is added to a liquid from a submerged solid surface, the boiling process referred to as pool boiling. In this case the liquid above the hot surface is essentially stagnant and its motion near the surface is due to free convection and mixing induced by bubble growth and
	detachment.
	What are the modes of condensation? BTL2
5	There are two modes of condensation
	1. Film wise condensation
	What is meant by Film wise condensation?[(Dec 2016, May 2015)BTL2
6	The liquid part denote were the collid surface, anneals out and former a continuous film over the
0	entire surface is known as film wise condensation.
	Write short note on drop wise condensation. [April 2000 MU Oct 2000 MU] BTL2
7	In drop wise condensation the vapour condenses into small liquid droplets of various sizes which fall down the surface in a random fashion.
8	What is heat exchanger? BTL2

	A heat exchanger is defined as an equipment which transfers the heat from a hot fluid to a cold fluid.
	Give classifications of heat exchanger.BTL2
	The types of heat exchangers are as follows
	 Direct contact heat exchangers Indirect contact heat exchangers
9	3. Surface heat exchangers
	4. Parallel flow heat exchangers
	6 Cross flow heat exchangers
	7. Shell and tube heat exchangers
	8. Compact heat exchangers.
	What is meant by Direct heat exchanger (or) open heat exchanger? BTL2
10	In direct contact heat exchanger, the heat exchange takes place by direct mixing of hot and cold fluids.
	What is meant by Indirect contact heat exchanger? BTL2
11	In this type of heat exchangers, the transfer of heat between two fluids could be carried out by transmission through a wall which separates the two fluids.
	What is meant by Regenerators? (Dec 2019, May 2017, Dec 2016, May 2014) BTL2
12	In this type of heat exchangers, hot and cold fluids flow alternately through the same space.Examples: IC engines, gas turbines.
	Define recuperators (or) surface heat exchangers.BTL2
13	This is the most common type of heat exchangers in which the hot and cold fluid do not come into direct contact with each other but are separated by a tube wall or a surface.
1.4	What is meant by parallel flow heat exchanger? BTL2
	In this type of heat exchanger, hot and cold fluids move in the same direction.
15	What is meant by counter flow heat exchanger? BTL2
15	In this type of heat exchanger hot and cold fluids move in parallel but opposite directions.
16	What is meant by cross flow heat exchanger? BTL2
	In this type of heat exchanger, hot and cold fluids move at right angles to each other.
17	What is shell and tube heat exchanger? BTL2
	In this type of heat exchanger, one of the fluids move through a bundle of tubes enclosed by a shell. The other fluid is forced through the shell and it moves over the outside surface of the

	tubes.
	Define compact heat exchangers. (Dec 2016, May 2015) BTL2
18	There are many special purpose heat exchangers called compact heat exchangers. They are generally employed when convective heat transfer coefficient associated with one of the fluids is much smaller than that associated with the other fluid.
	What is meant by LMTD? BTL2
19	We know that the temperature difference between the hot and cold fluids in the heat exchanger varies from point in addition various modes of heat transfer are involved. Therefore based on concept of appropriate mean temperature difference, also called logarithmic mean temperature difference, also called logarithmic mean temperature difference, the total heat transfer rate in the heat exchanger is expressed as
	$Q = U \; A \; (\Delta T) m$, Where , $U - Overall$ heat transfer coefficient $W/m^2 K$
	A – Area m^2 , $(\Delta T)_m$ – Logarithmic mean temperature difference
	What is meant by Fouling factor? BTL2
20	We know the surfaces of a heat exchangers do not remain clean after it has been in use for some time. The surfaces become fouled with scaling or deposits. The effect of these deposits the value of overall heat transfer coefficient. This effect is taken care of by introducing an additional thermal resistance called the fouling resistance.
	Part- B
	Water is to be boiled at atmospheric pressure in a polished copper pan by means of an
1	electric heater. The diameter of the pan is 0.38 m and is kept at 115°C. Calculate the following, 1. Power required to boil the water, 2. Rate of evaporation, 3. Critical heat flux. (13 M)BTL4 Answer: Page 3.7-Dr.S.Senthil We know saturation temperature of water is 100°C i.e. $T_{sat} = 100$ °C Properties of water at 100°C (From HMT data book Page No.13)

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

UNIT IV RADIATION

Black Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation through gases.

	PART * A	
Q.No.	Questions	
1	Define Radiation. BTL1 The heat transfer from one body to another without any transmitting medium is known as radiation. It is an electromagnetic wave phenomenon.	
2	Define emissive power [E].(Nov 2018, Dec 2016, May 2013) BTL1 The emissive power is defined as the total amount of radiation emitted by a body per unit time and unit area. It is expressed in W/m ² .	
	Define monochromatic emissive power. [Eb] BTL1	
3	The energy emitted by the surface at a given length per unit time per unit area in all directions is known as monochromatic emissive power.	
	What is meant by absorptivity? BTL2	
4	Absorptivity is defined as the ratio between radiation absorbed and incident radiation.	
	Absorptivity $\alpha = \frac{\text{Radiation absorbed}}{\text{Incident radiation}}$	
5	What is meant by reflectivity? BTL2 Reflectivity is defined as the ratio of radiation reflected to the incident radiation. Reflectivity $\rho = \frac{\text{Radiation reflected}}{\text{Incident radiation}}$	
	What is meant by Transmissivity? BTL2	
6	Transmissivity is defined as the ratio of radiation transmitted to the incident radiation.	
	Transmissivity $\tau = \frac{\text{Radiation transmitted}}{\text{Incident radiation}}$	
	What is black body? [April.97, April 99] BTL2	
7	Black body is an ideal surface having the following properties.	
	1. A black body absorbs all incident radiation, regardless of wave length and direction.	

	2. For a prescribed temperature and wave length, no surface can emit more energy than black body.
	State Planck's distribution law. (Dec 2019, May 2017, Dec 2016, May 2014)BTL2
8	The relationship between the monochromatic emissive power of a black body and wave length of a radiation at a particular temperature is given by the following expression, by Planck. $E_{b\lambda} = \frac{C_1 \lambda^{-5}}{\frac{C_2}{e} \left(\frac{C_2}{\lambda T}\right)_{-1}}$
	Where $E_{b\lambda}$ = Monochromatic emissive power W/m ² λ = Wave length - m $c_1 = 0.374 \times 10^{-15}$ W m ² $c_2 = 14.4 \times 10^{-3}$ mK
9	State Wien's displacement law. BTL2 The Wien's law gives the relationship between temperature and wave length corresponding to the maximum spectral emissive power of the black body at that temperature
	the maximum spectral emissive power of the black body at that temperature. $\lambda_{mas} T = c_3$ Where $c_3 = 2.9 \times 10^{-3}$ [Radiation constant] $\Rightarrow \lambda_{mas} T = 2.9 \times 10^{-3}$ mK
	State Stefan – Boltzmann law. [April 2002] BTL2
10	The emissive power of a black body is proportional to the fourth power of absolute temperature. $\begin{array}{rcl} E_{b} & \infty & T^{4} \\ E_{b} & = & \sigma T^{4} \\ Where & E_{b} & = & Emissive power, w/m^{2} \\ \sigma & = & Stefan. Boltzmann constant \\ & = & 5.67 \times 10^{-8} W/m^{2} K^{4} \\ & T & = & Temperature, K \end{array}$
	Define Emissivity. [Oct. 2000, April 2002] BTL1
11	It is defined as the ability of the surface of a body to radiate heat. It is also defined as the ratio of emissive power of any body to the emissive power of a black body of equal temperature.

	Emissivity $\varepsilon = \frac{E}{E_{b}}$
	What is meant by gray body? [April, 2000, 2002] BTL2
12	If a body absorbs a definite percentage of incident radiation irrespective of their wave length, the body is known as gray body. The emissive power of a gray body is always less than that of the black body.
	State Kirchoff's law of radiation. [April 2001] BTL2
	This law states that the ratio of total emissive power to the absorbtivity is constant for all surfaces which are in thermal equilibrium with the surroundings. This can be written as
13	$\frac{E_1}{\alpha_1} = \frac{E_2}{\alpha_2} = \frac{E_3}{\alpha_3},$
	It also states that the emissivity of the body is always equal to its absorptivity when the body remains in thermal equilibrium with its surroundings.
	$\alpha_1 = E_1$; $\alpha_2 = E_2$ and so on.
	Define intensity of radiation (Ib). [Nov. 96, Oct. 98, 99] BTL1
14	It is defined as the rate of energy leaving a space in a given direction per unit solid angle per unit area of the emitting surface normal to the mean direction in space.
	$I_n = \frac{E_b}{\pi}$
	State Lambert's cosine law. BTL1
15	It states that the total emissive power E_b from a radiating plane surface in any direction proportional to the cosine of the angle of emission
	E _b ∞cosθ
	What is the purpose of radiation shield? [Apr. 2012, Apr. 2013] BTL2
16	Radiation shields constructed from low emissivity (high reflective) materials. It is used to
	reduce the net radiation transfer between two surfaces.
17	Define irradiation (G) [Nov. 17] B1L1
1/	It is defined as the total radiation incident upon a surface per unit time per unit area. It is expressed in W/m^2 .
18	What is radiosity (J)? [April 2016] BTL2
	It is used to indicate the total radiation leaving a surface per unit time per unit area. It is

 2×2 m solar collector whose normal is inclined at 45° to the sun. The energy loss through the atmosphere is 50% and the diffuse radiation is 20% of direct radiation.(13 M) (Dec 2019, May 2017, Dec 2016, May 2014)BTL4

$$\frac{\overline{s} = \frac{1}{\frac{1}{c_1} + \frac{1}{c_2} - 1}}{\frac{1}{0.7} + \frac{1}{0.7} - 1}}$$

$$\frac{\overline{s} = \frac{1}{\frac{1}{0.7} + \frac{1}{0.7} - 1}}{\left[\frac{\overline{s} = 0.538}{\overline{s} - 0.538}\right]}$$

$$\Rightarrow Q = 0.538 \times A \times 5.67 \times 10^{-8} \left[(1000)^4 - (500)^4\right]$$

$$\boxed{Q} = 28.6 \times 10^3 \text{ W/m}^2$$
Two parallel plates of size 3 m × 2 m are placed parallel to each other at a distance of 1 m. One plate is maintained at a temperature of 550°C and the other at 250°C and the emissivities are 0.35 and 0.55 respectively. The plates are located in a large room whose walls are at 35°C. If the plates located exchange heat with each other and with the room, calculate. (i) Heat lost by the plates, (ii) Heat received by the room. (13 M)BTL4
Answer: Page 4.121Dr.S.Senthil
Area A₁ = 3 × 2 = 6 m²

$$\boxed{A_1 = A_2 = 6m^2}$$
Since the room is large $\boxed{A_3 = \infty}$
From electrical network diagram.
$$\frac{1\sqrt{c_1}A_1}{c_2A_2} = \frac{1 - 0.55}{0.55 \times 6} = 0.136$$

$$\frac{1 - c_2}{c_2A_2} = \frac{1 - 0.55}{0.55 \times 6} = 0.136$$
(2 M)
$$\frac{1 - c_3}{c_3A_3} = 0$$
[:: A₃ = ∞]
Apply $\frac{1 - c_3}{c_3A_3} = 0$, $\frac{1 - c_1}{c_1A_1} = 0.309$, $\frac{1 - c_2}{c_2A_2} = 0.136$ values in electrical network diagram.
To find shape factor F₁₂ refer HMT data book, Page No.78.

5/QB+Keys/ Ver1.0

UNIT V MASS TRANSFER

Basic Concepts – Diffusion Mass Transfer – Fick"s Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy –Convective Mass Transfer Correlations.

PART * A		
Q.No.	Questions	
1	What is mass transfer? BTL2 The process of transfer of mass as a result of the species concentration difference in a mixture is known as mass transfer.	
2	 Give the examples of mass transfer. BTL3 Some examples of mass transfer. 1. Humidification of air in cooling tower 2. Evaporation of petrol in the carburetor of an IC engine. 3. The transfer of water vapour into dry air. 	
3	What are the modes of mass transfer? BTL2 There are basically two modes of mass transfer, 1. Diffusion mass transfer 2. Convective mass transfer	
4	What is molecular diffusion? (Jun '13) BTL2 The transport of water on a microscopic level as a result of diffusion from a region of higher concentration to a region of lower concentration in a mixture of liquids or gases is known as molecular diffusion.	
5	What is Eddy diffusion? BTL2 When one of the diffusion fluids is in turbulent motion, eddy diffusion takes place.	
6	What is convective mass transfer? BTL2 Convective mass transfer is a process of mass transfer that will occur between surface and a fluid medium when they are at different concentration.	
7	State Fick's law of diffusion. (AU June 06, May'05). BTL2 The diffusion rate is given by the Fick's law, which states that molar flux of an element per unit area is directly proportional to concentration gradient.	

	$\frac{m_a}{m_a} = -D \cdot \frac{dC_a}{dC_a}$
	A = ab dx
	where,
	$\frac{ma}{A}$ - Molar flux, $\frac{kg - mole}{s - m^2}$
	D_{ab} Diffusion coefficient of species a and b, m ² /s
	$\frac{dC_a}{dx}$ – concentration gradient, kg/m ³
	What is free convective mass transfer? BTL2
8	If the fluid motion is produced due to change in density resulting from concentration gradients, the mode of mass transfer is said to be free or natural convective mass transfer.
	Example : Evaporation of alcohol.
	Define forced convective mass transfer. BTL1
9	If the fluid motion is artificially created by means of an external force like a blower or fan, that type of mass transfer is known as convective mass transfer.
	Example: The evaluation if water from an ocean when air blows over it.
	Define Schmidt Number. BTL1
10	It is defined as the ratio of the molecular diffusivity of momentum to the molecular diffusivity of mass.
	Molecular diffusivity of momentum
	Sc = Molecular diffusivity of mass
	Define Scherwood Number. BTL1
11	It is defined as the ratio of concentration gradients at the boundary.
	h _m x
	$SC = \frac{1}{D_{ab}}$
	hm – Mass transfer coefficient, m/s
	D_{ab} – Diffusion coefficient, m ² /s
	x – Length, m
12	Give two examples of convective mass transfer. BTL3.
12	Evaporation of alcohol, Evaporation of water from an ocean when air blows over it.
13	Define Mass concentration and molar concentration. BTL 1

mole % air and the other tank contains a uniform mixture of 20 mole % ammonia and 80

7

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

$\frac{dp}{dx}$ \Rightarrow	$= \frac{dp_{a}}{dx} + \frac{dp_{h}}{dx} = 0$ $\frac{dp_{a}}{dx} = -\frac{dp_{h}}{dx}$ (5 M)
Und	der steady state conditions, the total molar flux is zero.
\Rightarrow	$N_a + N_b = 0$
N _a :	$= -N_{b}$
	$\Rightarrow -D_{ab} \frac{A}{GT} \frac{dp_a}{dx} = D_{ab} \frac{A}{GT} \frac{dp_a}{dx} \dots \dots$
From	m Fick's law,
Na	$= -D_{ab} \frac{A}{GT} \frac{dp_a}{dx}$
Nb	$= D_{ba} \frac{A}{GT} \frac{dp_{b}}{dx}$
We	know
$\frac{dp_{b}}{d_{x}}$	$\frac{dp_a}{d_x} = \frac{dp_a}{(5 \text{ M})}$
sub	ostitute in Equation (5)
(5)	$\Rightarrow -D_{ab} \frac{A}{GT} \frac{dp_a}{dx} = -D_{ba} \frac{A}{GT} \frac{dp_a}{dx}$
14/2	$\Rightarrow D_{ab} = D_{ba} = D$
vve	A dp
	$Na = -D_{ab} \frac{dr}{dT} \frac{dr}{dx}$
inte	eresting
	$N_{a} = \frac{m_{a}}{A} = \frac{D_{ab}}{GT} \int_{1}^{2} \frac{dp_{a}}{dx}$
	Molar flux, Na = $\frac{m_a}{A} = \frac{D_{ab}}{GT} \left[\frac{P_{a1} - P_{a2}}{x_2 - x_1} \right] \dots (6)$
sim	ilarly,
Мо	lar flux, $N_b = \frac{m_b}{A} = \frac{D_{ab}}{GT} \left[\frac{P_{b1} - P_{b2}}{x_2 - x_1} \right] \dots (7) (5 \text{ M})$
Solved Problems on Equimolar Counter Diffusion

Ammonia and air in equimolar counter diffusion in a cylindrical tube of 2.5 mm diameter and 15m length. The total pressure is 1 atmosphere and the temperature is 25°C. One end of the tube is connected to a large reservoir of ammonia and the other end of the tube is open to atmosphere. If the mass diffusivity for the mixture is 0.28×10^{-4} m²/s. Calculate the following, a) Mass rate of ammonia in kg/h, b) Mass rate of air in kg/h(15 M)BTL4

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

We know that, for isothermal evaporation, Molar flux, At 25°C, $P_{w1} = 0.03166$ bar $P_{w1} = 0.03166 \times 10^5 \text{ N/m}^2$ P_{w2} = Partial pressure at the top of the test pan corresponding to 25°C and 50% relative humidity. $\frac{\mathbf{m}_{a}}{\mathbf{A}} = \frac{\mathbf{D}_{ab}}{\mathbf{GT}} \frac{\mathbf{P}}{(\mathbf{x}_{2} - \mathbf{x}_{1})} \ln \left[\frac{\mathbf{P} - \mathbf{P}_{w2}}{\mathbf{P} - \mathbf{P}_{w1}} \right] \dots \dots (1)$ where. A - Area = $\frac{\pi}{4}$ d² = $\frac{\pi}{4}$ × (.150)² $\left[\text{Area} = 0.0176 \text{ m}^2 \right]$ (5 M)G – Universal gas constant = 8314 $\frac{J}{kg-mole-K}$ P - Total pressure = 1 bar = 1×10^5 N/m² P_{w1} – Partial pressure at the bottom of the test tube corresponding to saturation temperature 25°C $\frac{\mathbf{m}_{a}}{\mathbf{A}} = \frac{\mathbf{D}_{ab}}{\mathbf{GT}} \frac{\mathbf{P}}{(\mathbf{x}_{a} - \mathbf{x}_{a})} \ln \left[\frac{\mathbf{P} - \mathbf{P}_{w2}}{\mathbf{P} - \mathbf{P}_{w4}} \right] \dots \dots (1)$ where. A - Area = $\frac{\pi}{4}d^2 = \frac{\pi}{4} \times (.150)^2$ At $25^{\circ}C$ Area = 0.0176 m² $_{I}G-$ Universal gas constant = 8314 $\frac{J}{kg-mole-K}$ P - Total pressure = 1 bar = 1×10^5 N/m² P_{w1} – Partial pressure at the bottom of the test tube corresponding to saturation temperature 25°C $P_{w2} = 0.03166 \text{ bar} = 0.03166 \times 10^5 \times 0.50$ $P_{w2} = 0.03166 \times 10^5 \times 0.50$ $P_{w2} = 1583 \text{ N/m}^2$ $(1) \Rightarrow \frac{a}{0.0176}$

JIT-JEPPIAAR/MECH/Dr.B.RAJESHKUMAR & S.GEJENDHIRAN/IIIrdYr/SEM 06/ME8693/HEAT AND MASS TRANSFER/UNIT 1-5/QB+Keys/ Ver1.0

ME8694

HYDRAULICS AND PNEUMATICS

LTPC

3003

OBJECTIVES:

- > To provide student with knowledge on the application of fluid power in process, construction and manufacturing Industries.
- To provide students with an understanding of the fluids and components utilized in modern industrial fluid \geq power system.
- To develop a measurable degree of competence in the design, construction and operation of fluid power \geq circuits.

UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of fluids and selection - Basics of Hydraulics - Pascal's Law - Principles of flow - Friction loss - Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory - Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary - Fixed and Variable displacement pumps – Problems.

UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

Hydraulic Actuators: Cylinders - Types and construction, Application, Hydraulic cushioning - Hydraulic motors -Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Servo and Proportional valves - Applications - Accessories : Reservoirs, Pressure Switches -Applications - Fluid Power ANSI Symbols - Problems.

UNIT III HYDRAULIC CIRCUITS AND SYSTEMS

Accumulators, Intensifiers, Industrial hydraulic circuits - Regenerative, Pump Unloading, Double- Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

Properties of air - Perfect Gas Laws - Compressor - Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit - Cascade method - Electro Pneumatic System – Elements – Ladder diagram – Problems, Introduction to fluidics and pneumatic logic circuits.

UNIT V TROUBLE SHOOTING AND APPLICATIONS

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation - Hydraulic and Pneumatic power packs.

TOTAL:45 PERIODS

TEXT BOOKS:

1. Anthony Esposito, "Fluid Power with Applications", Pearson Education 2005.

2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw-Hill, 2001.

REFERENCES:

- 1. Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 1982.
- 2. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.
- 3. Majumdar S.R., "Pneumatic systems Principles and maintenance", Tata McGraw Hill, 1995
- 4. Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 1989.
- 5. Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006.

JIT-JEPPIAAR/MECH/Mr.S.ARUN & Mr.S.KANNAN/IIIrdYr/SEM 06 /ME8694/HYDRAULICS AND PNEUMATICS/UNIT 1-5/QB+Keys/Ver1.0

Q

9

UNIT I – FLUID POWER PRINCIPLES AND HYDRAULIC PUMPS

Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids -Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.

PART * A

Q.No.	Questions				
1	Define the term fluid power. BTL1				
	Fluid power may be defined as the technology that deals with the generation, control and transmission				
	of pow	ver using j	pressurized fluids.		
2	Comp	are hydr	aulic and pneumatic system. BTL2		
		S.No	Hydraulic System	Pneumatic System	
		1.	It employs a pressurized liquid as	It. employs a compressed gas usually air as	
			a fluid.	a fluid.	
		2.	Generally, Hydraulic systems are	Pneumatic systems are usually designed as	
			designed as closed system.	open system.	
		3.	System get slow down if leakage	Leakage does not affect the system much	
3	What	are the f	unctions of hydraulic fluid? BTL2		
	\triangleright	To trans	mit fluid power efficiently to perform	n useful work.	
	\succ To lubricate the moving parts to minimize wear and friction.				
	> To absorb, carry and dissipate the heat generated within the system				
4	Write the importance of viscosity and what happens if viscosity is too high (or) too low. BTL2				
	Viscosity is the most important property of a hydraulic fluid, as it determines the ability of a fluid to				
	be pumped and transmitted through the system.				
	Too high viscosities (Heavy weight fluids) have the following effects.				
	 High resistance to flow, which causes sluggish operation (Difficult to flow). 				
	Increases power consumption.				
	Too low viscosities (Light weight fluids) have the following effects.				
	 Less precision control and slower responses. 				
	Increases Leakage losses past seals.				
5	List any four applications of fluid power system. BTL2				
		Agricult	ture : Hydraulically driven farm equip	oments.	
		Automo	bile : Fluid power steering and brakin	ng systems.	
		Defence	: Missile Launch Systems, navigatio	n controls.	
		Transpo	rtation : Hydraulically powered overl	head sky tram.	

<u> </u>	GULATION :2017 ACADEMIC YEAR : 2019-2020
6	List the advantages and disadvantages of hydraulic system. BTL2
	Advantages of Hydraulic system
	Large load capacity with almost high accuracy and precision.
	Smooth movement.
	Disadvantages of Hydraulic system
	Hydraulic Elements needs to be machined to a high degree of precision.
	Leakage of Hydraulic oil poses problems to hydraulic operators.
7	List the advantages and disadvantages of pneumatic systems. BTL2
	Advantages of Pneumatic system
	Low inertia effect of pneumatic components due to light density of air.
	System is light in weight.
	Disadvantages of Pneumatic systems
	Suitable only for light loads or small loads.
	Availability of the assembly components is doubtful.
8	What is the function of compressor in pneumatic system? BTL2
	It is use to compress the incoming atmosphere air above 5 bar which is used as medium in pneumatic
	system.
9	Name three basic methods of transmitting power. BTL2
	 Electrical power transmission,
	Mechanical power transmission, and
	Fluid power transmission, Hydraulic power transmission, and Pneumatic power transmission
10	In comparison with hydraulic systems, why are pneumatic systems are suitable only for low
	load and low power applications? BTL4
	Since pneumatic pressures are quite low due to the compressor design, the pneumatic systems are
	suitable only for low load and low power applications.
11	What are the basic components that are required for a hydraulic system? BTL2
	The six basic components of a hydraulic system are :
	Reservoir (or tank),
	> Pump,
	> Prime mover
	> Valves,
	> Actuator, and
	Fluid-transfer piping
12	What is demulsibility? Write its significance. BTL2
	The property of a hydraulic fluid to separate rapidly and completely from moisture and to resist
	emulsification is known as demulsibility. Significance: This property is significant because the
	operation of many hydraulic systems are conducive to the forming of moisture or of stable water-in-
	oil emulsions.
13	What is oxidation stability? BTL2
	Oxidation stability is defined as the ability of a liquid to resist reaction with oxygen or oxygen-
	containing compounds.

REGULATION :2017 ACADEMIC YEAR : 2	
14	List few required properties of a good hydraulic fluid. BTL2
	 Stable viscosity characteristics.
	➢ Good lubricity.
	Compatibility with system materials.
	Stable physical and chemical properties.
15	State the law that govern the fluid power system. BTL1
	Pascal's law states that the pressure generated at any point in a confined fluid acts equally in all
	directions.
16	Differentiate between laminar and turbulent flow. BTL2
	A laminar flow is one in which paths taken by the individual particles do not cross one another and
	moves along well-defined paths. The laminar flow is characterized by the fluid flowing in smooth
	layers of lamina. A turbulent flow is that flow in which fluid particles move in a zig-zag way. The
	turbulent flow is characterized by continuous small fluctuations in the magnitude and direction of the
	velocity of the fluid particles.
17	List out the various energy losses when liquid flows through a pipe. BTL2
	Major energy losses: This is due to friction
	> Minor energy losses: These losses are due to Losses in valves and pipe fittings. Sudden
	enlargement/Contraction of pipe, Bend in pipe, etc.
18	Name any four hydraulic fluids that are commonly used. BTL2
	> Petroleum oils.
	➢ Water-in-oil and oil-in-water emulsions.
	➢ Glycols.
	> Phosphate esters.
19	Pump do not pump pressure, Justify the statement. BTL4
	In pump, fluid flow in the inlet line always takes place at negative pressure and hence a relatively low
	flow velocity is needed here. This causes the fluid to the pushed up $\$ and creates it to lift. Due to the
	resistance offered by the system to fluid flow, the pressure get raises to the required level. So, pumps
	do not pump pressure, but, they /produce fluid to flow.
20	List the advantages of hydrostatic pumps over hydrodynamic pumps. BTL2
	They are capable of generate high pressure (over 690 bar).
	> They are relatively small and compact in size.
	> High volumetric efficiency due to less leakages.
21	Classify different types of pumps used in fluid power system. BTL2
	Based on the construction, Hydrostatic pumps are classified as
	i) Gear pumps (Fixed displacement only)
	External Gear pump
	Internal Gear pump
	> Lobe pump
	Screw pump
	> Gerotor pump
	ii) Vane pump (Fixed or variable displacement)
L	

JIT-JEPPIAAR/MECH/Mr.S.ARUN & Mr.S.KANNAN/IIIrdYr/SEM 06 /ME8694/HYDRAULICS AND PNEUMATICS/UNIT 1-5/QB+Keys/Ver1.0

R	EGULATION :2017 ACADEMIC YEAR : 2019-2020
	Balanced vane pump
	Unbalanced vane pump
	iii) Piston pump (Fixed or variable displacement)
	Axial design
	Radial design
22	How the vane pump / piston pump can be made as variable displacement unit? BTL2
	Variable displacement units can be made by either varying the eccentricity of rotor with respect to
	cam ring, in case of vane pumps or by varying the offset angle, in case of piston pumps.
23	Why are positive displacement pumps universally used in fluid power industries? BTL2
	Positive displacement pumps are primarily used where pressure development is the prime
	requirement. This type of pumps is capable of delivering high pressure fluid, so it is universally used
	in fluid power systems.
24	What are piston pumps? Name the two basic types of piston pumps. BTL2
	In piston pumps, the pumping action is affected by a piston that moves in a reciprocating cycle
	through a cylinder. Types: 1. Axial piston pumps, and 2. Radial piston pumps.
25	How can you vary the displacement in an axial piston pump? BTL2
	The variable displacement in an axial piston pump can be achieved by altering the angle of the swash
	plate (or offset angle). Because in axial pumps, this swing angle determines the piston stroke and
	hence the pump displacement.
26	What are the advantages of screw pumps than other gear pumps? BTL2
	Screws are continuous, most reliable.
	> No pressure pulsation will occur.
	> High speed operation is possible with less noise.
	➢ No pump turbulence and oil churning.
	PART * B
1	What are the desirable properties of hydraulic fluids? Discuss them in detail. BTL2
	> Viscosity: (2M)
	It is a measure of the fluid's internal resistance offered to flow. If the viscosity of the hydraulic
	oil is higher than recommended then, the viscous oil may not be able to pass through the pipes.
	The working temperature will increases because there will be internal friction.
	> Oxidation stability: (2M)
	It is caused by a chemical reaction between the oxygen of the dissolved air and the oil. The
	oxidation of the oil creates impurities like sludge, insoluble gum and soluble acidic products
	which cause corrosion and make the operation sluggish.
	> Demulsibility: (2M)
	It's an ability of a hydraulic fluid to separate rapidly from moisture and successfully resist
	emulsification. If oil emulsifies with water the emulsion will promote the destruction of
	lubricating value and sealant properties.
	> Lubricity: (2M)
	Wear results in increase clearance which leads to all sorts of operational difficulties including fall
	of efficiency. Selecting a hydraulic oil care must be taken to select one which will be able to
JIT-JEPI	PIAAR/MECH/Mr.S.ARUN & Mr.S.KANNAN/III rd Yr/SEM 06 /ME8694/HYDRAULICS AND PNEUMATICS/UNIT 1-

RI	EGULATION :2017	ACADEMIC YEAR : 2019-2020
	lubricate the moving parts efficiently.	
	Flash point & Fire point: (3M)	
	Flash point is the temperature at which a liquid g	ives off vapour in sufficient quantity to ignite
	momentarily or flash when a flame is applied. Th	e minimum temperature at which the hydraulic
	fluid will catch fire and continue burning is called	fire point.
	Compressibility: (2M)	
	All fluids are compressible to some extent. Com	pressibility of a liquid causes the liquid to act
	much like a stiff spring. The coefficient of con	pressibility is the fractional change in a unit
	volume of liquid per unit change of pressure.	
2	With neat sketch explain the working of lobe p	ump and gerotor pump with advantages and
	disadvantages. BTL2	
	Lobe Pump:	
	Working: (3M)	
	Gears replaced by lobes - lobes are driven indeper	dently and they do not have actual contact with
	each other - contact is prevented by external time	ng gears - lobes come out of mesh, they create
	expanding volume on the inlet side of the pump -	flows into the cavity and is trapped by the lobes
	rotationliquid travels around interior of casing in	n pockets b/w lobes and casing - meshing of the
	lobes forces liquid through the outlet port under pr	essure.
	Diagram: (3M)	
	Suction	Discharge
		N ETTE
		Three-lobe
		rotor
	Gerotor nump:	
	Working: (3M)	
	Inner gerotor (driver) - outer gerotor (follower) -	nousing - outer gerotor has one more teeth than
	innet gerotor - both rotates in same direction -	have different centre of rotation - when teeth
	disensage space b/w them increases - partial va	such sucks oil inside the chamber - chamber
	reaches maximum volume suction stops - space	diminishes with meshing teeth forces oil to
	discharge	
	Diagram (4M)	

RE	EGULATION :2017	ACADEMIC YEAR : 2019-2020				
	K-factors of common valves and fittings (4M)					
	b. Differentiate between laminar and turbulent fluid flow. (5M) BTL2					
	Laminar Flow	Turbulent Flow				
	Laminar flow is one in which paths taken by	Turbulent flow is that flow in which fluid				
	the individual particles do not cross one	particles move in zig-zag way. The turbulent				
	another and move along well defined paths.	flow is characterised by continuous small				
	The laminar flow is characterised by the fluid	fluctuations in the magnitude and direction of				
	flowing in smooth layers of laminae.	the velocity of the fluid particles.				
	>	G c c c				
	\longrightarrow	CCC				
5	Explain the construction and working of a gea	r pump. BTL2				
	Working: (4M)					
	Two mating gear (driver and follower) - closely	fitted casing - driver shaft coupled with prime				
	mover - inlet and outlet are directly opposite to ϵ	each other - larger straight ports are preferred for				
	better performance - vacuum formed in the cavit	x b/w the teeth as they numesh - pressure rise in				
	nump produced by sequencing action on the fluid	y of w the teen as they difficult pressure rise in				
	Diagram: (6M)					
	Diagram. (OW)					
	Suction	Casing OCOCO Discharge				
	(a) (b)	(c)				
	Analysis of volumetric displacement and theoreti	cal flow rate: (3M)				
	The volumetric displacement and theoretica	I flow rate of a gear pump can be determined				
	as follows :					
	$D_i = Outside diameter of gear te$	teeth in m				
	$L_0 = $ Width of gear teeth in m	teeth in m,				
	N = Speed of pump in rpm.					
	$V_D = Volumetric displacement$	of the pump in m ³ /rev, and				
	$Q_T =$ Theoretical pump flow ra	te in m ³ /sec.				
	If addendum and dedendum of a gear is kno	wn, then inside diameter of gear teeth can be				
	$D_i = D_0 - 2$ (Addendum + De	edendum)				
	The volumetric displacement, from the geom	etry of the gear teeth, is given by,				
	$V_{\rm D} = \frac{\pi}{2} (D^2 - D^2) L$					
	Then the theoretical flow and a calculat	ted as				
	$V_{\rm D} \times N$	mana man				
	$Q_T = \frac{B}{60}$					

	ACADEMIC TEAK . 2017-2020				
	$V_D = 80 \text{ cm}^3$; $Q_A = 1.25 \text{ x } 10^{-3} \text{ m}^3/\text{s}$; $N = 1200 \text{ rpm}$; $P = 75 \text{ x } 10^5 \text{N/m}^2$; $T = 90 \text{ N-m}^3$				
	$\omega = \frac{2\pi N}{60} = 125.66 \frac{7\pi a}{s} (2M)$				
	<i>Overall Efficiency</i> , $\eta_0 = \frac{P \times Q_A}{T_A \times \omega} \times 100 = 82.89\%$ (3M)				
	Theoretical Torque, $T_T = \frac{V_D \times P}{2\pi} = 95.49 N - m$ (3M)				
	b) Calculate the actual flow rate in units of Lps of a radial piston pump for the following				
	specifications:				
	Number of pistons = 9; Diameter of piston = 25 mm; Maximum eccentricity = 10 mm;				
	Speed of rotor = 1800 rpm; Volumetric efficiency = 95%. (5M) BTL5				
	Solution:				
	$Y = 9; d = 25 \text{ mm}; e = 10 \text{ mm}; N = 1800 \text{ rpm}; \eta = 95\%$				
	$Q_T = 0.5 eY \pi d^2 N = 0.159 \frac{m^3}{min} (3M)$				
	$Q_A = Q_T \times \eta_{vol} = 0.151 \frac{m^3}{min} = \frac{0.151 \times 10^3}{60} = 2.516 \ Lps$ (2M)				
	PART * C				
1	What types of fluids are available for hydraulic system? Explain each of them. BTL2				
	Petroleum Oils: (3M)				
	These are the most common among the hydraulic fluids which are used in a wide range of				
	hydraulic applications.				
	The characteristic of petroleum based hydraulic oils are controlled by the type of crude oil				
	used.				
	Naphthenic oils have low viscosity index so it is unsuitable where the oil temperatures vary too widely.				
	> The aromatics have a higher presence of benzene and they are more compatible with				
	moderate temperature variation.				
	> Paraffinic oils have a high viscosity index and they are more suitable for the system where				
	the temperature varies greatly.				
	Water glycols: (3M)				
	> These are solutions contains 35 to 55% water, glycol and water soluble thickener to				
	improve viscosity.				
	Additives are also added to improve anticorrosion, anti wear and lubricity properties.				
	Water oil emulsions: (3M)				
	These are water-oil mixtures.				
	They are of two types oil-in-water emulsions or water-in-oil emulsions.				
	➢ The oil-in-water emulsion has water as the continuous base and the oil is present in lesser				
	amounts as the dispersed media.				
	\blacktriangleright In the water-in-oil emulsion, the oil is in continuous phase and water is the dispersed				
	media.				
	Phosphate Ester: (3M)				
	\blacktriangleright It results from the incorporation of phosphorus into organic molecules.				

RI	EGULATION :2017 ACADEMIC YEAR : 2019-2020					
	They have high thermal stability.					
	They serve as an excellent detergent and prevent building up of sludge.					
	Water: (3M)					
	The least expensive hydraulic fluid is water.					
	> Water is treated with chemicals before being used in a fluid power system. This treatment					
	removes undesirable contaminates.					
2	a. State and explain Pascal's law and With neat sketch, explain the hydraulic jack. (7M)					
	BTL1					
	Pascal Law: (2M)					
	It states that the pressure generated at any point in a confined fluid acts equally in all directions.					
	Hydraulic jack: (5M)					
	$\mathbf{E} P_1 = \frac{F_1}{F_1} \qquad \mathbf{E}_2 = \frac{A_2}{F_1}$					
	$\begin{array}{c} 1 \\ \downarrow \\ \end{array} \qquad \qquad$					
	$d_2 = $					
	$d_1 \qquad \qquad P_2 = \frac{F_2}{A_2}$					
	$F_1d_1 = F_2d_2$					
	$d_1 = \frac{F_2}{F_1} d_2 = \frac{A_2}{A_1} d_2$					
	b. List the advantages and disadvantages of fluid power system. (8M) BTL2					
	Advantages: (4M)					
	> No breakage as in mechanical transmission.					
	> Self lubricated with the hydraulic liquid itself.					
	> Overloads can easily controlled by using relief valves.					
	Simplicity and compactness					
	Disadvantages: (4M)					
	Leakage of oil or compressed air					
	> Busting of oil lines, air tanks					
	More noise in operation.					
3	Explain the working of bent axis and swash plate design of piston pump with advantages					
	and disadvantages. BTL2					
	Bent axis piston pump: (8M)					
	Cylindrical block rotating with drive shaft - offset angle relative to centerline - pistons and					
	cylinders arranged along a circle - ball and socket joints connect piston rods with drive shaft -					
	distance b/w drive shaft flange and cylinder block changes - piston moves in and out of cylinder.					

ACADEMIC YEAR: 2019-2020

ACADEMIC YEAR : 2019-2020

Sl.No.	Description	Hydraulic System	Pneumatic System	Electrical / Electro- mechanical System [†]
1.	Energy	Electrical energy is used to drive the hydraulic pumps, which pressurizes the liquid.	Electrical energy is used to drive the motor of the compressor, which compresses the air/gas.	Electrical energy is used to drive the electric motors.
2.	Medium	Pressurized liquid.	Compressed air/gas.	There is no medium used in this system, rather the energy is transmitted through the mechanical components.
3.	Energy storage	Accumulator (limited).	Reservoir (good).	Batteries (limited).
4.	Regulators	Hydraulic valves.	Pneumatic valves.	Variable frequency drives.
5.	Transmitters	Transmitted through hydraulic cylinders, and hydraulic rotary actuators.	Transmitted through pneumatic cylinders, pneu- matic rotary drives, and pneumatic rotary actuators.	Transmitted through the mechanical components like gears, cams, screw- jack, etc.
6.	Distribution system	Limited, basically a local facility. Upto 100 m, flow rate (v) = 2 - 6 m/s.	Good, can be treated as a plant wide service. Upto 1000 m, flow rate (v) = 20 - 40 m/s.	Excellent, with minimal loss.
7.	Operating speed	V = 0.5 m/s.	V = 1.5 m/s.	

ACADEMIC YEAR : 2019-2020

SI.No.	Description	Hydraulic System	Pneumatic System	Electrical / Electro- mechanical System [†]
8.	Positioning accuracy	Precision upto ± µm can be achieved depending on expenditure.	Without load change, precision of 1/10 mm is possible.	Precision to ± μm and easier to achieve.
9.	Stability	High, since oil is almost incompressible and pressure level is considerably high.	Low, since air is compressible.	Very good values can be achieved using mechanical links.
10.	Forces	Protected against overload, with high system pressure of upto 600 bar, very large forces can be generated. F < 3999 kN.	Protected against overload. Forces are limited by pneumatic pressure and cylinder diameter. F < 30 kN at 6 bar.	Not over-loadable. Poor efficiency due to downstream mechanical elements. Very high forces can be realized.
11.	Energy cost	Medium.	Highest.	Lowest.
12.	Linear actuators	Hydraulic cylinders. It can produce very high force.	Pneumatic cylinders. It can produce medium force.	Short motion via solenoid, otherwise via mechanical conversion
13.	Rotary actuators	Hydraulic rotary drives and hydraulic rotary actuators. - Low speed - High turning moment - Good control - Motion can be stalled	Pneumatic rotary drives and pneumatic rotary actuators. - Wide speed range - Accurate speed - Difficult to control	AC and DC motors - Simple and powerful. AC motors - Cheap DC motors - better control.
14.	Controllable force	Controllable, high force.	Controllable, medium force.	Possible with solenoid and DC motors. Needs cooling, hence
15.	Work environment	Dangerous, unsightly and fire hazardous because of leakage.	Noisy.	Danger, because of electric shock.

UNIT II – HYDRAULIC ACTUATORS AND CONTROL COMPONENTS Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Servo and Proportional valves - Applications - Accessories : Reservoirs, Pressure Switches – Applications – Fluid Power ANSI Symbols – Problems. PART * A Q.No. Questions 1 Define fluid power Actuator. Classify its types. BTL2 Fluid power actuators are devices that perform useful work by extracting energy from the fluid and convert it to mechanical energy. Actuators transmits and controls the fluid power efficiently to provide correct force and speed for any job ranging from simplex to complex. Fluid power actuators may be either linear type or rotary type. There are two types of fluid power actuators. They are (1) Linear actuators (2) Rotary actuators. Linear actuators provide linear motion while rotary actuators provide rotary mechanical motion. Name different types of hydraulic cylinders. BT2 2 ➢ Single acting cylinders, Double acting cylinders, ➢ Telescoping cylinders, ➢ Tandem cylinder and > Through rod cylinders. By what means, single-acting cylinders are retracted? BTL2 3 The single-acting cylinders are retracted using gravity or by the inclusion of compression spring at the rod end of the cylinders. What is meant by cylinder cushioning? BTL2 4 When the pressurised fluid is allowed to enter inside the cylinder, the piston accelerates and travels in the cylinder barrel. If the piston is allowed to travel at the same speed till the end of the stroke, it will hit the end cap with a great impact. To avoid this impact, the piston needs to decelerate at the end of the travel. The arrangement made at the end caps to achieve the same is called 'cylinder cushion'. What do you mean by double-rod cylinder? BTL2 5 A double-rod cylinder, also known as through-rod cylinder has piston rods extending from both ends of the cylinder. These cylinders produce equal force and speed on both sides of the cylinder. Why are double-acting cylinders known as differential cylinders? BTL2 6 Since the piston rod is attached at one side only, the cylinder exerts greater force when extending $[F = P \times A_{piston}]$ than when retraction $[F = P \times (A_{piston} - A_{rod})]$. This results in different pressure levels on either side of the piston and that's why double-acting cylinders are also called as differential cylinders. 7 What do you mean by a limited rotation hydraulic motor? BTL2

RI	EGULATION :2017	ACADEMIC YEAR : 2019-2020			
	The limited-rotation motors provide rotary out	put motion over a finite angle. Usually rotation of			
	the shaft of these motors is 90° , 180° , or 270° .				
8	Name the basic types of rotary actuators. BTL2				
	Continuous rotary actuator, and (a) Gear motor, (b) Vane motors, and (c) Piston motors.				
	Limited rotation hydraulic motors. (a) Vane type, and (b) Piston type.				
9	List any four types of pressure control valves. B	TL2			
	Pressure-compensated valves				
	Unloading valves				
	Pressure relief valve				
	Sequence valves				
	Counterbalance valves				
	Pressure reducing valve				
10	What are fluid power symbols? BTL2				
	Fluid power symbols are used to represent indiv	vidual components in fluid power circuit diagrams,			
	which identify components and their functions	iniquely.			
11	What are actuation devices and list them? BT	L2			
	Actuation devices are components used in hydr	aulics/pneumatic circuits that are used for shifting			
	the valve spool from one position to another. The	ne types of actuation devices are:			
	 Manual actuation devices 				
	Mechanical actuation devices				
	Pilot operated actuation devices				
	Solenoid operated actuation devices				
12	What is two-way valve? BTL2				
	This particular valve has two ports, labeled P and A. P is connected to the pump line and A is the				
	outlet to the system.				
13	What is shuttle valve? BTL2				
	A valve that has two inlets and one outlet is kn	own as shuttle valve. The outlet receives the flow			
	from the inlet whichever is at a higher pressure.				
14	Classify the control valves. BTL2				
	Based on the function, control valves are classif	ied into three types.			
	Direction control valves				
	Pressure control valves				
	Flow control valves				
15	What are the functions of control valves? BT	L2			
	The main functions of control valves are				
	> To regulate the pressure through a system	n			
	> To control and limit flow to the actuator				
	> To maintain contact pressure ratio between output and input to actuator.				
16	Distinguish between pressure reducing valve and pressure relief valve. BTL2				
	Pressure reducing valve	Pressure relief valve			

RI	EGULATION :2017	ACADEMIC YEAR : 2019-2020			
	It is type of hydraulic pressure control	It is a type of pressure control valve that			
	valve that controls the maximum pressure	limits the maximum pressure in a hydraulic			
	in a branch of a circuit.	or pneumatic circuit.			
	The reducing valve reads the pressure	The relief valve reads the pressure upstream.			
	downstream.				
	The pressure reducing valve has an	The pressure relief valve does not have an			
	external drain.	external drain.			
17	What are the three types of control valves bas	sed on their configuration? BTL2			
	Poppet (or seat) valves				
	Sliding spool valve and				
	Rotary spool valves				
18	Name various types of pressure control valves	s. BTL2			
	Pressure limiting (or relief) valves,				
	Pressure reducing valves,				
	Sequence valves,				
	Counter balance valves, and				
	Unloading valves.				
19	What is the use of a pressure relief valve in a	hydraulic system? BTL3			
	The pressure relief valve protects a system fro	om excessive fluid pressure over and above the			
	design pressure limit.				
20	What is the use of sequence valve? BTL2				
	It is a type of hydraulic pressure control valve the	hat is used to force two actuator to be operated in			
	a pre- determined sequence.				
21	What is the purpose of a pressure reducing valve? BTL2				
	A pressure reducing valve is used to supply a prescribed reduced outlet pressure in a circuit and				
	to maintain it at a constant value.				
22	What are flow control valves? Why are they referred as speed-control valves? BTL2				
	Flow control valves, also known as volume-con	ntrol valves, are used to regulate the rate of fluid			
	flow to different parts of a hydraulic system. Si	nce control of flow rate is a means by which the			
	speed of hydraulic machine elements is governed	d, therefore flow control valves are also referred as			
	speed-control valves.				
23	What are sequence valves? BTL2				
	The sequence valves are used to control the fluid	d flow to ensure several operations in a particular			
	order of priority in the system.				
24	What is the function of servo system? BTL2				
	Generally, hydraulic direction control valves are	e working with many actuating devices, especially			
	solenoids. Solenoids can be operated under two	states: shifted and not shifted. So, solenoid valve			
	can be shifted open to allow flow or closed to bl	lock flow. But servo systems are able to precisely			
	position the valve spool between the open an	d closed positions. This allows the flow to be			
	throttled (metered) through the valve and pro	vides precise flow control as well as direction			
	control. Simply, servo systems are integration of	FDCV with FCV.			
	control. Simply, servo systems are integration of				

ACADEMIC YEAR: 2019-2020

Given Data : $Q_{in} = 1.5 \text{ Lps} = 1.5 \times 10^{-3} \text{ m}^3/\text{s}; D = 50 \text{ mm};$
$F_{ext} = F_{ret} = 4300 \text{ N}; d = 25 \text{ mm}.$
© Solution : $A_p = \frac{\pi D^2}{4} = \frac{\pi (0.050)^2}{4} = 1.963 \times 10^{-3} m^2$
and $A_r = \frac{\pi d^2}{4} = \frac{\pi (0.025)^2}{4} = 4.91 \times 10^{-4} \text{ m}^2$
(i) To find the hydraulic pressure during the extending stroke (P_{ext}) :
$P_{ext} = \frac{F_{ext}}{A_p} = \frac{4300}{1.963 \times 10^{-3}} = 21.9 \times 10^5 \text{ N/m}^2 \text{ or } 21.9 \text{ bars} \text{ Ans. } \clubsuit$
(ii) To find the piston velocity during the extending stroke (v_{ext}) :
$v_{ext} = \frac{Q_{in}}{A_p} = \frac{1.5 \times 10^{-3}}{1.963 \times 10^{-3}} = 0.764 \text{ m/s}$ Ans.
(iii) To find the cylinder kW power during the extending stroke :
$(kW \text{ power})_{ext} = v_{ext} (m/s) \times F_{ext} (kW) = (0.764) (4.3) = 3.28 kW$ Ans.
(iv) To find the hydraulic pressure during the retracting stroke (P_{ret}) :
$P_{ret} = \frac{F_{ret}}{(A_p - A_r)} = \frac{4300}{(1.963 \times 10^{-3} - 4.91 \times 10^{-4})}$
= $29.2 \times 10^5 \text{ N/m}^2$ or 29.2 bars Ans.
(v) To find the piston velocity during the retracting stroke (v_{ret}):
$v_{ret} = \frac{Q_{in}}{(A_p - A_r)} = \frac{1.5 \times 10^{-3}}{(1.963 \times 10^{-3} - 4.91 \times 10^{-4})} = 1.02 \text{ m/s}$ Ans.
(vi) To find the cylinder kW power during the retracting stroke :
$(kW \text{ power})_{ret} = v_{ret} (m/s) \times F_{ret} (kN) = (1.02) (4.3) = 4.386 kW Ans. \clubsuit$
It may be noted that the cylinder supplies the more kW power during the retraction stroke than the extending stroke.
4 List and sketch the fluid power ANSI symbol for the five basic classifications. BTL1

UNIT III – HYDRAULIC CIRCUITS AND SYSTEMS

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double-Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

PART * A

Q.No.	Questions		
1	What is the function of accumulator? BTL2		
	Accumulators are temporary storage devices that stores the potential energy of a hydraulic fluid		
	under pressure and acts as a secondary source as demanded by the system.		
2	What are the types of accumulator? BTL2		
	Based on the source of dynamic force to maintain pressure, the accumulators are classified as		
	Weight or gravity-loaded accumulator		
	Spring-loaded accumulator		
	Gas-loaded accumulator		
	The first two are categorized as mechanical accumulators and third one as hydro-pneumatic		
	accumulator.		
3	What is electromechanical relay? BTL2		
	A relay is a electrically actuated switch which open or close when its corresponding coil is		
	energized. These relays are compared for energizing and de-energizing the solenoids as		
	they require high current to operate.		
4	What is the use of intensifier? Mention its applications. BTL2		
	A pressure intensifier or booster is a device which generates pressures to a greater value than the		
	pump discharge pressure by using fluid power.		
	Intensifier finds many applications of which, important are listed below.		
	Burst testing machines		
	 High pressure clamping devices Moulding pressure clamping devices 		
	Moulding machines Shot welding machines		
	> Proting machines		
5	What type of trac is used in see loaded economylaters and why evycen net used for this		
5	purpose? BTI 2		
	Inert gas is used in gas loaded accumulators and oxygen is not used for this purpose because it		
	catches fire and cause explosion.		
6	What is the use of air-to-hydraulic pressure booster? BTL2		
	The air-to-hydraulic pressure booster is a device used for converting compressed air into the		
	higher hydraulic pressure, which is required for operating hydraulic cylinders.		
7	What are the basic requirements for parallel cylinder synchronizing system? BTL2		
	Two cylinders must be identical, but no cylinders are really identical, as manufacturing tolerances		
	may vary.		

	Load should be divided equally for both cylinders	to extend in exact synchronization.		
8	What are the constituents of hydraulic power pack? BTL2			
	Cylinder,			
	 Hydraulic pump, 			
	➢ Hydraulic oil,			
	Reservoir			
9	What is air-oil intensifier? BTL2			
	An air-oil intensifier circuit, which drives a cyli	nder over a large distance at low pressure a	and	
	then over a small distance at high pressure			
10	What is hydraulic fuse? BTL2			
	Hydraulic fuse is a device used in hydraulic systems to prevent hydraulic pressure from			
	exceeding an allowable value in order to protect circuit components from damage.			
11	What is the function of bleed-off circuit? BTL2			
	Bleed off circuits control the fluid flow rate by bleeding off the excess flow back to the tank. This			
	is accomplished by providing a additional line parallel to the system pressure line. To slow down			
	the actuator, some of the flow is bled off throu	igh this line, thereby reducing the flow to t	the	
	actuator. It may be noted that, opening a bleed	l off FCV, slows down the actuator, where	eas,	
	opening a meter in or meter out FCV increases the	e actuator speed.		
	In this system the flow control valve is placed in t	he line loading to the inlet port of the cylinder	r.	
12	What is the difference between meter-in circuit and meter-out circuit? BTL2			
	Meter - in Circuit	Meter - out Circuit		
	Meter - in CircuitIn this system the flow control value is	Meter - out Circuit In this system the flow control value is		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port	Meter - out Circuit In this system the flow control valve is placed in the outlet line of the hydraulic		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.	Meter - out Circuit In this system the flow control valve is placed in the outlet line of the hydraulic system.		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extending	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it is		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is deviced point the arrow	Meter - out CircuitIn this system the flow control valve isplaced in the outlet line of the hydraulicsystem.It controls the oil flow rate out of thecylinder.Excessive pressure is developed in therod end of the cylinder while it isIf meter-out is desired point the arrow		
	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port		
12	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.		
13	Meter - in CircuitIn this system the flow control value is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.		
13	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exter	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.		
13	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exterWhat is the purpose of a fail-safe circuit? BTL2	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.		
13	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exteWhat is the purpose of a fail-safe circuit? BTL2 Fail safe circuit is designed to safeguard the operative circuit is used to safeguard the operative circuit is used to safeguard the operative circuit is used to safeguard the operative circuit is designed to safeguard the operative circuit is used to safeguard the	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.2ntor, the machine, and the workpiece. It prevenentiate and the machine	nts	
13	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exter What is the purpose of a fail-safe circuit? BTL2 Fail safe circuit is designed to safeguard the opera any possible injury to the operator or damage to the whet is meant by on air over air even are present.	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.2ntor, the machine, and the workpiece. It preve machine and the workpiece.	nts	
13 14 15	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exteWhat is the purpose of a fail-safe circuit? BTL2 	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.2toin the and the workpiece. It preve ne machine and the workpiece.2	nts	
13 14 15	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exterWhat is the purpose of a fail-safe circuit? BTL2 	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.2ator, the machine, and the workpiece. It prevene machine and the workpiece.2tain the advantages of each medium. By the u the amouth high pressure action of ail arrow	nts	
13 14 15	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exter 	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.2ntor, the machine, and the workpiece. It prevene machine and the workpiece.2	nts	
13 14 15	Meter - in CircuitIn this system the flow control valve is placed in the line leading to the inlet port of the hydraulic system.It controls the oil flow rate into the cylinder.Less pressure is developed in the rod end of the cylinder while it is extendingIf meter-in is desired point the arrow toward the cylinder port.What is the use of a regenerative circuit? BTL2 A regenerative circuit is used to speed up the exterWhat is the purpose of a fail-safe circuit? BTL2 	Meter - out CircuitIn this system the flow control valve is placed in the outlet line of the hydraulic system.It controls the oil flow rate out of the cylinder.Excessive pressure is developed in the rod end of the cylinder while it isIf meter-out is desired point the arrow away from the cylinder port.2nding speed of the double-acting cylinder.2ator, the machine, and the workpiece. It prevene machine and the workpiece.2tain the advantages of each medium. By the u the smooth high-pressure action of oil can	nts use be	

R	EGULATION :2017 ACADEMIC YEAR : 2019-2020		
16	What are hydropneumatic circuits? BTL2		
	In some applications, the hydraulic and pneumatic circuits are coupled to get best use of the		
	advantages of both oil and air mediums. These combination circuits are known as		
	hydropneumatic or pneumohydraulic circuits.		
17	Name the three ways of applying flow control valves in a fluid power circuit. BTL2		
	Meter-in circuit,		
	Meter-out circuit and		
	➢ Bleed-off circuit.		
18	Why is extension stroke faster than retraction stroke in a regenerative circuit? BTL4		
	This is because oil flow from the rod end regenerates with the pump flow to provide a total flow		
	rater, which is greater than the pump flow rate to the blank end of the cylinder.		
19	What do you mean by sequencing of cylinders? Name some applications where it would		
	be desirable to have sequencing of two cylinders. BTL2		
	In many applications, the operation of two hydraulic cylinders is required to be performed in		
	sequence one after the another. This is known as sequencing of cylinders.		
	Applications : (i) In a drilling machine, clamping and drilling operations should be performed in a		
	sequence. ii) In a punching machine, clamping and punching operations should be performed in a		
	sequence.		
20	What do you mean by synchronization of cylinders? Name some applications where it		
	would be desirable to have two cylinders synchronized in movement. BTL2		
	Synchronization of cylinders is the process of making cylinders to perform identical task at same		
	rate. Application: The application of synchronizing of two cylinders can be found in material		
21	List one two educate see of employing budge means the inequity are widely used in packing industries.		
21	List any two advantages of employing nyoro pneumatic circuits. BTL2		
	oil can be blended		
	These circuits increase the performance of the equipment		
22	List the applications of an intensifier BTL 2		
	Burst testing machines		
	 High pressure clamping devices 		
	 Moulding machines. 		
	 Spot-welding machines. 		
	\succ Riveting machines,		
	> Hydraulic pressing and		
	> Punching machines etc.,		
23	What is an intensifier? BTL2		
	Intensifer is an ancillary part used in hydraulic system to increase the pressure of hydraulic liquid.		
24	What are the advantages of electrohydraulic servo systems over hydromechanical servo		
	systems? BTL2		
	> The electrohydraulic servo system can easily achieve the precision remote control of		
	position, force, and speed of actuator.		

JIT-JEPPIAAR/MECH/Mr.S.ARUN & Mr.S.KANNAN/IIIrdYr/SEM 06 /ME8694/HYDRAULICS AND PNEUMATICS/UNIT 1-5/QB+Keys/Ver1.0

ACADEMIC YEAR : 2019-2020

^{5/}QB+Keys/Ver1.0

RI	EGULATION :2017 ACADEMIC YEAR : 2019-2020				
	Retraction of cylinder 1 and 2: (2M)				
	4/3 DC valve shifted to right - oil flows from pump to rod end of cylinder 2 - piston 2 retracts -				
	oil from blind of cylinder 2 flows to rod end of cylinder 1 - piston 2 retracts.				
8	Explain the speed control circuit of hydraulic system. BTL2				
	Construction: (1M)				
	Filter - unidirectional fixed displacement pump - pressure relief valve - manually operated 4/2				
	DC value - pressure compensated flow control value - double acting cylinder - pressure gauges				
	DC valve - pressure compensated flow control valve - double acting cylinder - pressure gauges.				
	Pressure compensated flow control value connected to blind and of the tailinder extension is				
	Pressure compensated now control valve connected to blind end of the cylinder - extension is				
	controlled - retraction at full speed				
	S FLoad				
	3 Image: Constraint of the second constraint of th				
	$P_1, P_2, P_3 = Pressure gauges$				
	Meter out circuit: (6M)				
	Pressure compensated flow control valve connected to rod end of the cylinder - retraction is				
	controlled - extension at full speed				
	(\mathbf{z})				
	P ₃ P_2 (1) - Line to reservoir (2) - Eilter strainer				
	3 () (i)				
	② ↔ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓				
	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
	Tillow control valve				
	r ₁ , r ₂ , r ₃ – Pressure gauges				
	PART * C				
1	With an example how electro hydraulic servo system works. BTL2				
	Operation: (7M)				
	Feedback device attached to actuator - actuator position or speed - electric signal to servo valve.				
	Feedback signal comparison with electrical input - not intended - electronic summer - error				
	signal.				
	Accurate control relative to position, speed, pressure and load.				
	Diagram: (8M)				

UNIT IV – PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

Properties of air – Perfect Gas Laws – Compressor – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – Cascade method – Electro Pneumatic System – Elements – Ladder diagram – Problems, Introduction to fluidics and pneumatic logic circuits.

PART * A			
Q.No.). Questions		
1	What is a quick exhaust valve? BTL2 Quick exhaust valve is a special purpose three way pneumatic valve that increases the cylinder rod speed by dumping the exhaust air directly to the atmosphere from the cylinder. Use of quick exhaust valves, permits increased cylinder velocities and needs smaller, less expensive DCV. This eliminates the need for exhaust air to travel from the cylinder to the main control valve through long restricted pipe lines.		
2	 Name the factors to be considered for designing fluid power circuits. BTL2 Any circuit design should involve the three major considerations Safety of system/operation System performance of function/operation. Efficiency of system/operation. 		
3	What is the purpose of fluid conditioners? BTL2 The purpose of fluid conditioners is to make the compressed air more acceptable and suitable fluid medium for the pneumatic system components as well as for operating personnel.		
4	How do pneumatic actuators differ from hydraulic actuators? BTL2 Generally pneumatic actuators are of lighter construction and of lesser weight when compared to that of hydraulic actuators. This is because the pneumatic actuators are used mostly for low or medium pressure applications only.		
5	What is a FRL unit? BTL2 The combination of filter, regulator, and lubricator is often labelled as FRL unit or service unit		
6	What is the purpose of a shuttle valve in a pneumatic circuit? BTL2 Shuttle valves are used when control is required from more than one power source. They a generally used to shift the fluid flow from the second and back up source, when the main sour becomes inoperative		
7	What is huidics? BTL1 Fluidics is the technology that utilizes fluid flow phenomena in components and circuits to perform a wide variety of control functions.		
8	 What advantages does fluidics offer? BTL2 Fluidic devices offer exceptional thermal and physical stability and ruggedness. They are completely insensitive to radiation, even of extremely high loads. They are not affected by severe vibration and shock. 		

ACADEMIC YEAR: 2019-2020 **REGULATION :2017** \succ They are not susceptible to wear and tear. Where are fluidic control systems preferred than other control systems? BTL2 9 Fluidic control systems are preferred over other control systems in areas subject to nuclear radiation, magnetic flux, temperature extremes, vibration, and mechanical shock. State the Coanda effect. BTL1 "When a stream of fluid meets other stream, the effect is to change its direction of flow and effect 10 is the fluid sticks to the wall." Name four fluidic devices. BTL2 \succ Bistable flip-flop, ➢ Flip-flop with start-up preference, 11 ➢ SRT flip-flop, > OR/NOR gate. What is a bistable flip-flop? BTL2 A bistable flip-flop provides controlled assurance as to which of the two output ports will deliver 12 the power stream. It is normally used as a memory device. What is a monostable device? BTL2 A monostable device is required to perform monostable function which is analogous to spring 13 return function. In this device, when the control signal is removed, the device will switch back to the favoured output. When do you use a flip-flop with start-up preference? BTL2 A flip-flop with start-up preference is used in applications where a specific output is required 14 when the power supply is first turned ON and all controls are OFF. What is the use of truth table in logic devices? BTL2 15 A truth table helps to describe the functioning of that particular logic device. Give the symbol and truth table for fluidic OR/NOR gate. BTL1 A В Truth Table Inputs 16 Output А В OR NOR 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 What is Boolean algebra? Write its two functions relative to fluid power systems. BTL2 Boolean algebra is'algebra of logic'. This is the algebra of proportions where only two possibilities - true or false - are allowed. Boolean algebra provides the following two functions: 17 It provides a means by which a logic circuit can be reduced to its simplest form. It allows for the quick synthesis of a circuit that is to perform desired logic operations.

RI	REGULATION :2017 ACADEMIC YEAR : 2019-2020		
	Name four fluid sensors that are used in fluid power systems. BTL2		
18	Back-pressure sensor.		
	 Cone-jet Proximity sensor, 		
	Interruptible-jet sensor, and		
	Contact sensing.		
	Define Ladder diagram. BTL1		
19	It is a special standard schematic representation of the physical components arrangement and its		
	way of connections made between them. It is so called because the circuit devices are connected		
	in parallel across the AC line form something looks like a ladder.		
	What is a PLC? BTL2		
20	A programmable logic controller (PLC) is a user-friendly electronic computer designed to		
20	perform logic functions such as AND, OR, or NOT for controlling the operation of industrial		
	equipment and processes.		
	List any four advantages that PLCs provide over electromechanical relay control		
	systems. BTL2		
21	PLCs are more reliable and faster in operation.		
	They are smaller in size and can be more readily expanded.		
	They require less electrical power.		
	They have very few hardware failures when compared to electromechanical relays.		
	What is a solenoid? BTL2		
	It is electromechanical electromagnets that convert the electrical power into mechanical force to		
22	operate fluid power valves remotely. It consists of a coil wrapped removable iron core		
	(Armature). When the solenoid is energized, the magnetic created causes the armature to shift the		
	valve spool.		
	Define relay. BTL1		
23	Relay is an electrically actuated switch which open or close when its corresponding coil is		
	energized. These relays are commonly used for energizing and de-energizing the solenoids as		
	they require high current to operate.		
	Write few applications of electrohydraulic servo valve. BTL2		
24	It is employed in more sophisticated control systems such as on tape controlled machine tools,		
	high speed printing presses, press brakes etc.		
25	What is cascade method in pneumatics? BTL2		
25	It involves dividing the sequence into groups with each group s manifold (power or main pressure		
	line) being supplied with pneumatic power (pressure) one at a time and in sequence.		
	PART * B		
	Explain the FRL trio unit in pneumatic system. BTL2		
1	Description: (6M)		
	Compressor:		
	Pressure vessel with stored compressed air		
	Emulsion made of lubricating oil and condensate.		
	Polluted compressed air, oil, water, solid matter.		
JIT-JEPF	1AAK/MECH/MI.S.AKUN & MI.S.KANNAN/III ¹¹¹ YI/SEM 06 /ME8694/HYDRAULICS AND PNEUMATICS/UNIT 1-		

JIT-JEPPIAAR/MEC 5/QB+Keys/Ver1.0

JIT-JEPPIAAR/MECH/Mr.S.ARUN & Mr.S.KANNAN/IIIrdYr/SEM 06 /ME8694/HYDRAULICS AND PNEUMATICS/UNIT 1-5/QB+Keys/Ver1.0

RI	EGULATION :2017 ACADEMIC YEAR : 2019-2020			
	Step 1: Sequence: $A^+B^+B^-A^-C^+C^-$			
	Step 2: No. of groups: 2			
	Step 3: No. of pressure lines: 2			
	Step 4: No. of pilot operated $4/2$ DC valve = No. cylinders = 3			
	No. of limit values $= 6$.			
	No. of cascade valves $= 1$			
	How the control of air cylinder using preferenced flip-flop is made? BTL2			
	Circuit: (7M)			
3	Air cylinder VI VI VI VI VI VI VI VI VI VI			
	valves, 6 - shuttle valves, 7 - normally closed limit switch, 8 - double acting air cylinder, 0.5 bar			
	represents pressure of the fluidic (pilot) air, 7 bar represents pressure f main air supply.			
	Explain the fluidic sequence control of two pneumatic cylinders. BTL2 Circuit: (7M)			
4	Cylinder 1 Cylinder 2 Cylinder 2 Cylind			
	Construction: (6M)			
	1 - Back pressure sensor 2 - preferenced flip flop 3 - OR/NOR gate 4 & 5 - pilot operated 4/2			
	control value 6 & 7 - normally closed limit switches 8 & 9 - double acting pneumatic cylinders			
	0.5 has represents pressure of the fluidic air. 7 has represents pressure of the main air supply			
	How the continuous reciprocation of a hydraulic cylinder using fluidic controls is made?			
5	BTL2			
	Circuit: (7M)			

REGULATION :2017 ACADEMIC YEAR: 2019-2020 Spoon Ball Force acting Force acting on spoon on ball Force acting Force acting on flow on flow The flow bends due to the The flow bends due to the Coanda effect. Coanda effect. Monosatble flip flop: (6M) Ps PS OR NOR C1 C3 01 02 C C1 0 0 0 C3 1 C5 C3 1 0 1 0 C5 0 1 1 0 1 1 1 0 02 01 NOR(02) OR(01) (a) Construction (b) Symbol (c) Truth table Ps Ps AND NAND C1 C3 01 02 C1 C1 0 0 0 1 C3 1 0 0 1 C3 0 1 0 1 1 1 1 0 02 01 NAND(02) AND(01) (a) Construction (b) Symbol (c) Truth table Bistable filp flop: (6M) Ps Ps P_S – Power stream (Input) C1, C2 – Control signals C2 O1, O2 - Output ports C1 C2 02 01 02 (a) Construction (b) Symbol Electrical relay C1 C2 01 02 CR 0 0 1 0 CR 0 0 1 41 0 0 1 1 CR ∦¥ 0 0 0 1 (e) Pneumatic symbol (d) Electrical symbol equivalent to bistable flip-flop symbol equivalent to bistable flip-flop symbol (c) Truth table Explain the PLC ladder programs for logic functions. BTL2 2 Descriptions: (3M)

The logic functions (such as AND, OR, NOR, etc) can be obtained by comibinations of switches

JIT-JEPPIAAR/MECH/Mr.S.ARUN & Mr.S.KANNAN/IIIrdYr/SEM 06 /ME8694/HYDRAULICS AND PNEUMATICS/UNIT 1-5/QB+Keys/Ver1.0

UNIT V – TROUBLE SHOOTING AND APPLICATIONS

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation – Hydraulic and Pneumatic power packs.

	PART * A			
Q.No.	Questions			
1	What is trouble shooting in hydraulic system? BTL2			
	Finding the faults in various components of hydraulic system like pump, strainer, valve, cylinder			
	and taking remedies to work in proper condition.			
	Define Drilling operation. BTL1			
2	Drilling is the operation of producing a cylindrical hole of required drameter and depth by			
	Mention the selection evitoric of measure tie systems, PTL 2			
	The force or L and required to work must be light or molium and suitable for light weight			
3	applications			
5	 If the application requires speed, a medium amount of pressure, and only a fairly accurate. 			
	feed then an air pneumatic system can be used			
	Name any two faults that can be found in hydraulic systems. BTL2			
4	Usage of low capacity pump and leakage in the hydraulic cylinder can lead to hazardous cause of			
	breakdown of hydraulic system.			
	What is a tree-branching chart? BTL2			
	Tree-branching chart is a chart used to simplify the troubleshooting process. This chart asks a			
5	question which has only two possible answers-Yes or No. The answer determines the next step to			
	be taken in fault analysis. This chart helps to develop a logical and rapid approach to fault			
	diagnosis.			
	List any two selection criteria of hydraulic systems. BTL2			
	Pressure or force produced at the output should be high and the usage of hydraulic system			
	occupies more floor space. It also depends on			
	> Purpose			
6	Stroke requirement			
	> Inrust			
	Speed			
	 Acceleration and deceleration Cylinder mountings 			
	 Special seal requirement 			
	Define a low cost automation. BTL1			
7	Low cost automation is a technology that creates some degree of automation around the existing			
	degree of datomation around the existing			

REGULATION :2017 ACADEMIC YEAR: 2019-2020 equipment, tools, methods, people etc. using mostly standard component. A wide range of activities such as loading, feeding, clamping, machining, welding, forming and packing can be subjected to low cost automation. What are the benefits of low cost automation? BTL2 Reduce manual controls without changing the basic set up. ➢ Low investment 8 Increased labor productivity Consistent quality Better utilization of material. **Define a power pack. BTL1** Power pack consists of a pump, electric motor, reservoir and associated valve assembled to one 9 unit to supply pressurized fluid. They are relatively small in size and provide functions of pressure, direction and flow control within the basic package List three causes for low or erratic pressure in a hydraulic system. BTL2 Very low relief valve setting 10 Leakage of pump delivery within the system Pump slipping its entire volume. List five things that can cause a noisy pump. BTL2 Misalignment of pump and prime mover ➢ Air remains in pump casing 11 Pump bolts very loose Very high viscosity of oil > Pump running too fast. If a pneumatic cylinder has erratic motion, name the causes. BTL4 12 Valve sticking or binding Cylinder sticking or binding. List four basic requirements on which the life of the fluid power systems depend. BTL2 Properly installed equipments Properly trained personnel 13 Planned preventive maintenance Efficient troubleshooting. $\mathbf{\mathbf{\hat{z}}}$ If an air cylinder produces erratic cylinder action, identify the probable causes and also give remedies for them. BTL4 **Probable Causes Remedies** Check for dirt or gummy deposits Valve sticking or binding 14 Check for worn parts Cylinder sticking or binding Check for over tightened packing on rod seal or piston. Check for misalignment or worn parts. List any two types of faults that can be found in each of the components of a FRL unit. 15 BTL4

ACADEMIC YEAR: 2019-2020

 Lubricators: oil not delivered from the lubricator, oil delivery is delayed, too much oil d poor component performance even with oil delivery, reservoir bowl crazed. Air cylinder: cylinder fails to move load when valve is actuated, erratic cylinder action, c body seal leak, rod gland leak, excessive piston seal wear. Valves: valve blows to exhaust, poppet chatters, spool valve action is sluggish, air flow is only in actuated position, solenoid buzzes, solenoid buzzes, solenoid buzzes. 	elivery, ylinder normal erratic
 poor component performance even with oil delivery, reservoir bowl crazed. Air cylinder: cylinder fails to move load when valve is actuated, erratic cylinder action, c body seal leak, rod gland leak, excessive piston seal wear. Valves: valve blows to exhaust, poppet chatters, spool valve action is sluggish, air flow is only in actuated position, solenoid buzzes, solenoid buzzes, solenoid buzzes. 	ylinder normal erratic
 Air cylinder: cylinder fails to move load when valve is actuated, erratic cylinder action, c body seal leak, rod gland leak, excessive piston seal wear. Valves: valve blows to exhaust, poppet chatters, spool valve action is sluggish, air flow is only in actuated position, solenoid buzzes, solenoid buzzes, solenoid buzzes. 	ylinder normal erratic
body seal leak, rod gland leak, excessive piston seal wear. Valves: valve blows to exhaust, poppet chatters, spool valve action is sluggish, air flow is only in actuated position, solenoid buzzes, solenoid	normal erratic
Valves: valve blows to exhaust, poppet chatters, spool valve action is sluggish, air flow is only in actuated position, solenoid buzzes, sol	normal erratic
only in actuated position, solenoid buzzes, solenoid burns out, sequence value gives	erratic
only in actuated position, sciencia cazzes, sciencia caris cat, sequence varie gives	
timing, flow control valve does not respond to adjustment.	
Explain in detail about various faults in hydraulic components. BTL2	
Pump: delivering insufficient or no oil, developing unstable or zero pressure, making	, noise,
pump oil over heated, internal leakage around pump, excessive wear, breakage of parts	inside
pump housing.	
Relief valve: Erratic pressure, no or low pressure, excessive noise or chatter.	
Direction control valves: Faulty or incomplete shifting, cylinder creeping or drifting.	
Hydraulic cylinders: Piston packing failing too often, reduced speed, insufficient force av	ailable
⁴ or no movement at all.	
Hydraulic motor: Motor turning in wrong direction, absence of proper speed and	torque,
external oil leakage from fluid motor, times of operation longer than specified.	
Accumulator: Sudden drop of pressure when position of selector valve is changed, no p	ressure
available after pump is stopped, sluggish response.	
Sequencing valves: Premature movement of secondary operation, no movement c	r slow
secondary operation.	

JIT-JEPPIAAR/MECH/ Mr.M.Kalaimani & Mr.D.Arunkumar/IIIrdYr/SEM 06/ME8091/AUTOMOBILE ENGINEERING/UNIT 1-5/QB+Keys/Ver 1.0

6-1

OBJECTIVES:

- To understand the construction and working principle of various parts of an automobile.
- To have the practice for assembling and dismantling of engine parts and transmission system

AUTOMOBILE ENGINEERING

UNIT I VEHICLE STRUCTURE AND ENGINES

Types of automobiles, vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC engines -component, function sand materials, variable valve timing (VVT).

ENGINE AUXILIARY SYSTEMS UNIT II

Electronically controlled gasoline injection system for SI engines, Electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).

UNIT III TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

UNIT IV STEERING, BRAKES AND SUSPENSION SYSTEMS

Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System(ABS), electronic brake force distribution (EBD) and Traction Control.

ALTERNATIVE ENERGY SOURCES UNIT V

Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles- Engine modifications required -Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell

Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students.

OUTCOMES:

Upon completion of this course, the students will be able to identify the different components in automobile engineering.

Have clear understanding on different auxiliary and transmission systems usual. **TEXT BOOKS:**

1. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 1997.

2. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, NewDelhi, 2002.

ME8091

ACADEMIC YEAR: 2019-2020

3003

9

9

9

TOTAL: 45 PERIODS

9

9

REFERENCES:

- 1. Newton ,Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.
- 2. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.

3. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Goodheart – Will Cox Company Inc, USA ,1978.

- 4. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 5. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.

UNIT I - VEHICLE STRUCTURE AND ENGINES

Types of automobiles, vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC engines –component, functions and materials, variable valve timing (VVT).

PART * A				
Q.No.	Questions			
1.	What are the classification of system?(MAY/JUNE2016)(BTL1) of automobile based on transmission • Manual type • Semi-Automatic • Fully Automatic • Continuously Variable • Automated Manual • Output			
2	What are the advantages of tubeless tyre over tubes tyre?(MAY/JUNE2016) (BTL1) • Lower Tire Pressure • More Comfortable for Hire Speed • Easily puncture repair • Doesn't Puncture easily			
3	 What are the advantages of diesel engine in cars?(MAY/JUNE2014) (BTL1) Diesel engines offer significantly higher efficiency than current gasoline spark-ignition engines Although the modern diesel engine is very clean Eucl cost is low compared to petrol 			
4	How automobiles are classified based on capacity? Give example.(MAY/JUNE2014) (BTL1) Heavy Transport Vehicle – Trucks, Lorry Light Transport vehicle – Car Jeen 			
5	Name the resistance to vehicle motion(APR/MAY 2015) (BTL1) • Air Resistance • Gradient Resistance • Rolling Resistance			
6	Name the components of engine(APR/MAY 2015) (BTL1) i) Cylinder ii) Piston iii) Crank case iv) Connecting rod			
7	What are the types of cross section frames used in automobile? (MAY/JUNE 2016) (BTL1) (a)channel section.(b) tubular section (c)box section (d) hat section (e) double channel or I section			
8	What are the forces acting on running vehicle?(MAY/JUNE 2016) i) Lift Force ii) Drag Force & iii) Cross wind force			
9	What is frameless construction? (APR/MAY 2017) (BTL2) This type of construction has heavy side members used in conventional construction are eliminated and floor is strengthen by cross members and the body, all welded together. In some cases sub frames also used along with this type of construction.			

	State the function of pushrod and rocker arm(APR/MAY 2017) (BTL1)				
10	The push rod and rocker arm actuates valves according to engine stroke by the cams.				
	List the classification of chassis name according to its control method (NOV/DEC2016)				
11	(RTL1)				
	(a) Conventional control chassis (b)Semi formal Chassis (c) Full forward control Chassis				
	Why a Gear box required in an automobile? (NOV/DEC2015) (BTL1)				
	• The main purpose of a gear box is to multiply the torque available in the driving wheels so				
12	that a wide range of torque is available in the same.				
	• Gear box is basically used to shift gears.				
	• The need for gearbox is simple that is you have a control over the reduction ratio				
	Transmit power from engine to wheels				
	What is meant by dumb iron in frame work? (NOV/DEC2013) (BTL2)				
	A Dumb iron is a curved side piece of a chassis to which the front springs are attached, at the				
13	front of the car dumb irons project forward, providing a location to attach the front of the leaf				
	springs.				
	State any four function of lubriconts (NOV/DEC2012) (PTI 1)				
14	• To avoid friction between moving parts				
11	 To reduce excess heat produced 				
	What are the types of engine valve? (NOV/DEC2012) (BTL2)				
15	The valves are usually made of stainless steel. The valves used in modern passenger car engines				
15	are termed as poppet and mushroom valves.				
	Write down the firing order of 4 and 6 cylinder engine. (BTL2)				
16	i) For 4 cylinders engine, the firing order is 1-3-4-2 or 1-4-3-2				
	11) For six cylinder engine, the firing order is 1-5-3-6-2-4 or 1-4-2-6-3-5				
	List out the forces acting on a chassis frame (MAY/JUNE2013) (B1L1)				
	 Reactions from ground acting on tiles and transmitting through suspensions. Weight of different components like engine transmission passengers fuel tank seats 				
	• Weight of unreferit components like engine, transmission, passengers, fuer tank, seats, exhaust etc acting at mounting points				
17	 Centrifugal force acting on the CG during turning 				
	 Aerodynamic forces at considerable speed 				
	• Bending moment and torsion moment along the longitudinal axis				
	• Impact load when the vehicle passes over a hump or a pot hole				
	What are the major functions of the chassis frame?[NOV/DEC 14] (BTL1)				
	• To carry load of passenger or goods carried in the body.				
18	• To support the load of the body, engine, gear box, steering system, Propeller or shaft etc.				
10	• To withstand the forces causes due to sudden breaking or acceleration and withstand the				
	load cause due to bad road condition.				
	To withstand the centrifugal force by cornering				
	Give any two advantages of frameless construction over the conventional framed construction $(MAV/IIINE2012)$ (BTI 1)				
10	Reduce weight and consequent saying in fuel consumption				
17	 Reduce weight and consequent saving in fuel consumption Lower manufacturing cost 				
 Lower manufacturing cost Increase stability of automobile 					
20	Name the sources of automobile pollutents (MAV/IIINE2012) (BTI 2)				
	Maine the sources of automoune pointants.(MA 1/JOINE/2012) (D I L/)				

	Hydrocarbons, Carbon monoxide, Nitrogen oxides, Particulate matter, Sulphur oxide		
	PART * B		
	(i)What is the effect of weight of vehicle and passenger on the frame side member Explain(MAY/JUNE2016) (7 M)(BTL5)		
	 Vertical bending, Longitudinal torsion, Lateral bending, 		
	Horizontal lozenging.7M		
1	(ii)Write note on different types of material used for chassis frame(MAY/JUNE2016) (6 M) (BTL5)		
	• Steel		
	Aluminium		
	• Magnesium		
	Carbon-fibre epoxy composite		
	• Chass-fible composites of		
	(i)Explain the term rolling resistance with the help of neat sketch. (MAY/IUNE 2016)		
2	2 (7 M)(BTL5)		
	the motion when a body (such as a ball, tire, or wheel) rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation (or movement) of the wheel, roadbed, etc. is recovered when the pressure is removed. Two forms of this are hysteresis losses (see below), and permanent (plastic) deformation of the object or the surface.		
	2M		
	F		
	R 2M		
	The "rolling resistance coefficient" $F = C_{rr}N$		
	F is the rolling resistance force		
	C _{rr} is the dimensionless rolling resistance coefficient or coefficient of rolling friction (CRF)		
	Nis the normal force, the force perpendicular to the surface on which the wheel is rolling. 3M		

	(ii)Draw a neat labelled diagram of rear engine wheel drive type of vehicle layout (MAY/JUNE 2016)(6 M)(BTL5)			
	Answer: Page			
	Rear-engine			
	Rear-wheel drive 6M			
3	(1)Give reasons for using single cylinder four stroke petrol engines on two wheelers (MAY/JUNE2014) (6 M)(BTL4)			
	Single-cylinder engines are simple and compact, and will often deliver the maximum power possible within a given envelope. Cooling is simpler than with multiple cylinders, potentially saving further weight, especially if air cooling is used. 2M Single-cylinder engines require more flywheel than multi-cylinder engines, and the rotating mass is relatively large, restricting acceleration and sharp changes of speed. In the basic arrangement they are prone to vibration - though in some cases it may be possible to control this with balance shafts. 2M A variation known as the split-single makes use of two pistons which share a single combustion chamber. 2M (ii)Give reasons for using multi cylinder diesel engines in commercial vehicles. (MAY/JUNE2014) (7 M)(BTL3) A multicylinder engine develops more power. A commercial vehicle needs greater force to propel the vehicle because it carries greater loads. 2M A diesel engine runs at a higher compression ratio and at this compression ratio the thermal efficiency of a multi-cylinder engine is higher than an Otto cycle petrol engine. This means that a diesel engine gives better fuel economy per kilometer. 2M A multi cylinder engine has a greater swept volume and also its surface volume ratio is increased. This results in greater engine output and also better cooling which is essential for the protection of the engine parts like cylinder head, cylinder liner, piston, etc. The lubricating oil is also prevented from partial oxidation. 2M			
4	(i)Write short notes on following engine parts, Piston, Cylinder Head, Piston Ring, Gudgeon Pin, Flywheel, Exhaust Valve, Lubrication Pump (MAY/IIINE 2016) (8 M)(BLT4)			
	Engine parts, 1M			
	Piston,1M Cylinder Head, 1M			

RI	EGULATION :2017 ACADEMIC YEAR : 2019-2020			
	• 4 x 2 Drive Chassis [has 4 wheels with 2 driving wheels]			
	• 4 x 4 Drive Chassis [has 4 wheels with 4 driving wheels]			
	• 6 x 2 Drive Chassis [has 6 wheels with 2 driving wheels]			
	• 6 x 4 Drive Chassis [has 6 wheels with 4 driving wheels]5M			
8	Explain with suitable sketches and valve timing diagram, the working of a variable valve timing (VVT) system used in automobiles. (NOV/DEC2016)(13 M) (BLT4)			
	Answer: Page 533-R.S KHURMI			
	Variable valve timingIn internal combustion engines, variable valve timing (VVT) is the process			
	of altering the timing of a valve lift event, and is often used to improve performance, fuel			
	economy or emissions. It is increasingly being used in combination with variable valve			
	lift systems. There are many ways in which this can be achieved, ranging from mechanical			
	devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are			
	causing[citation needed] many automotive manufacturers to use VVT system			
	5M			
	VVT Senor (for Right Bank) Cambadi Timing Oil Control Vilve Bagine Coolant Temp. Senor ECM Cambadi Timing Oil Centrol Vilve VVT Senor (for Left Bank) Craskdaft Position Senor			
	3M			
	I ypical effect of timing adjustments			
	Late intake valve closing (LIVC)			
	Early intake valve closing (EIVC)			
	Early intake valve opening			
	Early/late exhaust valve closing 5M			
9	Draw the layout of an automobile and indicate its various components(NOV/DEC2015) (13 M) (BLT4)			
	Answer: Page 533-R.S KHURMI			

R	EGULATION :2017 ACADEMIC YEAR	: 2019-2020	
	<image/> <image/>	Л	
	In automotive design, the automobile layout describes where on the vehicle the engine and drive		
	wheels are found. Many different combinations of engine location and driven wheels are found in		
	practice, and the location of each is dependent on the application for which the vehicle will be		
	used. Factors influencing the design choice include cost, complexity, reliability, packaging		
	(location and size of the passenger compartment and boot), weight distribution, and the vehicle's		
	intendedhandling characteristics.	4M	
	Front-wheel-drive layouts	3M	
	Rear-wheel-drive layouts	3M	
	PART * C		
1	Discuss the various resistance encountered by an automobile.(15 M)(BTL4)		
	Answer: Page 528-R.S KHURMI		
	Aerodynamic drag	5M	
	Gradient resistance	5M	
	Rolling resistance	5M	
2	Explain the frameless construction type vehicles with neat sketch and example.		
	(15 M)(BTL4)		
	Answer: Page 528-R.S KHURMI ADVANTAGE OF FRAMELESS CONSTRUCTURE * light in weight and hence fuel efficient. * manufacturing cost is less. * safe for the passenger during collision , since the body crumbles thereby absorbing due to impact. * more stable automobile can be made because of the lower body construction.	g the shock	
	DISADVANTAGE OF FRAME LESS CONSTRUCTION * less strength and durability. * cost of repair is height. * economical only if adopted in mass production. * car without roof are difficult to design. APPLICATION OF FRAME LESS CONSTRUCTION it is possible only in case of closed car, since the roof, screen pillars,door pillars and are essential load taking parts of the structure. A third type of body construction is the space frame. it is made by steel stamping we this is similar to tube chassis and roll cage in a race car plastic panels fasten to the sp complete the body.	rear panel Ided together bace frame to	
---	---	--	
3	Explain why automobile engine causes vibration when it started and stands idle effect. (15 M) (BTL3)	e. Discuss the	
	Sometimes the vibration depends on certain speeds, not by deceleration and Sometime when driving and braking, the steering wheel shakes heavily, a common reason for that is the brake rotors. Out of round brake rotors somet the reason for the error ongine shaking	acceleration. nd the most	
	the reason for the car engine shaking.	5M	
	Causes for automobile engine vibration	5M	
	Causes for automobile engine vibration • The Crankshaft Damper	5M	
	Causes for automobile engine vibration • The Crankshaft Damper • Faulty Engine Mount	5M	
	Causes for automobile engine vibration • The Crankshaft Damper • Faulty Engine Mount • Spark Plug Issues • Extreme Weather	5M	
	Causes for automobile engine vibration The Crankshaft Damper Faulty Engine Mount Spark Plug Issues Extreme Weather Car Axle 	5M 5M	
	Causes for automobile engine vibration The Crankshaft Damper Faulty Engine Mount Spark Plug Issues Extreme Weather Car Axle solution for automobile engine vibration	5M 5M	
	Causes for automobile engine vibration • The Crankshaft Damper • Faulty Engine Mount • Spark Plug Issues • Extreme Weather • Car Axle solution for automobile engine vibration • Step 1: Spot The Problem Source	5M 5M	
	Causes for automobile engine vibration • The Crankshaft Damper • Faulty Engine Mount • Spark Plug Issues • Extreme Weather • Car Axle solution for automobile engine vibration • Step 1: Spot The Problem Source • Step 2: Analyze The Problem	5M 5M	

UNIT II -ENGINE AUXILIARY SYSTEMS

Electronically controlled gasoline injection system for SI engines, Electronically controlled diesel injection system (Unit injector system, Rotary distributor type and common rail direct injection system), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).

PART * A	
Q.No.	Questions
1.	Enumerate the factors which affect battery life. [NOV/DEC 13] (BTL1)
	1. Driving style 2. Extreme temperatures 3. Dirt 4. Low driving
2	What is CRDI? [NOV/DEC 12] (BTL2) Common rail direct fuel injection is a direct fuel injection system for diesel engines. On diesel engines, it features a high-pressure (over 1,000 bar or 100 MPa or 15,000 psi) fuel rail feeding individual solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors (or pump nozzles).
	What are the components of battery? [NOV/DEC 12] (BTL2)
3	There are three main components of a battery: two terminals made of different chemicals (typically metals), the anode and the cathode; and the electrolyte, which separates these terminals. The electrolyte is a chemical medium that allows the flow of electrical charge between the cathode and anode.
	Write any two benefits of CRDI system. [MAY/JUN 13] (BTL1)
4	 Fuel can be supplied and discharged into the cylinder at a very high pressure Finer atomization of fuel Produce better combustion, Lower soot production
	Multiple smaller injections per stroke
5	 Name the drawbacks of Carburetor in multi-cylinder engine. [MAY/JUN 13] (BTL1) At a very low speed, the mixture supplied by a carburetor is so weak that it will not ignite properly and for its enrichment, at such conditions some arrangement in the carburetor is required The working of carburetor is affected by changes of atmospheric pressure. It gives the proper mixture at only one engine speed and load, therefore, suitable only for engines running at constant speed increase or decrease
	What is exhaust gas recirculation? [MAY/JUN 13] (BTL2)
6	The process of re-circulating about 10% of the inert gas back into the intake manifold to reduce the combustion temperature when peak combustion temperature exceeds 19500C. It is done to avoid the formation of excessive nitrogen oxides (NO2) formation.
7	Write the two methods of lead acid battery charging. [MAY/JUN 12] (BTL1) Constant Current Charging, Constant Voltage Charging
8	List out the major components in an electronic fuel injection system. [NOV/DEC 14] (BTL1) (1)Pumping element (2)Metering Element (3) Mixing Element (4) Metering Control (5) Mixture Control (6) Distributing Element (7) Timing Element (8) Ambient Control
9	What is the role of regulator unit in electrical systems? [NOV/DEC 14] (BTL2)
	Faster the vehicle moves more voltage goes into the car's electrical system. If this weren't

RI	REGULATION :2017ACADEMIC YEAR : 2019-2020		
	controlled the generator would damage the battery and burn out the car's lights. Also, if the		
	generator weren't cut out from the car's circuitry when not running, the battery would discharge		
	through its case. To avoid above two mistake a voltage regulator is used.		
10	List out the emissions that are common for both SI and CI engines. [NOV/DEC 16] (BTL1)		
10	(a) HC (b) CO (c) NOx (d)Particulate matters		
	What is the need of altering the ignition timing with respect to engine speed and		
	load?(MAY/JUNE 2016) (BTL2)		
	• The ignition timing will need to become increasingly advanced (relative to TDC) as the		
	engine speed increases so that the air-fuel mixture has the correct amount of time to fully		
11	burn. As the engine speed (RPM) increases, the time available to burn the mixture		
11	decreases but the burning itself proceeds at the same speed, it needs to be started		
	increasingly earlier to complete in time.		
	• The ignition timing is also dependent on the load of the engine with more load (larger		
	throttle opening and therefore air: fuel ratio) requiring less advance (the mixture burns		
	faster).		
12	What are the factors that affect the life of spark plug?(MAY/JUNE2016) (BTL1)		
	(a)Overheating Damage (b)Oil Contamination (c)Carbon		
	Enlist the limitation of turbo charging(MAY/JUNE2014) (BTL2)		
13	The main limitation of turbo charging is Turbo Lag. Turbo lag is the time it takes for a		
	turbocharger to "light up" or produce positive manifold pressure drastically changing the power		
	output of a motor.		
	Write the main requirements of an injector nozzle(MAY/JUNE2014) (BTL1)		
1.4	• To inject fuel at a sufficiently high – pressure so that the fuel enters the cylinder with a		
14	The repetration should not be high		
	• The penetration should not be mgn. • The fuel supply and out off should be regid		
	• The fuel supply and cut off should be fapid. What is applying injection system(A DD/MA V2015) (DTL 2)		
	The gasoline is highly pressurized and injected via a common rail fuel line directly into the		
	combustion chamber of each cylinder, as opposed to conventional multipoint fuel injection that		
15	injects fuel into the intake tract or cylinder port. Directly injecting fuel into the combustion		
	chamber requires high-pressure injection, whereas low pressure is used injecting into the intake		
	tract or cylinder port.		
	What are the function of turbocharger(APR/MAY2015) (BTL2)		
	The function of a turbocharger is to improve an engine's volumetric efficiency by increasing		
16	density of the intake gas (usually air) allowing more power per engine cycle. The turbocharger's		
	compressor draws in ambient air and compresses it before it enters into the intake manifold at		
	increased pressure.		
	Define continuous injection of petrol engine(MAY/JUNE2016) (BTL2)		
17	In a continuous injection system, fuel flows at all times from the fuel injectors, but at a variable		
17	flow rate. This is in contrast to most fuel injection systems, which provide fuel during short		
	pulses of varying duration, with a constant rate of flow during each pulse. Continuous injection		
	systems can be multi-point of single-point, but not direct.		
	supersharged?(A DD/MA V2017) (BTL 2)		
	Superchargeu: (AI N/1/1AI 2017) (DIL2) Commonly used supercharger is Positive Displacement supercharger. There are two main types		
18	of superchargers defined according to the method of gas transfer positive displacement and		
	dynamic compressors. Positive displacement blowers and compressors deliver an almost constant		
	level of pressure increase at all engine speeds (RPM). Dynamic compressors do not deliver		
15 16 17 18	 The pretration should not be high. The fuel supply and cut off should be rapid. What is gasoline injection system(APR/MAY2015) (BTL2) The gasoline is highly pressurized, and injected via a common rail fuel line directly into the combustion chamber of each cylinder, as opposed to conventional multipoint fuel injection that injects fuel into the intake tract or cylinder port. Directly injecting fuel into the combustion chamber requires high-pressure injection, whereas low pressure is used injecting into the intake tract or cylinder port. What are the function of turbocharger(APR/MAY2015) (BTL2) The function of a turbocharger is to improve an engine's volumetric efficiency by increasing density of the intake gas (usually air) allowing more power per engine cycle. The turbocharger's compressor draws in ambient air and compresses it before it enters into the intake manifold at increased pressure. Define continuous injection of petrol engine(MAY/JUNE2016) (BTL2) In a continuous injection system, fuel flows at all times from the fuel injectors, but at a variable flow rate. This is in contrast to most fuel injection systems, which provide fuel during short pulses of varying duration, with a constant rate of flow during each pulse. Continuous injection systems can be multi-point or single-point, but not direct. Which is most commonly used supercharger in automobile? why petrol engines are rarely supercharged?(APR/MAY2017) (BTL2) Commonly used supercharger is Positive Displacement supercharger. There are two main types of superchargers defined according to the method of gas transfer positive displacement and dynamic compressors. Positive displacement blowers and compressors deliver an almost constant level of pressure increase at all engine speeds (RPM). Dynamic compressors do not deliver 		

REGULATION :2017 ACADEMIC YEAR: 2019-2020 pressure at low speeds; above a threshold speed, pressure increases with engine speed Give short note on unit injector system. (APR/MAY2017) (BTL1) Unit injector is an integrated direct fuel injection system for diesel engines, combining the 19 injectornozzle and the injection pump in a single component. The plunger pump used is usually driven by a shared camshaft. In a unit injector, the device is usually lubricated and cooled by the fuel itself. Define intermittent injection of petrol engine(NOV/DEC2016) (BTL2) 20 Intermittent fuel injection systems provide fuel during short pulses of varying duration, with a constant rate of flow during each pulse. PART * B What are primary and secondary batteries? Give the details about the major components, Working principles and energy storage in secondary battery. [NOV/DEC 14] (13 M) (BTL4) A flashlight battery, or dry cell, is constructed with a zinc shell that serves as the anode; a graphite rod which serves as the cathode; and a moist mixture of ammonium chloride {NH₄Cl}, zinc chloride $\{ZnCl_2\}$, and manganese dioxide $\{MnO_2\}$. A schematic representation of a dry cell is shown on the right. The half-reaction that occurs on the anode when the battery delivers current is the oxidation of zinc atoms: $Zn(s, shell) \longrightarrow Zn_2^+(aq) + 2e^-$ The half-reaction that occurs simultaneously on the cathode is the reduction of ammonium ions: $2 e^{-} + 2 NH_4^+(aq, moist paste) \longrightarrow 2 NH_3(g) + H_2(g)$ 1 cathode more detai less detai Lecla<mark>nché d</mark>ry cell cross-section A porous graphite electrode is embedded in the moist paste and readily conducts electrons from the external circuit to the aqueous ammonium ions. Take another look at the products of the reduction that occurs at the graphitic cathode. Two gases are being produced in a sealed container! Not to fear, our battery will not explode as additional reactions essentially fix the two gases:

3

 $2 \text{ NH}_{3(g)} + Zn^{+2} (aq) \longrightarrow [Zn(NH_3)_2]^{2+}(aq)$

In this reaction, zinc ion, primarily from ZnCl₂, is acting as a Lewis acid; the complex formed solubilizes the gas.

2 (i)Explain electronic spark timing control with a circuit diagram. [MAY/JUN 16] (BTL3)

The spark-Optimizer is a closed-loop type electronic control device that continuously corrects the ignition timing; in effect it re-tunes the engine some ten times every second. In contrast to the better known pre-programmed controls, the Optimizer is an adaptive type system, in which the output influences the input. By providing the correct spark timing all the time, the Optimizer reduces fuel consumption considerably.

(i)What are the advantages of transistorized coil ignition (TCI) System? [MAY/JUN 16] 4 (BTL4)

REGULATION :2017

- A CDI system has a short charging time, a fast voltage rise (between $3 \sim 10 \text{ kV/}\mu\text{s}$) compared to typical inductive systems ($300 \sim 500 \text{ V/}\mu\text{s}$) and a short spark duration limited to about 50-80 µs. The fast voltage rise makes CDI systems insensitive to shunt resistance, but the limited spark duration can for some applications be too short to provide reliable ignition. The insensitivity to shunt resistance and the ability to fire multiple sparks can provide improved cold starting ability.
- Since the CDI system only provides a short spark, it's also possible to combine this ignition system with ionization measurement. This is done by connecting a low voltage (about 80 V) to the spark plug, except when fired. The current flow over the spark plug can then be used to calculate the temperature and pressure inside the cylinder.

(ii)Sketch and explain the capacitive discharge ignition system[MAY/JUN 16](13 M) (BLT4) Answer: Page 528-R.S KHURMI

Most ignition systems used in cars are inductive discharge ignition (IDI) systems, which are solely relying on the electric inductance at the coil to produce high-voltage electricity to the spark plugs as the magnetic field collapses when the current to the primary coil winding is disconnected (disruptive discharge). In a CDI system, a charging circuit charges a high voltage capacitor, and at the instant of ignition the system stops charging the capacitor, allowing the capacitor to discharge its output to the ignition coil before reaching the spark plug.

RI	REGULATION :2017 ACADEMIC YEAR : 2019-2020	
	boosting the pressure. When the supercharger is driven by gas turbine which derives gas from	
	engine exhaust, it is called TURBO CHARGER. The turbocharger is bolted to the exhaust	
	manifold of the engine. The exhaust from the cylinders spins the turbine, which works like	
	agas turbine engine. The turbine is connected by a shaft to the compressor, which is located	
	between the air filter and the intake manifold. The compressor pressurizes the air going into	
	the pistons.	
6	What are the main function of ECU?[NOV/DEC2016] (13 M)(BTL4)	
	ELECTRONIC CONTROL UNIT:	
	Electronic Control Unit acts as a Central Processing Unit which	
	receives the signals from various sensors and automatically	
	• monitors and regulates the system. Various parts controlled by ECU are represented in	
	picture	
	• In modern vehicles, which uses fuel injection for petrol engine operates in the sequence as	
	shown below. Vehicle which uses direct fuel injection are	
	MAZDA, AUDI, VOLKSWAGEN, BMW, ALFA	
7	Describe the construction details of distributor type diesel fuel injection pump with sketch. [NOV/DEC2016] [MAY/JUN 16](13 M) (BTL4)	
	Answer: Page 533-R.S KHURMI	
	Each injector operates in the following manner. fuel under pressure enters the injector through the injector's filter cap and filter element. From the filter element the fuel travels down into the supply chamber (that area between the plunger bushing and the spill deflector). The plunger operates up and down in the bushing, the bore of which is open to the fuel supply in the supply chamber by two funnel-shaped ports in the plunger bushing.	
	he motion of the injector rocker arm (not shown) is transmitted to the plunger by the injector follower which bears against the follower spring. As the plunger moves downward under pressure of the injector rocker arm, a portion of the fuel trapped under the plunger is displaced into the supply chamber through the lower port until the port is closed off by the lower end of the plunger. The fuel trapped below the plunger is then forced up through the central bore of the plunger and back out the upper port until the upper port is closed off by the downward motion of the plunger. With the upper and lower ports both closed off, the remaining fuel under the plunger is subjected to an increase in pressure by the downward motion of the plunger.	
	When sufficient pressure has built up, the injector valve is lifted off its seat and the fuel is forced through small orifices in the spray tip and atomized into the combustion chamber. A check valve, mounted in the spray tip, prevents air in the combustion chamber from flowing back into the fuel injector. The plunger is then returned back to its original position by the injector follower spring. On the return upward movement of the plunger, the high pressure cylinder within the bushing is again filled with fresh fuel oil through the ports. The constant circulation of fresh, cool fuel through the injector renews the fuel supply in the chamber and helps cool the injector. The fuel flow also effectively removes all traces of air that might otherwise accumulate in the system.	

ACADEMIC YEAR : 2019-2020

(ii)Draw and explain the circuit diagram of electronic ignition system using a magnetic pick up method. [NOV/DEC2016](13 M) (BLT5)

Answer: Page 533-R.S KHURMI

To understand the working of the electronic ignition system let's consider above figure in which all the components mentioned above are connected in their working order.

When the driver switch ON the ignition switch in order to start a vehicle the current starts flowing from the battery through the ignition switch to the coil primary winding, which in turn starts the armature pickup coil to receives and send the voltage signals from the armature to the ignition module.

When the tooth of the rotating reluctor comes in front of the pickup coil as shown in the fig the voltage signal from pickup coil is sent to the electronic module which in turn senses the signal and stops the current to flow from primary coil.

When the tooth of the rotating reluctor goes away from the pickup coil, the change in voltage signal is sent by pickup coil to the ignition module and a timing circuit inside ignition module turns ON the current flow.

A magnetic field is generated in the ignition coil due to this continuous make and break of the circuit which induced an EMF in secondary winding which increases the voltage upto 50000 Volts.

This high voltage is then sent to distributor, which has the rotating rotor and distributor points which is set according to the ignition timing.

When the rotor comes in front of any of those distributor points the jumping of voltage through the air gap from the rotor to the distributor point takes place which is then sent to the adjacent spark plug terminal through the high tension cable and a voltage difference is generated between the central electrode and ground electrode which is responsible for generating a spark at the tip of the spark plug and finally the combustion takes place.

PART * C Draw a sketch of three way catalytic converter and explain its principle of operation. 1 [NOV/DEC2015] [APR/MAY2015] (15 M)(BTL4) INSULATION CERAMIC HONEYCOMB INSULATION COVER SHIELD INTUMESCENT The Catalytic Convertor Converts the toxic gases like HC, CO, NOx into harmless gases. It contains ceramic or metallic base with active coating incorporating alumina and other oxides with combination of precious metals like platinum, palladium and rhodium. Inside the passage way of catalytic convertor is a honey comb set passage way or ceramic bead coated with catalyst. It makes chemical reaction without being part of the reaction. Convertors may TWO WAY or THREE WAY Catalytic convertor. Two Way convertors are Oxidation catalytic convertor. Three ways Convertor are Oxidation as well as Reduction Catalytic Convertor. In 3 Way Convertors, 3 refer to emission control of CO, HC and Volatile Organic Compounds (VOC). It uses 2 types of Catalyst >> Oxidation Catalyst & Reduction Catalyst both structure coated with a catalyst such as Platinum, Rhodium & Palladium. **REDUCTION CATALYST** is the first stage of catalytic convertor which uses platinum & rhodium to help reduce NOx emissions. Compare BS Standard and Euro Standard emission norms for a diesel engine and petrol 2 engine vehicle.(15 M) (BTL4) Bharat stage emission standards (BSES) are emission standards instituted by the Government of India to regulate the output of air pollutants from internal combustion enginesand Spark-ignition engines equipment, including motor vehicles. The standards and the timeline for implementation are set by the Central Pollution Control Board under the Ministry of Environment & Forests and climate change European emission standards define the acceptable limits for exhaust emissions of new vehicles

RECHLATION +2017

A CADEMIC VEAR • 2010-2020

K	EGULATION :2017 ACADEMIC TEAR : 2019-2020
	sold in the European Union and EEA member states. The emission standards are defined in a
	series of European Union directives staging the progressive introduction of increasingly stringent
	standards
	What is the nurmess of WCT & VCT and explain its working principle in detail (15 M)
3	what is the purpose of wG1 & vG1 and explain its working principle in detail. (15 M)
	(BTL3)
	wastegate turbochargers (WGTs)
	Exhaust Gas Wastegate
	Intake
	Engine 2, Loss e
	Intake Pressure Signal
	• A wastagete is a value that diverts exhaust gases eway from the turbing wheel in
	A wastegate is a valve that diverts exhaust gases away from the turbine wheel in
	a turbocharged engine system.
	• Diversion of exhaust gases regulates the turbine speed, which in turn regulates the
	rotating speed of the compressor. The primary function of the wastegate is to regulate the
	maximum boost pressure in turbocharger systems, to protect the engine and the
	turbocharger. One advantage of installing a remote mount wastegate to a free-float (or
	non-WG) turbo includes allowance for a smaller A/R turbine housing, resulting in less
	lag time before the turbo begins to spool and create boost.
	Variable-geometry turbochargers (VGTs)
	• Variable-geometry turbochargers (VGTs), (also known as variable nozzle
	turbines/VNTs) are a family offurbochargers usually designed to allow the
	turbines/vivis), are a family orturboenargers, usually designed to anow the
	effective aspect ratio (A:R) of the turbo to be altered as conditions change. This is done
	because optimum espect ratio at low optime speeds is very different from that at high
	because optimum aspect ratio at low engine speeds is very different from that at high
	engine speeds. If the aspect ratio is too large, the turbo will fail to create boost at low
	speeds, if the aspect ratio is too small, the turbe will shake the angine at high speeds
	speeds, if the aspect failo is too sman, the turbo will choke the engine at high speeds,
	leading to high exhaust manifold pressures, high pumping losses, and ultimately lower
	norman autout. Dry altering the accounting of the truthing hereing as the angles and the
	power output. By altering the geometry of the turbine nousing as the engine accelerates,
	the turbo's aspect ratio can be maintained at its optimum. Because of this, VGTs have a
	minimal amount of log house a low baset threshold and any second of the table
	minimal amount of lag, nave a low boost threshold, and are very efficient at higher
	engine speeds. VGTs do not require a waste gate.

ACADEMIC YEAR : 2019-2020

REGULATION :2017

UNIT III -TRANSMISSION SYSTEMS

types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints ,Differential and rear axle, Hotchkiss Drive and Torque Tube Drive

PART * A		
Q.No.	Questio	ons
	Differentiate between live and a dead axle. [NOV	7/DEC 13] (BTL2)
	LIVE AXLE	DEAD AXLE
1.	 An axle that is driven by the engine or prime mover is called a drive axle. Modern front-wheel drive cars typically combine the transmission (gearbox and differential) and front axle into a single unit called a transaxle. 	A dead axle, also called a lazy axle, is not part of the drive train, but is instead free- rotating. The rear axle of a front-wheel drive car is usually a dead axle.
2	How is drive from propeller shaft turned at right Slip joint and Universal joint used at end of properight angle.	t angle? [NOV/DEC 13] (BTL1) eller shaft is reason for converting te drive at
	State the functions of a clutch. [NOV/DEC 12] (H	BTL2)
3	To engage or disengage the rest of the transmission	as required.
5	To transmit the engine power to rear wheels withou	t shock.
	To enable the gear to get engaged when the vehicle	is in motion.
	This type of gear box is similar to the constant me	sh type. The provision of synchromesh device
4	avoids the necessity of double declutching. The par	ts which ultimately are to be engaged are first
	brought into frictional contact which equalizes th smoothly.	eir speed, after which these may be engaged
5	List the disadvantages of floor mounted gear shi	fting mechanism. [MAY/JUN 13] (BTL1)
	(a) Complexity (b) Shifting Speed (c) Ease of Use (d) Stopping on hills
	Define the term 'double declutching' used in slid The clutch pedal is used twice during a gear ch	ing mesh gear box. [MAY/JUN 13] (BTL2)
	twice- hence the name.	ange, meretore unsengaging me transmission
6	1. Clutch pedal depressed and accelerator relea	sed, gear stick shifted to neutral position.
	2. Using the throttle, the engine speed is match	ed as closely as possible to the gear speed.
	3. The clutch pedal is depressed again and the requ	ired gear is selected and throttle pedal is used
	to accelerate the vehicle.	to develop poize while supping[MAV/IIIN
	12] (BTL1)	to develop hoise while running[MA1/JUN
7	Grinding and squeaking from the drive shaft is freq	uently caused by worn universal joints.
	A clunking sound, when going from acceleration t	o deceleration or deceleration to acceleration,
	may be caused by slip yoke problems.	
	A whining sound from the drive shaft i	s sometimes caused by a dry, worn center

	support bearing.	
	Where and why do we use the multiple clutch sys	stem? [NOV/DEC 14] (BTL1)
8	A multi-plate clutch has more than one driven plate. Multi-plate type of clutch finds a use in	
	automatic gearboxes. In these gearboxes, a number	or of clutches hold the various gear elements,
	and as the clutch diameter in these units is limited, a	a multi-plate clutch is suitable.
	Distinguish between transfer box and over drive.	[NOV/DEC 14] (BTL2)
	TRANSFER BOX	OVERDRIVE
0	Transfer case is a part of four wheel drive	Gear in a motor vehicle providing a gear ratio
)	system used in four wheel drive and all wheel	higher than that of direct drive (the usual top
	drive vehicles which provides a two speed	gear), so that the engine speed can be reduced
	transmission to obtain low gear and direct	at high road speeds to lessen fuel
	gear in vehicles.	consumption or to allow further acceleration.
	Why do we provide slip joint in the pro	peller shaft? [NOV/DEC 16] (R08,R13)
10	(APR/MAY2015) (BTL1)	
10	Slip joint serves to adjust the length of the p	ropeller shaft when demanded by the rear
	axle movements.	
	What is the function of differential? [NOV/DEC	16] (MAY/JUNE2016) (BTL1)
11	A vehicle with two drive wheels has the problem	that when it turns a corner the drive wheels
	must rotate at different speeds to maintain tractio	n. The automotive differential is designed to
	drive a pair of wheels while allowing them to rotate	at different speeds.
	State the function of main shaft and lay shaft of a	a gear box?(MAY/JUNE2016) (BTL2)
	MAIN SHAFT	
	It is the shaft which runs at the vehicle speed. It c	arries power form the counter shaft by use of
12	gears and according to the gear ratio, it runs at di	therent speed and torque compares to counter
	LAV SHAFT	
	Δ lay shaft is an intermediate shaft within a gearb	ox that carries gears, but does not transfer the
	primary drive of the gearbox either in or out of the	pearbox
	What do you meant by overdrive?(MAY/IUNE2	016) (BTL1)
10	Gear in a motor vehicle providing a gear ratio high	er than that of direct drive (the usual top gear).
13	so that the engine speed can be reduced at high road	speeds to lessen fuel consumption or to allow
	further acceleration.	1 1
	What is known as one way clutch?(MAY/JUNE2	014) (BTL2)
14	One way Clutch is also called as freewheel, it trans	smit torque in one direction and disengages or
	freewheels in another direction.	
	Mention few important causes of axle failure(MA	Y/JUNE2014) (BTL2)
	Any of the two half shaft may be broken	
15	Splines on the axle shaft may be stripped	
	The teeth of some gear in the rear axle drive may be	e stripped
	The taper key at the hub be fracture.	
16	Name the types of clutches(APR/MAY2015) (NO	V/DEC2016) (NOV/DEC2015) (BTL1)
	i)Wet clutch ii)Dry clutch iii)Cone clutch	
	iv)Centrifugal clutch v)Positive clutch vi)Vacuum	clutch
	what are the functions of gear box?(MAY/JUNE	(BTL1) (BTL1)
17	A gearbox converts the rotational energy of the er	igne to a rotational speed appropriate for the
	wheels. Mechanical gearboxes do so with simple	ple gears. Automatic gearboxes use more
	complicated planetary gear sets	

RI	EGULATION :2017 ACADEMIC YEAR : 2019-2020
	What is a free wheel? What is the importance of the free wheel in the transmission of an
	automobile?(APR/MAY2017) (BTL2)
	Free wheel is a device which is installed between propeller shaft and the gear box. (Also there is
10	overdrive between propeller shaft and gearbox) Free wheel makes the wheel to rotate wheel
18	freely when propeller shaft is disengaged from the engine or gear box
	To reduce the wear on transmission system
	To reduce the wear on transmission system.
	To reduce the fuel consumption on sloping downward
	Using this, at low speed gear changing is simplified
10	Write short note on panhard rod(APR/MAY2017) (BTL1)
19	A Panhard rod (also called Panhard bar or track bar) is a suspension link that provides lateral
	location of the axle.
	Define Tractive Force (BTL1)
20	The torque available on the wheel produces a driving force which is parallel to road known as
	tractive effort.
	ΡΔΡΤ * Β
	Explain the working of a torque converter with neat sketch.[NUV/DEC 13] [MAY/JUN 13]
	(13 M) (BTL3)
	The parts of a torque converter (left to right): turbine, stator, pump
	The pump section of the torque converter is attached to the housing.
	The torque converter turbine: Note the spline in the middle. This is where it connects to the
	transmission
	The stator sends the fluid returning from the turbine to the nump. This improves the efficiency of
	The stator sends the finde feturing from the tarbine to the pump. This improves the efficiency of
	the torque converter. Note the spline, which is connected to a one-way clutch inside the stator.
	Torquo Convertor
1	Torque Converter
1	torque converter housing
	(connects to Flywheel)
	Flywheel Turbine output shaft
	(connects to engine) (connects to transmission)
	Stator output shaft
	(connects to read shart
	Turbine
	Pump (fixed to baseing)
	Stator
	©2000 How Stuff Works
2	With a neat sketch, explain the working of simple floor mounted gear shifting
	mechanism.[MAY/JUN 13] [MAY/JUN 12] (MAY/JUNE2016)(13 M) (BTL5)
	The mechanism that transmits engine four to the rear wheel (in case of rear wheel drive vehicle)
	or to the front wheel. (In front wheel drive vehicle) or to all the four wheel (in four wheel drive
	vehicles) is known as a transmission system.
l	,

N	ACADEMIC TEAK . 2017-2020
	The gear box and its associated units perform the following function on
	A gear box assists in variation of torque (or tractates effort) produced
	by the engine in accordance with the driving conditions.
	A large torque is required at the start of the vehicle and a low torque at higher speeds. oIt helps in smooth running of the vehicle at different speed since variation a torque induces.
	Answer: Page
3	What is the need of clutch system in automotive vehicle? Classify the types of clutch. Explain the working of centrifugal clutch with neat schematic[NOV/DEC 14] (MAY/JUNE2016)(13 M) (BTL5)
	Clutch is a machine member used to connect the driving shaft to a driven shaft, so that the
	driven shaft may be started or stopped at will, without stopping the driving shaft. A clutch thus
	provides an interruptible connection between two rotating shafts. Clutches allow a high inertia
	load to be stated with a small power.
	Clutches are used whenever the ability to limit the transmission of power or motion needs to be
	controlled either in amount or over time (e.g. electric screwdrivers limit how much torque is
	transmitted through use of a clutch; clutches control whether automobiles transmit engine power
	to the wheels).
	Types of clutch
	Single plate clutch
	Multi plate clutch
	Cone clutch
	Centrifugal clutch
	Centrifugal Clutch
	It consists of two members one is fitted to the driving shaft and other to the driven member. It is
	a drum which encloses the driving member. The driving member consists of a spider, shoes
	having friction linings at outer end. The springs exert a radially inward force.

RI	REGULATION :2017 ACADEMIC YEAR : 2019-2020	
	Centrifugal Clutch	
	shaft by a Bush Wheel 24 suitably spaced with flat washers 1421 63d	
	Motor input 140z 58	
4	Explain the construction details of Hotchkiss and torque tube drive rear axle drive system.[NOV/DEC 14] [NOV/DEC 12] [APR/MAY2017] [MAY/JUNE2016](13 M) (BLT4)	
	Hotchkiss Drive	
	It consists of two longitudinal leaf spring and propeller shaft. The propeller shaft has slip joint.	
	* The front end of the leaf springs is hinged to the frame and the rear end is connected with the	
	frame by swinging shackles.	
	* The driving force is transferred from the axle casing to the front end of the spring and then to	
	the frame. Hence, both rear end torque and driving thrust are opposed by the springs.	
	HOTCHKISS REAR AXLE	
	Roll center	
	Leaf spring	
	It is similar to Hotch kiss drive but uses a hollow tube which encloses the propeller shaft. The	
	tube is rigidly connected to the differential housing at one end. The other end of the tube is	
	connected to the gearbox casing by a flexible ball and socket arrangement. The driving thrust	
	and rear end torque are carried by a hollow tube.	
	Intelligent solution: the torque tube with an integrated CRP drive shaft links engine and transmission	
	Torque tube CRP drive shaft	
	AMG double-clutch transmission	
5	With the help of neat sketch, explain the construction and operation of a sliding mesh gear	

box.[NOV/DEC 16] (13 M)(BTL4)

1st Gear:

When driver wand's to move the vehicle he engage the 1st dog to the with the help of gear shifting levees as the dog slides on engage to the 1st gear it starts rotate with 1st gear and tends to rotate the main shaft like 1st gear operates.

2st Gear:

As driver move fast again he slides the second dog and makes engage with second gear on main shaft (medium gear). As the dog engager to the second gear it rotates with second gear and tents to rotate the main shaft with high speed and low torque.

3rd Gear(Top gear)

To move the vehicle fast a gain the driver shift the second dog and make engages to the third or top gear. As the dog engages to the 3rdgear the dog rotates with gear and lends to rotate the main shaft with faster.

6 Explain types of gear boxes in detail with neat sketches(MAY/JUNE2016)(13 M)(BTL4) Answer: Page 607-R.S KHURMI MANUALGEARBOX 1) Sliding mesh gearbox. 2) Constant mesh gearbox. 3) Synchromesh gearbox.

R	EGULATION :2017 ACADEMIC YEAR : 2019-2020
	the pinion shaft. This is because they exert equal force on the two differential gears. As a result,
	the side gears turn at the same speed as the ring gear, which causes both drive wheels to turn at
	the same speed also. However, when the car begins to round a curve, the differential pinion
	gears rotate on the pinion shaft. This permits the outer wheel to turn faster than the inner wheel.
8	
	(i)What are the types of rear axle casing?[MAY/JUNE2016] (BLT3)
	Following are the three different types of axles
	Rear Axles
	• Front Axle
	• Stub Axle
	(ii)What are the rear axle drive? and explain with neat sketch[MAY/JUNE2016]
	(13 M) (BLT5)
	Rear Axle
	In between the differential and the driving wheels is the rear axle to transmit power from the differential to the driving wheels. It is clear from the construction of the differential, that the rear axle is not a single piece, but it is in two halves connected by the differential, one part is known as the half shaft.
	The inner end of the half shaft is connected to the sun gear of the differential. and the outer end of the driving wheel. In rear-wheel-drive vehicles, the rear wheels are the driving wheels. Whereas, in front-wheel drive vehicles, the front wheels are the driving wheels. Almost all rear axles on modern passenger cars are live axles, that is, they revolve with the wheels.
	Dead axles simply remain stationary, do not move with the wheels. A housing completely encloses the rear axles and the differential, protecting them from water, dust and injury, in addition to mounting their inner bearings and providing a container of the lubricant.
	Answer: Page 533-R.S KHURMI
9	
2	(i)Explain construction and working principle of constant mesh gear boy with peat
	sketch.[APR/MAY2017] (BLT3)

This type of gears is fixed to their positions. They are meshed. It is a type of manual transmission. It is this gear box that we use in today's automobiles, right? Synchromesh is absent here. It shows a simple constant mesh gear box though from it you will not be able to understand its simulation. I would suggest that you try to analyze how the power is transmitted through main shaft to the wheels through clutch and gear system. We use various gear ratios to control the vehicle speed. It is that gear box in which sliding synchronizing units are provided in place of sliding Clutches as in case of constant mesh gear box. With the help of synchronizing unit, the speed of both the driving and driven shafts is synchronized before they are clutched together through train gears. The arrangement of power flow for the various gears remains the same as in the constant mesh gear box.

(ii)Describe the line diagram of synchromesh unit and mention the component (spring with ball type system)[NOV/DEC2016](13 M) (BLT5) Answer: Page 533-R.S KHURMI

Synchromesh gear devices work on the principle that two gears to be engaged are first Brought into frictional contact which equalizes their speed after which they are engaged readily and smoothly.

REGULATION :2017 ACADEMIC YEAR: 2019-2020 The synchromesh type of transmission has the big advantage of allowing smooth type and quick shifting of gears without danger of damaging the gears and without necessity for double clutching. The synchromesh gear box is considered the most advanced and has been adopted in most cars. PART * C 1 (i)What are the functions of transmission systems? [NOV/DEC2016] (ii)Sketch and explain the working method of fluid flywheel [NOV/DEC2016] (15 M)(BTL4) The fluid flywheel is used in cars with automatic transmission. It consists of two members; the driving member is attached to the engine flywheel and the driven member to the transmission shaft. There is no direct contact between the two members. The two rotors are always filled with fluid of suitable viscosity. A simplified diagram representing the fluid flywheel is shown. At start tube X is rotating say at N rpm and Y tube is stationary. With the movement of fluid in X and Y, Y also starts rotating but at a lower speed. The speed goes on increasing till the speed equals to N rpm, then the coupling is fully engaged. Fluid flywheel Answer: Page 528-R.S KHURMI Compare the applications of sliding mesh, constant mesh and synchromesh gear box. 2 (15 M) (BTL4)Answer: Page 528-R.S KHURMI Sliding Mesh

UNIT IV -STEERING, BRAKES AND SUSPENSION SYSTEMS

Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System(ABS), electronic brake force distribution (EBD) and Traction Control.

PART * A		
Q.No.	Questions	
1.	Define the term 'braking efficiency'. [NOV/DEC 2013] (BTL12) The brake efficiency, which is expressed as a percentage, calculates how effective your brakes are when you lightly and heavily tap on them. The brakes efficiency is dependent on the weight of your vehicle and the force of your brakes.	
2	State functions of steering gears. [NOV/DEC 2013] (BTL2) A function of steering wheel, the rotary motion of the steering wheel is converted into straight line motion of the linkage by the steering gears. The gear which is used for steering arrangement is worm gear. Steering gear is the device used for controlling the direction of a vehicle.	
3	What is steering geometry? [NOV/DEC 2012] (BTL1) Steering geometry is a geometric arrangement of linkages in the steering of a car or other vehicle designed to solve the problem of wheels on the inside and outside of a turn needing to trace out circles of different radii.	
4	What is the use of stub axle? [NOV/DEC 2012] (BTL2) A stub axle is one of the two front axles that carry a wheel in a rear wheel drivevehicle. The axle is capable of limited angular movement about the kingpin for steering the vehicle. The stub axle consists of wheel bearings which support the wheel hub.	
5	Define 'camber' and 'castor'. [MAY/JUN 2013] (BTL2) Camber angle is the angle made by the wheels of a vehicle; specifically, it is the angle between the vertical axis of the wheels used for steering and the vertical axis of the vehicle when viewed from the front or rear Caster angle or Castor angle is the angular displacement of the steering axis from the vertical axis of a steered wheel in a car, motorcycle, bicycle or other vehicle, measured in the longitudinal direction	
6	Define 'King pin inclination'. [MAY/JUN 2012] (BTL2) The kingpin angle is set relative to the true vertical line, as viewed from the front or back of the vehicle.	
7	Write the functions of automobile suspension system. [MAY/JUN 2012] (BTL1) To safeguard the passengers and goods against road shocks. To pressure the stability of the vehicles while in motion. To maintain proper steering geometry. To bear the torque and braking reaction.	
8	What is bleeding of hydraulic brakes? [NOV/DEC 2014] (BTL2) Brake bleeding is the procedure performed on hydraulic brake systems whereby the brake lines (the pipes and hoses containing the brake fluid) are purged of any air bubbles. This is necessary because, while the brake fluid is an incompressible liquid, air bubbles are compressible gas and their presence in the brake system greatly reduces the hydraulic pressure that can be developed within the system.	

REGULATION :2017 ACADEMIC YEAR: 2019-2020 What do you mean by telescopic steering wheel? [NOV/DEC 2016] (BTL2) Between the wheel and the dash on the steering column is found a metal tab that is the adjusting 9 collar. This collar is attached to a threaded insert that when loosened screws out away from a metal rod that actuates the locking device. It is a fairly simple device. What is self-energizing brake?(MAY/JUNE2016) (BTL1) 10 Self – Energizing brake uses the force (typically torque) generated by friction to increase the clamping force of the brake shoes. Why synchronizer is required in the automotive transmission system?(MAY/JUNE2016) **(BTL1)** 11 Synchronizer is required in the automotive transmission system is to avoid double clutching and smooth engagement of gears. What is the advantage of having rigid axle suspension?(MAY/JUNE2014) (BTL2) Simplicity 12 Space efficient, durable in high load environment Cheap to manufacture Better vehicle articulation With regard to steering what is Toe-in and Toe-out?(MAY/JUNE2014) (BTL2) Toe-in The front wheels are usually turned in slightly in front so that the distance between the front ends A is slightly less than the distance between the back ends B, when viewed from the top. The 13 difference between these distances is called toe-in. The amount of toe-in is usually 3 to 5 mm. Toe-out The inner front wheel turns a larger angle than the outer while turning. So the wheels are made toe-out on turns due to the difference in their turning angles and thereby avoiding tyre scrub. Name the types of front axles.(APR/MAY2015) (BTL1) 14 i) Live front axle ii) Dead front axle What is meant by traction control(APR/MAY2015) (BTL2) 15 Traction control is an active vehicle safety feature designed to help vehicles make effective use of all the traction available on the road when accelerating on low-friction road surfaces. What is the function of the tension spring in the clutch plate?(MAY/JUNE2016) (BTL2) Clutch springs can be found in use on most motorcycle clutch assemblies. The function of these 16 short coil springs is to continuously hold the friction and driven plates together through spring tension, preventing slippage except when the clutch lever is engaged. Most often, five or more clutch springs are used per motorcycle clutch assembly. Name the classification brake system(MAY/JUNE2016) (BTL1) 17 (a) Mechanical brakes (b) Hydraulic brakes (c) Air brakes (d) Vacuum brakes (e) Electric brakes. Give types of stub axle(APR/MAY2017) (BTL2) 18 i) Elliot type stub axle ii) Reversed Elliot stub axle iii) Lamoine stub axle iii) Reversed Lamoine stub axle Name any four types of suspension spring(NOV/DEC2016) (BTL2) 19 (a)Leaf Spring (b)Semi Elliptical Spring (c)Torsion Beam (d)Coil Spring List down any two types of steering gear.(NOV/DEC2015) (BTL1) (a)Worm and Sector Steering Gear (b)Worm and roller Steering Gear (c)Cam and double lever 20 steering gear (d)Worm and Ball bearing nut steering gear (e)Cam and roller steering gear (f)Cam and peg steering gear (g)Rack and pinion steering gear PART * B Discuss the working of diagonal braking system with a layout. Also explain the working of 1 master cylinder in a hydraulic brakes.[MAY/JUN 2013]

movement of the wheels and stabilizes the car.

ACADEMIC YEAR : 2019-2020

Your car's suspension system must be in good condition. Worn suspension components may reduce the stability of the vehicle and reduce driver control, as well as accelerate wear on other suspension system components. Replacing worn or inadequate shocks and struts will help maintain good ride control, as they:

- Control spring and suspension movement
- Provide consistent handling and braking
- Prevent premature tire wear .
- Help keep the tires in contact with the road •
- Maintain dynamic wheel alignment •
- Control vehicle bounce, roll, sway, drive, and acceleration squat •
- Reduce wear on other vehicle systems •

REGULATION :2017 ACADEMIC YEAR : 2019-2020	
	conditions. The actual amount of assistance given depends upon the resistance offered to
	movement of the road wheels.
	Types of power steering systems:
	1. Integral power steering, in which the power operating assembly is part of the steering
	gear.
	 Linkage power steering, in which the power opening assembly is part of the linkage. (ii)What is the 'Under steering' and Over steering'?[NOV/DEC 2013] (13 M)(BTL5)
4	(i)With neat sketch explain the construction and operation of a shock absorber[MAY/JUNE2016] (BTL4)
	A shock absorber (in reality, a shock "damper") is a mechanical or hydraulic device designed to
	absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into
	another form of energy (typically heat) which is then dissipated. Most shock absorbers are a form
	of dashpot (a damper which resists motion via viscous friction).
	Roating
	piston
	pressure of of
	Q25 0 11
	(ii)What are the requirements of good braking system?[NOV/DEC2015](13 M) (BI T5)
	(ii) what are the requirements of good braking system. [NOV/DEC2013](15 NI) (DE13)
	The brake must be strong enough to stop the vehicle within minimum distance. It is inversely
	proportional to brake efficiency and proportional to square of speed.
	Provide good control over vehicle during emergency braking and vehicle must not skid
	After prolonged period of application of brakes, the coefficient of friction drops and property of
	brake material changes which leads to less braking effect. This is called Brake Fade and hence
	brakes must have antifade characteristics.
	Cooling of the brakes must be very efficient
	The maximum retarding force F applied by the brakes at the wheels must be close to $F=\mu N$
	The brake torque depends upon effective axle height and braking force between road surface and
	tyre. Hence anchor pin supporting brake shoes must have enough strength to withstand high
	braking load.
5	Explain any one of the front independent suspension system with neat diagram[APR/MAY2017] (13 M) (BTL5)
	Independent suspension is any automobile suspension system that allows each wheel on the
	same axle to move vertically (i.e. reacting to a bump in the road) independently of the others.
	This is contrasted with a beam axle or deDion axle system in which the wheels are linked -
	movement on one side affects the wheel on the other side. "Independent" refers to the motion or
	path of movement of the wheels or suspension. It is common for the left and right sides of the
	suspension to be connected with anti-roll bars or other such mechanisms. The anti-roll bar ties the
	left and right suspension spring rates together but does not tie their motion together.

Types

- Double wishbone suspension
- Multi-link suspension
- MacPherson strut
- Transverse leaf-spring

Transverse leaf-spring

6Draw the schematic diagram of pneumatic
[MAY/JUNE2016] [APR/MAY2015] (13 M) (BTL5)braking system and explain it.

An pneumatic brake system or a compressed air brake system is a type of friction brake for vehicles in which compressed air pressing on a piston is used to apply the pressure to the brake pad needed to stop the vehicle.

7 With the aid of neat sketch explain the working principle of antilock braking system[APR/MAY2015] [MAY/JUNE2016] [NOV/DEC2015] (13 M) (BLT5)

UNIT V - ALTERNATIVE ENERGY SOURCES

Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles-Engine modifications required –Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell

Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students.

PART * A		
Q.No.	Questions	
1.	Mention the various methods of storing hydrogen. [NOV/DEC 2013](BTL2) (a)Compressed storage (b)Liquid Storage (c)Solid State Storage	
2	Write down the parts of a fuel cell. [NOV/DEC 2013] (BTL2) Oxidizer.	
3	State the advantages of natural gas. [NOV/DEC 2012](BTL3) Low engine emission. Less aldehyde than withmethanol Natural Gas is abundant worldwide. It can be made from coal. Octane number is 110 and make suitable for SI engine fuel.	
4	What is fuel cell? [NOV/DEC 2012] (BTL1) A fuel cell is electrochemical energy conversion device that continuously converts chemical energy of a conventional fuel is converted directly and efficiently into electrical energy.	
5	What is meant by reformulated and oxygenated gasoline? (BTL1) Reformulated gasoline is gasoline blended to burn more clearly than conventional gasoline and to reduce smog-forming and toxic pollutants in the air. Gasoline additives are added to increase oxygen content in the fuel in order to reduce carbon monoxide and soot produced during burning of fuel.	
6	Define the term 'Esterification'. [MAY/JUN 2012] (BTL2) Esterification is the process of converting Carboxylic acids to ester using acid and alcohol.	
7	How a fuel cell differs from lead acid battery? [NOV/DEC 2014] (BTL1) The biggest difference between the two is that a battery stores energy, while a fuel cell generates energy by converting available fuel. A fuel cell can have a battery as a system component to store the electricity its generating.	
8	State functions of stabilizers. [NOV/DEC 2014] (BTL3) The main function of stabilizer is to make the output voltage that fees the equipment connected to it as much as possible equivalent to the ideal electrical power supply, ensuring that the oscillation in electrical power are offset, and its output maintain a stable value, preventing them from being experienced by equipment and thereby avoiding their damage.	
9	What are the advantages of Hybrid vehicle? [NOV/DEC 2016] (BTL3) Environmental Friendly It runs cleaner and better mileage Regenerative braking system. Less dependent of fossil fuels Built from lighter material Higher resale value.	
R	EGULATION :2017 ACADEMIC YEAR : 2019-2020	
----	--	
	Mention the advantages of LPG usage in automobiles. [NOV/DEC 2016] (BTL3)	
10	Higher heating value	
10	Does not contain sulphur, so burnt cleaner.	
	Releases only 70% of Carbon dioxide	
	What is the need to switch over to alternate source of	
	energy?(MAY/JUNE2016) (BTL3)	
	To reduce pollution	
11	To protect against Global warming	
	To save money & can be produced frequently.	
	Write the reaction takes place during discharging and charging of nickel	
	metal hydride cell(MAY/JUNE2016) (BTL1)	
	When NiMH cell is discharged, the chemical reaction is the reverse of what occurs	
12	when charged. Hydrogen stored in the metal alloy of the negative electrodes is	
	release into the electrolyte to form water. This water the releases a hydrogen ion	
	that is absorbed into the positive electrode to form nickel hydroxide.	
	Define energy intensity(MAY/JUNE2014) (BTL1)	
12		
13	consumption per work unit, often is used.	
	Why is hydrogen called as secondary energy source?(MAY/JUNE2014) (BTL1)	
11	Hydrogen is called as secondary energy source commonly referred to as energy	
14	carrier. Energy carrier are used to move store and deliver energy in the form that	
	can be easily used.	
	Define Hybrid Vehicle. (NOV/DEC2016) (BTL1)	
15	The vehicle which is using more than one source of energy to run is called hybrid	
15	vehicle. Hybrid means something that is mixed together from to things.	
	Write short notes on LDC(MAN/IIINE2016) (DTL2)	
	It is the by product of fractional distillation of patrol consisting mainly of butons	
16	and propage and used as angine fuel. It is formed naturally interspersed with	
10	deposits of petroleum and natural gas	
	Why electrol is an elternate fuel for S Longine?(MAV/IUNE2016) (BTL 1)	
	Alcohol has good calorific value, good volatility, not much higher ignition energy	
17	average autoignition temperature: Viscosity also not much higher easy burning	
	easy availability and easy storing makes it suitable as alternate fuel for SI engine	
-	What are the merits and demerits of supercritical methanol (SCM)	
	transesterification process?(APR/MAY2017) (BTL1)	
	Super critical methanol is any substance at a temperature and pressure above its	
10	critical point where distinct liquid and gas phase do not exist. It can effuse through	
10	solids like gas and dissolve materials like liquids	
	Mention any four types of fuel cells(APR/MAY2017) (BTL2)	
	1 Alkaline fuel cells 2. Solid oxide fuel cells 3. Molten carbonate fuel cells	
19	4 Direct methanol fuel cells	
-	List down any two types of steering gear. (NOV/DEC2015) (BTL2)	
	(a)Worm and Sector Steering Gear (b)Worm and roller Steering Gear (c)Cam and	
20	double lever steering gear (d)Worm and Ball bearing nut steering gear (e)Cam and	
	roller steering gear (f)Cam and peg steering gear (g)Rack and pinion steering gear	

	PART * B
	Explain the various properties of alternative fuels. (13M) [MAY/JUNE2016]
	(BTL3)
1	
1	 Measuring a fuel's relative potential energy can easily be done by defining that fuel's Btu content. A Btu is defined as the amount of heat necessary to raise one (1) pound of water, one (1) degree Fahrenheit.Gasoline and LPG are derived from oil or from natural gas production while CNG comes fromnatural gas. Both oil and natural gas are fossil fuels. The finite reserves of oil are far less than those of natural gas. Farm crops and waste-by-products are the usual sources for methanol and ethanol. The primary CNG component, methane, also may be produced from these sources. From an environmental standpoint, the sulphur content affects the level of tailpipe acids produced as an exhaust by-product. These acids significantly contribute to "acid rain." Acid rain affects plant life, animals, and humans. Environmentalists are deeply concerned over increased exposure and concentrations of automobile-produced, exhaust-oriented, tailpipe emissions. An engine fuel's "antiknock" or octane rating is important to an engine's performance and to the power yield curve. Gasoline has a relatively low octane number, thus compression ratios must be moderated resulting in a lower power yield per cubic inch displacement. Gasoline may be refined to higher octane levels; however, more fuel stocks are needed. Greater waste by-products result as a part of this refining process. Other additives such as tetraethyl lead, phosphorus, and boron were formally used to raise octane ratings. They are no longer used as they damage catalytic converters and are environmentally detrimental. Additionally, exhaust by-products that contain lead are thought to cause some forms of retardation in small children. Tailpipe emissions produced from gasoline yield significant amounts of benzene, a known carcinogen. Other additives, such as MTBE, are being studied to determine if they are carcinogenic. (13M) Explain LPG is an alternate fuel for petrol engine with diagram. Also explain
2	Explain LFG is an alternate rule for perior engine with diagram. Also explain its performance and emission characteristics. (13 M) [APR/MAY2017] BTL3 An alternative fuel vehicle is a vehicle that runs on a fuel other than traditional petroleum fuels (petrol or Diesel fuel); and also refers to any technology of powering an engine that does not involve solely petroleum (e.g. electric car, hybrid electric vehicles, solar powered). Because of a combination of factors, such as environmental concerns, high oil prices and the potential for peak oil, development of cleaner alternative fuels and advanced power systems for vehicles has become a high priority for many governments and vehicle manufacturers around the world. The mixture of liquefied hydrocarbon gases C3-C4 (propane and butane), called colloquially liquefied gas or LPG, is a particular energy carrier, counted among the group of alternative fuels. LPG has more than 1000 different uses, including applications in industry, civil engineering, communal economy, agriculture, households, and transport. Because of simplified logistics of transport ensuring supply diversification, availability of sources, and most of all environmental aspects, LPG exhibits high dynamics of production and consumption; the global production of this fuel comes close to 280 million tonnes. (13M)

3

Explain construction and working principle of hybrid vehicle with neat sketch. (13M) [APR/MAY2017] [APR/MAY2015] (BLT3)

Temperature fuel cell to be used to drive a gas turbine. Initially the researchers are developing small systems ranging from 250 kW to 1 MW, for use by business and light industry for co- generation. (2M)

Explain construction and working principle of hybrid vehicle with neat sketch. (13M) [APR/MAY2017] [APR/MAY2015] BLT3

Temperature fuel cell to be used to drive a gas turbine. Initially the researchers are developing small systems ranging from 250 kW to 1 MW, for use by business and light industry for cogeneration. (2M)

the word hybrid refers to anything that has a combination of two different ideas. When a car uses two different ideas to move, it is called a hybrid car. Usually our cars run on petrol, diesel or gas. But their inefficiency, as explained earlier, led to the invention of electric cars. But, since electric cars also had disadvantages of frequent battery charging and inefficient long drives, there evolved a combination of both. When gas and electricity were used in the combined mode, a better solution was made to the inefficiency and mileage.

A user of a car always asks for some minimum requirements while using a car. They are

For long distances, the car must run for at least 450 kilometres before refuelling. The drive should be smooth and easy.

The car should maintain a good speed so as to cope up with other cars in traffic.

Easy and fast refuelling of cars.

A good mileage

Less pollution

Though most of the conventional cars can provide the first four requirements correctly, they are very much backwards in the case of mileage and pollution. Electric cars, on the other hand can provide a very good mileage and very less pollution. But, the first four requirements will be let down. A combined use of both electric and gas energy will clearly find all these requirements satisfactory.

As Hybrid cars use two energy sources, a lot of energy consumption was reduced for travel (As both the gas and electricity share their energy.) As explained in my article about electric cars, there would not be a disadvantage of recharging the battery frequently. They will be spontaneously charged, while the car is running. Apart from the mileage, the car has also proved to give a performance almost adequate to a conventional car. Due to its improved mileage and reduced pollution, the governments in most countries have been pleased and have helped in its promotion. Parts Of a Hybrid Car

There are mainly 5 essentials for a hybrid car. They are

Conventional car engine – It can be a gasoline engine or also petrol or diesel respectively. But whatever engine is used, will be more advanced than the usual ones, as they have to work together with the electrical system. They will be smaller with greater efficiency and lesser emissions.

Fuel Tank – For storing the fuel needed to rum the car engine.

Batteries – Batteries are needed to store and release energy as required by the car. The energy from the battery is taken by the motor.

Electric Motor and generator – Though motors can act as generators, both of them are needed for this car. A motor will be needed to take energy from the batteries and accelerate the car. Generators, on the other hand, are needed to produce the electrical power.

Transmission System – The entire transmissions that were performed in a conventional car will be done here as well, but in the hybrid manner.

	(6M) [NOV/DEC2015] [MAY/JUNE2016] BTL3
	 Advantages: Compared to petrol, running the vehicle engine on LPG results in around a 10% increase in consumption. Due to higher octane rating, the combustion of LPG is <u>smoother</u> and knocking is eliminated and the engine runs smoothly. When LPG leaks past the rings into the crankcase, it does not wash oil from cylinder walls and does not generate black carbon. Hence, the lubricating layer is not washed away. Thereby, the engine life is increased by 50%. Due to the absence of carbon deposits on the electrodes of the spark plugs, the life of the spark plugs is increased. Disadvantages: LPG reduces the volumetric efficiency due to its high heat of vaporization. Handling has to be done under pressure of about 18 bars.
	 Its characteristics odor is faint, so leakage cannot be easily detected. Response to blending is feeble. (6M)
	 (ii)Explain the performance and emission characteristics of using biodiesel in IC engine. (7M) [NOV/DEC2015] BTL3 Engine performance with LPG: LPG (Di-tertiary-butyl peroxide) Higher thermal efficiency Better fuel economy Nov and smoke level reduced
	Engine performance with Bio diesel:2-8% of engine power losses measured with B-20
	Diesel engine Co2 emission main reason for instigating the use of biodiesel Heating value of biodiesel < fossil fuel
	Engine performance with Ethanol: Alcohol fuel High quality and high engine performance
	Reduced emission Higher performance fuel and keeps high compression engines running smoothly Prevent anti freeze in winter (7M)
	Explain the principle of operation of an electrical vehicle with a neat sketch indicating its merits and demerits. (13 <u>M)[NOV/DEC2015]</u> [APR/MAY2015] [MAY/JUNE2016]BLT3
7	An electric vehicle, also called an <u>EV</u> , uses one or more electric motors or traction motors for propulsion. An electric vehicle may be powered through a collector system by electricity from off-vehicle sources, or may be self-contained with a battery, solar panels or an electric generator to convert fuel to electricity. EVs include, but are not limited to, road and soil vahiales, surface and underwater vascale, shortrin aircraft and electric generator.
	EVs_saw a resurgence due to technological developments, and an increased focus on renewable energy. A great deal of demand for electric vehicles developed and a small core of do-it-yourself (DIY) engineers began sharing technical details for doing electric vehicle conversions. Government incentives to increase adoptions were introduced, including in the United States and the European Union. (2M)

stored in cryogenic form that is oxygen and the fuel are stored in liquid form. The complexity of a cryogenic engine comes at handling this fuel and managing it till it reaches its combustion chamber. Now coming to engines used in roads as well as jet engines use oxygen from air so no need to store that(space programs doesn't have this luxury). Next is the fuel why do we need to store it in cryogenic form, space programs does this to reduce the volume of fuel stored in turn reduce the size. We have fuel stations along all the roads. So we can refuel anytime. So storing more in less space is irrelevant. If a time comes where the energy density of fuel is so low that we need so much of that fuel to run engines there is a chance we might use that. Actually what we do in case of CNG or LPG is theoretically the same but it doesn't reaches cryogenic temperature so no cryogenic engine. We store the LPG/CNG in liquified form to reduce the volume. If some cleaner thes which needed to be stored cryogenically to use in vehicles come to exist, sure cryogenic engines will come to road. Advantages Fuel density Cooling Power density Disadvantages Storage Production Health (15M)