

QUESTION BANK

Regulation	: 2017
Year	: II
Semester	: 04
Batch	: 2018-2022

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Vision of the Institution

Jeppiaar Institute of Technology aspires to provide technical education in futuristic technologies with the perspective of innovative, industrial and social application for the betterment of humanity.

Mission of the Institution

- To produce competent and disciplined high-quality professionals with the practical skills necessary to excel as innovative professionals and entrepreneurs for the benefit of the society.
- To improve the quality of education through excellence in teaching and learning, research, leadership and by promoting the principles of scientific analysis, and creative thinking.
- To provide excellent infrastructure, serene and stimulating environment that is most conducive to learning.
- To strive for productive partnership between the Industry and the Institute for research and development in the emerging fields and creating opportunities for employability.

To serve the global community by instilling ethics, values and life skills among the students needed to enrich their lives.

DEPARTMENTVISION

To enhance and impart futuristic and innovative technological education for the excellence of Electronics and Communication Engineering with new ideas and innovation to meet industrial expectation and social needs with ethical and global awareness reinforced by an efficiency through research platform for the advancement of humanity.

MISSION

M1:To produce competent and high quality professional Engineers in the field ofElectronics and Communication Engineering for the benefit of the society globally.

M2: To provide a conducive infrastructure and environment for faculty and students with enhanced laboratories, to create high quality professionals

M3:To provide Prerequisite Skills in multidisciplinary areas for the needs of Industries, higher education and research establishments and entrepreneurship

M4: To handle Socio Economic Challenges of Society by Imparting Human Values and Ethical Responsibilities.

Program Educational Objectives (PEOs)

PEO 1:Graduate Engineers will have knowledge and skills required for employment and an advantage platform for lifelong learning process.

PEO 2:Graduate Engineers willbe provided withfuturistic education along with the perspective research and application based on global requirements.

PEO 3:Graduate Engineers will have effective communication skills and work in multidisciplinary team.

PEO 4: Graduate Engineers will develop entrepreneurship skills and practice the profession with integrity, leadership, ethics and social responsibility.

Program Specific Outcomes (PSOs)

PSO 1 : Ability to develop and utilize novel, compact and power efficient coherent theoretical and practical methodologies in the field of analog and digital electronics.

PSO 2: Ability to implement analog, digital and hybrid communication Protocol to aspect the challenges in the field of Telecommunication and Networking.

BLOOM'S TAXONOMY

Definition:

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition like thinking, learning and understanding.

Objectives:

- To classify educational learning objectives into levels of complexity and specification. The classification covers the learning objectives in cognitive, affective and sensory domains.
- > To structure curriculum learning objectives, assessments and activities.

Levels in Bloom's Taxonomy:

- BTL 1 Remember The learner recalls, restate and remember the learned information.
- BTL 2 Understand The learner embraces the meaning of the information by interpreting and translating what has been learned.
- BTL 3 Apply The learner makes use of the information in a context similar to the one in which it was learned.
- BTL 4 Analyze The learner breaks the learned information into its parts to understand the information better.
- BTL 5 Evaluate The learner makes decisions based on in-depth reflection, criticism and assessment.
- BTL 6 Create The learner creates new ideas and information using what has been previously learned.

TABLE OF CONTENT

1.MA8451 – PROBABILITY AND RANDOM PROCESSES		
Unit No.	Topic	Page No.
	Syllabus	1.1
Ι	PROBABILITY & RANDOM VARIABLES	1.2
II	TWO - DIMENSIONAL RANDOM VARIABLES	1.21
III	RANDOM PROCCESSES	1.38
IV	CORRELATION AND SPECTRAL DENSITIES	1.51
V	LINEAR SYSTEM WITH RANDOM INPUTS	1.64
2.EC8452 – E	LECTRONIC CIRCUITS II	
	Syllabus	2.1
Ι	FEEDBACK AMPLIFIERS AND STABILITY	2.4
II	OSCILLATORS	2.18
III	TUNED AMPLIFIERS	2.28
IV	WAVE SHAPING AND MULTIVIBRATOR CIRCUITS	2.37
V	POWER AMPLIFIERS AND DC CONVERTERS	2.49
3.EC8491-CO	MMUNICATION THEORY	
	Syllabus	3.1
Ι	AMPLITUDE MODULATION	3.2
II	ANGLE MODULATION	3.16
III	RANDOM PROCESS	3.28
IV	NOISE CHARACTERIZATION	3.35
V	SAMPLING & QUANTIZATION	3.49
4.EC8451 – E	LECTROMAGNETIC FIELDS	
	Syllabus	4.1
Ι	INTRODUCTION	4.2
II	ELECTROSTATICS	4.28
III	MAGNETOSTATICS	4.40
IV	TIME VARYING FIELDS AND MAXWELLS EQUATIONS	4.60
V	PLANE ELECTROMAGNETIC WAVES	4.87
5.EC8453	LINEAR INTEGRATED CIRCUITS	1
	Syllabus	5.1
Ι	BASICS OF OPERATIONAL AMPLIFIERS	5.3
II	APPLICATIONS OF OPERATIONAL AMPLIFIERS	5.12
III	ANALOG MULTIPLIER AND PLL	5.25

IV	ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS	5.36
V	WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS	5.49
6. GE8291 – E	NVIRONMENTAL SCIENCE AND ENGINEERING	
	Syllabus	6.1
Ι	ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY	6.4
II	ENVIRONMENTAL POLLUTION	6.21
III	NATURAL RESOURCES	6.37
IV	SOCIAL ISSUES AND THE ENVIRONMENT	6.60
V	HUMAN POPULATION AND THE ENVIRONMENT	6.67

OBJECTIVES :

MA8451

REGULATION: 2017

To provide necessary basic concepts in probability and random processes for applications

PROBABILITY AND RANDOM PROCESSES

such as random signals, linear systems in communication engineering.

- To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in IT fields. •
- To understand the concept of correlation and spectral densities. •
- To understand the significance of linear systems with random inputs. •

UNIT I PROBABILITY AND RANDOM VARIABLES

Probability – Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables - Moments - Moment generating functions - Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES

Joint distributions - Marginal and conditional distributions - Covariance - Correlation and linear regression -Transformation of random variables - Central limit theorem (for independent and identically distributed random variables).

UNIT III RANDOM PROCESSES

Classification – Stationary process – Markov process - Markov chain - Poisson process – Random telegraph process.

UNIT IV CORRELATION AND SPECTRAL DENSITIES

Auto correlation functions – Cross correlation functions – Properties – Power spectral density – Cross spectral density - Properties.

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS

Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

LTPC

4004

12

12

12

12

TOTAL :60 PERIODS

12

OUTCOMES:

Upon successful completion of the course, students should be able to:

- Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept random processes in engineering disciplines.
- Understand and apply the concept of correlation and spectral densities.
- The students will have an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable. Able to analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS:

1. Ibe, O.C.," Fundamentals of Applied Probability and Random Processes ", 1st Indian Reprint, Elsevier, 2007.

2. Peebles, P.Z., "Probability, Random Variables and Random Signal Principles", Tata McGraw Hill, 4th Edition, New Delhi, 2002.

REFERENCES:

1. Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", Oxford University Press, New Delhi, 3rd Indian Edition, 2012.

- 2. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes ", Tata McGraw Hill Edition, New Delhi, 2004.
- 3. Miller. S.L. and Childers. D.G., —Probability and Random Processes with Applications to Signal Processing and Communications ", Academic Press, 2004.
- 4. Stark. H. and Woods. J.W., —Probability and Random Processes with Applications to Signal Processing ", Pearson Education, Asia, 3rd Edition, 2002.
- 5. Yates. R.D. and Goodman. D.J., -Probability and Stochastic Processes", Wiley India Pvt. Ltd., Bangalore, 2nd Edition, 2012.

Subject Code:MA8451 Subject Name: Probability & Random Processes

Year/Semester: II /04 Subject Handler: Dr.S.Suresh

UNIT I – PROBABILITY & RANDOM VARIABLES

Probability – Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

	PARI *A		
Q.No.	Questions		
	Find the probability of a card drawn at random form an ordinary pack, is a diamond. BTL2		
1.	Total number of ways of getting 1 card = 52 Number of ways of getting 1 diamond card is 13 Probability = $\frac{Number of favourable events}{Number of exhaustive events}$ = $\frac{13}{52} = \frac{1}{4}$		
	A bag contains 7 white, 6 red and 5 black balls. Two balls are drawn at random. Find the probability that they both will be white. BTL2		
	Total balls = 18		
	From these 18 balls 2 balls can be drawn in $18C_2$ ways		
	Total number of ways of drawing 2 balls = 153(1)		
2	2 White balls can be drawn from 7 white balls in $7C_2$ ways.		
	Therefore number of favourable cases $= 21$		
	Probability of drawing white balls = $\frac{No., of favourable events}{Total no., of cases}$		
	$=\frac{21}{153}=\frac{7}{51}$		
	Write the axioms of probability. BTL1		
	Let S be a sample space. To each event A, there is a real number P(A) satisfying the following axioms.		
3	(i) For any event A, $P(A) \ge 0$		
	(ii) $P(S) = 1$ (iii) If A. A. are finite number of disjoint events of S then		
	$IIT_IEPPIA A P/ECE/Dr S SUPESH/II Vr/SEM 04/MA8451/PPOR A BILITY AND PANDOM PROCESSES 1.5/OB+Keys/Ver2.0$		

$$P(A_{1} \cup A_{2} \cup A_{3} \cup ..) = P(A_{1}) + P(A_{2}) + P(A_{3}) + ...$$
A and B are events such that $P(A \cup B) = \frac{3}{4}$; $P(A \cap B) = \frac{1}{4}$, $P(\overline{A}) = \frac{2}{3}$, *Find* $P(\overline{A} / B)$, (Nov/Dec-2019) BTL2

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\frac{3}{4} = \frac{1}{3} + P(B) - \frac{1}{4}$$

$$P(B) = \frac{2}{3}$$

$$P(\overline{A} / B) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)} = \frac{\frac{2}{3} - \frac{1}{4}}{\frac{2}{3}} = \frac{5}{8}$$
Define Baye's theorem. BTL1
Let $A_{1}, A_{2}, ..., A_{n}$ be 'n' mutually exclusive and exhaustive events with $P(A_{1}) \neq 0$ for $I = 1, 2, ..., n$. Let 'B' be an event such that $B \subset \bigcup_{i=1}^{N} A_{i}$, $P(B) \neq 0$ then $P(A_{i} / B) = \frac{P(A_{i}) \cdot P(B / A_{i})}{\sum_{i=1}^{n} P(A_{i}) \cdot P(B / A_{i})}$
Define Random variable, (Nov/Dec2013, Apr/May 2017) BTL1
6 A random variable is a function that assigns a real number X(S) to every element $s \in S$ where 'S' is the sample space corresponding to a random experiment E.
7 where $p(s) = \left\{\frac{2}{3}(\frac{1}{3})^{s}, x = 0, 1, 2...$ (Apr/May 2017) BTL5
 0 , otherwise

8

9

$$\begin{split} \sum p(x) &= \sum_{n=0}^{\infty} \frac{2}{3} \left(\frac{1}{3} \right)^n = \frac{2}{3} \left(\frac{1}{3} \right)^n + \frac{2}{3} \left(\frac{1}{3} \right)^1 + \frac{2}{3} \left(\frac{1}{3} \right)^2 + \dots \\ &= \frac{2}{3} \left[1 + \frac{1}{3} + \left(\frac{1}{3} \right)^2 + \dots \right] \\ &= \frac{2}{3} \left[\frac{1}{3} - \frac{1}{3} \right]^1 = \frac{2}{3} \left[\frac{2}{3} \right]^1 \\ &= \frac{2}{3} \left[\frac{2}{3} \right]^1 = 1 \end{split}$$

Since $\sum p(x) = 1$, the given function P(x) is a legitimate probability mass function of a discrete random variable 'X:

A random variable X has the following probability function.
$$\hline \frac{|X| = x}{|x|} 0 = \frac{1}{2} = \frac{2}{3} = \frac{3}{4} = \frac{5}{6} = \frac{7}{7} = \frac{8}{114} \\ \hline \frac{1}{33} = \frac{5}{3} = \frac{5}{73} = \frac{7}{3} = \frac{9}{3} = \frac{114}{133} = \frac{15}{153} = \frac{17}{173} \\ \hline Find the value of 'a'. BTL5 \\ \sum P(x) = 1 \\ a + 3a + 5a + 7a + 9a + 11a + 15a + 17a = 1 \\ & 81a = 1 \\ a = \frac{1}{81} \\ \hline If the random variable X takes the values 1, 2, 3 and 4 such that $2P[X=1] = 3P[X=2] = P[X=3] = 5P[X=4].$
Find the probability distribution (Nov/Dec 2016) BTL3 \\ Let P[X=3] = k \\ 2P[X=1] = k \Rightarrow p[X = 1] = \frac{k}{2} \\ 3P[X=2] = k \Rightarrow p[X = 2] = \frac{k}{3} \\ SP[X=4] = k \Rightarrow p[X = 2] = \frac{k}{3} \\ SP[X=4] = k \Rightarrow p[X = 4] = \frac{k}{5} \\ We know that $\sum P(x) = 1 \\ \end{bmatrix}$$$

Show that the function $f(x) = \begin{cases} e^{-x} & x \ge 0 \\ 0 & x < 0 \end{cases}$ is a probability density function of a random variable X. BTL5 12 $\int f(x) \, dx = \int e^{-x} \, dx = \left[-e^{-x} \right]_0^\infty = -\left[0 - 1 \right] = 1$ Hence the given function is a density function. Assume that X is a continuous random variable with the probability density function $f(x) = \begin{cases} \frac{3}{4} (2x - x^2) & 0 < x < 2\\ 0 & otherwise \end{cases}$. Find P(X>1). BTL3 $P[X > 1] = \int_{1}^{2} \frac{3}{4} \left(2x - x^{2} \right) dx = \frac{3}{4} \left[2 \left(\frac{x^{2}}{2} \right)_{1}^{2} - \left(\frac{x^{3}}{3} \right)_{1}^{2} \right]$ $= \frac{3}{4} \left[(4 - 1) - \left(\frac{8}{3} - \frac{1}{3} \right) \right] = \frac{1}{2}$ 13 A random variable X is known to have a distributive function $F(x) = u(x) \left[1 - e^{-x^2/b} \right], b > 0$ is a constant. **Determine density function.** BTL 3 $f(x) = F_x(x) = \frac{d}{dx} \left[u(x) \left(1 - e^{-x^2/b} \right) \right]$ 14 $= u(x) \left(e^{-x^{2}/b} \left(-\frac{2x}{b} \right) \right) + u'(x) \left(1 - e^{-x/b} \right)$ $=\frac{2}{h}xu(x)e^{-x^{2}/b} + u'(x)\left(1 - e^{-x^{2}/b}\right)$ If $f(x) = \frac{x^2}{3}$, -1 < x < 2 is the PDF of the random variable X then find P[0<X<1]. (Apr/May 2018) BTL3 15 $\int f(x) dx = \int \frac{1}{3} \frac{x^2}{3} dx = \frac{1}{3} \left[\frac{x^3}{3} \right]^1 = \frac{1}{9} [1 - 0] = \frac{1}{9}$ A continuous random variable X has probability density function $f(x) = \begin{cases} 3x^2 & 0 \le x \le 1\\ 0 & otherwise \end{cases}$ Find 'k' such 16 that P[X>k]=0.5 . BTL4

$$\begin{array}{rcl}
 & \begin{array}{l} \begin{array}{c} \Rightarrow \int_{1}^{1} f(x) dx = 0.5 \\ \Rightarrow \int_{1}^{3} 3x^{2} dx = 0.5 \\ \Rightarrow 3\left[\frac{x^{3}}{3}\right]_{1}^{2} = 0.5 \Rightarrow 1 - k^{3} = 0.5 \\ \Rightarrow 3\left[\frac{x^{3}}{3}\right]_{1}^{2} = 0.5 \Rightarrow 1 - k^{3} = 0.5 \\ \Rightarrow k^{3} = 1 - 0.5 = 0.5 \Rightarrow k = (0.5)^{\frac{1}{3}} = 0.7937 \end{array}$$
The cumulative distribution function of the random variable X is given by $F_{1}(X) = \begin{cases} 0 & ;x < 0 \\ x + \frac{1}{2} & ;0 \le x \le \frac{1}{2} \\ 1 & ;x > \frac{1}{2} \end{cases}$
Find $P[X > \frac{1}{4}] = 1 - P\left[X \le \frac{1}{4}\right] = 1 - F\left[\frac{1}{4}\right] = 1 - \left[\frac{1}{4} + \frac{1}{2}\right] = \frac{1}{4} \end{cases}$
Find the moment generating function of Binomial distribution. (May/June 2013) BTL3
The P.M.F of Binomial distribution is $P[X = x] = nC_{x}p^{x}q^{x \cdot x}, x = 0.1.2..., n$

$$M_{x}(t) = \sum_{x=0}^{n} e^{tx}nC_{x}q^{x-t}(pe^{t})^{x}$$

$$= \sum_{x=0}^{n} nC_{x}q^{x-t}(pe^{t})^{x}$$

$$= nC_{0}q^{x-0}(pe^{t})^{2} + nC_{1}q^{x-1}(pe^{t})^{2} + ... + nC_{x}q^{x-t}(pe^{t})^{2}$$

$$= nC_{0}q^{x-0}(pe^{t})^{2} + ... + (pe^{t})^{2} = (q + pe^{t})^{2}$$
The mean & variance of Binomial distribution are 5 and 4. Determine the distribution.(Apr/May 2015)
BTL4
Given: Mean = np = 5, variance = npq = 4

	4		
	$=5q=4 \implies q=rac{4}{5}$		
	$p=1-q=1-\frac{4}{5}=\frac{1}{5}$		
	$np = n\left(\frac{1}{5}\right) = 5 \Longrightarrow n = 25$		
	The P.M.F of the binomial distribution is		
	$P[X = x] = nC_x p^x q^{n-x} x = 0, 1, 2, \dots n$		
	$P[X = x] = 25C_x \left(\frac{1}{5}\right)^x \left(\frac{4}{5}\right)^{n-x}, x = 0, 1, 2,, 25$		
	Balls are tossed at random into 50 boxes. Find the expected number of tosses required to get the first ball in the fourth box. (Apr/May 2017) BTL3		
20	Let probability of success be $p = \frac{1}{50}$ According to Geometric distribution,		
	Expected number of tosses to get the first ball in the fourth box = $\frac{E[x] = \frac{1}{p} = 50}{p}$		
	A random variable is uniformly distributed between 3 and 15. Find the variance of X. (Nov/Dec 2015) BTL3		
21.	$Var X = \frac{(b-a)^2}{12}$ $= \frac{(15-3)^2}{12} = \frac{144}{12} = 12$		
	Messages arrive at a switchboard in a poisson manner at an average rate of six per hour. Find the probability for exactly 2 messages arrive within one hour. (Apr/May 2018) BTL3		
22.	$Mean = \lambda = 6 per hour$		
	$P[X = x] = \frac{e^{-\lambda} \lambda^{x}}{x!} = \frac{e^{-6} 6^{x}}{x!}$		
	$P[X=2] = \frac{e^{-6}6^2}{2!} = 0.0446$		
23.	Find the moment generating function of Poisson distribution. (Nov/Dec 2014, Apr/May 2015) BTL2		

	$P[X = x] = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, 2, \dots \qquad \lambda > 0$	
$M_x(t) = E[e^{tx}] = \sum_{x} e^{tx} p(x)$		
	The P.M.F of Poisson distribution is $=\sum_{x=0}^{\infty} e^{tx} \frac{e^{-\lambda} \lambda^{x}}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^{t})^{x}}{x!}$ $= e^{-\lambda} \left[1 + \frac{(\lambda e^{t})^{1}}{t!} + \frac{(\lambda e^{t})^{2}}{t!} + \dots \right]$	
	$=e^{-\lambda}e^{\lambda e'}$	
	Let X be a random variable with M.G.F $M_x(t) = \frac{(2e^t + 1)^4}{81}$. Find its mean and variance. (May/June 2016)	
	BTL3	
	$M_{x}(t) = \frac{\left(1+2e^{t}\right)^{4}}{81} = \left(\frac{1+2e^{t}}{3}\right)^{4} = \left(\frac{1}{3} + \frac{2e^{t}}{3}\right)^{4}$	
24.	Comparing the M.G.F of Binomial distribution, $M_x(t) = (q + pe^t)^n$, we have $p = \frac{2}{3}, q = \frac{1}{3}, n = 4$	
	Mean = $np = 4\left(\frac{2}{3}\right) = \frac{8}{3}$ Hence $Variance = npq = 4\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) = \frac{8}{9}$	
	If X and Y are independent random variables with variance 2 and 3. Find the variance of 3X+4Y. (May/June 2014) BTL3	
25.	Given : $Var(x) = 2$ and $Var(y) = 3$ $Var(aX+bY) = a^2Var(X) + b^2Var(Y)$ Var(3X+4Y) = 9(2)+16(3)=66	
26.	If $f(x) = \begin{cases} cxe^{-x} & x > 0 \\ 0 & elsewhere \end{cases}$ is the p.d.f of a random variable X. Find 'c'. (NovDec-2019)BTL5	

	$\int_{0}^{\infty} cxe$	$e^{-x} dx = 1$					
	W.K.T $c \left[x \right]$	$\left(\frac{e^{-x}}{-1}\right) - (1)\left(e^{-x}\right)$	$\sum_{0}^{\infty} = 1$				
	c[(0)]	(0-1)=1					
	c = 1						
	Find the seco 2019)BTL-3 Soln.	ond moment	about the origi	in of the Geo	ometric distribu	ition with para	meter p.(Apr/May-
	Wkt Geom	etric distributi	ion with param	eter p is $P[X]$	$=x]=pq^{n-1}$ $n=$	0,1,2,	
27.	M'' = (0) + q						
	Therefore the second moment about the origin is $M_X''(0) = \frac{1+q}{p^2}$						
		• • • • • • • • • • • • • • • • • • •		PART *	^e B		
	A random va	riable X has th	he following pro	bability distr	ribution		
	X=x	-2	-1	0	1	2	3
	P(X=x)	0.1	K	0.2	2k	0.3	3k
	Find (i) The	value of 'k'					
	(ii) Eval	uate P(X>2) a	nd P(-2 <x<2)< th=""><th></th><th></th><th></th><th></th></x<2)<>				
	(iii)Find	the cumulativ	ve distribution	of X			
1	(iv) Eva	aluate the mea	n of X (8M)(M	lay/June 201(), Nov/Dec 2011	, Nov/Dec 2017) BTL5.
	Answer:Page	: 1.80-Dr.A. S	ingaravelu				
	• Tota	al Probability	$\sum P(x) = 1$				
	• C.D). F $F(x) = P(X)$	$f \leq x = \sum_{t \leq x} p(t)$				
	• Mea	an $E(x) = \sum x E$	P(x)				
	• E(x	$x^2) = \sum x^2 \overline{P(x)}$)				
	• Var	$X = E(X^2) - [H$	E(x)] ²				

9

Answer : Page: 1.177- Dr. A. Singaravelu

$$P(X = i) = \frac{1}{6}, i = 1, 2, ..., 6. \quad (1M)$$

$$M_{1}(i) = \sum_{i=1}^{6} e^{i} P(X = i) = \frac{1}{6} \left[e^{i} + e^{2i} + ... + e^{4i} \right]. \quad (2M)$$

$$E(x) = \left[M_{x}'(i) \right]_{e^{i}} = \frac{7}{2}. \quad (2M)$$

$$E(x) = \left[M_{x}'(i) \right]_{e^{i}} = \frac{91}{6}. \quad (2M)$$

$$Var(X) = E(X^{2}) - \left[E(X) \right]^{2} = \frac{35}{12}. \quad (1M)$$
For the triangular distribution $f(x) = \begin{cases} x & , 0 < x \le 1 \\ 2 - x, 1 \le x \le 2 \end{cases}$. Find the mean, variance, moment generating
function. (8M) (Nov/Dec 2013) BTL5
Answer : Page: 1.180- Dr. A. Singaravelu

$$M_{x}(t) = E[e^{ix}] = \frac{\left[e^{t} - 1 \right]^{2}}{t^{2}}. \quad (3M)$$

$$Mean E(X) = \int_{-\infty}^{\infty} f(x) dx = 1. \quad (2M)$$

$$E(X^{2}) = \int_{-\infty}^{\infty} f(x) dx = \frac{7}{6}. \quad (2M)$$

$$Var(X) = E(X^{2}) - \left[E(X) \right]^{2} = \frac{1}{6} \quad (1M)$$
Find the M.G.F of the random variable X having the probability density function $f(x) = \left[\frac{x}{4} e^{-xt^{2}}, x > 0 \\ 0, et sewhere (8M) (May/June 2012, May/June 2014) BTL5$
Answer: Page: 1.74-Dr. G. Balaji

$$M_{x}(t) = E[e^{i}] = \int_{0}^{a} e^{ix} \frac{x}{4} e^{-xt^{2}} dx = \frac{1}{(1-2t)^{2}}. \quad (1M)$$

$$M_{x}(t) = [t] = \int_{0}^{a} e^{ix} \frac{x}{4} e^{-xt^{2}} dx = \frac{1}{(1-2t)^{2}}. \quad (1M)$$

•
$$M_x(t) = 1 + \frac{t}{1!}(4) + \frac{t^2}{2!}(24) + \frac{t^3}{3!}(192) + \dots$$
 (2M)

Probability of Binomial Distribution $P(X = x) = nC_x p^x q^{n-x}$ Probability of Poisson Distribution $P(X = x) = \frac{e^{-x} \lambda^x}{x!}$ **Binomial Distribution** Number of packets containing at least 2 defective items = $NP(X \ge 2) = 264$. (2M) • Number of packets containing exactly 2 defective items = NP(X = 2) = 189. (1M) Number of packets containing at most 2 defective items = $NP(X \le 2) = 925$. $(1\mathbf{M})$ • **Poisson Distribution** Number of packets containing at least 2 defective items = $NP(X \ge 2) = 264$. (2M)Number of packets containing exactly 2 defective items = NP(X = 2) = 184. (1M) Number of packets containing atmost 2 defective items = $NP(X \le 2) = 920$. (1M)The number of monthly breakdown of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month (1) without a breakdown, (2) with only one breakdown and (3) with atleast one breakdown(8M) (Nov/Dec 2017) BTL5 Answer : Page: 1.227- Dr. A. Singaravelu Probability of Poisson Distribution $P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$ 14 P(without a breakdown) = P(X=0) = 0.1653.(2M)• P(with only one breakdown) = P(X=1)=0.2975. (2M)• P(with at least 1 breakdown) = $P(X \ge 1) = 1 - P(X < 1) = 0.8347$. (4M) State and prove the Memoryless property of Geometric distribution.(8M)(Nov/Dec2015, May/June 2016) BTL1 Answer : Page: 1.254- Dr. A. Singaravelu Probability of Geometric distribution $P(X=x) = q^{x-1}p$, x=1,2,...15 • $P[X > m + n/X > m] = \frac{P[X > m + n \cap X > m]}{P[X > m]}$. (2M) • $P[X > k] = q^{k}$ (4M) • $P[X > m + n/X > m] = \frac{P[X > m + n]}{P[X > m]} = q^{n}$. (2M) If the probability that an applicant for a driver's license will pass the road test on any given trial is 0.8, what is the probability that he will finally pass the test (a) on the fourth trial, (b) in fewer than 4 trials. (8M) (May/June2015) BTL5 16 Answer : Page: 1.137- Dr. G. Balaji $\frac{Probability of Geometric distribution P(X=x) = q^{x-1}p}{JIT-JEPPIAAR/ECE/Dr.S.SURESH/II Yr/SEM 04/MA8451/PROBABILITY AND RANDOM PROCESSES 1-5/QB+Keys/Ver2.0}$

• P(on the fourth trial) = P(X=4) = 0.0064. (4M)
• P(fewer than 4 trials) = P(X<4) = 0.992. (4M)A coin is tossed until the first head occurs. Assuming that the tosses are independent and the probability
of a head occurring is 'p', find the value of 'p' so that the probability that an odd number of tosses is
required, is equal to 6.6. Can you find a value of 'p' so that the probability is 0.5 that an odd number of
tosses is required? (8M)(Nov/Dec 2010, Nov/Dec 2016) BTL4Answer : Page: 1.135- Dr. G. Balaji
Probability of Geometric distribution P(X=x) = q^{x,1}p , x=1.2...
• P[X= odd number of tosses] =
$$\frac{1}{1+q} = 0.6$$
 (3M)• $q = \frac{2}{3}, p = 1 - q = \frac{1}{3}$. (1M)
• $q = \frac{2}{3}, p = 1 - q = \frac{1}{3}$. (1M)
• $q = 1, p = 0.$ (1M)Determine the moment generating function of Uniform distribution in (a,b) and hence find the mean and
variance. (8M) (Nov/Dec 2017, Apr/May 2018) BTL2Answer : Page: 1.256- Dr. A. SingaraveluThe probability function of Uniform distribution is $f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0 & , otherwise \end{cases}$ 18• $M_1(r) = E[e^n] = \int_{a}^{b} e^n f(x) dx = \frac{b+a}{2}.$ (2M)
• $E(X^2) = \int_{a}^{b} x^2 f(x) dx = \frac{b+a}{3}.$ (2M)
• $E(X^2) = \int_{a}^{b} x^2 f(x) dx = \frac{b+a}{3}.$ (2M)
• $Var(X) = \frac{(b-a)^2}{12}.$ (1M)19

Answer : Page: 1.143- P. Sivaramakrishna Dass

of the distribution. (8M) (Nov/Dec 2012, Nov/Dec 2015) BTL5

Answer: Page: 1.295- A. Singaravelu

- $z = \frac{X \mu}{\sigma}$ • $45 - \mu = -0.49\sigma$. (2M) • $P(Z > Z_1) = 0.8 \text{ or } P(0 < Z < Z_2) = 0.42.$ (1M) • From tables , $Z_2 = 1.40.$ (1M)
- $64 \mu = 1.40\sigma$. (2M) • Solving, $\sigma = 10, \mu = 50$. (2M)

The contents of urns I, II, III are as follows:

1 white, 2 red and 3 black balls

2 white, 3 red and 1 black balls and

3 white, 1 red and 2 black balls.

One urn is chosen at random and 2 balls are drawn. They happen to be white and red. What is the probability that they came from urns I, II, III. (Nov/Dec 2019) BTL5

Answer: Page: 1.60-Dr. A. Singaravelu

Let $A_1, A_2, ..., A_n$ be 'n' mutually exclusive and exhaustive events with $P(A_i) \neq 0$ for I = 1,2,...n. Let 'B' be an event such that $B \subset \bigcup_{I=1}^{N} A_i$, $P(B) \neq 0$ then $P(A_i / B) = \frac{P(A_i) \cdot P(B / A_i)}{\sum_{i=1}^{n} P(A_i) \cdot P(B / A_i)}$

23

•
$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$
 (1M)
• $P(A/E_1) = \frac{1C_1 \times 2C_1}{6C_2} = \frac{2}{15}, P(A/E_2) = \frac{2C_1 \times 3C_1}{6C_2} = \frac{6}{15}, P(A/E_3) = \frac{3C_1 \times 1C_1}{6C_2} = \frac{3}{15}$ (2M)
• $P(E_2/A) = \frac{P(E_2) \cdot P(A/E_2)}{\sum_{i=1}^{3} P(E_i) \cdot P(A/E_i)} = \frac{6}{11}$ (2M)
• $P(E_3/A) = \frac{P(E_3) \cdot P(A/E_3)}{\sum_{i=1}^{3} P(E_i) \cdot P(A/E_i)} = \frac{3}{11}$ (2M)

•
$$P(E_1/A) = 1 - P(E_2/A) - P(E_3/A) = \frac{2}{11}$$
 (1M)

UNIT II – TWO - DIMENSIONAL RANDOM VARIABLES

Joint distributions - Marginal and conditional distributions - Covariance - Correlation and linear regression - Transformation of random variables - Central limit theorem (for independent and identically distributed random variables).

	PART *A		
Q.No.	Questions		
1.	State the basic properties of joint distribution of (X,Y) where X and Y are random variables. (May/June 2014) BTL1 Properties of joint distribution of (X,Y) are (i) $F[-\infty, y] = 0 = F[x, -\infty]$ and $F[-\infty, -\infty] = 0, F[\infty, \infty] = 0$ (ii) $P[a < X < b, Y \le y] = F(b, y) - F(a, y)$ (iii) $P[X \le x, c < Y < d] = F(x, d) - F(x, c)$ (iv) $P[a < X < b, c < Y < d] = F(b, d) - F(a, d) - F(b, c) + F(a, c)$ (v) At points of continuity of $f(x,y)$, $\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$		
2	The joint probability mass function of a two dimensional random variable (X,Y) is given by p(x,y) = f(2x + y); x = 1,2 and $y = 1,2$ where 'k' is a constant. Find the value of 'k'.(Nov/Dec 2015) BTL5 The joint pmf of (X,Y) is $1 \\ 2 \\ x \\ y \\ 1 \\ 3k \\ 4k \\ 2 \\ 5k \\ 6k \\ We have \sum p(x,y)=1$ Therefore, $3k + 4k + 5k + 6k = 1$ $18 \ k=1 \ k = \frac{1}{18}$.		
3	The joint probability density function of the random variables (X,Y) is given by $f(x, y) = kxy e^{-(x^2+y^2)}$, $x > 0$, $y > 0$. Find the value of 'k'. (Apr/May 2015) BTL5		

	$\iint f(x, y) dkx dy = 1$	
	$\int_{0}^{\infty} \int_{0}^{\infty} kxy e^{-(x^2 + y^2)} dx dy = 1$	
	$k\int_{0}^{\infty} y e^{-y^{2}} dy \int_{0}^{\infty} x e^{-x^{2}} dx = 1$	$Put x^2 = t$
		2xdx = dt
	$k\int_{0}^{\infty} y e^{-y^{2}} dy \int_{0}^{\infty} e^{-t} \frac{dt}{2} = 1$	$xdx = \frac{dt}{2}$
	$\frac{k}{2}\int_{0}^{\infty} ye^{-y^{2}} \left[-e^{-t}\right]_{0}^{\infty} dy = 1$	
	$\frac{k}{2}\int_{0}^{\infty} ye^{-y^{2}} [0+1]dy = 1$	
	$\frac{k}{2}\int_{0}^{\infty}e^{-t}\frac{dt}{2}=1$	
	We have $\frac{k}{4} \left[-e^{-t} \right]_0^\infty = 1$	
	$\frac{k}{4}[0+1] = 1 \implies k = 4$	
	If the function f(x,y) = c(1-x)(1-y) , 0 < x < 7 of 'c'.(8M) (Nov/Dec 2017) BTL5	1, 0 < y < 1 is to be a density function, find the value
	$\iint f(x, y) dx dy = 1$	
	$\int_{0}^{1} \int_{0}^{1} c(1-x)(1-y)dx dy = 1$	
	$c\int_{0}^{1} (1-y)dy\int_{0}^{1} (1-x)dx = 1$	
4	$c\left[y - \frac{y^{2}}{2}\right]_{0}^{1} \left[x - \frac{x^{2}}{2}\right]_{0}^{1} = 1$	
	$c\left[1-\frac{1}{2}\right]\left[1-\frac{1}{2}\right]=1$	
	$c\left[\frac{1}{2}\right]\left[\frac{1}{2}\right] = 1$	
	$c\left\lfloor\frac{1}{4}\right\rfloor = 1 \implies c = 4$	

The joint pdf of (X,Y) is $f_{xy}(x, y) = xy^2 + \frac{x^2}{9}, 0 \le x \le 2, 0 \le y \le 1$. Find P(X<Y). (May/June 2013, Apr/May 2019)BTL5 $P(X < Y) = \int_{-\infty}^{1} \int_{-\infty}^{y} \left(xy^2 + \frac{x^2}{8} \right) dx \, dy$ $=\int_{0}^{1} y^{2} \left(\frac{x^{2}}{2}\right)_{0}^{y} + \frac{1}{8} \left(\frac{x^{3}}{3}\right)_{0}^{y} dy$ 5 $= \int_{0}^{1} \left| \frac{y^{2}}{2} (y^{2}) + \frac{1}{24} (y^{3}) \right| dy = \int_{0}^{1} \left[\frac{y^{4}}{2} + \frac{y^{3}}{24} \right] dy$ $=\frac{1}{2}\left(\frac{y^{5}}{5}\right)^{1}+\frac{1}{24}\left(\frac{y^{4}}{4}\right)^{1}=\frac{1}{10}(1-0)+\frac{1}{96}(1-0)=\frac{53}{480}$ If the joint pdf of (X,Y) is $f(x,y) = \begin{cases} \frac{1}{4} & , 0 < x, y < 2\\ 0 & , otherwise \end{cases}$. Find $P[X + Y \le 1]$ BTL5 $P[X+Y \le 1] = \int_{-\infty}^{1} \int_{-\infty}^{1-y} \left(\frac{1}{4}\right) dx \, dy = \frac{1}{4} \int_{0}^{1} (x)_{0}^{1-y} \, dy$ 6 $=\frac{1}{4}\int_{0}^{1}(1-y)dy = \frac{1}{4}\left[y - \frac{y^{2}}{2}\right]^{1}$ $=\frac{1}{4}\left|1-\frac{1}{2}\right|=\frac{1}{8}$ Find the marginal density function of X and Y if $f(x, y) = \begin{cases} \frac{6}{5}(x + y^2) & 0 \le x, y \le 1 \\ 0 & 0 \end{cases}$ (Nov/Dec 2012) BTL5 Marginal density function of X is 7 $f_{x}(x) = \int f(x, y) \, dy = \int_{-\infty}^{1} \frac{6}{5} \left(x + y^{2} \right) \, dy = \frac{6}{5} \left[xy + \frac{y^{3}}{3} \right]_{-\infty}^{1} = \frac{6}{5} \left[x + \frac{1}{3} \right]_{-\infty}^{1} 0 \le x \le 1$ Marginal density function of Y is

$$\begin{aligned} f_{y}(y) &= \int f(x, y) dx = \int_{0}^{1} \frac{6}{5} (x + y^{2}) dy = \frac{6}{5} \left[\frac{x}{2} + y^{2} x \right]_{0}^{1} = \frac{6}{5} \left[\frac{1}{2} + y^{2} \right] 0 \le y \le 1 \\ \hline \text{The joint probability density function of the random variable X and Y is} \\ f(x,y) &= \begin{cases} 25e^{-5y} & .0 \le x \le 0.2, y \ge 0 \\ 0 & .otherwise \end{cases} \\ \hline \text{Marginal density function of X is} \\ & \text{Marginal density function of X is} \\ & \text{Marginal density function of Y is} \\ f_{x}(x) &= \int f(x,y) dy = \int_{0}^{0} 25e^{-5y} dy = 25 \left[\frac{e^{-5y}}{-5} \right]_{0}^{\infty} = -5[0-1] = 5 \ 0 \le x \le 0.2 \\ \hline \text{Marginal density function of Y is} \\ & f_{y}(y) &= \int f(x,y) dx = \int_{0}^{0} 25e^{-5y} dx = 25e^{-5y} [x]_{0}^{0^{2}} = 2e^{-5y} [0.2-0] = 5e^{-5y} \ y > 0 \\ \hline \text{If X and Y are independent random variables having the joint density function} \\ & f(x,y) &= \frac{1}{8} (6-x-y) .0 \le x \le 2, \ y \le 4 \ \text{. Find P[X+Y<3]. BTL5} \\ \hline P[X+Y<3] &= \frac{1}{8} \int_{2}^{1} \left[(6-x)(x) - \frac{x^{2}}{2} \right]_{0}^{5-y} dy = \frac{1}{8} \frac{1}{2} \left[(6-y)(3-y) - \frac{(3-y)^{2}}{2} \right] dy \\ &= \frac{1}{8} \int_{2}^{1} \left[(8-9y+y^{2} - \frac{1}{2}(3-y)^{2} \right] dy \\ &= \left[18(3) - \frac{9}{2}(9) + \frac{27}{3} + \frac{1}{6}(0) \right] - \left[18(2) - \frac{9}{2}(4) + \frac{8}{3} + \frac{1}{6}(1) \right] \\ &= \left[18 - \frac{45}{2} + \frac{19}{3} - \frac{1}{6} \right] = \frac{5}{24} \\ \hline \text{In E[XY]. BTL5} \end{aligned}$$

$$E[XY] = \iint xy f(x, y) dx dy = \iint_{0}^{1} xy (4xy) dx dy$$

$$= 4 \int_{0}^{1} x^{2} dx \int_{0}^{1} y^{2} dy$$

$$= 4 \left[\frac{x^{2}}{3} \right]_{0}^{1} \left[\frac{y^{2}}{3} \right]_{0}^{1} = \frac{4}{9} (1)(1) = \frac{4}{9}$$
Let X and Y be a two-dimensional random variable. Define covariance of (X,Y). If X and Y are independent, what will be the covariance of (X,Y)? (May/June 2016) BTL2
Covariance of (X,Y) is defined as
 $Cov(X,Y) = E[XY] - E[x]E[Y]$
If X and Y are independent, then $Cov(X,Y) = 0$.
Two random variables X and Y have the joint pdf $f(x, y) = \begin{cases} \frac{xy}{96} : 0 < x < 4, 1 < y < 5 \end{cases}$. Find
 $0 : otherwise$
 $Cov(X,Y) = E[XY] - E[x]E[Y]$
 $E[X] = \iint x f(x, y) dx dy = \iint_{0}^{1} \frac{1}{9} x \left(\frac{xy}{96} \right) dx dy = \frac{1}{96} \int_{0}^{1} y dy \int_{0}^{1} x^{2} dx$
 $= \frac{1}{96} \left[\frac{y^{2}}{2} \right]_{0}^{1} \left[\frac{x^{3}}{3} \right]_{0}^{4} = \frac{1}{576} [25 - 1][64] = \frac{8}{3}$
 $E[X] = \iint y f(x, y) dx dy = \iint_{10}^{1} \frac{1}{9} \sqrt{\frac{(xy)}{96}} dx dy = \frac{1}{96} \int_{1}^{1} y^{2} dy \int_{0}^{1} x^{2} dx$
 $= \frac{1}{96} \left[\frac{y^{2}}{3} \right]_{0}^{1} \left[\frac{x^{3}}{2} \right]_{0}^{4} = \frac{1}{576} [125 - 1][64] = \frac{8}{3}$
 $E[XY] = \iint y f(x, y) dx dy = \iint_{10}^{1} \frac{1}{9} \sqrt{\frac{(xy)}{96}} dx dy = \frac{1}{96} \int_{1}^{1} y^{2} dy \int_{0}^{1} x^{2} dx$
 $= \frac{1}{96} \left[\frac{y^{2}}{3} \right]_{0}^{1} \left[\frac{x^{3}}{2} \right]_{0}^{4} = \frac{1}{576} [125 - 1][6] = \frac{31}{9}$
 $E[XY] = \iint y y (x, y) dx dy = \iint_{10}^{1} \frac{1}{9} \sqrt{\frac{(xy)}{96}} dx dy = \frac{1}{96} \int_{1}^{1} y^{2} dy \int_{0}^{1} x^{2} dx$
 $= \frac{1}{96} \left[\frac{y^{3}}{3} \right]_{0}^{1} = \frac{1}{86} [125 - 1][6] = \frac{248}{27}$
 $\therefore Cov(X,Y) = \left[\frac{248}{27} \right] - \left[\frac{8}{3} \right] \frac{3}{9} \right] = 0$
13 Let X and Y be any two random variables a,b be constants. Prove that

	Cov(aX,bY)=abCov(X,Y). BTL5
	Cov(X,Y) = E[XY] - E[X]E[Y]
	Cov(aX,bY) = E[aX bY] - E[aX] E[bY]
	=ab E[XY] -ab E[X]E[Y]
	=ab[E[XY] - E[X]E[Y]]
	= ab Cov(X,Y)
	If Y = - 2X + 3, Find Cov(X,Y). BTL3
	Cov(X,Y) = E[XY] - E[X]E[Y]
	=E[X(-2X+3)]-E[X]E[-2X+3]
14	$= E[-2X^{2}+3X] - E[X][-2E[X]+3]$
	$= -2E[X^{2}]+3E[X]+2(E[X])^{2}-3E[x]$
	$= -2(E[X^2]-(E[X])^2) = -2Var X$
	If X_1 has mean 4 and variance 9 while X_2 has mean -2 and variance 5 and the two are independent, find Var($2X_1+X_2-5$). BTL3
15	$\begin{split} E[X_1] = 4 , & E[X_2] = -2 \\ Var[X_1] = 9, & Var[X_2] = 5 \\ Var(2X_1 + X_2 - 5) = 4 & VarX_1 + VarX_2 \\ & = 4(9) + 5 = 41. \end{split}$
	If X and Y are independent random variables then show that E[Y/X] = E[Y], E[X/Y] = E[X]. (Nov/Dec 2016) BTL5
	$E[Y/X] = \int y \cdot \frac{f(x,y)}{f(x)} dy$
	Since X and Y are independent,
	$E[Y / X] = \int y \cdot \frac{f(x) \cdot f(y)}{f(x)} dy = \int y \cdot f(y) dy = E[Y]$
16	
	$E[X/Y] = \int x \cdot \frac{f(x, y)}{f(y)} dx$
	Since X and Y are independent,
	$E[X/Y] = \int x \cdot \frac{f(x) \cdot f(y)}{f(y)} dx = \int x \cdot f(x) dx = E[X]$
17	The equations of the regression are

$$\begin{aligned} y - \overline{y} = r \frac{\sigma_y}{\sigma_x} (x - \overline{x}) & ------(1) \\ x - \overline{x} = r \frac{\sigma_y}{\sigma_x} (y - \overline{y}) & -------(2) \\ \text{Slope of line (1) is } m_i = r \frac{\sigma_y}{\sigma_x} \\ \text{Slope of line (2) is } m_2 = \frac{1}{r} \frac{\sigma_y}{\sigma_x} \\ \text{Slope of line (2) is } m_2 = \frac{1}{r} \frac{\sigma_y}{\sigma_x} \\ \text{If } \theta \text{ is the acute angle between the two lines, then} \\ \tan \theta = \frac{\left| \frac{m_i - m_2}{1 + m_i m_2} \right|}{1 + m_i m_2} \\ = \frac{\left| \frac{r \sigma_y}{\sigma_x} - \frac{\sigma_y}{r \sigma_x} \right|}{1 + r \frac{\sigma_y}{\sigma_x} - \frac{r \sigma_y}{r \sigma_x}} \\ = \frac{\left| \frac{(-r^2) \sigma_y}{\sigma_x} - \frac{\sigma_y}{r \sigma_x} \right|}{\frac{\sigma_y^2 + \sigma_y^2}{\sigma_x^2}} \\ = \frac{\left| \frac{-(1 - r^2) \sigma_y}{\sigma_x^2 + \sigma_y^2} \right|}{\frac{\sigma_x^2 + \sigma_y^2}{\sigma_x^2}} \\ = \frac{\left| \frac{(-r^2) \sigma_y}{\sigma_x^2 + \sigma_y^2} \right|}{\frac{\sigma_y^2 + \sigma_y^2}{\sigma_x^2}} \\ \text{The regression equations are } 3x + 2y = 26 \text{ and } 6x + y = 31. \text{ Find the correlation coefficient} \\ \text{between X and Y. BTL5} \\ \text{Let } 3x + 2y = 26 \text{ be the regression equation of Y on X.} \\ \text{Therefore, } 2y - -3x + 26 \Rightarrow y - -\frac{3}{2}x + \frac{26}{2}. \\ \text{The regression coefficient } b_{\mu_y} = -\frac{3}{2} \\ \text{Let } 6x + y = 31 \text{ be the regression equation of X on Y.} \\ \text{Therefore, } 6x = -y + 31 \Rightarrow x = -\frac{1}{6}y + \frac{31}{6} \\ \text{The regression coefficient } t_{\mu_y} \text{ is given by} \\ r_w = \pm \sqrt{b_w} x b_w} = \pm \sqrt{\left(-\frac{3}{2}\right)\left(-\frac{1}{6}\right)} = \pm \sqrt{\frac{1}{4}} = \pm 0.5 \\ = -0.5, \text{ since both the regression coefficients are negative.} \\ \end{array}$$

	$4\overline{x} - 5\overline{y} = -33 (1)$		
	$20\bar{x} - 9\bar{y} = 107 (2)$		
	Solving the equations (1) and (2), we have $\overline{x} = 13$ and $\overline{y} = 17$.		
20	Can $y=5+2.8x$ and $x=3-0.5y$ be the estimated regression equations of y on x and x on y respectively, explain your answer. (Nov/Dec 2016) BTL4 Since the signs of regression co-efficients are not the same, the given equation is not estimated		
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
	If X has an exponential distribution with parameter 1. Find the pdf of $y = \sqrt{x}$. BTL3 $y = \sqrt{x} \Rightarrow x = y^2$		
	Since $dx = 2y dy \Rightarrow \frac{dx}{dy} = 2y$		
21	Since X has an exponential distribution with parameter 1, the pdf of X is given by,		
21	$f_x(x) = e^{-x}, x > 0$ $[f(x) = \lambda e^{-\lambda x}, \lambda = 1]$		
	$\therefore f_{y}(y) = f_{x}(x) \left \frac{dx}{dy} \right $		
	$= e^{-x} 2y = 2y e^{-y^2} y > 0$		
	State Central limit theorem. BTL1		
22	If $X_1, X_2,, X_n,$ be a sequence of independent identically distributed random variables with $\Gamma(X)$		
	$E(X_i) = \mu$ and $Var(X_i) = \sigma^2$, i=1,2, and if $S_n = X_1 + X_2 + + X_n$, then under certain general		
	conditions, S _n follows a normal distribution with mean $n\mu$ and variance $n\sigma^2$ as $n \to \infty$		
	If X and Y have joint pdf of $f(x, y) = \begin{cases} x+y, 0 < x, y < 1 \\ 0, elsewhere \end{cases}$. Check whether X and Y are		
	independent. BTL4		
	The marginal function of X is $1 - \frac{1}{2} = \frac{1}{2}$		
22	$f(x) = \int_{0}^{1} (x+y)dy = \left[xy + \frac{y^{2}}{2} \right]_{0}^{1} = x + \frac{1}{2}, \ 0 < x < 1$		
23	The marginal function of Y is		
	$f(y) = \int_{0}^{1} (x+y)dx = \left[\frac{x^{2}}{2} + y\right]_{0}^{1} = y + \frac{1}{2}, \ 0 < y < 1$		
	Now, $f(x).f(y) = \left(x + \frac{1}{2}\right)\left(y + \frac{1}{2}\right) = xy + \frac{1}{2}(x+y) + \frac{1}{4} \neq x + y \neq f(x,y)$		
	Hence X and Y are not independent.		
24	Assume that the random variables X and Y have the probability density function $f(x,y)$. What is EIEIX/V11? (Apr/May 2017) BTL 5		
L	The set of		

	$E[[X/Y]] = \int_{-\infty}^{\infty} E[X/Y]f(y) dy$		
	$= \int_{0}^{\infty} \int_{0}^{\infty} x f(x/y) dx f(y) dy$		
	$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x/y) f(y) dx dy$		
	$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x, y) dy dx$		
	$= \int_{-\infty}^{\infty} x f(x) dx = E(X)$		
25	Define the joint density function of two random variables X a If (X,Y) is a two dimensional continuous random variables su each (X,Y) a real number $f(x,y)$ for all real x,y then $f(x,y)$ is ca f(x,y) satisfies the following conditions	nd Y. BTL1 uch that , a function f which assigns illed the joint pdf of (X,Y), provided	
	(i) $f(x, y) \ge 0$, for all $(x, y) \in R$ (ii) $\iint_{R} f(x, y) dx dy = 1$		
	Part*B		
	The joint pmf of (X,Y) is given by $P(x,y) = k(2x + 3y)$, $x = 0,1,2$; $y = 1,2,3$. Find all the marginal and conditional probability distributions. Also, find the probability distribution of $(X+Y)$. (10M) (Nov/Dec 2014, Nov/Dec 2019) BTL5 Answer: Pg. 2.8 – Dr. A. Singaravelu		
	• Marginal distribution of X: $P(X - 0) = \frac{18}{18} P(X - 1) = \frac{24}{18}$	$P(X-2) = \frac{30}{10}$ (1M)	
	• Marginal distribution of Y: $P(Y=1) = \frac{15}{72}, P(Y=2) = \frac{24}{72}, P(Y=2) = \frac{24}{72}$	$P(Y=3) = \frac{33}{72} $ (1M)	
1	• Conditional distribution of X given Y: $P[X = x_i / Y = y_1]$	$=\frac{1}{5},\frac{1}{3},\frac{7}{15}$ (1M)	
1	• $P[X = x_i / Y = y_2] = \frac{1}{4}, \frac{1}{3}, \frac{5}{12}.$	(1M)	
	• $P[X = x_i / Y = y_3] = \frac{9}{33}, \frac{1}{3}, \frac{13}{33}.$	(1M)	
	• Conditional distribution of Y given X: $P[Y = y_i / X = x_0] =$	$=\frac{1}{6},\frac{1}{3},\frac{1}{2}.$ (1M)	
	• $P[Y = y_i / X = x_1] = \frac{5}{24}, \frac{1}{3}, \frac{11}{24}.$	(1M)	
	• $P[Y = y_i / X = x_2] = \frac{7}{30}, \frac{1}{3}, \frac{13}{30}.$	(1M)	
1	JU J JU		

1.29
	The	two	dimensional	random	variable	(X , Y)	has	the	joint	pmf
	f(x, y)	$(x) = \frac{x+2y}{27}$	x^{2} , $x = 0,1,2; y = 0,$	1,2 Find the	conditional o	listribution	n of Y fo	or X=x.	(8M) (No	v/Dec
	2017)	BTL5								
	Answ	er : Pg. 2	.13 – Dr. A. Sing	garavelu						
2	•	Margina	l distribution of 2	X: $P(X = 0)$:	$=\frac{6}{27}, P(X=1)$	$P(X) = \frac{9}{27}, P(X)$	$(x = 2) = \frac{1}{2}$	$\frac{12}{27}$ (11)	M)	
	•	Margina	l distribution of	Y: P(Y=0) =	$=\frac{3}{27}, P(Y=1)$	$=\frac{y}{27}, P(Y =$	$=2)=\frac{13}{27}$	- (1.	M)	
	٠	Conditio	onal distribution of	of Y given X:	$P[Y = y_i / X$	$=x_0]=0,\frac{1}{3}$	$\frac{2}{3},\frac{2}{3}$.	(2M)		
	•	P[Y = y]	$[X = x_1] = \frac{1}{9}, \frac{1}{3},$	$\frac{5}{9}$.				(2M)		
	•	$P[Y = y_i]$	$[X = x_2] = \frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	$\frac{1}{2}$.				(2M)		
	Three	balls are	drawn at rand	om without 1	replacement	from a box	contair	ning 2 v	white, 3 re	d and
	4 blac	k balls.	If X denotes the	e number of	white balls	drawn and	l Y den	ote the	number	of red
	balls	drawn, fi	ind the joint pr	obability di	stribution of	f (X,Y). (8	M)(Apr	/May 2	2015, May	/June
	2010) Answ	BILJ er: Page:	2 20. Dr G Ba	aii						
_	•	Let X de	enote number of v	white balls dr	awn and Y de	enote the nu	umber of	red bal	ls drawn.	
3	•	P(X = 0)	$(Y=0) = \frac{1}{21}, P($	$X=0,Y=1\big)$	$=\frac{3}{14}, P(X=0)$	$(Y=2) = \frac{1}{7}$	$\frac{1}{2}, P(X =$	0, Y = 3	$(3) = \frac{1}{84}$ (3)	3M)
	•	P(X=1	$,Y=0)=\frac{1}{7},P(X)$	= 1, Y = 1) = -	$\frac{2}{7}, P(X=1,Y)$	$=2)=\frac{1}{14}$			(3M	[)
	_		$(1 - 1)^{\prime}$		1	14			$(2\mathbf{N}\mathbf{A})$	
	•	P(X = 2	$P(Y=0) = \frac{1}{21}, P(Y=0) = \frac{1}{21}$	X = 2, Y = 1)	$=\overline{28}$				(2M)	
	The joint pdf of the random variable (X,Y) is given by $f(x, y) = Kxye^{-(x^2+y^2)}, x > 0, y > 0$. Find the value of 'K' and also prove that X and Y are independent. (8M) (Apr/May 2015) BTL5 Answer : Pg. 2.25 – Dr.A. Singaravelu									
	•	Margina	l density function	n of X : $f(x)$	$=\int_{-\infty}^{\infty}f(x,y)dy$,				
4	•	Margina	l density function	n of Y: $f(y)$ =	$= \int_{-\infty}^{\infty} f(x, y) dx$					
4	•	X and Y	are independent	if f(x,y) = f(x)	x). $f(y)$					
		80 80								
	•	$\iint_{0} Kxye$	$=(x^2+y^2)dxdy=1$ =	$\Rightarrow K = 4.$		((2M)			
	•	Margina	l density function	n of X : $f(x)$	$=\int_{0}^{\infty} Kxye^{=(x^2+y^2)}$	$dy = 2xe^{-x^2}$. (2M)			

$$\begin{array}{|c||c||} \hline & \text{Marginal density function of Y: } f(y) = \int_{0}^{\infty} K_{3}ye^{-y(x+y^{2})}dx = 2ye^{-y^{2}} . (2M) \\ \hline & \text{f(x). } f(y) = 2xe^{-y^{2}} . 2ye^{-y^{2}} = 4xye^{-(y^{2}+y^{2})} = f(x,y). (2M) \\ \hline & \text{Given } f_{3y}(x,y) = Cx(x-y), 0 < x < 2, -x < y < x \text{ and 0 elsewhere. (a)Evaluate C; (b)Find f_{5}(x) ; \\ (c) & f_{y1}\left(\frac{y}{x}\right) (d)Find f_{5}(y). (8M) (May, June 2013May/June 2016)BTL5 \\ \hline & \text{Answer : Pg. 2.40 - Dr. A. Singaravelu} \\ \hline & & \int_{-\infty}^{\infty} \int_{0}^{\pi} f(x,y)dxdy = 1 \\ \hline & \text{Marginal density function of X : } f(x) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y: } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y: } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & f_{x}(x) = \frac{1}{2}Cx(x-y)dydx = 1 \Rightarrow C = \frac{1}{8} . (1M) \\ \hline & f_{x}(x) = \frac{1}{2}Cx(x-y)dy = \frac{x^{3}}{4} . 0 < x < 2. (2M) \\ \hline & f\left(\frac{y}{x}\right) = \frac{f(x,y)}{f(x)} = \frac{x-y}{2x^{2}}, -x < y < x. (2M) \\ \hline & f_{y}(y) = \left\{ \frac{1}{2}\frac{1}{8}x(x-y)dx, if -2 \leq y \leq 0 = \frac{1}{3} - \frac{y}{4} + \frac{5}{28}y^{3} \\ \hline & f_{y}(y) = \left\{ \frac{1}{2}\frac{1}{8}x(x-y)dx, if 0 \leq y \leq 2 = \frac{1}{3} - \frac{y}{4} + \frac{5}{28}y^{3} \\ \hline & f_{x}(x) = ydx, if 0 \leq y \leq 2 = \frac{1}{3} - \frac{y}{4} + \frac{1}{28}y^{3} \\ \hline & \text{The joint pdf of (X,Y) is given by f(x,y) = e^{-(x+y)}, 0 \leq x, y \leq \infty. \text{ Are X and Y independent.} \\ \hline & \text{Marginal density function of X : } f(y) = \int_{-\infty}^{\pi} f(x,y)dy \\ \hline & \text{Marginal density function of X : } f(y) = \int_{-\infty}^{\pi} f(x,y)dy \\ \hline & \text{Marginal density function of X : } f(y) = \int_{-\infty}^{\pi} f(x,y)dy \\ \hline & \text{Marginal density function of X : } f(y) = \int_{-\infty}^{\pi} f(x,y)dy \\ \hline & \text{Marginal density function of Y : } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y : } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y : } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y : } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y : } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y : } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text{Marginal density function of Y : } f(y) = \int_{-\infty}^{\pi} f(x,y)dx \\ \hline & \text$$

	• $r(X,Y) = \frac{Cov(X,Y)}{\sigma_x \cdot \sigma_y} = 0.6031$ (2M)	
	Let X and Y be discrete random variables with pdf $f(x, y) = \frac{x+y}{21}$	x^{2} , $x = 1, 2, 3; y = 1, 2$. Find
	$\rho(X,Y)$ (8M) (Nov/Dec-2019)BTL5 Answer : Pg. 2.78- Dr. A. Singarayelu	
	• $E(X) = \sum x f(x) = \frac{46}{21}$ (1M)	
	• $E(Y) = \sum y f(y) = \frac{33}{21}$ (1M)	
	• $E(X^2) = \sum x^2 f(x) = \frac{114}{21}$ (1M)	
11	• $E(Y^2) = \sum y^2 f(y) = \frac{57}{21}$ (1M)	
	• $Var X = \sigma_x^2 = E(X^2) - [E(X)]^2 = \frac{278}{441}$ (1M)	
	• $VarY = \sigma_y^2 = E(Y^2) - [E(Y)]^2 = \frac{108}{441}$ (1M)	
	• $E(XY) = \sum xy f(x, y) = \frac{72}{21}$ (1M)	
	• $r(X,Y) = \frac{Cov(X,Y)}{\sigma_x \cdot \sigma_y} = \frac{-6}{173.20} = -0.035$ (1M)	
	If the joint pdf of (X,Y) is given by $f(x, y) = x + y, 0 \le x, y \le 1$. Find ρ_{xy} .	(8 M) (May/June 2014)
	B1L3 Answer : Page : 2.99 – Dr. A. Singaravelu	
	• $f(x) = \int_{0}^{1} (x+y) dy = x + \frac{1}{2}, 0 < x < 1$ (1M)	
	• $f(y) = \int_{0}^{1} (x+y) dx = y + \frac{1}{2}, 0 < y < 1$ (1M)	
12	• $E(X) = \int x f(x) dx = \int_{0}^{1} x \left(x + \frac{1}{2} \right) dx = \frac{7}{12}$	(1 M)
	• $E(Y) = \int y f(y) dy = \int_{0}^{1} y \left(y + \frac{1}{2} \right) dy = \frac{7}{12}$	(1M)
	• $E(X^2) = \int x^2 f(x) dx = \frac{5}{12}, \ E(Y^2) = \int y^2 f(y) dy = \frac{5}{12}$	(1M)
	• $Var X = \sigma_x^2 = E(X^2) - [E(X)]^2 = \frac{11}{144}, Var Y = \sigma_y^2 = E(Y^2) - [E(X)]^2 = \frac{11}{144}$	$(1M)^2 = \frac{11}{144}$ (1M)

	• $\sigma_x^2 = \frac{11}{36}, \ \sigma_y^2 = \frac{11}{36}$ (1M)				
	• $r_{xy} = \frac{Cov(X,Y)}{\sigma_x \cdot \sigma_y} = -\frac{1}{11}$ (1M)				
	The two lines of regression are $8x - 10y + 66 = 0$; $40x - 18y - 214 = 0$. The variance of 'x' is 9. Find				
	the mean values of 'x' and 'y'. Also find the correlation coefficient between 'x' and 'y'.(8 M) (Apr/May 2015, May/June 2016) BTL4				
	Answer: Page : 2.129 – Dr.A. Singaravelu				
	• $\overline{x} = 13$, $\overline{y} = 17$				
	• From first equation $x = \frac{10}{8}y - \frac{66}{8} \Rightarrow b_{xy} = \frac{10}{8}$. (2M)				
15	• From the second equation $y = \frac{40}{18}x - \frac{214}{18} \Rightarrow b_{yx} = \frac{40}{18}$. (1M)				
	• Correlation coefficient $r=1.66$ which is not less than 1. (1M)				
	• Now, From first equation $y = \frac{8}{10}x + \frac{66}{10} \Rightarrow b_{yx} = \frac{8}{10}$. (1M)				
	• From the second equation $x = \frac{18}{40}y - \frac{214}{40} \Rightarrow b_{yx} = \frac{18}{40}$. (1M)				
	• Correlation coefficient $r=\pm 0.6$. (2M)				
	If the pdf of a two dimensional random variable (X,Y) is given by $f(x, y) = x + y, ; 0 \le (x, y) \le 1$.				
	Find the pdf of U=XY. (8 M) (Apr/May 2015, Nov/Dec 2019) BTL4				
	Answer : Page : 2.156 – Dr.A.Singaravelu				
	• Take $u=xy$ and $v=y$.				
	$\partial(x,y) = \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} = 1$				
16	• $J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \partial u & \partial v \\ \partial y & \partial y \\ \partial u & \partial v \end{vmatrix} = \frac{1}{v}.$ (2M)				
	• $f(u,v) = J f(x,y) = 1 + \frac{u}{v^2}$. (3M)				
	• $f(u) = \int_{u}^{1} \left(1 + \frac{u}{v^2}\right) dv = 2 - 2u$. (3M)				
	Let (X,Y) be a two-dimensional non-negative continuous random variable having the joint				
17	density $f(x, y) = \begin{cases} 4xy e^{-(x^2+y^2)}, x, y \ge 0\\ 0, elsewhere \end{cases}$. Find the density function of $U = \sqrt{X^2 + Y^2}$. (8 M)				
1/	(May/June 2016, Apr/May 2018) BTL5				
	Answer : Page : 2.179 – Dr.A. Singaravelu T 1 $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$				
	• Take $u^{-} = x^{-} + y^{-}, v = x$				

$$I = \frac{\partial(x, y)}{\partial(u, v)} = \frac{\partial u}{\partial u} \frac{\partial x}{\partial v} = \frac{u}{\sqrt{u^2 - v^2}}. (2M)$$

$$= f(u, v) = |J| f(x, y) = 4uv e^{-u^2}. (3M)$$

$$= f(u) = \int_0^u (4uv e^{-u^2}) dv = 2u^3 e^{-u^2}. (3M)$$

$$= f(u) = \int_0^u (4uv e^{-u^2}) dv = 2u^3 e^{-u^2}. (3M)$$
If X and Y are independent random variables with pdf $e^{-t}, x \ge 0; e^{-\gamma}, y \ge 0$ respectively. Find the density function of $U = \frac{X}{X + Y}$ and $V = X + Y$. Are X and Y independent? (8 M) (Nov/Dec 2013, Apr/May 2017, Nov/Dec 2017) BTL5
Answer : Page : 2.176- Dr. A. Singaravelu
$$= Take \ U = \frac{X}{X + Y} \text{ and } V = X + Y.$$

$$I = \int_0^u \frac{\partial(x, y)}{\partial(u, v)} = \frac{\partial x}{\partial x} \frac{\partial y}{\partial v} = v. (2M)$$

$$= f(u, v) = |J| f(x, y) = v e^{-v}. (1M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= f(u) = \int_0^u (ve^{-v}) dv = 1 (2M)$$

$$= \int_0^u (ve^{-v}) dv$$

	UNIT III – Random Proccesses				
	Classification – Stationary process – Markov process - Markov chain - Poisson process – Random telegraph process.				
	PART *A				
Q.No	Questions				
1.	Define a random process and give an example. (May/June 2016) BTL1 A random process is a collection of random variables $\{X(s,t)\}$ that are functions of a real variable, namely time 't' where $s \in S$ (Sample space) and $t \in T$ (Parameter set or index set). Example: $X(t) = A\cos(\omega t + \theta)$ where θ is uniformly distributed in $(0,2\pi)$, where 'A' and ' ω ' are constants.				
2	State the two types of stochastic processes. BTL1 The four types of stochastic processes are Discrete random sequence, Continuous random sequence, Discrete random process and Continuous random process.				
3	Define Stationary process with an example. (May/June 2016) BTL1 If certain probability distribution or averages do not depend on 't', then the random process {X(t)} is called stationary process.				
4	Define first Stationary process. (Nov/Dec 2015) BTL1 A random process { $X(t)$ } is said to be a first order stationary process if $E[X(t)] = \mu$ is a constant.				
5	Define strict sense and wide sense stationary process.(Nov/Dec 2015, Apr/May 2017, Nov/Dec 2017) BTL1 A random process is called a strict sense stationary process or strongly stationary process if all its finite dimensional distributions are invariant under translation of time parameter. A random process is called wide sense stationary or covariance stationary process if its mean is a constant and auto correlation depends only on the time difference.				
6	In the fair coin experiment we define {X(t)} as follows $X(t) = \begin{cases} \sin \pi t & \text{, if head shows} \\ 2t & \text{, if tail shows} \end{cases}$. Find E[X(t)] and find F(x,t) for t = 0.25. (Nov/Dec 2016) BTL3 $P[X(t) = \sin \pi t] = \frac{1}{2}$, $P[X(t) = 2t] = \frac{1}{2}$ $E[X(t)] = \sum X(t) P[X(t)] = \sin \pi t \left(\frac{1}{2}\right) + 2t \left(\frac{1}{2}\right) = \frac{1}{2} \sin \pi t + t$ When $t = 0.25$, $P[X(0.25) = \sin \pi (0.25)] = P\left[X(0.25) = \frac{1}{\sqrt{2}}\right] = \frac{1}{2}$				
	$P[X(t)=2(0.25)] = P\left[X(t)=\frac{1}{2}\right] = \frac{1}{2}$ Hence F(x,t) for t= 0.25 is given by				

	$F(x,t) = \begin{cases} 0 & , x < 0 \\ \frac{1}{2} & , \frac{1}{2} \le x < \frac{1}{\sqrt{2}} \\ 1 & , x \ge \frac{1}{\sqrt{2}} \end{cases}$
7	Prove that a first order stationary random process has a constant mean. (Apr/May 2011) BTL3 f[X(t)] = f[X(t+h)] as the process is stationary. $E[X(t)] = \int X(t) f[X(t+h)]d(t+h)$ $t+h=u \Rightarrow d(t+h)=du$ $Put = \int X(u) f[X(u)]du$ =E[X(u)] Therefore, $E[X(t+h)] = E[X(t)]$ Therefore, $E[X(t+h)] = E[X(t)]$ Therefore, $E[X(t)]$ is independent of 't'. Therefore, $E[X(t)]$ is a constant.
8	What is a Markov process. Give an example.(Nov/Dec 2014, Apr/May 2015, May/June 2016, Apr/May 2019, Nov 2019) BTL1 Markov process is one in which the future value is independent of the past values, given the present value. (i.e.,)A random process X(t) is said to be a Markov process if for every $t_0 < t_1 < t_2 , P\{X(t_n) \le x_n / X(t_{n-1}) = x_{n-1}, X(t_{n-2}) = x_{n-2},, X(t_0) = x_0\} \Rightarrow P\{X(t_n) \le x_n / X(t_{n-1}) = x_{n-1}\}. Example: Poisson process is a Markov process. Therefore, number of arrivals in (0,t) is a Poisson process and hence a Markov process.$
9	 Define Markov chain. When it is called homogeneous? Also define one-step transition probability. (Apr/May 2010) BTL1 If ∀n, P[X_n = a_n / X_{n-1} = a_{n-1}, X_{n-2} = a_{n-2},, X₀ = a₀]=P[X_n = a_n / X_{n-1} = a_{n-1}] then the process {X_n} n = 0,1,2, is called a Markov chain. In a Markov chain if the one-step transition probability P[X_n = a_n / X_{n-1} = a_{n-1}]=P_{ij}(n-1,n) independent of the step 'n'. (i.e.,) P_{ij}(n-1,n)=P_{ij}(m-1,m) for all m,n and I,j. Then the Markov chain is said to be homogeneous. The conditional probability P[X_n = a_j / X_{n-1} = a_j] is called the one step transition probability from state a_i to state a_i at the nth step.
10	Define Poisson process. (Nov/Dec 2017) BTL1 If X(t) represents the number of occurrences of a certain event in (0,t), then the discrete process {X(t)} is called the Poisson process provided the postulates are satisfied: $P[1 \ occurrence \ in \ (t, t + \Delta t)] = \lambda \Delta t + 0(\Delta t)$ $P[0 \ occurrence \ in \ (t, t + \Delta t)] = 1 - \lambda \Delta t + 0(\Delta t)$ $P[2 \ occurrence \ in \ (t, t + \Delta t)] = 0(\Delta t)$ X(t) is independent of the number of occurrences of the event in any interval prior and after the interval (0,t) The provability that the event occurs a specified number of times in (t ₀ , t ₀ +t) depends only on 't', but not on 't ₀ '.
	JIT-JEPPIAAR/ECE/Dr.S.SURESH/II Yr/SEM 04/MA8451/PROBABILITY AND RANDOM PROCESSES 1-5/QB+Keys/Ver2.0

1.39

State any two properties of Poisson process. (Nov/Dec 2015, Apr/May 2018) BTL1
• The Poisson process is a Markov process
• Difference of two different Poisson process is a Poisson process
• Difference of two different Poisson process is not a Poisson process
• Difference of two different Poisson process is not a Poisson process
• Difference of two different Poisson process is not a Poisson process
• Difference of two different Poisson process is not a Poisson process
• Difference of two different Poisson process is not a Poisson process
• Difference of two different Poisson process is not a Poisson process
• Difference of two different Poisson process is P[X(t) = n] =
$$\frac{e^{-2t}(2t)^2}{n!}$$

P[X(t) = 0] = $\frac{e^{-2t}(2t)^2}{0!} = e^{-2} = 0.1353$.
Prove that the sum of two independent Poisson process is a Poisson process.(Nov/Dec 2012, Apr/May 2015, Apr/May 2017) BTL5
Let X(t)=[X(t)+X_t(t)] = E[X_1(t)] + E[X_2(t)] = -\lambda_t t + \lambda_t t = (\lambda_t + \lambda_t)^2 = E[X_1^2(t)] + E[X_1(t)] + E[X_2(t)] = -\lambda_t t + \lambda_t t = (\lambda_t + \lambda_t)^2 = E[X_1^2(t)] + E[X_1(t)] + E[X_2(t)] = -\lambda_t t + \lambda_t t = (\lambda_t + \lambda_t)^2 t^2 + \lambda_t t = [X_1^2(t)] + E[X_2(t)] = -\lambda_t t + \lambda_t t = (\lambda_t + \lambda_t)^2 t^2 + \lambda_t t = [X_1^2(t)] + E[X_1(t)] + E[X_2(t)] = -\lambda_t t + \lambda_t t = (\lambda_t + \lambda_t)^2 t^2 + \lambda_t t = [X_1(t)] + E[X_1(t)] + E[X_1(t)] + E[X_2(t)] = E[X_1(t) + X_2(t)] = E[X_1(t)] + E[X_1(t)] = E[X_1(t)] + E[X_1(t)] = E[X_1(t)] + E[X_1(t)] = E[X_1(t)] + E[X_1(t)] = E[

	Given $\lambda = \frac{1}{5} per \min = \frac{1}{5} \times 60 = 12 per hour$
	The probability law of Poisson process is $P[X(t) = n] = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$
	$P[X(1) = 12] = \frac{e^{-12}(12)^{12}}{12!} = 0.1144$
16	Define Semi- Random telegram signal process. (Apr/May 2015) BTL1 If N(t) represents the number of occurrences of a specified event in (0,t) and $X(t) = (-1)^{N(t)}$, then {X(t)} is called a semi-random telegraph signal process.
17	 Define Random telegraph process. BTL1 A random telegraph process is a discrete random process X(t) satisfying the following conditions: X(t) assumes only one of the two possible values 1 or -1 at any time 't', randomly X(0) = 1 or -1 with equal probability ½. The number of level transitions or flips, N(τ), from one value to another occurring in any interval of length τ is a Poisson process with rate λ so that the probability of exactly 'r' transitions is P[N(τ) = r] = e^{-λτ} (λτ)^r/r!, r = 0,1,2,
18	Write the properties of Random telegraph process. BTL1 • $P[X(t)=1] = \frac{1}{2} = P[X(t)=-1]$ for any t >0 • $E[X(t)] = 0$ and $Var[X(t)] = 1$ • $X(t)$ is a WSS process
19	Consider the random process $X(t) = \cos(t + \phi)$ where ϕ is a random variable with density function $f(\phi) = \frac{1}{\pi}, -\frac{\pi}{2} < \phi < \frac{\pi}{2}$. Check whether or not the process is stationary. BTL3

	$E[X(t)] = \int_{-\infty}^{\infty} X(t) f(\phi) d\phi$
	$-\infty$
	$= \int_{-\infty}^{2} \cos(t+\phi) \frac{1}{\pi} d\phi$
	$\frac{\pi}{2}$
	$=\frac{1}{\pi}\int_{-\pi}^{\frac{\pi}{2}}\cos(t+\phi) d\phi$
	$\frac{2}{1}$
	$=\frac{1}{\pi}[\sin(t+\phi)]_{-\frac{\pi}{2}}^{2}$
	$=\frac{1}{\pi}\left[\sin(\frac{\pi}{2}+t)-\sin(-\frac{\pi}{2}+t)\right]$
	$=\frac{1}{\pi}\left[\cos(t) + \cos(t)\right] = \frac{2}{\pi}\cos(t)$
	Therefore $E[X(t)]$ is not a constant. Hence $X(t)$ is not stationary.
	Find the transition probability matrix of the process represented by the transition diagram. (Apr/May 2011) DTL 2
	0.4 1 0.3 (2) 0.3
	0.3 0.1 0.2 0.4
20	
	0.5
	If the tpm of the markov chain is $\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, find the steady-state distribution of the chain. BTL5
21	Given : $\mathbf{P} = \begin{bmatrix} 0 & 1\\ 1\\ 2 & 2 \end{bmatrix}$

	$\pi P = \pi \dots \dots$
	$\pi_1 + \pi_2 = 1(2)$
	$(1) \Rightarrow \begin{pmatrix} \pi_1 & \pi_2 \end{pmatrix} \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = (\pi_1 & \pi_2)$
	$\left[\pi_1(0) + \pi_2 \left(\frac{1}{2} \right) \pi_1(1) + \pi_2 \left(\frac{1}{2} \right) \right] = (\pi_1 \pi_2)$
	$\Rightarrow \left[\pi_2 \left(\frac{1}{2} \right) \pi_1 + \pi_2 \left(\frac{1}{2} \right) \right] = (\pi_1 \pi_2)$
	$\Rightarrow \frac{1}{2}\pi_2 = \pi_1 \dots \dots \dots \dots \dots (3)$
	$\pi_1 + \pi_2 \left(\frac{1}{2}\right) = \pi_2 \dots \dots$
	Now (2) $\Rightarrow \pi_1 + \pi_2 = 1$, substitute (3) in (2)
	$\Rightarrow \frac{1}{2}\pi_2 + \pi_2 = 1 \Rightarrow \frac{3}{2}\pi_2 = 1 \Rightarrow \pi_2 = \frac{2}{3}$
	Sub π_2 in (3), $\frac{1}{2} \cdot \frac{2}{3} = \pi_1 \Longrightarrow \pi_1 = \frac{1}{3}$
	The steady state distribution of the chain is $\pi = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \end{pmatrix}$
	Let $A = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ be a stochastic matrix. Check if it is regular. (Nov/Dec 2016) BTL4
22	$A^{2} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$
	Since all the entries of A^2 are positive, 'A' is regular.
	What is the autocorrelation function of the Poisson process. Is Poisson process stationary? (Apr/May 2019)
	BTL2
23	Let X(t) be a Poisson process then $P[X(t) = n] = \frac{e^{-\lambda t} (\lambda t)^n}{n!} n = 0, 1, 2,$
	Autocorrelation function $R_{xx}(t_1, t_2) = \lambda^2 t_1 t_2 + \lambda \min\{t_1, t_2\}$
	Since $R_{xx}(t_1, t_2)$ is not a function of time difference t ₁ -t ₂ , Poisson process is not stationary.
	When is a Random process said to be evolutionary. Give an example. (Apr/May 2015) (BTL1)
24	A random process that is not stationary at any sense is called evolutionary process.
	Semi-random telegraph signal process is an example of evolutionary random process.
25	A Markov chain is said to be irreducible if every state can be reached from every other state, where $p_{}^{(n)} > 0$
	p_{ij}

	for some 'n' and for all 'i' and 'j'. If 'P' is the tpm of a homogeneous Markov chain, then the n-step tpm $P^{(n)}$ is equal to P^n . (i.e.,) $\left[P_{ij}^{(n)}\right] = \left[P_{ij}\right]^n$.
	Part*B
	The process {X(t)} whose probability distribution under certain conditions is given by, $P{X(t) = n} = \frac{(at)^{n-1}}{(1+at)^{n+1}}, n = 1,2$ $= \frac{-at}{(1+at)^{n+1}}, n = 0$
1	1+ at , 1 -
	• $E[X(t)] = \sum_{n=0}^{\infty} n p_n = 0 + (1) \frac{1}{(1+at)^2} + (2) \frac{at}{(1+at)^3} + \dots = 1.$ (3M)
	• $E[X^{2}(t)] = \sum_{n=0}^{\infty} n^{2} P_{n} = \sum_{n=0}^{\infty} ([n(n+1) - n] P_{n} = 1 + 2at.$ (3M)
	• $Var[X(t)] = E[X^{2}(t)] - E[X(t)] = 2at \neq cons \tan t$. (2M)
	If the random process X(t) takes the value -1 with probability $\frac{1}{3}$ and takes the value 1 with probability $\frac{2}{3}$,
2	find whether X(t) is a stationary process or not. (6M)(Apr/May 2019) BTL4 Answer:Page: 3.12 – Dr. G. Balaji
	• $E[X^{2}(t)] = \sum_{n=-1}^{1} n^{2} P_{n} = 1$ (2M)
	• $Var[X(t)] = E[X^{2}(t)] - E[X(t)] = \frac{8}{9} = \text{constant.}$ (2M)
3	Show that the process $X(t) = A\cos(\omega t + \theta)$ where A, ω are constants, θ is uniformly distributed in $(-\pi, \pi)$ is wide sense stationary. (8M) (May/June 2016, Nov/Dec 2016) BTL5 Answer:Page: 3.15-Dr. A. Singaravelu
	• $E[X(t)] = \int_{-\infty}^{\infty} X(t) f(\theta) d\theta = \int_{-\pi}^{\pi} A \cos(\omega t + \theta) \frac{1}{2\pi} d\theta = 0 = cons \tan t$ (2M)
	• $R_{XX}(t,t+\tau) = E[X(t)X(t+\tau)] = E[A\cos(\omega t+\theta)A\cos(\omega (t+\tau)+\theta)]$ (1M)
	• $E[A\cos(\omega t + \theta)A\cos(\omega (t + \tau) + \theta)] = \frac{A^2}{2} \{E(\cos \omega \tau) + E[\cos(2\omega t + 2\theta + \omega \tau)]\}$ (2M)
	• $E[\cos(2\omega t + 2\theta + \omega\tau)] = 0$ (2M)

	• $R_{XX}(t,t+\tau) = \frac{A^2}{2} \cos \omega \tau$ = a function of τ .	(1M)			
	Show that the process $X(t) = A\cos(\omega t + \theta)$ where A, ω are constants, θ is uniform WSS. (8M) (Nov/Dec 2017) BTL5 Answer:Page: 3.24-Dr. G. Balaji	ıly distributed in $(0,2\pi)$ is			
	• $E[X(t)] = \int_{-\infty}^{\infty} X(t) f(\theta) d\theta = \int_{0}^{2\pi} A\cos(\omega t + \theta) \frac{1}{2\pi} d\theta = 0 = cons \tan t$	(2M)			
4	• $R_{XX}(t,t+\tau) = E[X(t)X(t+\tau)] = E[A\cos(\omega t+\theta)A\cos(\omega (t+\tau)+\theta)]$	(1M)			
	• $E[A\cos(\omega t + \theta) \cdot A\cos(\omega (t + \tau) + \theta)] = \frac{A^2}{2} \{E(\cos \omega \tau) + E[\cos(2\omega t + 2\theta + \omega \tau)]\}$	(2M)			
	• $E[\cos(2\omega t + 2\theta + \omega\tau)] = 0$	(2M)			
	• $R_{XX}(t,t+\tau) = \frac{A^2}{2} \cos \omega \tau$ = a function of τ .	(1M)			
	Show that the process $X(t) = A \cos \lambda t + B \sin \lambda t$ is strict sense stationary of order variables if $E[A] = E[B] = 0$; $E[A^2] = E[B^2]$; $E[AB] = 0$.	r 2. A and B are random			
	(OR)	(2 - 2)			
	If $X(t) = A\cos \lambda t + B\sin \lambda t$, $t \ge 0$ is a random process where A and B are independent $N(0, \sigma^2)$ random				
5	variables. Examine the WSS process of X(t). (8M) (Apr/May 2015, Apr/May 2017) BTL5				
	• $E\{X(t)\} = E\{A\cos\lambda t + B\sin\lambda t\} = 0 = cons \tan t$	(2 M)			
	• $R_{\text{rm}}(t,t+\tau) = E[X(t)X(t+\tau)] = E\{[A\cos\lambda t + B\sin\lambda t][A\cos\lambda (t+\tau) + B\sin\lambda (t+\tau)] + B\sin\lambda t\}$	(2M)			
	• $R_{\rm res}(t, t+\tau) = K^2 [\cos \lambda t \cos \lambda (t+\tau) + \sin \lambda t \sin \lambda (t+\tau)] = K^2 \cos \lambda \tau$	(4M)			
	A random variable {X(t)} is defined by $X(t) = A\cos t + B\sin t, -\infty < t < \infty$ where A	A and B are independent			
		2			
	random variables each of which has a value -2 with probability $-$ and a value 1 v $\frac{3}{3}$	with probability -3 . Show			
	that X(t) is wide sense stationary. (8M) (Nov/Dec 2015, Apr/May 2017, Apr/May 20 Answer:Page: 3.44-Dr. G. Balaji	018) BTL5			
	• $E[A] = \sum A_i P(A_i) = 0$	(1M)			
6	• $E[B] = \sum B_i P(B_i) = 0$	(1M)			
	• $E[A^2] = \sum A_i^2 P(A_i) = 2$	(1M)			
	• $E[B^2] = \sum B_i^2 P(B_i) = 2$	(1 M)			
	• $E[X(t)] = E[Y\cos t + Z\sin t] = 0 = cons \tan t$	(2M)			
	• $R_{XX}(t,t+\tau) = E[X(t)X(t+\tau)] = E[(Y\cos t_1 + Z\sin t_1)(Y\cos t_2 + Z\sin t_2)] = 2\cos\tau$	(2M)			
	The transition probability matrix of a Markov chain $\{X \}$ n-12 having	a 3 states 1.2 and 3 is			
7	$\begin{bmatrix} 0.1 & 0.5 & 0.4 \end{bmatrix}$	5 5 Statts 1,2 and 5 18			
	$P = \begin{bmatrix} 0.6 & 0.2 \\ 0.6 & 0.2 \end{bmatrix}$ and the initial distribution is $P^{(0)} = (0.7 & 0.2 & 0.1)$. Find	(i) $P\{X_n = 3\}$ and (ii)			
		() - (₂ -) ()			

8

9

 $P\{X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2\}$. Answer:Page: 3.60-Dr. A. Singaravelu • $P^{(1)} = P^{(0)}P = \begin{bmatrix} 0.7 & 0.2 & 0.1 \end{bmatrix} \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \end{bmatrix} = \begin{bmatrix} 0.22 & 0.43 & 0.35 \end{bmatrix}$ (2M)0.3 0.4 0.3 • $P^{(2)} = P^{(1)}P = \begin{bmatrix} 0.22 & 0.43 & 0.35 \end{bmatrix} \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix} = \begin{bmatrix} 0.385 & 0.336 & 0.279 \end{bmatrix}$ (2M)• $P\{X_2 = 3\} = 0.279$ (1M) $P\{X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2\} = P_{32}^1 P_{32}^1 P_{23}^1 P[X_0 = 2] = 0.0048$ (3M)A man either drives a car or catches a train to office each day. He never goes 2 days in a row by train but if he drives one day, then the next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drive to work if and only if a 6 appeared. Find (i) The probability that he drives to work in the long run and (ii) The probability that he takes a train on the third day. (8M) (May/June 2016, Nov/Dec 2017) BTL4 Answer:Page: 3.71-Dr. A. Singaravelu • $P = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ (2M) • $\pi = (\pi_1 \ \pi_2) = (\frac{1}{3} \ \frac{2}{3})$ (3M) • $P^{(2)} = P^{(1)}P = \left(\frac{1}{12}, \frac{11}{12}\right)$ (1M) • $P^{(3)} = P^{(2)}P = \left(\frac{11}{24}, \frac{13}{22}\right)$ (2M) If {X_n; n=1,2,3...} be a Markov chain on the space S={1,2,3} with one-step $\begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$. Sketch the transition diagram. Is the chain irreducible? Explain. Is the chain ergodic? Explain. (8M) (May/June 2013, Nov/Dec 2019) BTL4 Answer:Page: 3.141-Dr. G. Balaji • $P^4 = P^3 P = P P = P^2$ (1M)• $P^5 = P^4 P = P^2 P = P^3 = P$ (1M)• 1st state $P_{00}^{(2)} > 0, P_{00}^{(4)} > 0, P_{00}^{(6)} > 0 \dots \Rightarrow d_i = GCD(2, 4, 6, \dots) = 2$ (1M)• 2^{nd} state $P_{11}^{(2)} > 0, P_{11}^{(4)} > 0, P_{11}^{(6)} > 0 \dots \Rightarrow d_i = GCD(2, 4, 6, \dots) = 2$ (1M)• 3^{rd} state $P_{22}^{(2)} > 0, P_{22}^{(4)} > 0, P_{22}^{(6)} > 0 \dots \Rightarrow d_i = GCD(2, 4, 6, \dots) = 2$ (1M)• The states are aperiodic with period 2.

	• We find $P_{ij}^{(n)} > 0$. So the Markov chain is irreducible (2M)
	• The chain is finite and irreducible so it is non- null persistant. But not ergodic. (1M)
	Find the mean, variance and auto correlation of Poisson process. (8M) (May/June 2014, Apr/May 2015) BTL2 Answer: Page:3.93- Dr. A. Singaravelu • The probability of Poisson distribution is $P\{X(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$, n=0,1,2, (1M)
10	• $E[X(t)] = \sum_{x=0}^{\infty} x \frac{e^{-\lambda t} (\lambda t)^n}{n!} = \lambda t$ (2M)
	• $E[X^{2}(t)] = \sum_{x=0}^{\infty} x^{2} \frac{e^{-(\lambda t)}}{n!} = (\lambda t)^{2} + \lambda t$ (2M)
	• $Var[X(t)] = \lambda t$ (1M)
	• $R_{xx}(t_1,t_2) = E[X(t_1)X(t_2)] = \lambda^2 t_1 t_2 + \lambda \min(t_1,t_2)$ (2M)
11	(i) Prove that the interval between two successive occurrences of a Poisson process with parameter λ has an exponential distribution. (ii)Show that Poisson process is a Markov process. (8M) (Apr/May 2018) BTL5 Answer: Page:3.98- Dr. A. Singaravelu (i) • $P(T > t) = P(E_{i+1} \text{ did not occur in } (t_i, t_{i+1}) = P(X(t)=0) = e^{-\lambda t}$ (1M) • $F(t)=P(T \le t)=1-P(T > t)=1-e^{-\lambda t}$ (2M) • The pdf of T is given by $\lambda e^{-\lambda t}$ which is an exponential distribution. (1M) (ii) • $P[X(t_3)=n_3/X(t_2)=n_2; X(t_1)=n_1] = \frac{e^{-\lambda (t_3=t_2)} \lambda^{n_3-n_2} (t_3-t_2)^{n_3-n_2}}{(n_3-n_2)!}$ (3M) • $P[X(t_3)=n_3/X(t_2)=n_2; X(t_1)=n_1] = P[X(t_3)=n_3/X(t_2)=n_2]$ which is Markov process. (1M)
12	Suppose that customers arrive at a bank according to a roisson process with mean rate of 5 per limite, find the probability that during a time interval of 2 min (i) exactly 4 customers arrive and (ii) more than 4 customers arrive. (iii) fewer than 4 customers arrive. (8M) (Nov/Dec 2015) BTL5 Answer: Page:3.100- Dr. A. Singaravelu • The probability of Poisson distribution is $P\{X(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$, n=0,1,2, (1M) • P[4 customers arrive in 2 min time interval] = P{X(2)=4} = 0.1339 (2M) • P[More than 4 customers arrive in 2 min interval] = P{X(2)>4} = 1 - P[X(2) \le 4] = 0.715(3M) • P[Fewer than 4 customers arrive in 2 min interval] = P{X(2)<4} = 0.1512. (2M)
13	A fisherman catches a fish at a Poisson rate of 2 per hour from a large lake with lots of fish. If he starts fishing at 10.00 a.m. What is the probability that he catches one fish by 10.30 a.m and three fishes by noon? (8M) (Apr/May 2017) BTL5 Answer: Classwork

(3M)

(3M)

- The probability of Poisson distribution is $P\{X(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$, n=0,1,2,... (2M)
- P[He catches one fish by 10.30 a.m] =P[X(0.5)=1] = $\frac{e^{-1}(1)^1}{1!}$ =0.3679 (3M)

• P[He catches three fishes by noon] = P[X(2) = 3] =
$$\frac{e^{-4}(4)^3}{3!} = 0.1954$$
 (2M)

A hard disk fails in a computer system and it follows Poisson process with mean rate of 1 per week. Find the probability that 2 weeks have elapsed since the last failure. If there are 5 extra hard disks and the next supply is not due in 10 weeks, find the probability that the machine will not be out of order in the next 10 weeks. (8M) (Nov/Dec 2017) BTL5

Answer: Page: 3.102- Dr. A. Singaravelu

- The probability of Poisson distribution is $P\{X(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$, n=0,1,2,... (2M)
- P[No failure in 2 weeks since last failure] = P[X(2)=0] = $e^{-2} = 0.135$
- $P[X(10) \le 5] = P[X(10) = 0] + [X(10) = 1] + [X(10) = 2] + [X(10) = 3] + [X(10) = 4] + [X(10) = 5] = 0.067$

If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute, find the probability that the interval between 2 consecutive arrivals is (i) more than 1 minute, (ii) between 1 min and 2 min and (iii) 4 min or less. (8M) (May/June 2012) BTL5

Answer: Page: 3.100- Dr. A. Singaravelu

• Using inter arrival property of Poisson process, $f(t) = \lambda e^{-\lambda t}$ (1M)

•
$$P(T > 1) = \int_{1}^{\infty} 2e^{-2t} dt = 0.135$$
 (2M)

•
$$P(1 < T < 2) = \int 2e^{-2t} dt = 0.117$$
 (2M)

•
$$P(T \le 4) = \int_{0}^{4} 2e^{-2t} dt = 1$$
 (3M)

If {X₁(t)} and {X₂(t)} are two independent Poisson process with parameter λ_1 and λ_2 respectively, show that P[X₁(t) =x / X₁(t) + X₂(t) = n] is Binomial where $P = \frac{\lambda_1}{\lambda_1 + \lambda_2}$.(8M) (Apr/May 2018) BTL5

Anwer: Page: 3.84-Dr G. Balaji

•
$$P[X_1(t) = x/X_1(t) + X_2(t) = n] = \frac{P[\{X_1(t) = x\} \cap \{X_1(t) + X_2(t) = n\}]}{P(X_1(t) + X_2(t) = n)}$$
 (3M)

14

•
$$P[X_1(t) = x/X_1(t) + X_2(t) = n] = \frac{\frac{x!}{(n-x)!}}{\frac{e^{-(\lambda_1 + \lambda_2)t}((\lambda_1 + \lambda_2)t)^n}{n!}}$$
 (3M)

•
$$P[X_1(t) = x/X_1(t) + X_2(t) = n] = nC_x P^x q^{n-x}$$
 where $P = \frac{\lambda_1}{\lambda_1 + \lambda_2}$ and $q = \frac{\lambda_2}{\lambda_1 + \lambda_2}$ (2M)

JIT-JEPPIAAR/ECE/Dr.S.SURESH/II Yr/SEM 04/MA8451/PROBABILITY AND RANDOM PROCESSES 1-5/QB+Keys/Ver2.0

 $e^{-\lambda_1 t} (\lambda_n t)^x e^{-\lambda_2 t} (\lambda_n t)^{n-x}$

	Define semi-random telegraph signal process and random telegraph signal process and former is evolutionary and the latter is wide sense stationary(Covariance stationary (Nov/Dec 2013, Nov/Dec 2017, Apr/May 2015, Apr/May 2017) BTL5 Answer: 3.106Dr.A. Singarayelu	d prove that the process). (16M)
	 Answer: 3.100Dr.A. Singaravelu A random telegraph process is a discrete random process X(t) satisfying the following co X(t) assumes only one of the two possible values 1 or -1 at any time 't', randomly X(0) = 1 or -1 with equal probability ¹/₂. The number of level transitions or flips, N(τ), from one value to another occurring length τ is a Poisson process with rate λ so that the probability of exactly 'P[N(τ) = r] = e^{-λτ}(λτ)^r/r!, r = 0,1,2, If N(t) represents the number of occurrences of a specified event in (0,t) and X(t) = (-1) 	nditions: in any interval of r' transitions is (2M) ^{N(t)} , then {X(t)} is
	called a semi-random telegraph signal process.	(2M)
	• $P{X(t) = 1} = P{N(t) \text{ is even}} = e^{-\lambda t} \cosh \lambda t$	(1M)
	• $P{X(t) = -1} = P{N(t) \text{ is odd}} = e^{-\lambda t} Sinh \lambda t$	(1 M)
	• $E[X(t)] = e^{-2\lambda t}$	(1M)
	• $P[X(t_1) = 1, X(t_2) = 1] = P[X(t_1) = 1/X(t_2) = 1] \times P[X(t_2) = 1] = e^{-\lambda \tau} \cosh \lambda \tau e^{-\lambda t_2} \cosh \lambda t_2$	(1 M)
	• $P[X(t_1) = -1, X(t_2) = -1] = e^{-\lambda \tau} \cosh \lambda \tau e^{-\lambda t_2} \operatorname{Sinh} \lambda t_2$	(1M)
17	• $P[X(t_1)=1, X(t_2)=-1]=e^{-\lambda \tau} \sinh \lambda \tau e^{-\lambda t_2} \sinh \lambda t_2$	(1 M)
	• $P[X(t_1) = -1, X(t_2) = 1] = e^{-\lambda \tau} \sinh \lambda \tau e^{-\lambda t_2} \cosh \lambda t_2$	(1 M)
	• $P[X(t_1) \times X(t_2) = 1] = e^{-\lambda \tau} \cosh \lambda \tau$	(1112)
	• $P[X(t_1) \times X(t_2) = -1] = e^{-\lambda \tau} \sinh \lambda \tau$ • $P(t_1, t_2) = E[X(t_2) X(t_2)] = e^{-2\lambda (t_2 - t_1)}$	(1M)
	• $K(l_1, l_2) = E[X(l_1)X(l_2)] = e^{-k_1 \cdot k_2}$	(1M)
	• {X(t)} is evolutionary	
	• For Random telegraph signal process Y(t), $P(\alpha = 1) = \frac{1}{2}$, $P(\alpha = -1) = \frac{1}{2}$	(1M)
	• $E(\alpha) = 0, E(\alpha^2) = 1$	(1 M)
	• $R_{YY}(t_1,t_2) = E[Y(t_1)Y(t_2)] = E[\alpha^2 X(t_1)X(t_2)] = e^{-2\lambda(t_2-t_1)}$ which is WSS.	(1M)

	UNIT-IV CORRELATION AND SPECTRAL DENSITIES		
	Auto correlation functions – Cross correlation functions – Properties – Power spectral density - Cross spectral density – Properties.		
Q.No	PART*A		
	List any two properties of an autocorrelation function. [N/D14] BTL 1		
1.	 <i>R</i>(τ) is an even function of τ. If <i>R</i>(τ) is the autocorrelation function of a stationary process {<i>X</i>(<i>t</i>)} with no periodic component, then lim_{τ→∞} <i>R</i>(τ) = μ_x², provided the limit exists. 		
	Prove that for a WSS process $\{X(t)\}, R_{XX}(\tau) = R_{XX}(-\tau).$		
2	$[A/M11,N/D11,N/D12,N/D15,M/J16,N/D16,A/M17,N/D17]$ $STL 5$ $R_{XX}(\tau) = E[X(t)X(t-\tau)]$ $R_{XX}(-\tau) = E[X(t)X(t+\tau)] = E[X(t+\tau)X(t)] = R_{XX}(\tau)$ Therefore $R(\tau)$ is an even function of τ .		
	Show that the autocorrelation function $R_{XX}(\tau)$ is maximum at $\tau = 0$. [<u>N/D17</u>] BTL 5		
3	$R_{xx}(\tau) \text{ is maximum at } \tau = 0 i.e. \qquad R(\tau) \le R(0)$ Cauchy-Schwarz inequality is $(E[XY])^2 \le E[X^2]E[Y^2]$ Put $X = X(t)$ and $Y = X(t - \tau)$, then $(E[X(t)X(t - \tau)])^2 \le E[X^2(t)]E[X^2(t - \tau)]$ <i>i.e.</i> $(R(\tau))^2 \le (E[X^2(\tau)])^2$ [Since $E[X(t)]$ and $Var[X(t)]$ are constants for a stationary process] $[R(\tau)]^2 \le [R(0)]^2$ Taking square root on both sides, $ R(\tau) \le R(0)$. [Since $R(0) = E[X^2(t)]$ is positive].		
	The autocorrelation function of a stationary process is $R_{XX}(\tau) = 16 + \frac{9}{1+6\tau^2}$. Find the mean		
	and variance of the process. [A/M10, A/M11, M/J12] BTL5		
4	Given $R_{XX}(\tau) = 16 + \frac{\tau}{1 + 6\tau^2}$		
	$\mu_x^2 = \lim_{\tau \to \infty} R(\tau) = \lim_{\tau \to \infty} \left(16 + \frac{\tau}{1 + 6\tau^2} \right) = 16 + \lim_{\tau \to \infty} \left(\frac{\tau}{1 + 6\tau^2} \right)$		
	= 16 + 0 = 16 Mean $= \mu_x = E[X(t)] = 4$		

	$E[X^{2}(t)] = R_{XX}(0) = 16 + \frac{9}{1+6(0)} = 16 + 9 = 25$
	Variance $= E[X^{2}(t)] - (E[X(t)])^{2} = 25 - (4)^{2} = 25 - 16 = 9.$
	If the autocorrelation function of a stationary processes is $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$. Find the
	mean and variance of the process.[N/D11,M/J14,N/D14,N/D15,A/M18] BTL5
	Given $R_{xx}(\tau) = 25 + \frac{4}{1+6\tau^2}$
5	$\mu_x^2 = \lim_{\tau \to \infty} R(\tau) = \lim_{\tau \to \infty} \left(25 + \frac{4}{1 + 6\tau^2} \right) = 25 + \lim_{\tau \to \infty} \left(\frac{4}{1 + 6\tau^2} \right) = 25 + 0 = 25$
	Mean $= \mu_x = E[X(t)] = 5$
	$E[X^{2}(t)] = R_{XX}(0) = 25 + \frac{4}{1+6(0)} = 25 + 4 = 29$
	Variance $= E[X^{2}(t)] - (E[X(t)])^{2} = 29 - (5)^{2} = 29 - 25 = 4$.
	Find the variance of the stationary process $\{X(t)\}$ whose autocorrelation function is given by
	$R_{XX}(\tau) = 2 + 4e^{-2 \tau }$. [N/D10,N/D12,A/M17,N/D19] BTL5
	Given $R_{XX}(\tau) = 2 + 4e^{-2 \tau }$
6	$\mu_x^{z} = \lim_{\tau \to \infty} R(\tau) = \lim_{\tau \to \infty} (2 + 4e^{-\tau \tau}) = 2 + \lim_{\tau \to \infty} (4e^{-\tau \tau}) = 2 + 0 = 2$
0	Mean $= \mu_x = E[X(t)] = \sqrt{2}$ $E[X^2(t)] = R_1(0) = 2 + A_2^{-2}(0) = 2 + A_2^{-2}(0)$
	$E[X_{XX}(0)] = R_{XX}(0) = 2 + 4e^{-1} = 2 + 4 = 0$ Variance $-E[X^{2}(t)] - (E[X(t)])^{2}$
	$= \frac{1}{2} \left[\frac{1}{2} \right] \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[$
	Define cross correlation function and state any two of its properties. [N/D10, M/J13, M/J14,A/M15, M/J19] BTL1
7	If the process $\{X(t)\}$ and $\{Y(t)\}$ are jointly wide sense stationary, then $E[X(t)Y(t-\tau)]$ is a function of τ , denoted by $R_{XY}(\tau)$. This function $R_{XY}(\tau)$ is called the cross correlation function of the process $\{X(t)\}$ and $\{Y(t)\}$. Properties of cross correlation function are:
	i. $R_{XY}(-\tau) = R_{YX}(\tau)$. :: If (1) ((-\tau)) = 1 ((-\tau)) (1) (1) (-\tau) (-\tau) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
	iii. If the process $\{X(t)\}$ and $\{Y(t)\}$ are orthogonal, then $R_{XY}(\tau) = 0$. iii. If the process $\{X(t)\}$ and $\{Y(t)\}$ are independent, then $R_{XY}(\tau) = E[X(t)]E[Y(t-\tau)]$.
8	Prove that $R_{XY}(\tau) = R_{YX}(-\tau)$. [<u><i>M</i>/J16</u>] BTL5
0	By definition, we have

	$R_{YX}(\tau) = E[Y(t)X(t-\tau)]$
	$R_{YX}(-\tau) = E[Y(t)X(t+\tau)]$ $R_{YX}(-\tau) = E[Y(t)X(t+\tau)]$
	$R_{YX}(-\tau) = E[X(t+\tau)Y(t)]$ $R_{YY}(-\tau) = R_{YY}(\tau) \text{ [by definition]}$
	Therefore, $R_{YY}(\tau) = R_{YY}(\tau)$ [by definition]
	Define power spectral density function of stationary random processes $X(t)$. [N/D13,A/M15] BTL1
9	If $\{X(t)\}$ is a stationary process with autocorrelation function $R(\tau)$, then the Fourier transform of $R(\tau)$ is called the power spectral density function of $\{X(t)\}$ and denoted as $S(\omega)$ or
	$S_{XX}(\omega)$. i.e. $S(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-i\omega\tau} d\tau$.
	A random process $X(t)$ is defined by $X(t) = k \cos \omega t$, $t \ge 0$ where ω is a constant and k is
	uniformly distributed over $(0, 2)$. Find the autocorrelation function of $X(t)$.[M/J13] BTL5
	Given k is uniformly distributed over $(0, 2)$, the density function is given by
	$f_{K}(k) = \frac{1}{2-0} = \frac{1}{2}, \ 0 < k < 2$
	The autocorrelation function $R_{XX}(\tau)$ is given by
10	$R_{XX}(\tau) = E[X(t)X(t-\tau)] = \int_{0}^{2} X(t)X(t-\tau)f(k)dk = \int_{0}^{2} k\cos\omega t \cdot k\cos\omega(t-\tau)\frac{1}{2}dk$
	$=\frac{\cos\omega t\cos\omega(t-\tau)}{2}\int_{0}^{2}k^{2} dk =\frac{\cos\omega t\cos\omega(t-\tau)}{2}\left[\frac{k^{3}}{3}\right]_{0}^{2}=\frac{8}{6}\cos\omega t\cos\omega(t-\tau)$
	$R_{XX}(\tau) = \frac{4}{3}\cos\omega t\cos\omega(t-\tau).$
	5
	If $R_{XX}(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$. Find the mean and variance of X. [A/M15] BTL5
	Given $R_{XX}(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$
	$\tau^{2}(25+\frac{36}{36})$
11	$\mu_{x}^{2} = \lim_{\tau \to \infty} R_{XX}(\tau) = \lim_{\tau \to \infty} \frac{25\tau^{2} + 36}{6.25\tau^{2} + 4} = \lim_{\tau \to \infty} \frac{\tau \left(\frac{25\tau}{\tau^{2}} + \frac{\tau^{2}}{\tau^{2}}\right)}{\tau^{2} \left(6.25 + \frac{4}{\tau^{2}}\right)}$
	$= \lim_{\tau \to \infty} \frac{25 + \frac{36}{\tau^2}}{6.25 + \frac{4}{\tau^2}} = \frac{25 + 0}{6.25 + 0} = \frac{25}{6.25} = 4$
	$Mean = \mu_x = E[X(t)] = 2$

-			
	$E[X^{2}(t)] = R_{XX}(0) = \frac{25(0)+36}{6.25(0)+4} = \frac{36}{4} = 9$		
	Variance $= E[X^{2}(t)] - (E[X(t)])^{2} = 9 - (2)^{2} = 9 - 4 = 5.$		
	. Write any two properties of the power spectral density of the WSS process. [<u>A/M18</u>] BTL1		
12	 (i) The spectral density of a real random process is an even function. (ii) The spectral density of a process {X(t)}, real or complex is a real function of ω and non negative. 		
	Prove that the spectral density of a real random process is an even function. [<u>N/D15</u>] BTL5 By definition, we have		
	$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau$		
	$S_{XX}(-\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{i\omega\tau} d\tau$		
	Put $\tau = -u$ when $\tau = -\infty$, $u = \infty$ $d\tau = -du$ when $\tau = \infty$, $u = -\infty$		
13	$S_{XX}(-\omega) = \int_{-\infty}^{-\infty} R_{XX}(-u)e^{-i\omega u}(-du)$		
	$S_{XX}(-\omega) = -\int_{\infty}^{\infty} R_{XX}(-u)e^{-i\omega u} du$		
	$S_{XX}(-\omega) = \int_{-\infty}^{\infty} R_{XX}(-\tau) e^{-i\omega\tau} d\tau$, treating <i>u</i> as a dummy variable		
	$S_{XX}(-\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau, \text{ since } R_{XX}(-\tau) = R_{XX}(\tau)$		
	$S_{XX}(-\omega) = S_{XX}(\omega)$. Hence the spectral density of a real random process is an even function.		
14	State any two properties of cross-power density spectrums. [A/M17] BTL1 Properties of cross-power density spectrums are (1) $S_{YX}(\omega) = S_{XY}(-\omega)$		
14	(2) If $\{X(t)\}$ and $\{Y(t)\}$ are independent, then $S_{XY}(\omega) = S_{YX}(\omega) = 0$		
	te and prove any one of the properties of the cross spectral density function.[A/M15]		
15	Cross spectral density function is not an even function of ω , but it has a symmetry relationship		
	<i>i.e.</i> $S_{YX}(\omega) = S_{XY}(-\omega)$		
	Proof:		

	$S_{XY}(\omega) = \int_{-i\omega\tau}^{\infty} R_{XY}(\tau) e^{-i\omega\tau} d\tau$		
	$S_{XY}(-\omega) = \int_{0}^{\infty} R_{XY}(\tau) e^{i\omega\tau} d\tau$		
	Putting $\tau = -u$ when $\tau = -\infty, u = \infty$		
	$d\tau = -du$ when $\tau = \infty, u = -\infty$		
	$S_{XY}(-\omega) = \int_{-\infty}^{\infty} R_{XY}(-u) e^{-i\omega u} (-du)$		
	$S_{XY}(-\omega) = \int_{-\infty}^{\infty} R_{YX}(u) e^{-i\omega u} du \qquad \because R_{XY}(-\tau) = R_{YX}(\tau)$		
	$= \int_{-\infty}^{\infty} R_{YX}(\tau) e^{-i\omega\tau} d\tau = S_{YX}(\omega)$		
	<i>i.e.</i> $S_{YX}(\omega) = \overline{S}_{YX}(-\omega).$		
	An autocorrelation function $R(\tau)$ of $\{X(t); \tau \in T\}$ is given by $ce^{-\alpha \tau }; c>0; \alpha>0$. Obtain the second density of $X(t)$. [NID16] BTH 5		
	Given $R_{\text{vvv}}(\tau) = ce^{-\alpha \tau }$		
	$\int_{-\infty}^{\infty} \int_{-\alpha} \int_{-\alpha}^{\alpha} \int_$		
	$S(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau \qquad = \int_{-\infty}^{\infty} c e^{-i\omega\tau} d\tau$		
16	$= c \int_{-\infty}^{\infty} e^{-\alpha \tau } (\cos \omega \tau - i \sin \omega \tau) d\tau = c \int_{-\infty}^{\infty} e^{-\alpha \tau } (\cos \omega \tau) d\tau - i c \int_{-\infty}^{\infty} e^{-\alpha \tau } (\sin \omega \tau) d\tau$		
	$= 2c \int_{0}^{\infty} e^{-\alpha \tau } \cos \omega \tau d\tau \text{ (Since the first integrand is even and the second integral is odd)}$		
	$=2c\int_{0}^{\infty}e^{-\alpha\tau}\cos\omega\taud\tau=2c\left[\frac{e^{-\alpha\tau}}{(-\alpha)^{2}+\omega^{2}}\left(-\alpha\cos\omega\tau+\omega\sin\omega\tau\right)\right]_{0}^{\infty}$		
	$= 2c \left[0 - \frac{1}{\alpha^2 + \omega^2} (-\alpha + 0) \right] \Rightarrow S(\omega) = \frac{2c\alpha}{\alpha^2 + \omega^2}$		
	An autocorrelation function $R(\tau)$ of $\{X(t); \tau \in T\}$ is given by $c e^{-\alpha \tau }; c > 0; \alpha > 0$. Obtain the		
	spectral density of $X(t)$. [N/D16] BTL5		
	Given $R_{XX}(\tau) = ce^{-\alpha \tau }$		
17	$S(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau \qquad = \int_{-\infty}^{\infty} c e^{-\alpha \tau } e^{-i\omega\tau} d\tau$		
	$= c \int_{-\infty}^{\infty} e^{-\alpha \tau } (\cos \omega \tau - i \sin \omega \tau) d\tau = c \int_{-\infty}^{\infty} e^{-\alpha \tau } (\cos \omega \tau) d\tau - i c \int_{-\infty}^{\infty} e^{-\alpha \tau } (\sin \omega \tau) d\tau$		
	$= 2c \int_{0}^{\infty} e^{-\alpha \tau } \cos \omega \tau d\tau \text{ (Since the first integrand is even and the second integral is odd)}$		

$$= 2c\int_{0}^{\infty} e^{-\alpha \tau} \cos \omega \tau \, d\tau = 2c \left[\frac{e^{-\alpha \tau}}{(-\alpha)^{2} + \omega^{2}}(-\alpha \cos \omega \tau + \omega \sin \omega \tau)\right]_{0}^{\infty}$$

$$= 2c \left[0 - \frac{1}{\alpha^{2} + \omega^{2}}(-\alpha + 0)\right] \Rightarrow S(\omega) = \frac{2c\alpha}{\alpha^{2} + \omega^{2}}$$
Find the power spectral density of the random process $\{X(t)\}$ whose autocorrelation is
$$R(\tau) = \begin{cases} -11; -3 < \tau < 3\\ 0; \text{ otherwise} \end{cases}$$
Is
$$S(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau)e^{-i\omega \tau} d\tau = \int_{-3}^{3}(-1)e^{-i\omega \tau} d\tau = -\left[\frac{e^{-i\omega \tau}}{-i\omega}\right]_{-3}^{3}$$

$$= \frac{1}{i\omega} \left(e^{-i\omega 3} - e^{i\omega 3}\right) = -\frac{1}{i\omega} \left(e^{i3\omega} - e^{-i3\omega}\right) = \frac{i}{\omega} \left(2\sin h 3\omega\right) = \frac{2i}{\omega} \sin h 3\omega.$$
he autocorrelation function of the random telegraph signal process is given
by $R(\tau) = a^{2}e^{-2\lambda|\tau|}$
Given $R(\tau) = a^{2}e^{-2\lambda|\tau|}$

$$S(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau)e^{-i\omega \tau} d\tau = a^{2}\int_{-\infty}^{\infty} e^{-2\lambda|\tau|} (\cos \omega \tau - i\sin \omega \tau) d\tau$$

$$= a^{2}\int_{-\infty}^{\infty} e^{-2\lambda|\tau|} (\cos \omega \tau \, d\tau - a^{2}\int_{-\infty}^{\infty} e^{-2\lambda|\tau|} (\cos \omega \tau - i\sin \omega \tau) d\tau$$

$$= a^{2}\int_{0}^{\infty} e^{-2\lambda|\tau|} (\cos \omega \tau \, d\tau - a^{2}\int_{-\infty}^{\infty} e^{-2\lambda|\tau|} (\cos \omega \tau + \omega \sin \omega \tau) \right]_{0}^{\infty}$$

$$= 2a^{2} \left[\frac{e^{-2\lambda|\tau}}{(-2\lambda)^{2} + \omega^{2}}(-2\lambda + 0)\right] \Rightarrow S(\omega) = \frac{4a^{2}\lambda}{4\lambda^{2} + \omega^{2}}$$
Find the power spectral density of a WSS process with autocorrelation
function $R(\tau) = e^{-\alpha \tau^{2}}$

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau)e^{-i\omega \tau} d\tau$$

$$\begin{array}{|c|c|} \hline \\ =& \int_{-\infty}^{\infty} e^{-at^{2}} e^{-iat} d\tau = \int_{-\infty}^{\infty} e^{-at} e^{-at} \left(\tau + \frac{iat}{a}\right)^{2} d\tau = \int_{-\infty}^{\infty} e^{-at} \left(\tau + \frac{iat}{a}\right)^{2} \left(\frac{iat}{2a}\right)^{2} \left(\frac{iat}{2a}\right)^{2} d\tau \\ =& \int_{-\infty}^{\infty} e^{-at} \left(\tau + \frac{iat}{2a}\right)^{2} e^{-at} \left(\frac{iat}{a}\right)^{2} d\tau = \frac{at}{4a} \int_{-\infty}^{\infty} e^{-at} \left(\tau + \frac{iat}{2a}\right)^{2} d\tau \\ =& \int_{-\infty}^{\infty} e^{-at} \left(\tau + \frac{iat}{2a}\right)^{2} e^{-at} \sqrt{at} d\tau = dx \Rightarrow d\tau = \frac{dx}{\sqrt{a}} \\ When \tau = -\infty, x = -\infty \qquad \text{When } \tau = \infty, x = \infty \\ S(\omega) =& e^{-\frac{at}{a}} \int_{-\infty}^{\infty} e^{-x^{2}} \frac{dx}{\sqrt{a}} = \frac{e^{-\frac{at}{a}}}{\sqrt{a}} \int_{-\infty}^{\infty} e^{-x^{2}} dx = \frac{e^{-\frac{at}{a}}}{\sqrt{a}} \int_{-\infty}^{\infty} -\sqrt{at} e^{-\frac{at}{a}} \\ S(\omega) =& e^{-\frac{at}{a}} \int_{-\infty}^{\infty} e^{-x^{2}} \frac{dx}{\sqrt{a}} = \frac{e^{-\frac{at}{a}}}{\sqrt{a}} \int_{-\infty}^{\infty} e^{-x^{2}} dx = \frac{e^{-\frac{at}{a}}}{\sqrt{a}} \int_{-\infty}^{\infty} -\sqrt{at} e^{-\frac{at}{a}} \\ R(\tau) =& E^{-\frac{1}{2}} \int_{-\infty}^{\tau} S(\omega) e^{i\omega \tau} d\omega \\ =& \frac{1}{2\pi} \left[\int_{-\infty}^{\pi} S(\omega) e^{i\omega \tau} d\omega + \int_{-\infty}^{\pi} S(\omega) e^{i\omega \tau} d\omega + \int_{-\infty}^{\pi} S(\omega) e^{i\omega \tau} d\omega \right] \\ =& \frac{1}{2\pi} \left[\int_{-\infty}^{\pi} \frac{b}{a} (a - |\omega|) e^{i\omega \tau} d\omega \right] = \frac{b}{2\pi a t} \int_{-\alpha}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega + i \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega + i \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega + i \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega|) e^{i\omega \tau} d\omega \\ =& \frac{b}{2\pi a} \int_{0}^{\pi} (a - |\omega$$

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega\tau} d\omega$$

$$= \frac{1}{2\pi} \left[\int_{-\infty}^{\pi} S(\omega) e^{i\omega\tau} d\omega + \int_{-\infty}^{\pi} S(\omega) e^{i\omega\tau} d\omega + \int_{-\infty}^{\pi} S(\omega) e^{i\omega\tau} d\omega \right]$$

$$= \frac{1}{2\pi} \left[\int_{-\infty}^{\pi} (\log \tau \omega) d\omega + i \int_{-\infty}^{\pi} \int_{-\infty}^{\infty} (\log \tau \omega) d\omega \right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\pi} (\cos \tau \omega) d\omega + i \frac{1}{2\pi} \int_{-\infty}^{\pi} (\sin \tau \omega) d\omega$$

$$= \frac{1}{2\pi} 2 \int_{0}^{\pi} (\cos \tau \omega) d\omega + i \frac{1}{2\pi} (0) [: The 1^{4t} integrand is even and the 2^{ad} is odd]$$

$$= \frac{1}{2\pi} 2 \int_{0}^{\pi} (\cos \tau \omega) d\omega + i \frac{1}{2\pi} (0) [: The 1^{4t} integrand is even and the 2^{ad} is odd]$$

$$= \frac{1}{\pi} \left(\frac{\sin \tau \omega}{\tau} \right)_{0}^{m_{0}} = \frac{1}{\pi \tau} (\sin \tau \omega_{0} - 0) \implies R(\tau) = \frac{\sin \omega_{0} \tau}{\pi \tau}.$$
Find the auto correlation function whose spectral density is $S(\omega) = \begin{cases} \pi : |\omega| < 1 \\ 0 : otherwise \end{cases}$. [4/M15, M/J16] BTL4
$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\pi} S(\omega) e^{i\omega\tau} d\omega + \int_{-1}^{\pi} S(\omega) e^{i\omega\tau} d\omega = \int_{0}^{\pi} S(\omega) e^{i\omega\tau} d\omega = \frac{1}{2\pi} \left[\int_{-\infty}^{\pi} S(\omega) e^{i\omega\tau} d\omega + \int_{-1}^{\pi} S(\omega) e^{i\omega\tau} d\omega \right]$$

$$= \frac{1}{2\pi} \left[\int_{-\infty}^{\pi} S(\omega) e^{i\omega\tau} d\omega + \frac{1}{2\pi} \int_{-1}^{\pi} (\cos \tau \omega + i \sin \tau \omega) d\omega$$

$$= \frac{1}{2\pi} \left[\int_{-\infty}^{\pi} (\cos \tau \omega) d\omega + i \frac{1}{2\pi} \int_{-1}^{\pi} (\cos \tau \omega) + i \sin \tau \omega) d\omega$$

$$= \frac{1}{2} \frac{1}{2} (\cos \tau \omega) d\omega + i \frac{1}{2\pi} (0) [: The 1^{4t} integrand is even and the 2^{ad} is odd]$$

$$= \left(\frac{\sin \tau \omega}{2\pi} \int_{0}^{1} - \frac{1}{2\pi} (\sin \tau - 0) \implies R(\tau) = \frac{\sin \tau}{\tau}.$$
Determine the autocorrelation function of the random process with the spectral density given by $S_{XX}(\omega) = \begin{cases} S_{0} : \omega < \omega_{0} \\ 0 : otherwise \end{cases} (A/M17, A/M18] BTL3$

	$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\tau\omega} d\omega$	
	$= \frac{1}{2\pi} \left[\int_{-\infty}^{-\omega_0} S(\omega) e^{i\tau\omega} d\omega + \int_{-\omega_0}^{\omega_0} S(\omega) e^{i\tau\omega} d\omega + \int_{\omega_0}^{\infty} S(\omega) e^{i\tau\omega} d\omega \right]$ $= \frac{1}{2\pi} \left[\int_{-1}^{1} S_0 e^{i\tau\omega} d\omega \right] = \frac{S_0}{2\pi} \int_{-\omega_0}^{\omega_0} (\cos \tau \omega + i \sin \tau \omega) d\omega = \frac{S_0}{2\pi} \int_{-\omega_0}^{\omega_0} (\cos \tau \omega) d\omega + i \frac{S_0}{2\pi} \int_{-\omega_0}^{\omega_0} (\sin \tau \omega) d\omega$ $= \frac{S_0}{2\pi} 2 \int_{0}^{\omega_0} (\cos \tau \omega) d\omega + i \frac{S_0}{2\pi} (0) [\because \text{The 1}^{\text{st}} \text{ integrand is even and the 2}^{\text{nd}} \text{ is odd}]$ $= \frac{S_0}{\pi} \left(\frac{\sin \tau \omega}{\tau} \right)_{0}^{\omega_0} = \frac{S_0}{\pi \tau} (\sin \tau \omega_0 - 0) \implies R(\tau) = \frac{S_0}{\pi \tau} \sin \omega_0 \tau .$	
	State Wiene–Khinchine theorem.[N/D13,N/D15] OR Write the Wiener–Khinchine relation. [N/D14,N/D16,N/D17] BTL1	
	If $X_{\tau}(\omega)$ is the Fourier transform of the truncated random process defined as	
	$\int X(t) for t \le T$	
25	$X_T(t) = \begin{cases} 0 & \text{for } t > T \\ 0 & \text{for } t > T \end{cases}$ where $\{X(t)\}$ is a real WSS process with power spectral	
	density function $S(\omega)$, then $S(\omega) = \lim_{T \to \infty} \frac{1}{2T} E[X_T(\omega) ^2].$	
	PART * B Consider two random processes $X(t) = 3\cos(\omega t + \theta)$ and $Y(t) = 2\cos(\omega t + \theta)$ where	
	$\phi = \theta - \pi^{-\pi}$ and θ is uniformly distributed random variable over $(0, 2\pi)$. Varify whether	
	$\psi = 0 - \frac{1}{2}$ and ψ is uniformity distributed random variable over $(0, 2\pi)$. Verify whether	
	$ R_{XY}(\tau) \leq \sqrt{R_{XX}(0)R_{YY}(0)} \cdot [\underline{A/M15}, \underline{A/M17}, \underline{A/M2019}] \text{ BTL3}$	
1	Answer: rage: 4.20-Dr.A. Singaraveiu	
	• $RXX(0) = 9/2$ (2M)	
	• $RTT(0) = 2$ (2M) • $RXY(\tau) = 3 \sin \omega \tau$ (2M)	
	• $ RXY(\tau) \le \sqrt{RXX(0)} \cdot RYY(0)$ (2M)	
	Find the power spectral density function whose autocorrelation function is given by	
	$R_{XX}(\tau) = \frac{A^2}{2} \cos(\omega_0 \tau) \cdot [\mathbf{M}/\mathbf{J}12] \mathbf{BTL4}$	
2	Answer:Page: 4.50-Dr.A. Singaravelu	
	• $Sxx(W) = \int_{-\infty}^{\infty} RXX(\tau) e^{-i\omega\tau} d\tau$ (2M)	
	• $Sxx(W) = \frac{\pi A^2}{2} [\sigma(W + W_0) + \delta(W - W_0)] (6M)$	

3	If $\{X(t)\}$ and $\{Y(t)\}$ are two random processes with $R_{YY}(\tau)$ respectively, then prove that $ R_{XY}(\tau) \le \sqrt{R_{XX}(\tau)}$ of autocorrelation function $R_{XX}(\tau)$. [N/D10,N/D12, <u>M/J</u> Answer:Page: 4.23-Dr.A. Singaravelu • $RXX(0) = E[x^2(t)], RYY(0) = E[y^2(t+\tau)]$ • $ RXY(\tau) \le \sqrt{RXX(0)} RYY(0)$ • $RXX(\tau) = RXX, RXX(\tau) \le RXX(0)$	a autocorrelation function $R_{XX}(\tau)$ and $\overline{(0)}R_{YY}(0)$. Establish any two properties <u>116,N/D16</u>] BTL5 (2M) (4M) (2M)
	If $X(t) = 5\sin(\omega t + \phi)$ and $Y(t) = 2\cos(\omega t + \theta)$ where	$e \ \omega$ is a constant, $\theta + \phi = \frac{\pi}{2}$ and ϕ is a
	random variable uniformly distributed in $(0, 2\pi)$, find	d $R_{XX}(\tau)$, $R_{YY}(\tau)$, $R_{XY}(\tau)^{'}$ and $R_{YX}(\tau)$.
	Verify two properties of autocorrelation function an	nd cross correlation function. [<u>N/D16</u>]
	Answer:Page: 4.26-Dr.A. Singaravelu	
1	²⁵	
4	• $RXX(t) = \frac{1}{2}\cos w t$	(2M) (2M)
	• $RIY(t) = 2\cos w t$ • $RXV(\tau) = 5\sin w \tau$	(3M)
	• $ RXY(\tau) < \sqrt{RXX(0)RYY(0)}$	(3W) (4M)
	• $ RXY(\tau) \le \frac{1}{2} [RXX(0) + RYY(0)]$	(4M)
	Two random processes $Y(t)$ and $Y(t)$ are defined	1 as follows: $Y(t) = A\cos(\omega t + \theta)$ and
	$Y(t) = B \sin(\omega t + \theta)$ where A. B and ω are constants	as follows: $A(t) = A\cos(\omega t + \theta)$ and as: θ is a uniform random variable over
	$(0, 2\pi)$. Find the cross correlation function of $X(t)$ an	d Y(t). [M/J13, <u>N/D15</u>] BTL5
5	Answer:Page: 4.24-Dr.A. Singaravelu	
	• $RXY(t, t + \tau) = E[X(t), Y(t + \tau)]$	(2M)
	• $RXY(t, t + \tau) = \frac{A^2}{\sin w \tau}$	(6M)
Define spectral density of a stationary random process $X(t)$. Prove that for a real r		
	process $X(t)$ the power spectral density is an even fun	ction. [M/J13,N/D17] BTL5
6	Answer:Page: 4.33-Dr.A. Singaravelu	
Ŭ	• $Sxx(w) = \int_{-\infty}^{\infty} Rxx(\tau) e^{-iw\tau} d\tau$	(2M)
	• $Sxx(-w) = Sxx(w)$	(2M)
	State and prove Wiener Khintchine theorem and hen	ce find the power spectral density of a
		$\begin{bmatrix} r \\ r \end{bmatrix} = \begin{bmatrix} r \\ r \end{bmatrix}$
7	WSS process $X(t)$ which has an autocorre	lation $R_{XX}(\tau) = A_0 \left 1 - \frac{1}{T} \right , -T \le \tau \le T$.
	[Nov/Dec2019] BTL5	

	Answer:Page: 4.43-Dr.A. Singaravelu	
	• $Sxx(w) = \lim_{T \to \infty} \left(\frac{1}{2T} E \{ X_T(W) ^2 \} \right)$ • $Sxx(w) = \frac{2}{Tw^2} [1 - \cos WT]$ (2)	2M) (6M)
8	State Wiener-Khinchine relation and define cross power spectral density [M/J16] BTL5 Answer:Page: 4.36-Dr.A. Singaravelu • $Sxx(W) = \lim_{T\to\infty} [\frac{1}{2T} E\{ x_T(W) ^2\}]$ • $Sxy(W) = \int_{-\infty}^{\infty} Rxy(\tau)e^{-1w\tau}d\tau$ • $Sxy(w) = Syx(-w)$ • $Sxy(w) = Syx(w) - 2\pi E(x)E(y) \sigma(w)$ If {x(t)} and {y(t)} are orthogonal then $Sxy(w) = 0$ and $Syx(w) = 0$	and its properties. (3M) (2M) (1M) (1M) (1M) (1M)
9	Find the power spectral density of a random signal with auto correlation [A/M15,Apr/May19] BTL5 Answer:Page: 4.42-Dr.A. Singaravelu • $Sxx(w) = \int_{-\infty}^{\infty} Rxx(\tau)e^{-iw\tau}d\tau$ (2M) • $Sxx(w) = \frac{2\lambda}{\lambda^2 + w^2}$ (6M)	n function $e^{-\lambda \tau }$.
10	Given that a process $X(t)$ has an autocorrelation function $R_{XX}(\tau) = A e^{-\alpha \tau } \cos \omega_0 \tau$ where $A > 0, \alpha > 0$ and ω_0 are real constants, find the power spectral density of $X(t)$. [N/D16, <u>A/M18]</u> BTL5 Answer:Page: 4.49-Dr.A. Singaravelu • $Sxx(w) = \int_{-\infty}^{\infty} Rxx(\tau)e^{-iw\tau} d\tau$ (2M)	
	• $Sxx(w) = \frac{2A\alpha}{\alpha^2 + w^2}$ (6M)	
11	Autocorrelation function of an ergodic process $\{X(t) = X\}$ is $R_{XX}(\tau) =$ Obtain the spectral density of X . [N/D10,N/D12, <u>M/J16,N/D17]</u> BTL5 Answer:Page: 4.44-Dr.A. Singaravelu • $Sxx(w) = \int_{-\infty}^{\infty} Rxx(\tau)e^{-iw\tau} d\tau$ (2M) • $Sxx(w) = [\frac{\int in(\frac{W}{2})}{\frac{W}{2}}]^2$ S(6M)	$\begin{cases} 1- \tau \ , \ \tau \leq 1 \\ 0 \ , \ otherwise \end{cases}$
12	The autocorrelation function of the random telegraph signal prod $R(\tau) = a^2 e^{-2 \tau }$. Determine the power density spectrum of the r signal.[N/D13] (OR) The autocorrelation function of the random telegrap given by $R(\tau) = a^2 e^{-2\gamma \tau }$. Determine the power density spectrum of the	cess is given by random telegraph h signal process is random telegraph

	signal. [<u>N/D15</u> , M/J16] BTL5 Answer:Page: 4.42-Dr.A. Singaravelu	
	• $Sxx(w) = \int_{-\infty}^{\infty} Rxx(\tau)e^{-iw\tau} d\tau$	(2M)
	• $Sxx(w) = \frac{4a^2r}{4r^2w^2}$	(6M)
	Find the spectral density of a WSS random μ	process $\{X(t)\}$ whose autocorrelation function is
	$e^{-\frac{\alpha}{2}}$. [N/D15, <u>Nov/Dec19</u>] BTL5 Answer:Page: 4.46-Dr.A. Singaravelu	
13	• $\delta x x(w) = \int_{-\infty}^{\infty} R x x(\tau) e^{-iw\tau} d\tau$	(2M)
	• $Sxx(w) = \frac{4a^2r}{4r^2w^2}$	(6M)
	Type equation here.	
	The autocorrelation function of the random	process $X(t)$ is given by $R(\tau) = \begin{cases} 1 - \frac{ \tau }{T} , \tau \le T \end{cases}$.
14	Find the power spectrum of the process $X(t)$. Answer:Page: 4.43-Dr.A. Singaravelu	[0 , τ >T . [A/M10, <u>A/M15</u> ,M/J16,N/D16] BTL5
	• $Sxx(w) = \int_{-\infty}^{\infty} Rxx(\tau) e^{-iw\tau} d\tau$	(2M)
	• $Sxx(w) = \frac{2}{TW^2} \left[1 - \cos WT\right]$	(6M)
	If the power spectral density of a WSS proces	s is given by $S(\omega) = \begin{cases} \frac{b}{a}(a - \omega) & , \omega \le a \end{cases}$
		$\begin{bmatrix} 0 & , \omega > a \end{bmatrix}$
15	Answer:Page: 4.60-Dr.A. Singaravelu	SS. [N/D13,N/D14, <u>N/D16,N/D17]</u> B1L5
	• $Rxx(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Sxx(w) e^{iw\tau} dw$	(2M)
	• $Rxx(\tau) = \frac{b}{a\pi\tau^2} 2 \sin^2\left(\frac{a\tau}{2}\right)$	(6M)
	The autocorrelation function of the $ \begin{cases} \lambda^2 & \text{for } \tau > \varepsilon \end{cases} $	Poisson increment process is given by
16	$R(\tau) = \begin{cases} \lambda^2 + \frac{\lambda}{\varepsilon} \left(1 - \frac{ \tau }{\varepsilon} \right) & \text{for } \tau \le \varepsilon \end{cases}$. Find the point of the point o	ower spectral density of the process.
	[N/D11] BTL5 Answer:Page: 4.51-Dr.A. Singaravelu	
	• $Sxx(w) = \int_{-\infty}^{\infty} Rxx(\tau) e^{-iw\tau} d\tau$	(2M)

	• $Sxx(w) = 2\pi\lambda^2\sigma(w) + 4\lambda \frac{\sin^2(\frac{ew}{2})}{e^2w^2}$ (6M)
17	If $X(t)$ and $Y(t)$ are uncorrelated random processes, then find the power spectral density of $Z(t)$ if $Z(t) = X(t) + Y(t)$. Also find the cross spectral density $S_{XZ}(\omega)$ and $S_{YZ}(\omega)$.[N/D16] BTL5 Answer:Page: 4.81-Dr.A. Singaravelu • $Szz(w) = Sxx(w) + Syy(w) + Sxy(w) + Syx(w)$ (4M) • $Sxz(w) = Sxx(w) + Sxy(w)$ (2M) • $Syz(w) = Syy(w) + Syx(w)$ (2M)
18	The power spectral density of a zero mean WSS process $\{X(t)\}$ is given by $S(\omega) = \begin{cases} 1 \ ; \omega < \omega_0 \\ 0 \ ; elsewhere \end{cases}$. Find $R(\tau)$ and show also that $X(t)$ and $X\left(t + \frac{\pi}{\omega_0}\right)$ are uncorrelated. [A/M11] BTL5 Answer:Page: 4.63-Dr.A. Singaravelu • $Rxx(\tau) = \frac{1}{\pi\tau} \sin(w_0 \tau)$ (4M) • $c\left[x(t).x\left(t + \frac{\pi}{w_0}\right)\right] = 0$ (4M)
19	Find the autocorrelation function of the process $\{X(t)\}$ for which the power spectral density is given by $S_{XX}(\omega) = 1 + \omega^2$ for $ \omega < 1$ and $S_{XX}(\omega) = 0$ for $ \omega > 1$. [A/M10,N/D16, <u>A/M17]</u> BTL5 Answer:Page: 4.68-Dr.A. Singaravelu • $Rxx(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Sxx(w)e^{iw\tau} dw$ (2M) • $Rxx(\tau) = \frac{2}{\pi\tau^2} [\tau^2 \sin \tau + \tau \cos \tau - \sin \tau]$ (6M)
20	If the power spectral density of a continuous process is $S_{XX}(\omega) = \frac{\omega^2 + 9}{\omega^4 + 5\omega^2 + 4}$, find the mean square value of the process. [N/D11, <u>A/M15, M/J16]</u> BTL5 Answer:Page: 4.67-Dr.A. Singaravelu • $Rxx(\tau) = F^{-1} \left[\frac{w^2 + 9}{w^4 + 5w^2 + 4} \right]$ (2M) • $Rxx(\tau) = \frac{8}{6} e^{- \tau } - \frac{5}{12} e^{-2 \tau }$ (3M) • $Rxx(0) = \frac{11}{12}$ (3M)

	The power spectrum of a Wide sense stationary process $\{X(t)\}$ is given by $S(\omega) = \frac{1}{(1 + \omega^2)^2}$.
01	Find its autocorrelation function $R(\tau)$. [A/M15,N/D15, <u>N/D15</u> ,A/M17] BTL5 Answer:Page: 4.63-Dr.A. Singaravelu
21	• $Rxx(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Sxx(w) e^{iw\tau} dw$ (2M)
	• $Rxx(\tau) = \frac{1}{4} (1 + \tau)e^{-\tau}$ (6M)
	T
	The cross power spectrum of real random process $X(t)$ and $Y(t)$ is given by
	$S_{XY}(\omega) = \begin{cases} a+jb\omega ; \omega < 1\\ 0 ; elsewhere \end{cases}$. Find the cross correlation function. [N/D10,A/M11,
22	N/D11,N/D15, <u>M/J16</u> , M/J16,N/D16, <u>A/M17,A/M18</u>] BTL4 Answer:Page: 4.77-Dr.A. Singaravelu
	• $Rxy(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Sxy(w) e^{iw\tau} dw$ (2M)
	• $Rxx(\tau) = \frac{1}{\pi\tau^2} \left[(a\tau - b)\sin\tau + b\tau\cos\tau \right] $ (6M)
	If the cross power spectral density of $X(t)$ and $Y(t)$ is given by $ib\omega$
	$S_{XY}(\omega) = a + \frac{\alpha}{\alpha}, -\alpha < \omega < \alpha, \alpha > 0$ where a and b are constants, find the cross correlation
23	Answer:Page: 1.80-Dr.A. Singaravelu
23	• $Rxy(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Sxy(w) e^{iw\tau} dw$ (2M)
	• $Rxy(\tau) = \frac{1}{\pi\tau^2} \left[\left(\tau a - \frac{b}{w} \right) \sin w\tau + \tau b \cos \omega \tau \right]$ (6M)
	If $\{X(t)\}$ is a WSS process with autocorrelation function $R_{XX}(\tau)$ and if
	$Y(t) = X(t+a) - X(t-a)$. Show that $R_{YY}(\tau) = 2R_{XX}(\tau) - R_{XX}(\tau+2a) - R_{XX}(\tau-2a)$. BTL5 Answer:Page: 4.47-Dr.A. Singaravelu
24	• $Rxx(\tau) = E[x(t).x(t+\tau)] $ (1M)
	• $Ryy(\tau) = E[y(t), y(t + \tau)]$ (1M) • $Ryy(\tau) = 2Rxx(\tau) - Rxx(\tau + 2a) - Rxx(\tau - 2a)$ (6M)
	UNIT V-LINEAR SYSTEM WITH RANDOM INPUTS
	correlation and cross correlation functions of input and output.
	PART*A
1	Define a system. When is it called a linear system? [M/J14,A/M15,M/J16,N/D17] BTL1 A system is a functional relationship between the input $x(t)$ and the output $y(t)$. The functional

	relationship is written as $y(t) = f[x(t)]$. If $f[a_1 X_1(t) \pm a_2 X_2(t)] = a_1 f[X_1(t)] \pm a_2 f[X_2(t)]$, then f is called a linear system.
	Define linear time inversiont system [A/M10 M/I12 N/D16] PTI 1
2	If $f[a_1 X_1(t) \pm a_2 X_2(t)] = a_1 f[X_1(t)] \pm a_2 f[X_2(t)]$, then f is called a linear system. If $Y(t+h) = f[x(t+h)]$ where $Y(t) = f[X(t)]$, f is called a time – invariant system or $X(t)$ and $Y(t)$ are said to form a time invariant system.
3	Define casual system. [<i>N/D15</i>] BTL1 If the value of the output $Y(t)$ at $t = t_1$ depends only on the past values of the input $X(t)$, $t \le t_1$ (ie) $Y(t_1) = f[X(t); t \le t_1]$, then the system is called a casual system.
4	When a system is said to be stable? BTL5 A linear time invariant system, $y(t) = f[x(t)]$ is said to be stable if its response to any bounded input is bounded.
5	Prove that $Y(t) = 2X(t)$ is linear. [<u>A/M15</u>] BTL5 Let $Y_1(t) = 2X_1(t)$ and $Y_2(t) = 2X_2(t)$ If the input $X(t) = a_1 X_1(t) + a_2 X_2(t)$, then $Y(t) = 2(a_1 X_1(t) + a_2 X_2(t)) = 2a_1 X_1(t) + 2a_2 X_2(t) = a_1(2X_1(t)) + a_2(2X_2(t))$ $Y(t) = a_1 Y_1(t) + a_2 Y_2(t)$. Hence $Y(t) = 2X(t)$ is linear.
6	Check whether the system $Y(t) = X^{3}(t)$ is linear or not. [N/D15,A/M17, <u>A/M17</u>] BTL5 Let $Y_{1}(t) = X_{1}^{3}(t)$ and $Y_{2}(t) = X_{2}^{3}(t)$ If the input $X(t) = a_{1}X_{1}(t) + a_{2}X_{2}(t)$, then $Y(t) = (a_{1}X_{1}(t) + a_{2}X_{2}(t))^{3} = a_{1}^{3}X_{1}^{3}(t) + 3a_{1}^{2}a_{2}X_{1}^{2}(t)X_{2}(t) + 3a_{1}a_{2}^{2}X_{1}(t)X_{2}^{2}(t) + a_{2}^{3}X_{2}^{3}(t)$ $Y(t) \neq a_{1}Y_{1}(t) + a_{2}Y_{2}(t)$. Hence $Y(t) = X^{3}(t)$ is not linear.
7	State the properties of linear system. [N/D11] BTL1 The properties of linear system are (i) If a system is such that its input $X(t)$ and its output $Y(t)$ are related by a convolution integral, then the system is a linear time invariant system. (ii) If the input to a time-invariant, stable linear system is a WSS process, the output will also be a WSS process. (iii) The power spectral densities of the input and output processes in the system are connected by the relation $S_{YY}(\omega) = H(\omega) ^2 S_{XX}(\omega)$, where $H(\omega)$ is the Fourier transform of unit impulse response function $h(t)$.
8	Define system weighting function. BTL1 If the output $Y(t)$ of a system is expressed as the convolution of the input $X(t)$ and a function
	$h(t)$ (ie) $Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du$, then $h(t)$ is called the system weighting function.
----	---
	Prove that the mean of the output process is the convolution of the mean of the input process and the impulse response.[$A/M18$] BTL5 The output $Y(t)$ is expressed as a convolution of the input $X(t)$ with a system weighting function
9	h(t). i.e. the input-output relationship will be of the form $Y(t) = X(t)*h(t)$. Hence, the mean of the output process is $E[Y(t)] = E[X(t)]*h(t)$ (i.e) the convolution of the mean of the input process and the impulse response.
10	State the relation between input and output of a linear time invariant system. [<u>A/M15</u>] BTL1 The output $Y(t)$ is expressed as a convolution of the input $X(t)$ with a system weighting function $h(t)$. i.e. the input-output relationship will be of the form $Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$.
	What is unit impulse response of a system? Why is it called so? [M/J12, <u>N/D17</u>] BTL5 If a system $V(t) = \int_{0}^{\infty} h(u) V(t, u) du$, then the system weighting function $h(t)$ is also called unit
11	In a system $Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$, then the system weighting function $h(t)$ is also called unit impulse response of the system. It is called so because the response (output) $Y(t)$ will be $h(t)$, when the input $X(t)$ = the unit impulse function $\delta(t)$.
12	Prove that if the input of a system is the unit impulse function then the output is the system wieghting function. [N/D17] BTL5 If the input of a linear system is a Gaussian random process, then the output will also be a Gaussian random process.
	If the input $X(t)$ of the system $Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du$ is the unit impulse function, prove
	that $Y(t) = h(t)$. BTL5
	Given $Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du$
13	Put $X(t) = \delta(t)$ Therefore, $X(t-u) = \delta(t-u)$
	$Y(t) = \int_{-\infty}^{\infty} h(u) \delta(t-u) du$
	$Y(t) = \int_{-\infty}^{\infty} h(t-u)\delta(u)du$ (By the property of convolution)
	Y(t) = h(t-o) = h(t).

If a system is defined as $Y(t) = \frac{1}{T} \int_{0}^{\infty} X(t-u) e^{-\frac{u}{T}} du$, find its unit impulse function. BTL4 Given $Y(t) = \frac{1}{T} \int_{0}^{\infty} X(t-u) e^{-\frac{u}{T}} du$ $Y(t) = \int_{0}^{\infty} \frac{1}{T} e^{-\frac{u}{T}} X(t-u) du$ 14 Unit impulse function is given by $h(t) = \begin{cases} \frac{1}{T} e^{-\frac{t}{T}} , t \ge 0\\ 0 , elsewhere \end{cases}$. If $\{X(t)\}$ and $\{Y(t)\}$ in the system $Y(t) = \int_{0}^{\infty} h(u)X(t-u)du$ are WSS processes, how are their autocorrelation functions related? [N/D11] BTL4 15 The autocorrelation functions are related as $R_{YY}(\tau) = R_{XY}(\tau) * h(\tau)$ (or) $R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau)$ where * denotes convolution. If the input and output of the system $Y(t) = \int_{0}^{\infty} h(u) X(t-u) du$ are WSS processes, how are their power spectral densities related? BTL5 16 The power spectral densities are related as $S_{YY}(\omega) = S_{XX}(\omega) |H(\omega)|^2$ where $H(\omega)$ is the Fourier transform of h(t). Define the power transfer function or system function of the system. [N/D15] BTL5 17 The power transfer function or system function of the system is the Fourier transform of the unit impulse response function of the system. If the system has the impulse response $h(t) = \begin{cases} \frac{1}{2c} & \text{for } |t| \le c \\ 0 & \text{, for } |t| > c \end{cases}$. Write down the relation between the spectrums of input X(t) and output Y(t). [May2019] BTL4 $H(\omega) = F[h(t)]$ 18 $= \int_{0}^{\infty} h(t) e^{-i\omega t} dt$ $= \int_{-i\omega t}^{c} \frac{1}{2c} e^{-i\omega t} dt = \frac{1}{2c} \int_{-i\omega t}^{c} (\cos \omega t - i\sin \omega t) dt$ $=\frac{1}{2c}\int_{-\infty}^{c}\cos\omega t\,dt - i\,\frac{1}{2c}\int_{-\infty}^{c}\sin\omega t\,dt$

 $=\frac{1}{2c}2\int \cos \omega t \, dt - i \frac{1}{2c}(0)$ [since the first integrand is an even function and second integrand is an odd function] $=\frac{1}{c}\left|\frac{\sin \omega t}{\omega}\right|_{c}^{c}=\frac{1}{\omega c}\left[\sin c\,\omega-0\right]=\frac{\sin c\,\omega}{c\,\omega}$ $S_{YY}(\omega) = |H(\omega)|^2 S_{XX}(\omega) \implies S_{YY}(\omega) = \frac{\sin^2 c \omega}{c^2 \omega^2} S_{XX}(\omega).$ Find the system transfer function, if a linear time invariant system has an impulse function $H(t) = \begin{cases} \frac{1}{2c}; |t| \le c \\ . \text{ [A/M11, N/D12] BTL5} \end{cases}$ $\begin{vmatrix} 0 & ; \ |t| \ge c \end{vmatrix}$ System transfer function = $H(\omega) = F[H(t)] = \int_{-i\omega t}^{\infty} H(t)e^{-i\omega t} dt = \int_{-i\omega t}^{c} \frac{1}{2c}e^{-i\omega t} dt$ $=\frac{1}{2c}\int_{-\infty}^{c}(\cos\omega t - i\sin\omega t)dt = \frac{1}{2c}\int_{-\infty}^{c}\cos\omega t\,dt - i\frac{1}{2c}\int_{-\infty}^{c}\sin\omega t\,dt$ 19 $=\frac{1}{2c}2\int_{-\infty}^{c}\cos\omega t\,dt - i\,\frac{1}{2c}(0)$ [since the 1st integrand is even and 2nd integrand is odd] $=\frac{1}{c}\left[\frac{\sin \omega t}{\omega}\right]_{c}^{c}=\frac{1}{\omega c}\left[\sin c\,\omega-0\right]=\frac{\sin c\,\omega}{c\,\omega}$ If the input to a linear time invariant system is white noise $\{N(t)\}$, what is power spectral density function of the output? BTL5 If the input to a linear time invariant system is white noise $\{N(t)\}$, then the power spectral density of the output $S_{yy}(\omega)$ is given by 20 $S_{YY}(\omega) = S_{XX}(\omega) |H(\omega)|^2 \implies S_{YY}(\omega) = \frac{N_0}{2} |H(\omega)|^2$ where $\{Y(t)\}$ is the output process and $H(\omega)$ is the power transfer function. A wide sense stationary noise process N(t)has an autocorrelation function $R_{NN}(\tau) = P e^{-3|\tau|}$, $-\infty < \tau < \infty$ with P as a constant. Find its power density spectrum. BTL4 $S_{NN}(\omega) = \int_{0}^{\infty} R_{NN}(\tau) e^{-i\omega\tau} d\tau = \int_{0}^{\infty} P e^{-3|\tau|} e^{-i\omega\tau} d\tau$ 21 $= \int_{0}^{\infty} P e^{-3|\tau|} \left(\cos \omega \tau - i \sin \omega \tau\right) d\tau$

	T
	$= P\left[\int_{-\infty}^{\infty} e^{-3 \tau } \cos \omega \tau d \tau - i \int_{-\infty}^{\infty} e^{-3 \tau } \sin \omega \tau d \tau\right]$
	$= P 2 \int_{0}^{\infty} e^{-3 \tau } \cos \omega \tau d \tau - P i (0) \text{[since the first integrand is an even function and}$
	second integrand is an odd function]
	$= 2 P \int_{0}^{\infty} e^{-3\tau} \cos \omega \tau d\tau = 2 P \left[\frac{e^{-3\tau}}{(-3)^{2} + \omega^{2}} \left(-3\cos \omega \tau + \omega \sin \omega \tau \right) \right]_{0}^{\infty}$
	$= 2P\left[0 - \frac{1}{9 + \omega^2} \left(-3 + 0\right)\right] = \frac{6P}{9 + \omega^2}.$
	If $X(t)$ is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$ then prove that
	$R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau). [\underline{A/M17}] BTL5$
	Given $Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$
	$X(t+\tau)Y(t) = \int_{0}^{\infty} X(t+\tau)X(t-u)h(u)du$
	$-\infty$
	$E[X(t+\tau)Y(t)] = \int_{-\infty}^{\infty} E[X(t+\tau)X(t-u)du]$
22	$R_{XY}(\tau) = \int_{-\infty}^{\infty} R_{XX}(\tau+u)h(u)du$
	Put $u = -\beta \implies du = -d\beta$ When $u = -\infty$, $\beta = \infty$
	When $u = \infty$, $\beta = -\infty$ When $u = \infty$, $\beta = -\infty$
	$-\infty \qquad -\infty \qquad$
	$K_{XY}(\tau) = \int_{\infty} K_{XX}(\tau - \beta)h(-\beta)(-\beta\beta) = -\int_{\infty} K_{XX}(\tau - \beta)h(-\beta\beta)d\beta$
	$ \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{$
	$= \int_{-\infty}^{\infty} K_{XX}(t-p)n(-p)a p = \int_{-\infty}^{\infty} K_{XX}(t-u)n(-u)au = K_{XX}(t)*n(-t)$
	Define Time invariant system (Anr/May 2010) DTI 1
23	Let $y(t) = f[x(t)]$. If $y(t+h) = f[x(t+h)]$ then 'f' is called a time variant system or
	x(t) and y(t) are said to form a time invariant system.
	Denne memoryless system. B1L1
24	If the value of the output $y(t)$ at $t = t_0$ depends only on the past values of the input $x(t)$, $t \le t_0$
	1.e., if $\mathbf{y}(\mathbf{t}0) = \mathbf{I}[\mathbf{x}(\mathbf{t}): \mathbf{t} \leq \mathbf{t}_0]$ then such a system is called a casual system.

25	Define stable system. BTL1 A linear time invariant system is said to be stable if its resp	oonse to any bounded input is bounded.	
	PART*B		
	Show that if $\{X(t)\}$ is a WSS process, then the output $R_{XY}(\tau)$. [N/D10,N/D11,N/D12,M/J13,M/J14,A/M15, <u>A/M</u> Answer:Page: 5.6,5,7-Dr.A. Singaravelu	ut { <i>Y</i> (<i>t</i>)} is a WSS process. Also find (15,N/D16, <u>N/D16</u> ,A/M17] BTL5	
1	• $y(t) = \int_{-\infty}^{\infty} h(u)x (t-u)du$	(2M)	
	• $Ryy(t, t + \tau) = g(\tau) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u_1)h(u_2)du_1$	₁ du ₂ (6M)	
	If a system is connected by a convolution integral Y	$(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$ where $X(t)$ is the	
2	input and $Y(t)$ is the output then prove that the system $[\underline{A/M17}]$ BTL5 Answer:Page: 5.5-Dr.A. Singaravelu	tem is a linear time invariant system.	
	• $y(t) = a_1 y_1(t) + a_2 y_2(t)$	(4M)	
	• $y(t) = y(t+h)$	(4M)	
	For a linear system with random input $x(t)$, the impostant definition obtain the cross correlation function $R_{XY}(\tau)$ and the ou BTL4 Answer:Page: 5.7-Dr.A. Singaravelu	pulse response $h(t)$ and output $y(t)$, tput autocorrelation function $R_{YY}(\tau)$	
3	• $y(t) = \int_{-\infty}^{\infty} h(u)x(t-u)du$	(2M)	
	• $Rxy(\tau) = Rxx(\tau) * h(\tau)$	(3M)	
	• $Ryy(\tau) = Rxx(\tau) * h(-\tau)$	(3M)	
	For a linear system with random input $x(t)$, the impulse the power spectrum $S_{YY}(\omega)$ and cross power spectrum S Answer:Page: 5.9-Dr.A. Singaravelu	e response $h(t)$ and output $y(t)$, obtain $S_{XY}(\omega)$. BTL4	
4	• $y(t) = \int_{-\infty}^{\infty} h(u)x(t-u)du$	(2M)	
	• $Sxy(w) = Sxx(w) H(w)$	(4M)	
	• $Syy(w) = Sxx(w) H(w) ^2$	(2M)	

5	Let $X(t)$ be a WSS process which is the input to a linear time invariant system with unit impulse $h(t)$ and output $Y(t)$, then prove that $S_{YY}(\omega) = H(\omega) ^2 S_{XX}(\omega)$. [N/D11, M/J13,A/M15, <u>A/M15</u> , M/J16, <u>N/D16,A/M17,A/M18</u>] BTL5 Answer:Page: 5.9-Dr.A. Singaravelu		
5	• $Rxy(\tau) = Rxx(\tau) * h(\tau)$	(5M)	
	• $S_{XY}(\omega) = S_{XX}(\omega)H^*(\omega)$	(6M)	
	• $Syy(w) = Sxx(w) H(w) ^2$	(5M)	
	If $\{X(t)\}$ is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u) \times X$	K(t-u)du , prove that	
	(i) $R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau)$ (ii) $R_{YY}(\tau) = R_{XY}(\tau) *$	h(au) where * denotes convolution	
	(iii) $S_{XY}(\omega) = S_{XX}(\omega)H^*(\omega)$ where $H^*(\omega)$ is the	e complex conjugate of $H(\omega)$	
6	(iv) $S_{YY}(\omega) = S_{XX}(\omega) H(\omega) ^2$. [<u>N/D15,N/D17</u> ,N/D1	17] BTL5	
0	Answer:Page: 5.0,5.9-Dr.A. Singaraveiu		
	• $Rxy(\tau) = Rxx(\tau) * h(\tau)$	(5M)	
	• $Sxy(w) = Sxx(w) H(w)$	(6M)	
	• $Syy(w) = Sxx(w) H(w) ^2$	(5M)	
	A system has an impulse response function $h(t) =$	$e^{-\beta t} u(t)$, find the power spectral density of	
	the output $Y(t)$ corresponding to the input $X(t)$. [N/D10,12,M/J14,M/J16, <u>M/J16,N/D17,Apr/May2019</u>]		
	L5 Answer:Page: 5.23-Dr.A. Singaravelu		
7	• $H(w) = \int_{-\infty}^{\infty} h(t) e^{-iwt} dt$	(2M)	
	• $ H(w) ^2 = \frac{1}{B^2 + W^2}$	(2M)	
	• $Syy(w) = \frac{1}{B^2 + W^2} Sxx(w)$	(4M)	
	A linear time invariant system has an impulse re	esponse $h(t) = e^{-\beta t} u(t)$. Find the output auto	
	correlation function $R_{YY}(\tau)$ corresponding to an input $X(t)$. [N/D15, <u>N/D16</u>] BTL4		
	Answer:rage: 5.25-Dr.A. Singaravelu		
8	• $ H(w) ^2 = \frac{1}{B^2 + W^2}$	(3M)	
	• $Syy(w) = \frac{1}{B^2 + W^2} Sxx(w)$	(3M)	
	• $Ryy(\tau) = F^{-1}[Syy(w)]$	(2M)	

	. A circuit has an impulse response given by $h(t)$ =	$=\left\{\frac{1}{T}, 0 \le t \le T \text{ . Express } S_{YY}(\omega) \text{ in terms of } \right\}$
	$S_{XX}(\omega)$. [<u>A/M15</u> ,N/D15, <u>M/J16</u>] BTL5 Answer:Page: 5.21-Dr.A. Singaravelu	
	• $H(w) = \frac{1}{TW} \left[\sin w\tau - i(1 - \cos w\tau) \right]$	(2M)
9	• $ H(w) ^2 = \frac{4}{T^2 W^2} \sin^2(\frac{WT}{2})$	(1M)
	• $Syy(w) = H(w) ^2 Sxx(w)$	(1M)
	$= \left(\frac{\sin\frac{WT}{2}}{\frac{WT}{2}}\right)^2 Sxx(w)$	(4M)
		(1.4>0
	Given $R_{XX}(\tau) = A e^{-\alpha \tau }$ and $h(t) = e^{-\beta t} u(t)$ w	here $u(t) = \begin{cases} 1; t \ge 0\\ 0; otherwise \end{cases}$. Find the spectral
	density of the output $Y(t)$. [<u>Apr/May2019</u>] BTL4 Answer:Page: 1.80-Dr.A. Singaravelu	
10	• $ H(w) ^2 = \frac{1}{B^2 + W^2}$	(2M)
	• $Sxx(w) = \frac{2\alpha}{\alpha^2 + W^2}$	(3M)
	• $Syy(w) = \frac{1}{B^2 + W^2} \frac{2\alpha}{\alpha^2 + W^2}$	(3M)
	A random process $X(t)$ is the input to a $h(t) = 2e^{-t}$ to 0 . The autocorrelation function	linear system whose impulse function is of the process is $P_{\tau}(\tau) = e^{-2 \tau }$ Find the
	$h(t) = 2e^{-t}, t \ge 0$. The autocorrelation function power spectral density of the output process $Y(t)$ Answer:Page: 5.26-Dr.A. Singaravelu	In the process is $K_{XX}(t) = e^{-tt}$. Find the [M/J13, <u>Nov/Dec2019</u>] BTL4
11	• $ H(w) ^2 = \frac{4}{W^2 + 1}$	(2M)
	• $Sxx(w) = \frac{4}{4+W^2}$	(3M)
	• $Syy(w) = \frac{16}{(w^2+1)(w^2+4)}$	(3M)
	A random process $X(t)$ with $R_{XX}(\tau) = e^{-2 \tau }$ is	the input to a linear system whose impulse
12	response is $h(t) = 2e^{-t}$, $t > 0$. Find the cross corr	relation coefficient $R_{XY}(\tau)$ between the input
	process $X(t)$ and output process $Y(t)$. [A/M15, <u>A</u>	(<u>M18</u>] BTL4

• E(y) = 0

(2M)

Answer:Page: 5.15-Dr.A. Singaravelu

•
$$|H(w)|^2 = \frac{4}{W^2 + 1}$$
 (2M)

•
$$Sxx(w) = \frac{4}{4+W^2}$$
 (3M)

•
$$Syy(w) = \frac{16}{(w^2+1)(w^2+4)}$$
 (3M)

X(t) is the input voltage to a circuit (system) and Y(t) is the output voltage. $\{X(t)\}$ is a stationary random process with $\mu_x = 0$ and $R_{XX}(\tau) = e^{-\alpha |\tau|}$. Find μ_y , $S_{YY}(\omega)$ and $R_{YY}(\tau)$ if the power transfer function is $H(\omega) = \frac{R}{R+iL\omega}$.[N/D13, M/J14,A/M17,<u>N/D17]</u> BTL4 Answer:Page: 5.16-Dr.A. Singaravelu

•
$$Sxx(w) = \frac{2\alpha}{\alpha^2 + W^2}$$
 (4M)

•
$$Syy(w) = \left(\frac{2\alpha}{\alpha^2 + w^2}\right) \cdot \frac{R^2}{R^2 + W^2}$$
 (5M)

•
$$Ryy(\tau) = \frac{\lambda}{2\alpha} e^{-\alpha|\tau|} + \frac{\mu}{2} \left(\frac{L}{R}\right) e^{-\frac{R}{L}|\tau|}$$
 (5M)

Consider a White Gaussian noise of zero mean and power spectral density $\frac{N_0}{2}$ applied to a low pass RC filter whose transfer function $H(f) = \frac{1}{1 + i2\pi fRC}$. Find the autocorrelation

function of the output random process. Also find the mean square value of the output process. [Nov/Dec2019] BTL4

Answer:Page: 5.32-Dr.A. Singaravelu

•
$$Syy(w) = \frac{NO \beta^2}{2(\beta^2 + w^2)}$$
 (3M)

•
$$Ryy(\tau) = \frac{NO\beta}{4} e^{-\beta|\tau|}$$
 (3M)

•
$$E(y^2(t)] = Ryy(0) = \frac{NO\beta}{4}$$
 (2M)

Assume a random process X(t) is given as input to a system with transfer function $H(\omega) = 1$ for $-\omega_0 < \omega < \omega_0$. If the autocorrelation function of the input process is $\frac{N_0}{2}\delta(\tau)$, find the autocorrelation function of the output process. [A/M10, <u>M/J16</u>] BTL4 Answer:Page: 5.31-Dr.A. Singaravelu

٠	$Sxx(w) = \frac{NO}{2}$	(2M)
٠	$Syy(w) = \frac{NO}{2}$	(3M)
•	$Ryy(\tau) = \frac{NO.\sin(wo\tau)}{2\pi\tau}$	(3M)

If X(t) is the input voltage to a circuit and Y(t) is the output voltage. $\{X(t)\}$ is a stationary random process with $\mu_X = 0$ and $R_{XX}(\tau) = e^{-2|\tau|}$. Find the mean μ_Y and power spectrum $S_{YY}(\omega)$ of the output if the system transfer function is given by $H(\omega) = \frac{1}{\omega + 2i}$. [N/D10,Nov/Dec2019] BTL4

Answer:Page: 5.16-Dr.A. Singaravelu

16

17

• $E(y) = 0$	(1M)
• $Sxx(w) = \frac{4}{w^2+4}$	(3M)
• $Syy(w) = \frac{4}{(w^2+4)^2}$	(4M)

A linear system is described by the impulse response
$$h(t) = \frac{1}{RC}e^{-\frac{t}{RC}}u(t)$$
. Assume an input process whose autocorrelation is $B\delta(\tau)$. Find the mean and autocorrelation function of the output process. [A/M11,N/D14,A/M17] BTL4
Answer:Page: 5.33-Dr.A. Singarayelu

•
$$|H(w)|^2 = \frac{\beta^2}{\beta^2 + w^2}$$
 (2M)

$$E[y(t)] = 0 \tag{1M}$$

•
$$Syy(w) = \frac{\beta^2}{\beta^2 + w^2} \cdot \beta$$
 (2M)

•
$$Ryy(\tau) = \frac{\beta}{2RC} e^{-\frac{|\tau|}{RC}}, -\infty \le \tau \le \infty$$
 (3M)

18 If $\{N(t)\}$ is a band limited white noise centered at a carrier frequency ω_0 such that $S_{NN}(\omega) = \begin{cases} \frac{N_0}{2} & \text{, for } |\omega - \omega_0| < \omega_B \\ 0 & \text{, elsewhere} \end{cases}$. Find the autocorrelation of $\{N(t)\}$. [A/M11, M/J12] BTL4

Answer:Page: 5.36-Dr.A. Singaravelu	
• $RNN(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta NN(w) \cdot e^{iw\tau} dw$	(2M)
• $RNN(\tau) = \frac{NOWB}{2\pi} \left(\frac{\sin wB\tau}{wB\tau}\right) \cos(wB\tau)$	(6M)

REGULATION: 2017

EC8452

ELECTRONIC CIRCUITS II

OBJECTIVES:

- To give a comprehensive exposure to all types of amplifiers and oscillators constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To study about feedback amplifiers and oscillators principles
- To design oscillators.
- To study about turned amplifier.
- To understand the analysis and design of LC and RC oscillators, amplifiers, multi vibrators, power amplifiers and DC convertors.

UNIT I - FEEDBACK AMPLIFIERS AND STABILITY

Feedback Concepts – gain with feedback – effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers – analysis of series-series, shunt-shunt and shunt-series feedback amplifiers-stability problem-Gain and Phase-margins-Frequency compensation.

UNIT II - OSCILLATORS

Barkhausen criterion for oscillation – phase shift, Wien bridge - Hartley & Colpitt's oscillators – Clapp oscillator-Ring oscillators and crystal oscillators – oscillator amplitude stabilization.

UNIT III - TUNED AMPLIFIERS

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers –Analysis of capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method.

UNIT IV WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

Pulse circuits – attenuators – RC integrator and differentiator circuits – diode clampers and clippers –Multivibrators - Schmitt Trigger- UJT Oscillator.

UNIT V POWER AMPLIFIERS AND DC CONVERTERS

Power amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB Power amplifier using MOSFET – DC/DC convertors – Buck, Boost, Buck-Boost analysis and design

TOTAL: 45 PERIODS

OUTCOMES:

After studying this course, the student should be able to:

- Analyze different types of amplifier, oscillator and multivibrator circuits
- Design BJT amplifier and oscillator circuits
- Analyze transistorized amplifier and oscillator circuits
- Design and analyze feedback amplifiers
- Design LC and RC oscillators, tuned amplifiers, wave shaping circuits, multivibrators, power amplifier and DC convertors.

TEXT BOOKS:

1. Sedra and Smith, —Micro Electronic Circuits^I; Sixth Edition, Oxford University Press, 2011. (UNIT I, III, IV, V)

2. Jacob Millman, _Microelectronics ', McGraw Hill, 2nd Edition, Reprinted, 2009. (UNIT I, II, IV, V)

REFERENCES

1. Robert L. Boylestad and Louis Nasheresky, —Electronic Devices and Circuit Theoryl, 10th Edition, Pearson Education / PHI, 2008.

2. David A. Bell, —Electronic Devices and Circuitsl, Fifth Edition, Oxford University Press, 2008.

3. Millman J. and Taub H., —Pulse Digital and Switching Waveformsl, TMH, 2000.

4. Millman and Halkias. C., Integrated Electronics, TMH, 2007.

JIT-JEPPIAAR/ECE/Dr.R.THANDAIAH PRABU/IInd Yr/SEM 04/EC8452/ELECTRONIC CIRCUITS II/UNIT 1-5/QB+Keys/Ver2.0

L T P C 3003

> 9 tor

9

9

9

9

Subject Code: EC8452 Subject Name: ELECTRONIC CIRCUITS II

Year/Semester: II /04 Subject Handler: Dr.R.Thandaiah Prabu

UNIT I-FEEDBACK AMPLIFIERS AND STABILITY

Feedback Concepts – gain with feedback – effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers – analysis of seriesseries, shunt-shunt and shunt-series feedback amplifiers-stability problem-Gain and Phasemargins-Frequency compensation.

	FARI * A
Q.No.	Questions
1.	Define feedback and its types. BTL1 A portion of the output signal is taken from the output of the amplifier and is combined with the normal input signal. This is known as feedback. There are two types Positive Feedback If the feedback signal is in phase with input signal, then the net effect of the feedback will increase the input signal given to the amplifier. This type of feedback is said to be positive or regenerative feedback. Negative Feedback If the feedback signal is out of phase with the input signal then the input voltage applied to the basic amplifier is decreased and correspondingly the output is decreased. This type of feedback is known as negative or degenerative feedback.
2	 List the different types of feedback topologies. (Nov 2011) BTL1 Voltage – series feedback topology Voltage – shunt feedback topology Current – series feedback topology Current – shunt feedback topology.
3	 what are the effects of negative feedback? (Or) what are the advantages and disadvantages of negative feedback? (Nov 2012, Nov 2016) BTL1 Advantages: It improves the stability of the circuit. It improves the frequency response of the amplifier. It improves the percentage of harmonic distortion. It improves the signal to noise ratio (SNR). It reduces the gain of the circuit. Disadvantages: Reduced circuit overall gain. Reduced stability at high frequency.
4	Define positive feedback. BTL1 If the feedback signal is in phase with input signals, then the net effect of the feedback will increase the input signal given to the amplifier. This type of feedback is said to be positive or regenerative feedback.

	What is Node and Loop Sampling? BTL1 Node Sampling:
	When the output voltage is sampled by connecting the feedback network in shunt across the
5	output, the connection is referred to as Voltage or Node Sampling.
	Loop Sampling:
	When the output voltage is sampled by connecting the feedback network in series across the
	output, the connection is referred to as Current or Loop Sampling.
	If the feedback amplifier has more than two poles, it can be unstable. The technique is used to
	make unstable feedback amplifier to stable is called Frequency compensation
	There are two types,
6	• Dominant pole compensation: In this compensation technique if dominant pole is
	introduced into the amplifier so that phase shift is less than -1800 when the loop gain is
	unity.
	• Miller compensation: It is implemented by connecting a capacitor between input and
	Output of a gain stages of a multistage amplifier. What is the nature of input and output resistance in negative feedback? BTL 1
	Voltage series feedback.
	Input impedance: $Zif = Zi * (1+A \beta)$
	Output impedance: $Zof = Zo / (1 + A\beta)$
	Voltage shunt feedback:
-	Input impedance: $\operatorname{Rif} = \operatorname{Ri}^* (1 + A \beta)$
/	Output impedance: $Zot = Zo * (I + A \beta)$
	Lumut impedance: $Rif = 7i / (1 + A \beta)$
	Output impedance: $Zof = Zo / (1+A \beta)$
	Current shunt feedback:
	Input impedance: $Rif = Ri / (1+A \beta)$
	Output impedance: Rof = Ro * $(1+A \beta)$
	Mention the three basic networks that are connected around the basic amplifier to $implement$ foodback concernt (NOV/DEC(12) DTL 2
8	Mixing Network
0	Sampling Network
	Feedback Network
0	What is the purpose of mixer network in feedback amplifier? BTL1
9	The mixer network is used to combine feedback signal and input at input of an amplifier.
	Define Sensitivity and Desensitivity of gain in feedback amplifiers. (April 2011) BTL1
	Sensitivity: The fractional change in amplification with feedback divided by the fractional
10	change in amplification without feedback is called the sensitivity of the transfer gain.
	which the voltage gain has been reduced due to feedback network
	Desensitivity factor $D = 1+A \beta$. Where $A = Amplifier gain and \beta = Feedback factor.$
	State the Nyquist criterion for stability of feedback amplifiers. BTL1
	• The amplifier is unstable if the curve encloses the point -1+j0. The system is called as
11	unstable system.
	• The amplifier is stable if the curve encloses the point -1+jo. That system is called as
	stable system.

	Identify the topology for the circuit drawn in Fig. BTL3
12	$V_{o} = 0, \text{ does not make feedback zero, } I_{o} = 0 makes feedback zero; Feedback is fed in shunt with input signal so its Current shunt feedback.$
13	The voltage gain of an amplifier without feedback is 60 dB and decreases to 40 dB with feedback. Determine the feedback factor of the feedback network. BTL5 From $A_{vf} = \frac{A_v}{1+\beta A_v}$ $\beta = \frac{A_v - A_{vf}}{A_v A_{vf}} = \frac{60-40}{60x40} = 8.33x10^{-3}$
14	Give the expression for gain of an amplifier with feedback. BTL1 $Avf = AV/ 1 + AV \beta$ Where, $Avf -$ feedback voltage gain. $AV -$ Voltage gain. β - Feedback factor
15	What is loop gain or return ratio? BTL1 A path of a signal from input terminals through basic amplifier, through the feedback network and back to the input terminals forms a loop. The gain of this loop is the product $-A \beta$. This gain is known as loop gain or return ratio
16	What is the effect of negative feedback on bandwidth? BTL1 Bandwidth of amplifier with feedback is greater than bandwidth of amplifier without feedback.
17	Why gain bandwidth product remains constant with the introduction of negative feedback? BTL1 Since bandwidth with negative feedback increases by factor (1+A β) and gain decreases by same factor, the gain-bandwidth product of an amplifier does not alter, when negative feedback is introduced.
18	A feedback amplifier has an open loop gain of 600 and feedback factor $\beta = 0.01$. Find the closed loop gain with feedback. BTL1 Avf = AV/ 1+ AV β = 600/ (1+ 600*0.01) = 85.714.
19	The distortion in an amplifier is found to be 3%, when the feedback ratio of negative feedback amplifier is 0.04. When the feedback is removed, the distortion becomes 15%. Find the open and closed loop gain. BTL5 Solution: Given: $\beta = 0.04$ Distortion with feedback = 3%, Distortion without feedback = 15% $D = 15/3 = 5$: Where $D = 1+A \beta = 5$

	Voltage gain of an amplifier without feedback is 60dB. It decreases to 40dB with feedback.
20	Calculate the feedback factor. BTL5
	Solution:
	Given: $Av = 60 dB$ and $Avf = 40 dB$.
	We know that,
	$Avf = AV / 1 + AV\beta$
	$\beta = (AV - Avf) / (AVAvf)$
	=(60-40)/(60*40)
	$\beta = 0.00833.$
	What is Nyquist diagram? BTL1
21	The plot which shows the relationship between gain and phase-shift as a function of frequency is
	called as Nyquist diagram.
	Write the steps which are used to identify the method of feedback topology. BTL1
	• Identify topology (type of feedback)
	• To find the type of sampling network
	• To find the type of mixing network
	• Find the input circuit
22	Find the output circuit
	 Replace each active device by its h-parameter model at low frequency.
	 Find the open loop gain (gain without feedback) A of the amplifier.
	 Indicate Vf and Vo on the circuit and evaluate R = Vf VO
	 Indicate A1 and A0 on the circuit and evaluate p = A1.A0. Coloulate A and 9 find D. Ai Dif Def and Def?
	• Calculate A, and p, lind D, Al, Kil, Kol, and Kol.
22	what are the types of distortions in an amplifier? BIL1
23	• Frequency
-	• Noise and non-linear
	What is the effect of lower cut-off frequency & upper cut-off frequency with negative
	Leven out off fragmenter with factly of the large then leven out off fragmenter with out
24	Lower cut off frequency with feedback is less than lower cut off frequency without
	Linner out off frequency with feedback is greater than upper out off frequency.
	without feedback by factor $(1 + 4 \text{ mid } \beta)$
	Define feedback factor or feedback ratio BTL 1
25	The ratio of the feedback voltage to output voltage is known as feedback factor or feedback ratio
	PART B
	Explain with neat diagram, the two stage voltage series feedback amplifier and determine
	the AV AVf (13M) (May 2018) BTL?
	Answer: Page 545 - S.Saliyahanan
	FET Common drain Amplifier: - (2M)
	• The feedback signal - voltage Vf across R
1	• The sampled signal - voltage Volacross R
	 To find the input circuit set Vo= 0 and hence Vs appears directly between G and S
	• To find the nutrut circuit, set $V = 0$, and hence V s appears uncerty between 0 and 5. • To find the output circuit set $I = 0$ and hence P appears only in the output loop
	• To find the output encurt, set $\Pi = 0$, and hence K appears only in the output loop. Low – frequency model Source Follower (2M)
	10W - Hequency model Source Follower (SW)
1	

	$f_{\rm b}$ = upper cut off frequency without using feedback	
	After the negative feedback is applied	(3M)
	$A_{un} = A_u / (1 - A_u \beta)$	(5111)
	A_{mF}	
	$A_{HF} = \frac{-2MF}{1-1}$	
	$1 - j \frac{f}{fH}$	
	Where,	
	$F_{\rm H} = f_{\rm h} [1 + {\rm Amid } \beta] = {\rm Upper cut off frequency using feedback}.$	
	$A_{mf} = Amid / [1 + ALmidB] = Mid band gain with feedback.$	
	$F_{\rm H} > f_{\rm b}$ i.e.,	
	Upper cut off frequency – increased- due to - negative feedback- Band width is increased	1.
	Bandwidth Plot:	(1M)
		()
	Gain(dB)	
	Aust	
	0.707 A _{sult}	
	With feedback	
	Acua /	
	0.707 A fual	
	$f_{\rm LF} = f_{\rm L}$ $f_{\rm HF} = f_{\rm HF}$	
	← BW → → Bwf → →	
	An amplifier has a mid-band gain of 125 and a bandwidth of 250 KHZ. (a) If 4%	negative
	feedback is introduced, find the new bandwidth and gain. (b) If the bandwidth	is to be
	restricted to 1 MHZ, find the feedback ratio. (8M) BTL5	
	Answer: Page 544 - S. Salivahanan	
	Solution: Given A=125, BW=250KHZ & β =4%=0.04	
	(a) We know that, $BWf = (1+A\beta) BW$	(4M)
	$= (1+125 \times 0.04) \times 250 \times 103 = 1.5 \text{MHz}$	
3	Gain with feedback, $Af = A / 1 + A\beta$	
	$=125 / 1 + (125 \times 0.04)$	
	Af = 20.83	
	(b) BWf = $(1+A\beta)$ BW	(4M)
	$1 * 10^6 = (1+125\beta) * 250 * 10^3$	
	$=(1+125\beta)=1 * 106/250 * 10^{3}$	
	$\beta = 3/125 = 0.024$	
	$\beta = 2.4\%$	
	Sketch the block diagram of a feedback amplifier, and derive the expressions for g	ain with
	positive feedback and negative feedback. (9M) (May 2017, Apr/ May 2019). BTL3	
	Answer: Page 532 - S. Salivahanan	
	Introduction:	(2M)
4	• The input signal = Xs	
4	• The output signal = $Xo = A Xi$	
	• Feedback signal = $Xf = \beta Xo$	
	• Difference signal = $Xd = Xs - Xf = Xi$	
	• Gain of the amplifier without feedback $A = X_0 / X_i$	
	• The feedback factor = $\beta = Xf / X_0$	

	An amplifier with a negative feedback provides an output voltage of 5 volt with a voltage of 0.2volt. On removal of feedback, it needs only 0.1V input to give the same Determine a. gain without feedback, b. Gain with feedback, c. Feedback ratio (6M) Answer: Page 538 - S. Salivahanan A=50 BTL5	n input output.
10	Solution: a. Gain without feedback, A= output voltage / input voltage = $5 / 0.1$ b. Gain with feedback, Af = output voltage / input voltage = $5 / 0.2$ $\therefore Af = 25$	(2M) (2M)
	c. We know that, $AF = A / 1 + \beta A$ =25 / 1+25 β =0.02	(2M)
	Determine the voltage gain and input impedance with feedback for a voltage	e series
	feedback having the following parameters; $A = -100$; $R_i = 10 k\Omega$; $R_o = 20 k\Omega$;	for (i)
	$\beta = -0.1$; (ii) $\beta = -0.5$. (13M) BTL5	
	Answer Dage 552 C. Salinghan an	
	Answer: Page 552 - S. Salivananan $A = A_v = -100 = 0.00$	$(2\mathbf{M})$
	$A_{vf} - \frac{1}{1+\beta A_v} - \frac{1}{11} - \frac{1}{2000}$	$(2\mathbf{N}\mathbf{I})$
11	$R_{if} = R_i(1 + \beta A_v) = 10x11 = 110 \text{ KM}$	(2NI)
	$R_{of} = \frac{n_0}{1 + \beta A_v} = \frac{1}{11} = 1.81 \ k$	(2M)
	$A_{vc} = \frac{A_v}{100} = \frac{-100}{100} = -1.96$	(2M)
	$\frac{1+\beta A_v}{R_{va}} = \frac{51}{10r51} = \frac{510}{10r51} = \frac{510}{1$	(2M)
	$R_{if} = R_i(1 + pR_v) = 10001 = 510002$	(2111)
	$R_{of} = \frac{R_o}{1 + \beta A_v} = \frac{20}{51} = 0.392 \ k\Omega$	(3M)
	PART * C	
	Compare all the four feedback amplifiers with neat diagrams. (15M) BTL4	
	Answer: Page 552 - S. Salivahanan	
	Block Diagram:	(8M)
	$Z_{ic}^{c} \qquad I_{i} \qquad Z_{ic}^{c} \qquad I_{i} \qquad I_$	
	$ \begin{array}{c} & & \\ & & $	
	$V_{s} \bigoplus I_{i} \bigoplus V_{s} \oiint I_{i} \bigoplus V_{s} \lessapprox Z_{L}$	
1	$ \begin{array}{c} & & \\ & & $	
1	(a) (b)	
	Z_{ic} Z_{ic} Z_{ic} Z_{ic} Z_{ic}	
	$I_{i} \bigoplus Z_{i} \bigoplus A-\text{network} $	
	$I_{J_{\bullet}} \xrightarrow{I_{o}} $	
	1 F-network 2 V	

We Know
$V_{c} - V_{i} + V_{f}$
$\sqrt{5} = \sqrt{1} + \sqrt{1}$
The gain of the amplifier with recuback $A f = I_{-} / M_{-}$
AI = IO / VS
$A_F = \frac{A}{1 + A\beta}$
Input Impedance: (1M)
$V_{S} = V_{I} + V_{f}$
=I iRi + Vf
$=$ Ii Ri + β Io
$=$ Ii Ri + A β Vi
Where,
Io = A Vi
$Vs = Ii Ri + A \beta Ii Ri$
$V_s = Ii Ri [1 + A \beta]$
$Rif = Ri [1 + A\beta]$
Input impedance gets increased by the factor ($1 + A\beta$).
Output Impedance: (1M)
Assume - source voltage - transferred - output terminals - Vs shorted i.e Vs = 0, resulting -
current Io into the circuit.
$V_S = V_I + V_f$
$Zof = Zo[1 + A\beta]$
Output impedance - amplifier with feedback- Output impedance - increased by a factor of (1 + A
β).

	UNIT II – OSCILLATORS
Barkh	ausen criterion for oscillation – phase shift, Wien bridge - Hartley & Colpitt's oscillators –
Clapp	oscillator-Ring oscillators and crystal oscillators – oscillator amplitude stabilization.
	PART * A
Q.No.	Questions
1.	Define an Oscillator circuit. BTL1
	An Oscillator is a circuit, which basically act as a Generator, generating the output signal which
	oscillates with a constant amplitude and constant desired frequency.
	Classify Oscillators based on different criterions. BTL2
	Based on waveform generated:
	Sinusoidal Oscillator.
	• Non-Sinusoidal Oscillator or Relaxation Oscillator Example: Square
2	wave, Triangular wave, Rectangular wave etc. According to principle
2.	involved:
	• Negative resistance Oscillator,
	• Feedback Oscillator.
	According to frequency generated:
	• Audio frequency oscillator - 20Hz - 20KHz
	• Radio frequency oscillator = 30 MHz = 2 GHz
	 Officiality of the second of th
	Crystal assillator
	• Crystal Oscillators Name the verious types of feedback escillators BTL 1
	RC oscillators – Types
	• BC phase shift oscillator
2	Wein bridge oscillator
5.	LC oscillators – Types
	Tuned collector oscillator
	Tuned emitter oscillator
	Tuned collector base oscillator
	Hartley oscillator
	Colpitts oscillator
	Clapp oscillator.
4.	Discuss the conditions to be satisfied for oscillation. (Nov 2017) BTL6
	The total phase shift of an oscillator should be 360 for feedback, product of open loop gain
	& feedback factor should be unity. Oscillator should satisfy Barkhausen criterion.
	Define piezoelectric effect. BTL1
_	When applying mechanical energy to some type of crystals called piezoelectric crystals
5.	themechanical energy is converted into electrical energy is called piezoelectric effect.
	What is Miller crystal oscillator? Explain its operation? BTL1
6	It is nothing but a Hartley oscillator with its feedback Network is replaced by a crystal. Crystal
0.	normally has higher frequency reactance due to the miller capacitance that are in effect between the
	transistor terminal.

7.	Define Barkhausen Criteria. (May 2014) (A 1. The total phase shift around a loop, as the feedback network back to input again, complet 2. The magnitude of the product of the open factor β is unity. i.e., A $\beta = 1$.	pril 2015, April 2017) (Nov 2017) BTL1 ne signal proceeds from input through amplifier, ing a loop, is precisely 0^0 or 360^0 . loop gain of the amplifier (A) and the feedback
8.	 Name two low frequency and high frequency of Low frequency oscillators are RC phase shift oscillator Wein bridge oscillator High frequency oscillators are Hartley oscillator Colpitts oscillator 	oscillators. (Nov 2017) BTL1
9.	List the advantages of crystal oscillators. BT Frequency stability is greater. Hence, they an transmitters and receivers.	L1 re used in watches, communication
10.	 List the advantages of the RC phase shift os The circuit is simple to design Can produce output over AF range Produces sinusoidal output waveform It is fixed frequency oscillation. 	cillator. (May 2016, Nov 2017). BTL1 n
11.	Identify which oscillator uses both positive an Wein bridge oscillator	d negative feedback. BTL3
12.	Discuss about the construction of Armstrong It is a type of <i>LC</i> oscillator. In this oscillator, a t in the circuit while the voltage across the second	; oscillator. BTL6 ransformer is used, whose primary acts as L lary is used as a feedback.
13.	List the factors that affect th (Nov-2016) BTL1 • Change in temperature • Change in load • Change in power supply	ne frequency stability of an oscillator.
14.	 List the essential parts of an oscillator. BTL1 Tank circuits (or) oscillatory circuit. Amplifier (Transistor amplifier) and Feedback circuit. 	
15	 List the disadvantages of crystal oscillator. E It is suitable for only low power circu Large amplitude of vibrations may cr The change in frequency is only possible refrequency. 	BTL1 uits. ack the crystal. placing the crystal with another one by different
16	Compare an oscillator & an amplifier . BTL Oscillator	4 Amplifier

	They are self-generating circuits. The generate waveforms like sine, square and triangular waveforms of their own, without having input signal.	They are not self-generating circuits. They need a signal at the input and they just increase the level of the input waveform.
	It has infinite gain	It has finite gain.
	Oscillator uses positive feedback	Amplifier uses negative feedback
17.	 List the disadvantages of RC phase shift ose It is ideal for frequency adjustment o It requires a high β transistor to over 	cillator. (April 2008) BTL1 ver a wide range. come losses in the network.
18.	Explain about resonant circuit oscillators. If LC oscillators are known as resonant circuit of oscillator is nothing but a resonant frequency sustained, oscillation at resonant circuit oscillators.	BTL5 escillator because the frequency of operation of LC y of tank circuit or LC tank circuit which produces tor output.
19.	Justify the need of RC phase shift in a RC p The amplifier used causes a phase shift of 180 to of 180, to satisfy the Barkhausen criterion. He circuit are connected in cascade, each introo shift 180, due to feedback network, a phase shift of 360.	Chase shift oscillator. BTL5 then the feedback network should create phase shift ence in phase shift oscillators, three sections of RC ducing a shift of 60, thus introducing a total phase shift of 180 is introducing providing a total phase
20.	Wein Bridge oscillator is used for operation Evaluate the value of C required (Nov 2008 $F=1/(2\pi RC)$	at 10 KHz. If the value of resistance R is 100 kΩ,). BTL5
	C= 159.155PF	
21.	Discuss about frequency stability of an oscillato The analysis of the dependence of the oscil capacitance, temperature etc. is called frequen	or (May 2009) (Apr/ May 2019) BTL6 lating frequency on the various factors like stray cv stability analysis.
22.	In a RC phase shift oscillator, if R1 =R2 =R3=2 frequency of the oscillator. The frequency of oscillator is $F=1/(2\pi RC) = 7$	200k and C1=C2=C3=100pf, Estimate the (April 2010). BTL5 .957 <i>kHZ</i>
	A crystal has the following parameters capacitance is 2 pf, Estimate its series and pa BTL5	s L= 0.5 H, C=0.05pf, and mounting arallel resonating frequencies. (Nov 2010)
	Series resonance frequency:	
23.	$f_s = 1/(2\pi)$	$\tau \sqrt{LCs}$)
	$= 1/2\pi\sqrt{(0.5*)}$	$0.05 * 10^{-12})$
	fs = 1 MHz	
	$f_p = \frac{1}{2\pi} \sqrt{\frac{Cs + Cp}{LCsCp}}$	

	Series resonance frequency:	(4M)
	$f_s = 1/(2\pi\sqrt{LCs})$	
	$= 1/2\pi\sqrt{(0.4*0.085*10^{-12})}$	
	<i>fs</i> =863.13 KHz	
	Parallel resonance frequency:	(3M)
	$f_p = \frac{1}{2\pi} \sqrt{\frac{Cs + Cp}{LCsCp}}$	
	$=\frac{1}{2\pi} \sqrt{\frac{0.085 * 10^{-12} + 1 * 10^{-12}}{0.085 * 10^{-12} * 1 * 10^{-12} * 0.4}}$	
	= 899.07 KHz	
	parallel resonant frequency exceeds the series resonant frequency by 899.07-863.13 K	Hz = 36
	KHz. Q Factor: $Q = \omega L/R = 0.45$	(3M) (3M)
	Illustrate the working principle of Clepp escillator with post diagram (7M) (May2)	18)
	BTL2	(10)
	Answer: Page 590- S. Salivahanan	
	 Modified colpitts oscillator circuit - called clap oscillator. 	(2M)
	• The basic tank circuit with two capacitive reactancesone inductive reactance	remains
	 same. Modification -one more capacitor C3 is introduced in series with inductand C3 much smaller than C1 and C2 	ce.
	Frequency of Oscillation & Condition for Sustained Oscillation:	(2M)
	$h_{fe} = \frac{C1}{C2}$	
2.	$f = \frac{A}{2\pi \sqrt{2\pi}}$	
	$2\pi\sqrt{LC_{eq}}$ Circuit Diagram:	(3M)
	°cc 1	
	$\int \frac{J_r}{2\pi \sqrt{LC_s}}$	
	$ \begin{array}{c} R_2 \stackrel{>}{\leq} & R_{\mathrm{H}} \stackrel{>}{\leq} \stackrel{+}{=} & C_2 \stackrel{+}{=} \stackrel{+}{=} C_2 \\ \stackrel{+}{=} & \stackrel{+}{=} \stackrel{-}{=} & \overset{-}{=} & C_2 \end{array} $	
	Draw the Wein bridge oscillator using BJT, explain and derive the condition for os	cillation.
2	(10M) (Nov 2017) (Nov/Dec- 2003), (Nov/Dec- 2004) (April- 2004) (Apr/ May 2019) Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the am	(or) plifier
5.	must be at least three for the oscillation to occur (10M) (Nov 12) BTL5	L
	Answer: Page 605- S. Salivahanan Introduction:	(3M)

	 Wein bridge oscillator -audio frequency oscillator. Involves both positive and pegative feedback 	
	 Involves both positive and negative recuback. Nogative feedbackstability 	
	 Regative feedback – stability. Regitive feedback – escillations 	
	 Fositive recuback - oscillations. Eaadhaalt nativerity nationaduse, phase shift 	
	• Feedback network - not produce - phase shift.	
	• The circuit consists -two transistors- operated - CE configuration.	
	• The transistors- individually -provide - phase shift of 180° - overall phase shift is 360)° -
	fed back - first stage - bridge network.	
	Circuit Diagram: (3.	M)
	$R \ge \left(\begin{array}{c} Feedback \end{array} \right)$	
	$\leq r \leq R^{R1}$	
	The frequency of oscillator is $F=1/(2\pi RC)$ (2)	M)
	Advantages of wein hridge oscillator :-	(Λ)
	1 Good sine wave output	•1)
	2. Good frequency stability	
	3. Good Amplitude stability.	
	In Colpitts oscillator, C1=1uF, C2=0.2uF. If the frequency of oscillation is 10 KHz, find the	he
	value of inductor; also find the required gain for sustained oscillation. (3M) (Nov 2017)	
	BTL2	
4.	Answer: Page 588- S. Salivahanan	
	Frequency of Oscillation: $f = \frac{1}{2\pi \sqrt{16}}$ (1M)	<i>A</i>)
	$C_{eq} = C_{eq} C_{eq} $ (1)	л
	I = 0.422 mH (1)	Λ
	Draw Hartley oscillator using FET, explain and derive the condition for oscillation, (13M)
	(Nov 2017) BTL4	,
	Answer: Page 582- S. Salivahanan	
	Introduction: (21	M)
	LC Oscillator	
	• Two inductive reactance's - one capacitive reactance - feedback network - Hartley	
	Oscillator.	
5.	Frequency of Oscillation: (3)	M)
	$f = \frac{1}{1}$	
	$\int -2\pi\sqrt{L_{eq}C}$	
	$L_{eg} = L1 + L2$	
	Circuit Diagram & Explanation (4M+4)	M)
	180° phase shift – feedback network- another 180° phase shift – CE amplifier. Total 36	0^{0}
	phase shift.	

Dertheusen eriterien (1)()
Barknausen criterion, (4M)
$A\beta = 1$
Condition for Oscillation:
$I = 1/2\pi RC \vee 6$ $A\beta = 1$
Sustained oscillations $\beta = -1/29$
In a colpitts oscillator, inductor and capacitor of the tank circuit are H=40mH, C1=100pF
C2=500pF, Find the frequency of oscillation. (3M) (May 2017). BTL2
Answer: Page 589- S. Salivananan Frequency of oscillation:
9. $f = \frac{1}{1 - 1$
$\int \frac{2\pi\sqrt{LC_{eq}}}{2\pi\sqrt{LC_{eq}}} $ (11)
$Ceq = C1^{*}C2/C1 + C2 = 83.33 \text{ pF} $ (1M) F= 87 17K Hz (1M)
Discus thoroughly, the factors affecting frequency stability of oscillators. (6M) BTL6
Answer: Page 613- S. Salivahanan
• Change in temperature (6M)
10. Values of tank circuit components get affected.
 Variation in power supply
 Change in atmospheric condition, aging.
Changes in load connected.
Stray capacitances
PART * C
Design a Hartley oscillator of frequency 100 KHz, and explain its working with neat circu diagram. Assume L 1-L 2-4mH (15M) (May 2018) DTL 6
Answer: Page 584- S. Salivahanan
$f = \frac{1}{\sqrt{2}}$ (3N)
$\begin{bmatrix} 1 & 2\pi\sqrt{cL_{eq}} \\ Leq = L_1 + L_2 = 8mH \end{bmatrix} $ (3M)
$100*10^3 = \frac{1}{100}$
$\begin{array}{ c c c c c } & 2\pi\sqrt{c} & 2\pi$

UNIT III – TUNED AMPLIFIERS

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers –Analysis of capacitor coupled single tuned amplifier – double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth – Stagger tuned amplifiers - Stability of tuned amplifiers – Neutralization - Hazeltine neutralization method.

	PART* A				
Q.No.	Questions				
	What is a tuned amplifier? BTL1				
1.	The amplifier with a circuit that is capable of amplifying a signal over a narrow band of				
	trequencies are called tuned amplifiers.				
	List the advantages and disadvantages of tuned amplifiers. BILI				
	Advantages.				
	 Signal to Noise ratio at output is good 				
	 They are well suited for radio transmitters and receivers 				
2	 The band of frequencies over which amplification is required can be varied 				
	Disadvantages:				
	• Since they use inductors and capacitors as tuning elements, the circuit is bulky and costly.				
	• If the band of frequency is increased, design becomes complex.				
	• They are not suitable to amplify audio frequencies.				
	What are the different coil losses? BTL1				
2	Hysteresis loss				
5	Copper loss				
	Current loss				
	What is the classification of tuned amplifiers? BTL1				
4	• Single tuned				
-	• Double tuned				
	Stagger tuned				
	What are the advantages of tuned amplifiers? BTL1				
5	• They amplify defined frequencies.				
	• Signal to noise ratio at output is good				
	• They are suited for radio transmitters and receivers				
	The affact of collector to have conceptance of the transistor is neutralized by introducing a signal				
6	that cancels the signal coupled through collector base capacitance. This process is called				
	neutralization.				
	What are the advantages of double tuned over single tuned? BTL1				
-	• Possess flatter response having steeper sides				
/	• Provides larger 3 dB bandwidth				
	• Provides large gain-bandwidth product.				
	What are the different types of neutralization? BTL1				
8	Hazeltine neutralization				
o	Rice neutralization				
	Neutrodyne neutralization.				

	What is rice neutralization? BTL1
9	It uses centre tapped coil in the base circuit. The signal voltages at the end of tuned base coil are
	equal and out of phase.
	Define Q factor of resonant circuit. BTL1
	• It is the ratio of reactance to resistance.
10	• It also can be defined as the measure of efficiency with which inductor can store the
	energy.
	$Q=2\pi * (Maximum Energy Stored per cycle / Energy dissipated per cycle)$
	Define unloaded and loaded Q of tuned circuit. (Apr/May 2019) BTL1
11	The unloaded Q or QU is the ratio of stored energy to dissipated energy in a reactor or resonator.
	The loaded Q or QL of a resonator is determined by how tightly the resonator is coupled to its
	terminations.
12	what is the response of tuned amplifiers? BILI The response of tuned amplifier is maximum at resonant frequency and it falls sharply for
12	frequencies below and above the resonant frequency
	What are stagger tuned amplifiers? BTL 1
	Stagger tuned amplifiers use a number of single tuned stages in cascade, the successive tuned
	circuits being tuned to slightly different frequencies (OR)
13	It is a circuit in which two single tuned cascaded amplifiers having certain bandwidth are taken
	and their resonant frequencies are adjusted that they are separated by an amount equal to the
	bandwidth of each stage. Since resonant frequencies are displaced it is called stagger tuned
	amplifier.
14	What is the effect of cascading single tuned amplifiers on bandwidth? BTL1
17	Bandwidth reduces due to cascading single tuned amplifiers.
	What are the advantages of double tuned amplifier over single tuned amplifier? BTL1
15	• It provides larger 3 dB bandwidth than the single tuned amplifier and hence provides the
	larger gain-bandwidth product.
	• It provides gain versus frequency curve having steeper sides and flatter top.
	What is the use of Neutralization? BTL1
	• BJT and FET are potentially unstable over some frequency range due to the feedback
	parameter presents in them.
16	• If the feedback can be cancelled by an additional feedback signal that is equal in
	amplitude and opposite in sign, the transistor becomes unilateral from input to output the
	oscillations completely stop.
	• This is achieved by Neutralization.
	Mention the applications of class C tuned amplifier. BTL1
	• Class C amplifiers are used primarily in high-power, high-frequency applications such as
17	Radio-frequency transmitters.
	• In these applications, the high frequency pulses handled by the amplifier are not
	themselves the signal, but constitute what is called the Carrier for the signal
18	What the advantages are of stagger tuned amplifier? BTL1
	I he advantage of stagger tuned amplifier is to have better flat, wideband characteristics.
10	How single tuned amplitiers are classified? BTL1
19	Capacitance coupled single tuned amplifier.
	• 2. Transformer coupled or inductively coupled single tuned amplifier.

	V_{CC}	
	Discuss in detail the quality factor of the loaded and unloaded tank Circuits. (8M) BT	L6
	Answer: Page 494- S. Saliyahanan	
	O Factor	(2M)
	Quality factor (0) important characteristics of an inductor	(2111)
	$The O_{intro}$ resistance resistance suit less	
	Manager and Stranger - Teststance - unit Tests.	
	Measure - now Pure or real an inductor.	
	Unloaded Q (QU)	(2M)
	When the tank circuit (parallel LC circuit) - assumed - not connected - any external circuit	- load,
	Q accounts for the internal losses - called unloaded quality factor 'Qu'.	
	$Ro = (\omega OL) / QU$	
	Loaded Q (QL):	(2M)
	$RC = (\omega O L) / O L$	
	The circuit efficiency for the above tank circuit	
6	$\eta = (I^2 R_c) / [I^2 (R_c + R_o)]$	
	The quality factor QL - the 3-db bandwidth - resonant circuit -	
	B.W = fr/QL fr -represents the centre frequency.	(
	Relation between Bandwidth and Q:	(2M)
	T / /	
	02	
	Freq (Hz)	
	Calculate the resonant frequency of a class c tuned amplifier whose Capacitor=10pf at	nd
	inductor L=1mH. (8M) BTL2	
	Answer: Page 518- S. Salivahanan	
7	Solution:	
	The resonant frequency of class-c tuned amplifier is	
	$fr = 1/2 \pi LC$	(4M)
	fr = 1.59 MHz	(4M)
8	Write a short on coil losses. (8M) BTL1	()

Answer: Page 513- S. Salivahanan	
Solution:	
$BWT = BW1 (2^{1/n} - 1)^{1/4}$	(2M)
21/n = 1.0676.	
Taking log on both sides,	
$1/n \log (2) = \log(1.0676)$	
n = 10	(5M)

UNIT IV- WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

Pulse	Pulse circuits – attenuators – RC integrator and differentiator circuits – diode clampers and		
clippe	lippers –Multivibrators - Schmitt Trigger- UJT Oscillator. PART * A		
	PART * A		
Q.No.	Q.No. Questions		
1	 What is High pass RC circuit? Why it is called high-pass filter? BTL1 A simple circuit consisting of a series capacitor and a shunt resistor is called high pass RC circuit. At very high frequencies the capacitor acts as a short circuit and all the higher frequency components appear at the output with less attenuation than the lower frequency components. Hence this circuit is called high-pass circuit. 		
	Why high-pass RC circuit is called Differentiator? (Apr/May 2019) BTL1		
2	High-pass RC circuit gives an output waveform similar to the first derivative of the input waveform. Hence it is called Differentiator.		
3	 What is Low pass RC circuit? Why it is called low-pass filter? BTL1 A simple circuit consisting of a series resistor and a shunt capacitor is called Low pass RC circuit. At very high frequencies the capacitor acts as a virtual short circuit and output falls to 		
	zero. Hence this circuit is called low-pass filter		
4	Why low-pass RC circuit is called Integrator? BTL1 Low pass RC circuit gives an output waveform similar to the time integral of the input waveform. Hence it is called Integrator.		
5	 What is High pass RL circuit? Why it is called high-pass filter? BTL1 A simple circuit consisting of a series resistor and a shunt inductor is called high-pass RL circuit. At very high frequencies, the inductor acts as an open circuit and all the higher frequency components appear at the output. Hence this circuit is called high-pass filter. 		
6	 What is Low pass RL circuit? Why it is called low-pass filter? BTL1 A simple circuit consisting of a series inductor and a shunt resistor is called low pass RL circuit. At very high frequencies, the inductor acts as a virtual open circuit and the output falls to zero. Hence this circuit is called low pass filter. 		
7	What is Delay time (td), Rise time (tr), storage time (ts), fall time (tf) in transistor? BTL1 The time needed for the collector current to rise to 10% of its maximum (saturation) value i.e. iC(Sat) = VCC/RC is called the delay time. The time required for the collector current to rise from 10% to 90% of the maximum value is called rise time (tr). The time when collector current (iC) dropped to 90% of its maximum value is called the storage time. The time required for the collector current to fall from 90% to 10% of its maximum value is called fall time (tf).		
8	What is Turn-ON time (t_{ON}), Turn-off time (t_{OFF}) in transistor? BTL1 The sum of the delay time (td) and the rise time (tr) is called the turn-ON time (t_{ON}). $t_{ON} = td + tr$ The sum of the storage time (ts) and the fall time (tf) is called the turn-OFF time (t_{OFF}).		

. <u> </u>	
	$(t_{OFF}) = (ts) + (tf)$
	List the applications of bistable multivibrator? BTL1
	• It is used as memory elements in shift registers, counters, and so on.
0	• It is used to generate square waves of symmetrical shape by sending regular triggering
9	pulse to the input. By adjusting the frequency of the trigger pulse, the width of the square
	wave can be altered.
	• It can also be used as a frequency divider.
	What are the two methods of triggering for bistable multivibrators? BTL1
10	Unsymmetrical triggering
	• Symmetrical triggering
11	What are the other names of monostable Multivibrator? BTL1
11	One-shot, Single-shot, a single-cycle, a single swing, a single step Multivibrator, Univibrator.
12	What are the different names of bistable Multivibrator? BTL1
12	Eccles Jordan circuit, trigger circuit, scale-of-2 toggle circuit, flip-flop and binary.
	What is clipper? BTL1
13	The circuit with which the waveform is shaped by removing (or clipping) a portion of the input
	signal without distorting the remaining part of the alternating waveform is called a clipper.
	What are the four categories of clippers? BTL1
	Positive clipper
14	Negative clipper
	Biased clipper
	Combination clipper
	What is comparator? BTL1
15	• The nonlinear circuit which was used to perform the operation of clipping may also be
	used to perform the operation of comparison is called the comparator.
	• The comparator circuit compares an input signal with a reference voltage.
10	What is clamper? (Apr/May 2019) B1L1
16	A circuit which shifts (clamps) a signal to a different dc level, i.e. which introduces a dc level to
	an ac signal is called clamper. It is also called dc restorer.
	which circuits are called multivibrators? B1L1
17	• The electronic circuits which are used to generate no sinusoidal waveforms are called
1/	They are two store switching circuits in which the cutruit of the first store is fed to the
	• They are two stage switching circuits in which the output of the first stage is led to the input of the second stage and vice versa.
	Which are the various types of multivibrators? BTI 1
	Astable multivibrator
18	Bistable multivibrator
	 Monostable multivibrator
	What is astable multivibrator? BTL1
	• A multivibrator which generates square wave without any external triggering pulse is
	called astable multivibrator.
10	• It has both the states as quasi-stable states. None of the states is stable
19	• Due to this, the multivibrator automatically makes the successive transitions from one
	quasi-stable state to other, without any external triggering pulse. So, it called Free-
	running multivibrator.
	• The rate of transition from one quasi-stable state to other is determined by the

	discharging of a capacitive circuit.				
	List the applications of Astable multivibrator? BTL1				
	• Used as square wave generator, voltage to frequency convertor and in pulse				
	synchronization, as clock for binary logic signals, and so on.				
20	• Since it produces square waves, it is a source of production of harmonic frequencies of				
	higher order.				
	• It is used in the construction of digital voltmeter and SMPS.				
	• It can be operated as an oscillator over a wide range of audio and radio frequencies.				
	 tate the basic action of monostable multivibrator. BTL1 It has only one stable state. The other state is unstable referred as quasi- stable state. 				
	• It has only one stable state. The other state is unstable referred as quasi- stable state.				
	• It is also known as one-short multivibrator or univibrator.				
21	• After some time, interval, the circuit automatically returns to its stable state.				
	• The circuit does not require any external pulse to change from quasi- stable state.				
	• The time interval for which the circuit remains in the quasi-stable state is determined by				
	the circuit components and can be designed as per the requirement.				
	Mention the applications of one short multivibrator? B1L1				
	• It is used to function as an adjustable pulse width generator.				
22	• It is used to generate uniform width pulses from a variable width pulse train.				
	• It is used to generate clean and sharp pulses from the distorted pulses.				
	• It is used as a time delay unit since it produces a transition at a fixed time after the trigger				
	Signal. Which multivibuated months as a time delay unit? Why? DTL 1				
23	Which multivibrator would function as a time delay unit since it produces a transition at a				
20	fixed time after the trigger signal				
	What is Bistable multivibrator? BTL1				
	• The Bistable multivibrator has two stable states				
24	• The multivibrator can exist indefinitely in either of the two stable states.				
	• It requires an external trigger pulse to change from one stable state to another.				
	• The circuit remains in one stable state unless an external trigger pulse is applied.				
	Why is monostable Multivibrator called gating circuit? BTL1				
25	The circuit is used to generate the rectangular waveform and hence can be used to gate other				
	Circuits hence called gating circuit.				
	What are the main characteristics of Astable Multivibrator? BTL1				
26	The Astable Multivibrator automatically makes the successive transitions from one quasi- stable				
	State to other without any external triggering pulse.				
	What is the self-biased Multivibrator? BTL1				
25	The need for the negative power supply in fixed bias bistable Multivibrator can be eliminated by				
27	raising a common emitter resistance RE. The resistance provides the necessary bias to keep one				
	transistor ON and the other OFF in the stable state. Such type of biasing is called self-biasing and				
	ute circuit is called self-blased distable MultiVibrator. What is UTD of the Salmitt Trigger? What is the other name for UTD? DTL 1				
28	The level of Vi at which O1 becomes ON and O2 OFF is called Upper Threshold Doint. It is also				
20	called input turn on threshold level				
	What is LTP of the Schmitt trigger? RTL1				
29	The level of Vi at which O1 becomes OFF and O2 on is called Lower Threshold Point				

ACADEMIC YEAR: 2019-2020

	UNIT V-POWER AMPLIFIERS AND DC CONVERTERS	
Power	amplifiers- class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB	
Power	r amplifier using MOSFET –DC/DC convertors – Buck, Boost, Buck-Boost analysis and design	
	PART * A	
Q.No.	Questions	
	State the difference between voltage and power amplifier. BTL1	
	Voltage Amplifier: The input given to the transistor is in millivolts. The transistor used is a small	
1.	signal transistor.	
	Power Amplifier: The input given to the transistor is in volts. The transistor used is a power	
	transistor.	
	Why power amplifier is also known as large signal amplifier? BTL1	
2	Since the output obtained from the power amplifier is very large, it is known as large signal	
	amplifier.	
	Define class A power amplifier. How do you bias class A amplifier? BTL1	
3	It is an amplifier in which the input signal and the biasing is such that the output current flows for	
_	full cycle of the input signal. The Q point should be kept at the center of the DC load line to bias the	
	Class A amplifier.	
4	Define class B power amplifier. BILI It is an amplifier in which the input signal and the biasing is such that the output current flows for	
-	half cycle of the input signal	
	Define class C nower amplifier BTL1	
5	It is an amplifier in which the input signal and the biasing is such that the output current flows for	
	less than half cycle of the input signal	
	Define class AB power amplifier. BTL1	
6	It is an amplifier in which the input signal and the biasing is such that the output current flows for	
	more than half cycle but less than full cycle of the input signal	
_	What is a push pull amplifier? BTL1	
1	Class B amplifier is used as a push pull amplifier which uses two transistors. Both the transistors	
	Work as a push pull arrangement. i.e one transistor will be on at a time.	
8	There is a 0.7V delay in between every half cycle. Due to this the sine wave will not be a continues	
0	wave This is called cross over distortion. It can be eliminated by class AB amplifier	
	An amplifier has an efficiency of 32% and a collector dissipation of 0.8W. Calculate the d.c.	
	power input and a.c.power output of the circuit. BTL1	
	Pin(d.c) = 2Pc(d.c) + Po(a.c)	
9	= 2.35 W	
	Po(a.c) = Pin(d.c)(.32)	
	0.752W	
	Define DC DC Converters. BTL1	
10	DC-to-DC converters convert electrical power provided from a source at a certain voltage to	
	electrical power at a different dc voltage.	
	List the features of DC DC Converters. BTL1	
11	• DC-to-DC power converters form a subset of electrical power converters.	
	• Both the output and input power specifications of dc-to-dc converters are in dc. Most dc	
	loads require a well-stabilized dc voltage capable of supplying a range of required current, or	

	T						
	a variable dc current or pulsating dc current rich in harmonics.						
	• The dc-to-dc converter has to provide a stable dc voltage with low output impedance over a						
	wide frequency range.						
	Draw the simple DC DC Converter. B1L1						
12	\mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}						
	• • •						
	List the different types of simple DC DC Converters. (Apr/ May 2019) BTL1						
12	Series controlled						
15	Shunt Controlled						
	Switch Mode Converters						
	What are the different modes of DC Converters in Switch mode? BTL1						
14	Buck Converter						
14	Boost Converter						
	Buck-Boost Converter						
	Give the important features of Buck Converters. BTL1						
	Gain less than unity						
	 Gain is independent of switching frequency as long as Ts<to< li=""> </to<>						
15	• Output voltage ripple percentage of independent of the load on the converter						
	• Output ripple have second order roll off with the switching frequency.						
	• Ideal efficiency is unity.						
	The input current is discontinuous and pulsating.						
	Write the important features of Boost Converters. BTL1						
	• Gain more than unity						
	• Gain is independent of switching frequency as long as Ts <rc< td=""></rc<>						
16	• Output voltage ripple percentage of dependent of the load on the converter						
	Parasitic resistance degrades the gain						
	• Ideal efficiency is unity.						
	The input current is continuous.						
	List the important features of Buck-Boost Converters. BTL1						
	• Gain can be set below or above unity.						
	• Gain is independent of switching frequency as long as Ts <rc< td=""></rc<>						
17	• Output voltage ripple percentage of independent of the load on the converter &						
	Output ripple have second order roll off with the switching frequency.						
	• Parasitic resistance degrades the gain						
	• Ideal efficiency is unity.						
	• The input current is discontinuous and pulsating.						
18	BTI 1						
10	25% and it can be increased to 50% by using inductors or transformers						
<u> </u>	What is 'distortion' in power amplifiers? (Nov 2009) BTL1						
19	It is non-linear or harmonic distortion and is caused by the non-linear characteristic curve						
	of an active devices.						

20	A BJT has a maximum pow maximum junction temperatur	as a maximum power dissipation of 2W at ambient temperature of 25°C and junction temperature of 150°C, find its thermal resistance. (Nov 2010) BTL1			
20	Thermal resistance = $(TJ - TA)/PD$ = $(150, 25)/2$				
= (130-23)/2 = 62.5 °C/W					
	List the disadvantages of push pull amplifier. (Nov 2011) BTL1				
21	• The circuit needs two sepa	arate voltage suppliers			
	• The ouput is distorted due	o the crss over distortion			
	Harmonic distortion and Harmonic distortion is ca	intermodulation distortion. (Nused by the nonlinear dynamic of	ov 2011) BTL1 characteristics curve of an active		
22	device. Here new frequencies are produced in the output which are not present in the input.				
	Intermodulation distortion is also a nonlinear distortion which occurs when the input signal consists				
	of more than one frequency	anntart of roman ann lifiar9 D7			
23	The resistance offered	by the bipolar junction transist	or to the flow of heat is called		
20	thermal resistance. The thermal re	esistance measured in $^{\circ}C/W = (TJ)^{\circ}$	- TA)/ PD		
	What is meant by second order	harmonic distortion? (Nov 2012	2) (Apr/May 2019) BTL1		
24	The second harmonic d	istortion is defined as B2 / B1 X1	00 % Where B1-amplitude of the		
	desired signal the fundamental free	equency ω B2- amplitude of the set	econd harmonic frequency 2ω		
	List the applications of MOSFE	1 power amplifier. (Nov 2012)	BILI		
25	 Line drivers for digital sw 	itching circuits			
	 Switched mode voltage re 	gulators			
	Distinguish between class A and	l class B operation. (April 2011)	BTL2		
•	-				
26	Parameter Conduction angle	Class A	Class B		
	Theoretical efficiency	25%	78 5%		
	Theoretical efficiency	PART *R	10.370		
	In fig. a basic Class C-amplifie	r is shown. It uses sunnly volta	g_{e} of + 20V and load resistance		
	of 100Ω . The operating frequen	icy is $3MHZ$ and $VCE(sat) = 0$.	3 V. Calculate and efficiency. If		
	peak current is 500 mÅ, find th	e conduction angle also. (13M) H	3TL2		
	Answer: Page 484- S. Salivahanan				
	+20V(V _{cc})				
		100pf ЗµН			
	100pf 3µH				
1					
	v _i				
	ξ 100Ω				
	± _				
	Solution:				
1					

2

Calculate maximum ac output power and the minimum power rating of the transist push-pull amplifier shown in fig.(10M) BTL2 Answer: Page 682- S. Salivahanan	ors in the
$or, \theta = 61.7^*$	(5M)
$\theta = \frac{t}{T} \times 360 = \frac{56.6 \times 10^{-9}}{0.33 \times 10^{-6}} \times 360$	
And, the conduction angle, θ , is	
or, $t = 56.6 ns$	
$500 \times 10^{-3} \times 19.7V$ or. $t = 56.6 \times 10^{-9} s$	
$=\frac{1.69W \times 0.33 \times 10^{-6}}{10^{-6}}$	
$t = \frac{P_0 \times T}{I \times V}$	
	(2M)
$T = \frac{1}{3 \times 10^6} = 0.33 \mu s$	
For the frequency of 3MHz, the period of the wave, T, is	
$\eta = \frac{P_0}{P_{dc}} = \frac{1.69W}{1.714W} \times 100 = 98.5\%$	
$I_{dc} = \frac{P_0}{V_p} = \frac{1.69W}{19.7V} = 0.0857A$	(2M)
Where,	
$P_{dc} = V_{CC} \times I_{dc}$	(2111)
or, $P_{dc} = 1.714 \text{ W}$	
$or, P_0 = 1.69W$ $P_1 = 20 \times 0.0857$	
$P_0 = \frac{V_p^2}{2R_L} = \frac{1.97^2}{2 \times 100}$	
Or, V _p = 19.7V	(2M)
$V_p = V_{CC} - V_{CE(sat)} = 20 - 0.3$	

(3M)

	Buck	Boost	Buck-Boost
Ideal Gain	d	$\frac{1}{1-d}$	$-\frac{d}{1-d}$
Current Ripple	$\frac{(1-d)RT_S}{L}$	$\frac{d(1-d)^2 R T_S}{L}$	$\frac{(1-d)^2 RT_S}{L}$
Voltage Ripple	$\frac{(1-d)T_S^2}{8LC}$	$\frac{dT_S}{RC}$	$\frac{dT_S}{RC}$
Duty Ratio	$\frac{2}{3} \leq d \leq 1$	$0 \le d \le \frac{2}{3}$	$0 \le d \le \frac{2}{3}$
Effici	iency degradation Not	a on account of different account $\alpha = \frac{R_l}{R}; \ \beta = \frac{R_g}{R};$	t non-idealities
R_l and R_g	$\frac{1}{1+\alpha+\beta d}$	$\frac{1}{1 + \frac{\alpha + \beta}{(1 - d)^2}}$	$\frac{1}{1 + \frac{\alpha + \beta d}{(1 - d)^2}}$
V_{sn} and V_{sf}	$1 - \frac{V_{sf}}{V_g} - \frac{V_{sf}}{dV_g}$	$1 - \frac{V_{sn}}{V_g} - \frac{(1-d)V_{sf}}{V_g}$	$1 - \frac{V_{sn}}{V_g} - \frac{(1-d)V_{sf}}{dV_g}$

Wave form Comparison:

	$\delta V_o = \frac{\delta Q}{C} = \frac{1}{C} \frac{1}{2} \frac{\delta I_o}{2} \frac{T_S}{2}$	
	$\delta V_o = \frac{V_o(1-d)T_S^2}{2V_o}$	
	$\delta V_o = \delta = (1-d)T_S^2$	
	$\overline{V_o} = o_v = -\frac{1}{8LC}$	
	Input Current:	
	$I_g = dI_o$	
	Validity of Results:	
	$\frac{\delta V_o}{M} = \delta_v = \frac{5(1-d)T_S^2}{2} \ll 1$	
	$V_o = T_o^2$	
	Efficiency:	
	$\eta = \left[1 - \frac{V_{sn}}{V_g} - \frac{V_{sf}(1-d)}{dV_g}\right] \left[\frac{R}{R+R_l+dR_g}\right]$	
	Features:	(2M)
	• Gain less than unity	
	• Gain is independent of switching frequency as long as Ts <to< th=""><th></th></to<>	
	 Output voltage ripple percentage of independent of the load on the convert Output ripple have second order roll off with the switching frequency. 	er
	 Ideal efficiency is unity. 	
	• The input current is discontinuous and pulsating.	
	Explain the operation of Boost Converter with neat sketch. (10M) BTL2	
	Answer: Page 119- Notes Diagram	$(2\mathbf{M})$
		(2111)
	Boost Converter	
	waveform:	2M)
6		
U	i_L $(1-d)T_S$	
	i, torong the second seco	
	Steady State Waveforms of the Boost Converter	
	Voltage Gain:	(4M)
	JIT-JEPPIAAR/ECE/Dr.R.THANDAIAH PRABU/II [™] Yr/SEM 04/EC8452/ELECTRONIC CIRCUITS II/UNIT 1-5/OB+Kevs/Ver2.0	

	Introduction:	(2M)
	Circuit Diagram:	(2101)
	$\begin{array}{c} +V_{CC} \\ N_{1}:N_{2} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{E} \\$	
	Operation:	(2M)
	N1, N2 = the number of turns in the primary and secondary V1, V2 = the primary and secondary voltages I1, I2 = the primary and secondary currents Z1, Z2 = the primary and seconadary impedance (Z2 = RL) Ptot = P1 + P2 + PC + PT + PE $\eta_{(max)} = \frac{P_{ac}}{P_{dc}} = \frac{2V_{CC}2I_C}{8V_{CC}1_C} \times 100\%$	(2M)
	Draw the circuit diagram of class B push pull amplifier and discuss its merits. (NOV/DEC 2011) (APR/MAY 2010)(NOV/DEC'12) BTL2	(13M)
	 Answer: Page 478- S. Salivahanan Introduction: Push-pull - one transistor conducts - half a cycle - other -off, and vice versa. On - positive half cycle - input voltage, the secondary winding of T1 has voltage v1 	(2M) and v2,
10	 as shown. The upper transistor conducts - lower one cuts off. The collector current through Q1flows - upper half of the output primary winding. This produces - amplified - inverted voltage, - transformer-coupled - loud speaker. On - next half cycle - input voltage, - polarities reverselower transistor turns on transistor turns off - lower transistor amplifies - signal, - alternate half cycle appears the loudspeaker. 	- upper s across
	• Since each transistor amplifies one-half of the input cycle, the loud speaker red complete cycle - amplified signal.	ceives -
	Circuit Diagram:	(4M)
J	IT-JEPPIAAR/ECE/Dr.R.THANDAIAH PRABU/II nd Yr/SEM 04/EC8452/ELECTRONIC CIRCUITS II/UNIT 1-5/OB+Kevs/Ver2.0	

VCC of half (= $VCC/2 = 30/2 = 15V$) is to be taken for one transistor.	(2M)
The current through resistors R1 and R2 is,	
$I = \frac{15V}{100} = \frac{15V}{100}$ (A)	
$R_1 + R_2 = 300\Omega + R_2$	(2M)
IX P. = 0.7\/ (desired voltage)	$(21\mathbf{v}\mathbf{I})$
1 x R ₂ = 0.7 v (desired voltage)	
$or, I = 0.7V/R_2$ (B)	(1M)
0.71/ 1.51/	(1111)
$\frac{0.7V}{R_{\rm e}} = \frac{13V}{3000 + R_{\rm e}}$	
$a_{2} = 1470$	
	(1M)

EC8491

COMMUNICATION THEORY

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVES:

The student should be made to:

- To introduce the concepts of various analog modulations and their spectral characteristics
- To understand the properties of random process
- To know the effect of noise on communication systems
- To study the limits set by Information Theory

UNIT I AMPLITUDE MODULATION

Amplitude Modulation- DSBSC, DSBFC, SSB, VSB - Modulation index, Spectra, Power relations and Bandwidth – AM Generation – Square law and Switching modulator, DSBSC Generation – Balanced and Ring Modulator, SSB Generation – Filter, Phase Shift and Third Methods, VSB Generation – Filter Method, Hilbert Transform, Pre-envelope & complex envelope –comparison of different AM techniques, Superheterodyne Receiver.

UNIT II ANGLE MODULATION

Phase and frequency modulation, Narrow Band and Wide band FM – Modulation index, Spectra, Power relations and Transmission Bandwidth - FM modulation –Direct and Indirect methods, FM Demodulation – FM to AM conversion, FM Discriminator - PLL as FM Demodulator.

UNIT III RANDOM PROCESS

Random variables, Random Process, Stationary Processes, Mean, Correlation & Covariance functions, Power Spectral Density, Ergodic Processes, Gaussian Process, Transmission of a Random Process Through a LTI filter.

UNIT IV NOISE CHARACTERIZATION

Noise sources – Noise figure, noise temperature and noise bandwidth – Noise in cascaded systems. Representation of Narrow band noise –In-phase and quadrature, Envelope and Phase – Noise performance analysis in AM & FM systems – Threshold effect, Pre-emphasis and de-emphasis for FM.

UNIT V SAMPLING & QUANTIZATION

Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non-uniform quantization - quantization noise - Logarithmic Companding – PAM, PPM, PWM, PCM – TDM, FDM.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design AM communication systems
- Design Angle modulated communication systems
- Apply the concepts of Random Process to the design of Communication systems
- Analyze the noise performance of AM and FM systems
- Gain knowledge in sampling and quantization

TEXT BOOK:

- 1. J.G.Proakis, M.Salehi, —Fundamentals of Communication Systems^{II}, Pearson Education 2014. (UNIT I-IV).
- 2. Simon Haykin, -Communication Systems^{II}, 4th Edition, Wiley, 2014.(UNIT I-V).

REFERENCES:

- 1. B.P.Lathi, —Modern Digital and Analog Communication Systemsl, 3rd Edition, Oxford University Press, 2007.
- 2. D.Roody, J.Coolen, -Electronic Communications, 4th edition PHI 2006.
- 3. A.Papoulis, —Probability, Random variables and Stochastic Processes, McGraw Hill, 3rd edition, 1991.
- 4. B.Sklar, -Digital Communications Fundamentals and Applications, 2nd Edition Pearson Education 2007.
- 5. H P Hsu, Schaum Outline Series —Analog and Digital Communications || TMH 2006
- 6. Couch.L., "Modern Communication Systems", Pearson, 2001.

Subject Code: EC8491 Subject Name: COMMUNICATION THEORY

ACADEMIC YEAR : 2019-2020

Year/Semester: II /04 Subject Handler: Mrs. M.Benisha

UNIT I - AMPLITUDE MODULATION

Amplitude Modulation- DSBSC, DSBFC, SSB, VSB - Modulation index, Spectra, Power relations and Bandwidth - AM Generation - Square law and Switching modulator, DSBSC Generation - Balanced and Ring Modulator, SSB Generation - Filter, Phase Shift and Third Methods, VSB Generation - Filter Method, Hilbert Transform, Pre-envelope & complex envelope -comparison of different AM techniques, Superheterodyne Receiver. PART * A Q.No **Ouestions** Why DSB-SC AM is bandwidth inefficient when compared with side band AM? (April/May 2019) BTL₂ In DSB-FC AM (Contains 2 side bands USB & LSB and the carrier) requires 2fm bandwidth. ٠ 1 In SSB SC AM (Contains One side band and suppressed carrier and other side band) requires • only fm bandwidth, which is half compared to the DSB FC. Hence it is more efficient than DSB-FC. Thus DSB-SC AM is bandwidth inefficient when compared with side band AM. • Mention any four advantages of having RF Amplifier at AM Receiver. (April/May 2019) BTL2 It is more advantageous of having RF Amplifier at AM Receiver because, The RF amplifiers have greater gain that is they have better sensitivity. ٠ 2 They have better ability to amplify weak signals received by the receiver. The RF amplifiers have better selectivity i.e., better ability to select the wanted signals among • the various incoming signals. • Better Signal to Noise Ratio. (SNR) What are the advantages of converting the low frequency signal into high frequency signal? Does the modulation technique decide the antenna height? (Nov/Dec 2016) (Apr/May 2017) (Nov/Dec2018) BTL2 • The antenna needed for transmitting signals should have size at least $\lambda/4$, where, λ is the wavelength. The information signal, also known as baseband signal is of low frequency (and therefore the 3 wavelength is high). If we need to transmit such a signal directly, the size of the antenna will be very large and impossible to build. Hence direct transmission is not practical. • The radiated power by an antenna is inversely proportional to the square of the wavelength. So, if we use high frequency signals, the power radiated will be increased. • If we transmit the baseband signals directly, the signals from different transmitters will get mixed up and the information will be lost. An amplitude modulation transmitter radiates 100 watts of unmodulated power. If the carrier is modulated power. If the carrier is modulated simultaneously by two tons of 40% and 60% respectively, calculate the total power radiated. BTL2 $m_t = \sqrt{m_1^2 + m_2^2} = \sqrt{0.6^2 + 0.4^2} = 0.73$ 4 $P_t = P_c \left(1 + \frac{m^2}{2} \right) = 127 \text{ watts}$ $P_c = un \mod ulated \ carrierpower, p_t = total \ power, m = \mod ulation \ index$

	Calcula freque	ate the local oscillator free ncy is f ₂ . BTL2	quency if incoming frequency	y is f ₁ and translated carrier		
5		-				
-			f1+f2			
	Define	modulation and what is the	need for modulation? BTL1			
	Modula	ation:				
	Modula	ation is a process by which s	ome characteristics of high freq	uency carrier signal is varied in		
6	accorda	ince with the instantaneous val	lue of the modulating signal.			
	Need for	or modulation:	Deduced noise Nemery handwidt	h Enguenau aggionment Deduce		
	the equ	inments limitations	Reduced noise, Narrow Dandwidt.	n, Frequency assignment, Reduce		
	What a	re the types of analog modu	lation? BTL1			
1	Amplit	ude modulation, Angle Modul	ation- Frequency modulation, Pha	ase modulation.		
	Define	depth of modulation and list	what are the degrees of modul	ation? BTL1		
	Depth	of modulation:				
	It is def	fined as the ratio between mess	sage amplitude to that of carrier a	mplitude. m= E_m/E_c .		
8	Degree	s of modulation:				
	•	Under modulation. m<1,				
	•	Critical modulation m=1,				
	• What i	Over modulation $m > 1$	modulation 9 DTI 1			
	If mod	What is single tone and multi tone modulation? BTL1 If modulation is performed for a massage signal with more than one frequency component than the				
9	modulation is called multi tone modulation. If modulation is performed for a message signal with one					
	frequen	frequency component then the modulation is called single tone modulation.				
	~					
	Compare AM with DSB-SC and SSB-SC.(MAY2014) (Ap/May 2018) BTL2					
	S.No	AM	DSB-SC	SSB-SC		
	1	Transmission Bandwidth	Transmission Bandwidth	Transmission Bandwidth		
10		$B_T = 2f_m$	$B_T = 2f_m$	$B_T = f_m$		
	2	Contains two sidebands	Contains two sidebands	Contains only one sideband		
	3	Consumes large power	Consumes less power than	Consumes less power than		
		$P_{T} = P_{C} + P_{USB} + P_{LSB}$		AM,DSB-SC, $P_T = P_{USB}$		
			$\mathbf{I} \mathbf{T} - \mathbf{\Gamma} \mathbf{U} \mathbf{S} \mathbf{B}^+ \mathbf{\Gamma} \mathbf{L} \mathbf{S} \mathbf{B}$	<u> </u>		
	What a	re the advantages of VSB-A	M? BTL2			
11	11 It has bandwidth greater than SSB but less than DSB system. Power transmission greater than DSB			ransmission greater than DSB but		
	less tha	n SSB system. No low frequer	ncy component lost. Hence it avo	ids phase distortion.		

Г

	Compare linear and non-linear modulators. BTL2				
10	Linear modulators	Nonlinear modulators			
12	Heavy filtering is not required	Heavy filtering is required			
	These modulators are used in high level	These modulators are used in low level			
	modulation.	modulation.			
13	How will you generate DSBSC-AM? BTL1				
15	There are two ways of generating DSBSC-AM such as balanced modulator, ring modulators.				
	What are advantages of ring modulator? BTL:	2			
14	Its output is stable. It requires no external	power source to activate the diodes. Virtually no			
	maintenance. Long life.				
15	Define demodulation. BILI	sh modulating valtage is recovered from the modulated			
15	signal. It is the reverse process of modulation	in modulating voltage is recovered from the modulated			
	What are the types of AM detectors? BTI 1				
16	Nonlinear detectors Linear detectors				
17	What are the types of linear detectors? BTL1				
1/	Synchronous or coherent detector, Envelope or n	on-coherent detector.			
	Define multiplexing. BTL1				
18	Multiplexing is defined as the process of transr	nitting several message signals simultaneously over a			
10	single channel.				
	A broadcast radio transmitter radiates 5 kV	V power when the modulation percentage is 60%.			
	How much is the carrier power? B1L2 (m^2)				
19	$P_t = P_c \left(1 + \frac{m^2}{2} \right)$				
	$P_{t} = \frac{P_{t}}{2} = \frac{5000}{-4237.28W}$				
	$P_c = \frac{1}{\left(1 + \frac{m^2}{m^2}\right)} = \frac{1}{\left(1 + \frac{0.6^2}{m^2}\right)} = 4237.28W$				
	What is the relationship between total power i	n AM wave and unmodulated carrier power? B1L2			
20	$P_t = P_c \left(1 + \frac{m^2}{2} \right)$				
	$P_c = un \mod ulated \ carrier \ power, p_t = total \ power, m = total $	modulation index			
	What is the relationship between total current	nt in AM wave and unmodulated carrier current?			
21	$I_t = I_{cc} \left(1 + \frac{m^2}{m} \right)$				
	$r = c \left(\frac{1}{2} \right)$				
	$I_t = total \ current, I_c = un \ mod \ ulated \ carrier \ cuurent, m = mod \ ulation \ index$				
	What are the two major limitations of the of a	mplitude modulation (DSBFC) ? BTL2			
22	Total power in the DSBFC AM signal is more. Bandwidth required for DSBFC AM signal is more. If				
	carrier and one of the side band is suppressed, we will have considerable power saving and reduction in				
	bandwidth requirement.				
	An unmodulated carrier is modulated sill coefficients of modulation $m1 = 0.2 m^2 =$	nultaneously by three modulating signals with $0.4 \text{ m}^3 = 0.5$. Determine the total coefficient of			
23	coefficients of modulation $m_1 = 0.2$, $m_2 = 0.4$, $m_3 = 0.5$. Determine the total coefficient of modulation BTL 2				
	$\int \frac{1}{\sqrt{2}} \frac{1}{$	0.77			
	$m_t = \sqrt{m_1^2 + m_2^2 + m_3^2} = \sqrt{0.2^2 + 0.4^2 + 0.5^2} =$	0.07			

JIT-JEPPIAAR/ECE/Mrs.M.Benisha /IInd Yr/SEM 04/EC8491/ COMMUNICATION THEORY/UNIT 1-5/QB+Keys/Ver2.0

	REGULATION: 2017 ACADEMIC YEAR : 2019-2020
	What is frequency translation? BTL1
	Suppose that a signal is band limited to the frequency range extending from a frequency f1 to a
24	frequency f2. The process of frequency translation is one in which the original signal is replaced with a
	new signal whose spectral range extends from f1' to f2' and which new signal bears, in recoverable form
	the same information as was borne by the original signal.
	What are the two situations identified in frequency translations? BTL1
	The two situations identified in frequency translation are Up conversion and down conversion. In up
25	conversion; the translated carrier frequency is greater than the incoming carrier frequency. In Down
	conversion, the translated carrier frequency is smaller than the incoming carrier frequency. Thus, a
	narrowband FM signal requires essentially the same transmission bandwidth as the AM signal.
	What is Hilbert transform? BTL1
	It is a peculiar sort of filter that changes the phase of the spectral components depending on the sign of
	their frequency. It only effects the phase of the signal. It has no effect on the amplitude at all
26	The Hilbert transform $\hat{x}(t)$ of a signal $x(t)$ is defined by the equation
	$\hat{x}(t) = \frac{1}{\pi} \int \frac{x(s)}{t-s} ds,$
27	Mention the properties of Hilbert transform? BTL1
27	A signal $x(t)$ and its Hilbert transform $x(t)$ have 1) the same amplitude spectrum 2) the same
	autocorrelation function 3). $x(t)$ and $x(t)$ are orthogonal 4). The Hilbert transform of $x(t)$ is $-x(t)$
20	What is pre envelope? (May/June 2016). BTL1
28	The pre envelope of a real signal $x(t)$ is the complex function $x_+(t) = x(t) + j x(t)$.
	The pre envelope is useful in treating band pass signals and systems.
29	What is complex envelope? (May/June 2016). BTL1
	The complex envelope of a band pass signal $x(t)$ is $x(t) = x(t) e^{-y^2 t/t}$
20	What are the advantages of super heterodyne receiver over TRF? BTL2
30	The advantages of super heterodyne receiver over TRF are high selectivity, improved sensitivity
	throughout the carrier frequency band. It eliminates image frequency.
	Define selectivity and sensitivity of a radio receiver. BTL1
21	Selectivity: It is the ability of the receiver to accept a given band of frequencies and reject all others.
51	Sensitivity: It is the ability of the receiver to pick up weak signals and amplify them. It is defined in
	terms of the voltage that must be applied to the receiver input terminals to give the standard output
20	power. It is usually expressed in micro volts.
32	Mention the drawbacks of coherent detector. (April/May 2018) BTL01
	Define the term fidelity of a radio receiver. BTL21Fidelity is a measure of the ability of a receiver to
- 33	reproduce an exact replica of the original source information .i.e., fidelity is the ability of a receiver to
	reproduce faithfully all frequency components present in the base band signal
	For an AM system the instantaneous values of carrier & modulating signal are 60 sin $(2\pi f_c t)$ & 40
34	$sin(2\pi f_m t)$, Determine the modulation index? BTL2
54	E 40
	$m_a = \frac{E_m}{E_c} = \frac{40}{60} = 0.66$
	A carrier of 6KV is amplitude modulated by an audio signal of 3KV. Find Modulation Index.
35	(Nov/Dec 2018) BTL2
55	$m_{a} = \frac{E_{m}}{E_{m}} = \frac{6}{2} = 2$
	E_c 3

JIT-JEPPIAAR/ECE/Mrs.M.Benisha /IInd Yr/SEM 04/EC8491/ COMMUNICATION THEORY/UNIT 1-5/QB+Keys/Ver2.0

Γ

Description	AM with carrier	DSB - SC - AM	SSB – SC- AM	VSB - AM
Band width	2fm	2fm	fm	fm <bw<2fm< td=""></bw<2fm<>
Power	33.33%	66.66%	83.3%	75%
Saving for				
Sinusoidal				
Power	33.33%	50%	75%	75%
Saving for non - Sinusoidal				
Generation	Easier to	Not difficult	More difficult to	Difficult. But
methods	generate		generate	to easier
				generate than
				SSB-SC
Detection	Simple &	Difficult	More difficult	Difficult
methods	Inexpensive			
lon linear modula ypes: square law 1 quare law modul	ntor circuits: nodulator - Balance ators:	modulator		
Non linear modula Types: square law r Square law modul operated - nonlinea capable - amplitude Eg: transistor, a tric (i) A non linear dev	ntor circuits: nodulator - Balance ators: r region - output cha e modulated waves - ode tube,a diode	modulator racteristics carrier and modulat	ing signals - fed inp	out.
Non linear modula Types: square law 1 Square law modul operated - nonlinea capable - amplitude Eg: transistor, a tric i) A non linear dev ii) A bandpass filte	ntor circuits: nodulator - Balance ators: r region - output cha modulated waves - ode tube,a diode rice	modulator racteristics carrier and modulat	ing signals - fed inp	out.
Non linear modula Types: square law 1 Square law modul operated - nonlinea capable - amplitude Eg: transistor, a tric (i) A non linear dev (ii) A bandpass filte (iii)A carrier source	ator circuits: nodulator - Balance ators: r region - output cha e modulated waves - ode tube,a diode rice er e and modulating sig	modulator racteristics carrier and modulat nal	ing signals - fed inp	out.
Non linear modula Types: square law n Square law modul operated - nonlinea capable - amplitude Eg: transistor, a tric (i) A non linear dev (ii) A bandpass filte (iii) A carrier source m(t) $A_c \cos (2\pi f_c t)$	ator circuits : modulator - Balance ators: r region - output cha e modulated waves - ode tube, a diode rice er e and modulating sig	modulator racteristics carrier and modulat nal	ing signals - fed inp	put.
Non linear modula Types: square law n Square law modul operated - nonlinea capable - amplitude Eg: transistor, a tric (i) A non linear dev (ii) A bandpass filte (iii) A carrier source m(t) $A_c \cos (2\pi f_c t)$ Carrier : $c(t)$	tor circuits: nodulator - Balance ators: r region - output cha e modulated waves - ode tube, a diode rice er e and modulating sig $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 $v_1(t)$ v_2 $v_1(t)$ v_2 $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 v_2 $v_1(t)$ v_2 v_2 v_3 v_4 $v_1(t)$ v_2 $v_1(t)$ v_2 v_2 v_3 v_4 $v_1(t)$ v_2 v_2 v_3 v_4 v_4 v_2 v_3 v_4 v_2 v_3 v_4 v_2 v_3 v_4 v_2 v_3 v_4 v_4 v_2 v_3 v_4 v_2 v_3 v_4 v_4 v_2 v_3 v_4 v_2 v_3 v_4 v_4 v_5 v_4 v_5 v_5 v_4 v_5	modulator tracteristics carrier and modulat mal (t)	ing signals - fed inp	out.

	KEGULATION: 2017 ACADEMIC TEAK: 2019-2020
	$V_0 = a_0 + a_1 V_{in} + a_2 V_{in}^2$
	$V_{0}(f) = (a_{0} + \frac{a_{2}A_{c}^{2}}{2})\delta(f) + \frac{a_{1}A_{c}}{2}[\delta(f - f_{c}) + \delta(f + f_{c})] + a_{1}M(f) + \frac{a_{2}A_{c}^{2}}{4}[\delta(f - 2f_{c}) + \delta(f + 2f_{c})] + a_{2}M(f) + a_{2}A_{c}[M(f - f_{c}) + M(f + f_{c})]$
	square law device lower cutoff frequency - 2W and (fc - W) Upper cut-off frequency - (fc+W) and 2fc
	$V_0 = a_0 + a_1 [A_c \cos 2\pi f_c t + m(t)] + a_2 [A_c \cos 2\pi f_c t + m(t)]^2$ $a_0 A^2$
	$V_0 = a_0 + a_1 A_c \cos 2\pi g_c t + a_1 m(t) + \frac{a_2 A_c}{2} (1 + \cos 4\pi g_c t) + a_2 [m(t)]^2 + 2a_2 m(t) A_c \cos 2\pi g_c t$
	$V_0 = a_0 + a_1 A_c \cos 2\pi g_c t + a_1 m(t) + \frac{a_2 A_c}{2} \cos 4\pi g_c t + a_2 m^2(t) + 2a_2 m(t) A_c \cos 2\pi g_c t$
6	Explain in details the generation and demodulation of DSB-SC with simple diagram. (April/May 2019)
7	A 10KW carrier power is amplitude modulated at 80% depth of modulation by a sinusoidal signal. Calculate the side band power, total power and transmission efficiency of the AM Wave. (April/May 2019)
	A Transmitter radiates 1200w of power under carrier conditions. If this carrier is modulated simultaneously by two tones of 35% and 50% respectively. Determine the total power radiated? BTL5
8	Depth of modulation m1=0.35, m2=0.50 $P_{mod} = P_c \left[1 + \frac{{m_1}^2}{2} + \frac{{m_2}^2}{2} \right]$
	$P_{mod} = 1423.5 w$
0	A signal is transmitted through a 10 km co-axial line channel which exhibits a loss of 2 dB/km. The transmitted signal power is P1 dB = -30 dBw means 30 db below 1 Watts or simply one milliwatt). Determine the received signal power and the power at the output of an amplifier that has an gain of Gdb = 15 dB. $BTL5$
9	$P_R = P_T dB - L dB = -50 dbW$
	$P_o dB = P_R dB + G dB = -35 dbW$
10	Explain With Block Diagram Super Heterodyne Receiver? (April/May 2015, May/June 2016, April/May 2019) BTL2

	UNIT II - ANGLE MODULATION				
Ph	Phase and frequency modulation, Narrow Band and Wide band FM – Modulation index, Spectra,				
Po	wer relations and Transmission Bandwidth - FM m	odulation –Direct and Indirect methods,			
FM	FM Demodulation – FM to AM conversion, FM Discriminator - PLL as FM Demodulator				
	PART * A				
Q.No	Questio	ns			
	Define modulation index, with reference to FM an	d PM. (MAY 2013)(Nov2017)			
	Modulation index is the ratio of frequency deviation a	and modulating signal frequency.			
1.	$m = \frac{\Delta f}{\epsilon} \Delta f$ = frequency deviation (Hz), $f_{\rm m}$ = modula	ting signal frequency (Hz)			
	Jm				
	Why FM is preferable for voice Transmission?(M	AY 2014)			
2	In FM modulation the amplitude components de	o not get affected, so preferable for voice			
	transmission.				
	How is the Narrow band FM converted into Wide	band FM?			
	The narrowband FM is converted to wideband FM	1 with the help of frequency multiplier. The			
3	indirect method because EM is concreted from DM	tion as well as carrier frequency. It is called			
	Advantages:				
	1) FM is generated from PM indirectly 2) Modulatio	n takes place at low carrier frequency			
	Define deviation ratio.	a unes prace at 16 % currer mequency.			
	It is the worst-case modulation index which is the ra	tio of maximum permitted frequency deviation			
4	and maximum modulating signal frequency.				
	Deviation ratio = $m = \frac{\Delta f_{max}}{\epsilon}$				
	State Carson's rule for determining approximate	Rand Width of FM signal (Nov/Dec 2015)			
5	Bandwidth = $2(\Delta f + f_{mmax})$ Hz.				
	Δf = frequency deviation (Hz), $f_{m(max)}$ = highest mod	ulating signal frequency (Hz)			
	A carrier frequency is frequency modulated with	a sinusoidal signal of 2 KHz resulting in a			
	maximum frequency deviation of 5 KHz. Find the	e approximate band width of the modulated			
6	signal. (NOV 2013)(May 2015)				
	Δf = frequency deviation (Hz) = 5 KHz, $f_{m(max)}$ = highest modulating signal frequency(Hz) = 2				
	$KHZ, Bahawlall = 2(\Delta) + f_{mmax}$) $HZ = 2(5KHZ + Determine the modulation index of a FM system$	2KHZ)=14 KHZ with a maximum fraguency deviation of 75			
-	KHz and maximum modulating frequency of 10 K	Hz.			
/	$m = \frac{\Delta f_{max}}{2} = \frac{75 KHz}{2} = 7.5$				
	$m = \frac{1}{f_{m_{max}}} = \frac{1}{10 KHz} = 7.5$				
	Distinguish between nervous hand EM and wide he	and EM (April May 2010) (April May 2018)			
	Narrow hand FM	Wide hand EM			
	Frequency deviation in car jer frequency is	Frequency eviation in carrier frequency is			
8	small	large			
	Bandwidth is twice the highest modulating	Band width is calculated as per Carson's			
	frequency	rule			
9 What are the advantages of FM over AM?					
	S.INO AIVI	l IVI			

REGULATION: 2017 ACADEMIC YEAR : 2019-2			ACADEMIC YEAR : 2019-2020			
	1	The modulation is directly proportional to	The modulation index is proportional to			
		modulation voltage AM and inversely	amplitude as well as phase			
		proportional to frequency				
	2	There are three components in AM. They	They are many frequency components in			
		are carrier USB, LSB.	FM signal.			
	3	Power depends on the sideband	Total power remains constant.			
	4	The bandwidth required is less compared to	Theoretically bandwidth of FM signal is			
		FM signal and is equal to 2fm.B.W=2fm	infinite			
	Define p	hase modulation.				
10	Phase me	odulation is defined as the process of changing	the phase of the carrier signal in accordance			
	with the	with the instantaneous amplitude of the message signal.				
	What ar	e the types of Frequency Modulation?.				
11	Based or	Based on the modulation index FM can be divided into types. They are Narrow band FM and Wide				
11	band FM	I. If the modulation index is greater than one the	nen it is wide band FM and if the modulation			
	index is	less than one then it is Narrowband FM				
	What is	the basic difference between an AM signal a	nd a narrowband FM signal?			
12	In the ca	se of sinusoidal modulation, the basic differen	ce between an AM signal and a narrowband			
	FM signa	al is that the algebraic sign of the lower side fre	equency in the narrow band FM is reversed.			
	What ar	e the two methods of producing an FM wave	e?			
	Basically	there are two methods of producing an FM	wave. They are i) Direct method - In this			
13	method the transmitter originates a wave whose frequency varies as function of the modulating					
10	source. I	source. It is used for the generation of NBFM ii) Indirect method-In this method the transmitter				
	originate	s a wave whose phase is a function of the	e modulation. Normally it is used for the			
	generatio	on of WBFM where WBFM is generated from	NBFM.			
	Give the	average power of an FNI signal.				
14	The amplitude of the frequency modulated signal is constant . The power of the FM signal is same as $1-2$					
	that of th	that of the carrier power. $P = \frac{1}{2}E_c^2$.				
15	Define phase deviation.					
15	The max	The maximum phase deviation of the total angle from the carrier angle is called phase deviation.				
	Define f	requency Deviation.				
16	The maximum departure of the instantaneous frequency from the carrier frequency is called					
	frequency deviation.					
	What is	the use of crystal controlled oscillator?				
17	The crystal-controlled oscillator always produces a constant carrier frequency thereby enhancing					
	frequenc	y stability.				
10	What ar	e the disadvantages of FM system?				
18	A much	wider channel is required by FM. FM transr	nitting and receiving equipments tend to be			
	more cor	nplex and hence it is expensive				
10		I you generate message from frequency-mod	lulated signals?			
19	First the	frequency-modulated signals are converted in	to corresponding amplitude modulated signal			
	using fre	equency dependent circuits. Then the original si	ignal is recovered from this AWI signal.			
20	What ar	e the types of FM detectors?				
	Slope detector and phase discriminator					
21	Foster ac	e the types of phase discriminator?				
	What ar	by userminator and ratio detector.	0.89			
22	A maliar	the disadvantages of balanced slope detect	UC: a sufficient: It is difficult to align because of			
	Априц	te minung cannot be provided, Linearity is no	a sufficient, it is difficult to align because of			

	REGULATION: 2017 ACADEMIC YEAR : 2019-2020					
	three different frequency to which various tuned circuits to be tuned. The tuned circuit is not purel					
	band limited.					
	What are components in a frequency discriminator?					
	Frequency discriminator has got two components .Slope detector or differentiator with a purely					
23	imaginary frequence	imaginary frequency response that varies linearly with frequency. It produces output where the				
	amplitude and frequency vary with the message signal. Envelope detector recovers the amplitude					
	variations and reproduces message signal.					
	What are the annlications of PLL?					
24	24 i) Frequency Multiplier ii) FM Demodulator					
	How is a Narrowh	How is a Nerrowband EM converted into a Wideband EM2				
	FM signal is given	by $S(t) = A \cos(2\pi f t + \beta \sin(2\pi f t))$				
25	FIVE Signal is given by $S(t) = A_c \cos (2\pi I_c t + p \sin (2\pi I_m t))$, If B is very small compared to one radian, it is called NDEM					
	If B is very large co	mpared to one radian, it is called WB	FM			
	What are the adve	ntages of ratio detector?				
26	i) It is not affected b	mages of failo detector:				
20	i) It is not affected (n operate with as little as 100my of in	nve,			
	Define Leek in rer	in operate with as fittle as four of h	puts.			
	Look Dongo: Dong	a of input signal fraguancias over	ubich the loop remains looked once it has			
	LOCK Kallge. Kallg	gignal. This can be limited either by	the phase detector or the VCO frequency			
27		signal. This can be infined either by	the phase detector of the VCO frequency			
	range.	an of input fragmanics around the l	VCO contar frequency anto which the loop			
	Capture range: Kan	ing from on unlocked condition	vCO center frequency onto which the loop			
	Will lock when start	ing from an unlocked condition.	N (D 2015)			
	Compare amplitud	te and angle modulation schemes (1	Nov/Dec 2015)			
	PARAMETERS					
	Channel	Each channel bandwidth = 15 KHz	Each channel bandwidth = 150KHz . In a			
	Bandwidth	. In a given frequency space, AM	given frequency space, FM			
		accommodates more number of	accommodates less number of channels.			
		channels.				
28	Noise Immunity	channels. AM reception is less immune to	FM reception is more immune to noise			
28	Noise Immunity	channels. AM reception is less immune to noise	FM reception is more immune to noise			
28	Noise Immunity Amplitude	channels. AM reception is less immune to noise AM receivers are not fitted with	FM reception is more immune to noiseFM receivers can be fitted with			
28	Noise Immunity Amplitude limiters	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters	FM reception is more immune to noiseFM receivers can be fitted with amplitude limiters to remove amplitude			
28	Noise Immunity Amplitude limiters	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise.			
28	Noise ImmunityAmplitude limitersAmplitude of	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and	FM reception is more immune to noiseFM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise.Amplitude of FM wave is constant and is			
28	Noise Immunity Amplitude limiters Amplitude of modulated wave	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation	FM reception is more immune to noiseFM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise.Amplitude of FM wave is constant and is independent of modulation index.			
28	Noise Immunity Amplitude limiters Amplitude of modulated wave	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index.	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index.			
28	Noise Immunity Amplitude limiters Amplitude of modulated wave	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. s frequency modulated by a sinuse	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index.			
28	Noise ImmunityAmplitudelimitersAmplitude ofmodulated waveA carrier signal isfrequency deviation	 channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. s frequency modulated by a sinuse on constant is 1 kHz/V, determined 	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. Didal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and			
28	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. s frequency modulated by a sinuse on constant is 1 kHz/V, determine scheme is narrow band FM or wide	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. oidal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016)			
28	Noise Immunity Amplitude limiters Amplitude of modulated wave A carrier signal is frequency deviation state whether the s $\frac{\partial}{\partial t} = 1 \text{ kHz /v}$	 channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. s frequency modulated by a sinuse on constant is 1 kHz/V, determine scheme is narrow band FM or wide 	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. Didal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016)			
28	Noise Immunity Amplitude limiters Amplitude of modulated wave A carrier signal is frequency deviation state whether the so $\frac{\partial}{f_m} = 1 \text{ kHz /v}$	 channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. s frequency modulated by a sinuse on constant is 1 kHz/V, determine acheme is narrow band FM or wide 	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. Didal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016)			
28	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state $\frac{\partial}{f_m} = 1 \text{ kHz /v}$ $\partial = 1*5 \text{ V} = 5 \text{ KHz}$	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. 5 frequency modulated by a sinuse 5 frequency modulated by a sinuse 5 cheme is narrow band FM or wide	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. oidal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016)			
28	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state whether the state $\frac{\partial}{f_m} = 1 \text{ kHz /v}$ $\partial = 1*5 \text{ V} = 5 \text{ KHz}$	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. S frequency modulated by a sinuse S frequency modulate S frequency modulate S frequenc	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. Didal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016) - = 0.5			
28	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state $\frac{\partial}{f_m} = 1 \text{ kHz /v}$ $\partial = 1*5 \text{ V} = 5 \text{ KHz}$	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. S frequency modulated by a sinuse S frequency modul	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. Didal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016) = 0.5			
28	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state whether the state $\frac{\partial}{f_m} = 1 \text{ kHz /v}$ $\partial = 1*5 \text{ V} = 5 \text{ KHz}$ When $m_f = 0.5$, spect	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. s frequency modulated by a sinuse s f f f f f f f f f f f f f f f f f f f	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. Didal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016) f = 0.5 the it's a narrow band FM.			
28	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state whether the state $\frac{\partial}{f_m} = 1 \text{ kHz /v}$ $\partial = 1*5 \text{ V} = 5 \text{ KHz}$ When $m_f = 0.5$, spect What is the need formula to the state of the s	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. S frequency modulated by a sinuse S frequency modulate	FM reception is more immune to noise FM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise. Amplitude of FM wave is constant and is independent of modulation index. Didal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016) f = 0.5 the it's a narrow band FM. (Nov2016)			
28 29 30	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state $\frac{\partial}{f_m} = 1 \text{ kHz /v}$ $\partial = 1*5 \text{ V} = 5 \text{ KHz}$ When $m_f = 0.5$, spect What is the need for The boosting of high	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. S frequency modulated by a sinuse S frequency modul	FM reception is more immune to noiseFM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise.Amplitude of FM wave is constant and is independent of modulation index.oidal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016) $f = 0.5$ re it's a narrow band FM.(Nov2016) d Pre-emphasis. By artificially emphasizing			
28 29 30	Noise ImmunityAmplitude limitersAmplitude of modulated waveA carrier signal is frequency deviation state whether the state whether the state $\frac{\partial}{f_m} = 1 \text{ kHz /v}$ $\partial = 1*5 \text{ V} = 5 \text{ KHz}$ When $m_f = 0.5$, spect What is the need for The boosting of high high frequency corr	channels. AM reception is less immune to noise AM receivers are not fitted with amplitude limiters Amplitude of AM wave varies and is dependent on the modulation index. S frequency modulated by a sinuse S frequency modulated	FM reception is more immune to noiseFM receivers can be fitted with amplitude limiters to remove amplitude variations caused by noise.Amplitude of FM wave is constant and is independent of modulation index.oidal signal of 5 Vpp and 10KHz. If the the maximum frequency deviation and band FM. (May/June 2016) $f = 0.5$ </td			

REGULATION: 2017 ACADEMIC YEAR : 2019-2020					
	noise is introduced in the receiver, the low frequency and high frequency positions of the PSD of the				
	message signal are equalized in such a way that message fully occupies the frequency band allotted				
	to it.				
Define carrier swing. (April/May2017)					
31	The total variation in frequency from the lowes	t to the highest is referred as carrier swing. The			
	tion .Carrier swing $= 2X$ frequency deviation.				
	State the carson's rule. (April/May2017)				
32	32 used for bandwidth calculation of FM modulation, $\mathbf{BW}=2(\Delta \mathbf{f}+\mathbf{f}_{\mathbf{m}}), \Delta \mathbf{f} = \text{frequency deviation}$				
	f_m =modulating frequency.				
	Distinguish between narrow band FM (NBFM) and Amplitude modulation(AM).			
		Narrow band FM			
22	AM accommodates more number of channels.	Only a single message is allowed			
33	AM reception is less immune to noise	NBFM is more immune to noise			
	AM frequency deviation is relatively higher	Frequency deviation in carrier frequency is			
	Amplitude of AM wave varies and is dependent	frequency of carrier signal varies according to			
	on the modulation index.	message signal amplitude			
	PAR	T * B			
	working principle with relevant Thasor Diagram (ATKIE/MAT 2013,MAT/3014 2016) NOV/DEC 2016) Foster-Seeley Discriminator (Phase Discriminator) $\downarrow \downarrow $				
1	(a) Basic Foster-Seeley discriminator \downarrow^{D_1} $\downarrow^{$				

 $JIT\text{-}JEPPIAAR/ECE/Mrs.M.Benisha \ / II^{nd} \ Yr/SEM \ 04/EC8491/ \ COMMUNICATION \ THEORY/UNIT \ 1-5/QB+Keys/Ver2.0$

REGULATION: 2017

REGULATION: 2017

RF	EGULATION: 2017		ACADEMIC YEAR : 2019-2020				
	Given data (3)					
	Formula use	d (3)					
	Solving (3)						
	Answer with	Unit (4)					
Γ	Make the atleast five comparisons of AM and FM system (May/June2014)						
		AM	FM				
	Stands for	AM stands for Amplitude	FM stands for Frequency Modulation				
		Modulation	1 2				
	Origin	AM method of audio transmission	FM radio was developed in the				
	8	was first successfully carried out in	United states in the 1930s, mainly				
		the mid 1870s	by Edwin Armstrong.				
	Modulating	In AM, a radio wave known as the	In FM, a radio wave known as the				
	differences	"carrier" or "carrier wave" is	"carrier" or "carrier wave" is				
		modulated in amplitude by the signal	modulated in frequency by the signal				
		that is to be transmitted. The	that is to be transmitted. The				
		frequency and phase remain the same.	amplitude and phase remain the				
			same.				
	Pros and cons	AM has poorer sound quality	FM is less prone to interference than				
		compared with FM, but is cheaper and	AM. However, FM signals are				
		can be transmitted over long	impacted by physical barriers. FM				
		distances. It has a lower bandwidth so	has better sound quality due to				
		it can have more stations available in	higher bandwidth.				
		any frequency range.	C				
6	Frequency	AM radio ranges from 535 to 1705	FM radio ranges in a higher				
0	Range	KHz (OR) Up to 1200 bits per	spectrum from 88 to 108 MHz.				
	0	second.	(OR)				
			1200 to 2400 bits per second.				
			-				
	Bandwidth	Twice the highest modulating	Twice the sum of the modulating				
	Requirements	frequency. In AM radio broadcasting,	signal frequency and the frequency				
		the modulating signal has bandwidth	deviation. If the frequency				
		of 15kHz, and hence the bandwidth	deviation is 75kHz and the				
		of an amplitude-modulated signal is	modulating signal frequency is				
		30kHz.	15kHz, the bandwidth required is				
			180kHz.				
	Zero crossing	Equidistant	Not equidistant				
	in modulated						
	signal						
	Complexity	Transmitter and receiver are simple	Transmitter and receiver are more				
		but syncronization is needed in case	complex as variation of modulating				
		of SSBSC AM carrier.	signal has to beconverted and				
			detected from corresponding				
			variation in frequencies.(i.e. voltage				
			to frequency and frequency to				
			voltage conversion has to be done).				
	Noise	AM is more susceptible to noise	FM is less susceptible to noise				

	REGULATION: 2017		ACADEMIC YEAR : 2019-2020
		because noise affects amplitude,	because information in an FM signal
		which is where information is	is transmitted through varying the
		"stored" in an AM signal.	frequency, and not the amplitude.
	Derive the single	e tone frequency modulation and dra	w it is frequency response (MAY/JUNE
	2016, NOV/DEC	2016)	
	modulatin	g signal x(t)	
	amplitude	E_{m} and frequency f_{m}	
	x(t) = Em	$\cos(2\pi fmt)$	
	ec = Ec sin	$n (\omega ct + \varphi).$	
	Instantaneous fr	equency of an FM wave	
	$f_i(t) = f_c + k_f x(t)$	$f_c + k_f \cdot E_m \cos\left(2\pi f_m t\right)$	
	or f	$f(t) = f + \Lambda f \cos(2\pi f t)$	
		$(c) = j_c + \Delta j \cos(2\pi j_m c)$	
	frequency devia	tion	
	maximum departu	are of the instantaneous	
	frequency fi(t) of	the FM wave from the carrier frequency	y fc
	$\Delta f = k_f E_m$		
	$\begin{array}{l} \textbf{Maximum frequ}\\ \Delta f = k_f E_m \end{array}$	ency of FM Wave	
7	Mathematical E constant amplitud FM wave is repre	xpression for FM e and a variable instantaneous frequency sented	y
	$s(t) = E_c \sin[F$	$(\omega_c, \omega_m)]$	
	$s(t) = E_c \sin \theta($	(t)	
	$\theta(t) = F(\omega_c, \omega)$	m)	
	Phasor of single	tone	
		≠ ^{t=t}	
	► ► ∕	-	
	θω		
		→ t = 0	
	A		
	$\theta(t) = \omega_{1}t + \frac{kE_{m}}{k}$	sinw _m t	
	0(0) - 000	fm	
	Modulation Ind	ex	

REGULATION: 2017

ACADEMIC YEAR : 2019-2020

	F	requency deviation					
	$m_f = \overline{M}$	odulating frequency					
	or	$m_f = \frac{\Delta f}{\Delta f}$					
		f_m					
	AM - ma	ximum value of the modulation	index m is 1.				
	FM - mo	dulation index can be greater that	in 1				
	Deviation	on Ratio					
		Daviatian Datia	Maximum deviation				
		Deviation Ratio =	Maximum Modulating frequen	ucy			
	Donaant	age Modulation of FM Wave					
	Percent	age modulation of FM wave	Actual Frequency deviation				
		% Modulatio	$m = \frac{Mortan + requerely deviation}{Maximum allowed Deviation}$				
	An angle	e modulated wave is described	by the equation V(t)=10Cos(2*1	10t+10Cos200t)			
	Find 1. F	Power of the modulated signal,	2. Maximum frequency deviation	on & 3.Band width			
0	G	iven data (3)					
0	F	ormula used (3)					
	Solving (3)						
	A	nswer with Unit (4)					
	Write TI	he Comparison Of Wideband A	And Narrowband FM (NOV/DE	EC 2011, MAY/JUNE			
	2013)						
	SL No	Parameter Characteristics	Wideband FM	Narrowhand FM			
	1	Modulation index	Greater than 1	Less than (or) slightly			
				greater than 1			
	2	Maximum deviation	75 KHz	5 KHz			
	3	Range of modulating	30 Hz to 15 KHz	30 Hz to 3 KHz			
		Frequency					
	4	Bandwidth	Large, about 15 times higher	Small. Approximately			
9			than BW of narrow band FM.	same as that of AM.			
-			$\frac{BM=2(\Delta F+Fm)}{5}$	BW=2tm			
	5	Maximum modulation	S to 2500	Slightly greater than I			
	0	emphasis	Inceded	Inceded			
	7	Noise	Noise is more suppressed	Less suppressing of			
	,		Torse is more suppressed	noise			
	8	Applications	Entertainment bro dcasting	FM mobile			
				communication			
	9	Side bands	Spectrum contains infinite	Spectrum contains two			
			number of side bands	sidebands and carrier.			
	Explain With Diagram The Generation Of FM Using Direct Method. (APRIL/MAY						
10	2015, NOV/DEC 2016)						
10		Direct FIVI - FET and variation diode					
	Direct F.	M - FET and varactor diode					
- 0	Direct F. FET Rea	M - FET and varactor diode actance Modulator across terminals Δ_{-B}					

]	REGULATION: 2017	ACADEMIC YEAR : 2019-2020
	Generation of FM and PM:	(2M)
	$\Delta f = V_{m\&}$ fm (The frequency deviation at the output	t of the phase modulator will be effectively
	proportional to the modulating voltage and we obtain	FM wave at the output of the phase
	modulator)	
	Phase modulator circuit	(2M)
	phasor diagram	(2M)
	$V fm = v_c \cos w_{c-m_f} v_c \sin w_c t \sin w_m t$	(2M)
	Explanation : (when the phase of carrier is modulated	by information signal by using PM and
	multiplier circuits)	(3M)
2	Explain the function of any FM detector circuit MA Super heterodyne receivers – different types of demod The AGC system - FM receivers is different than that FM receivers - RF amplifiers, mixers, local oscillators FM detector - produce the signal whose amplitude is p frequency of signal Frequency to voltage convertor these types of FM dete and ratio detector. Round – Travis detector or balanced slope detector two identical circuit connected back to back Two turned LC circuits are connected in series LC circuit - turned transformer <i>T1 and T2 180</i> ° out of phase $V_{out} = V_{01} - V_{02}$	AY/JUNE 2014, NOV/DEC 2016) ulators or detectors. of AM receivers. IF amplifiers, audio amplifiers etc. proportional to the deviation in the ectors - Slope detectors, phase discriminator (frequency Discriminator) f(requency Discriminator)
	Frequency Discriminator	
	principie - siope detection.	

REGULATION: 2017

	UNIT III - RANDOM PROCESS	
Random variables, Random Process, Stationary Processes, Mean, Correlation & Covariance functions,		
Power Spectral Density, Ergodic Processes, Gaussian Process, Transmission of a Random Process		
Throu	gh a LTI filter.	
	PART * A	
Q.No.	Questions	
	Define probability.	
1.	The probability of occurrence of an event A is defined as, $P(A)$ = number of possible favorable	
	outcomes Total number of equal likely outcomes.	
	What are mutually exclusive events?	
2	Two possible outcomes of an experiment are defined as being mutually exclusive if the occurrence	
	of one outcome precludes the occurrence of the other.	
3	What are the types of Correlation?	
	The types of Correlation are Cross Correlation and Auto Correlation	
	What is the difference between Correlation and Convolution?	
4	In Correlation physical time to is dummy variable and it disappears after solution of an integral.	
	convolution is a function of delay parameter 1. Convolution is commutative but correlation is	
	Define Signal	
	A signal is defined as any physical quantity carrying information that varies with time. The value	
5	of signal may be real or complex. The types of signal are continuous signal and discrete time.	
	signal.	
	Define probability density function.	
6	Probability density function is defined as $f_x(x)$ is defined in terms of cumulative distribution	
	function $F_x(x)$ as $f_x(x) = d F_x(x) dx$.	
	Define random variable. Specify the sample space and the random variable for a coin	
	tossing experiment.	
7	Random variable is defined as a rule or mapping from the original sample space to a numerical	
	sample space subjected to certain constraints. Random variable is also defined as a function	
	where domain is the set of outcomes and whose range is R, is the real line.	
	Define Random process.	
8	A Random process X (t) is defined as an ensemble of time functions together with a probability	
0	rule that assigns a probability to any meaningful event associated with an observation of one of	
	the sample functions of the random process.	
0	What is meant by sample space?	
9	The set of all possible outcome of a random experiment is called sample space and is represented	
	by an alphabet S.	
	The probability of an event such as A D that is interpretion of events from sub-eventments is	
10	The probability of all event such as A,B that is intersection of events from sub-experiments is $(AB) = \frac{N_{AB}}{N_{AB}}$	
	called the joint probability of the event $P(AB) = \lim(\frac{-nE}{N})$	
	What is meant by conditional probability?	
	If A_1, A_2, A_3, \dots and B_1, B_2, B_3, \dots are the results of two experiments A and B respectively then	
11	probability of occurrence of both A_i and B_j in single experiment is written as $P[A_i \text{ and } B_j]$ with the	
	probability of A is known, then the probability and written as $P(B_j / A_i)$. If N times there is joint	
1	Occurrence in large in unles experiment then	

	$P\left(\frac{B_j}{B_j}\right) - \frac{N_{ij}}{P(A_i, B_j)}$
	$I \left(\frac{1}{A_i}\right) = \frac{1}{N} = \frac{1}{P(A_i)}$
	What is meant by statistical independence?
	A_i and B_j are events associated with the outcome of two experiments. The event B_j is independent
12	of A_i so that occurrence of A_i does not influence the occurrence of B_j and vice versa. Then we say
	that the events are statistically independent.
	$P(A_i, B_j) = P(A_i).P(B_j)$
	Express Random process as a function of random variables.
12	A random process defined as a function of one or more random variables as $X(t) =$
15	$g(Y_1, Y_2, \dots, Y_n; t)$ where $X(t)$ is a random process and Y_1, Y_2, \dots, Y_n are n random variables and g is
	an ordinary function.
	Express mean $\mu_x(t)$ of a statistical average in terms of random process.
	The statistical average of a random processes mean $\mu_x(t)$ is defined as
14	$\mu_{\mathbf{X}}(t) = \mathbf{E}(\mathbf{X}(t))$
	The expected values are taken with respect to the appropriate probability density function.
	Express auto correlation function in terms of random process./ Define autocorrelation
	function. (May/June 2016)
15	The statistical average of a random processes auto correlation function $R_{xx}(t_1,t_2)$ is defined as the
15	expected values of the random processes with respect to the appropriate probability density
	function.
	$R_{xx}(t_1,t_2) = E(X(t_1),X(t_2))$
	When a random process is said to be Ergodic?
16	A random process is said to be Ergodic if the time average equal to ensemble average if $1\Sigma F(x_1) = F(X(x_2)) = $
	1) $E((\mu_x)) = E(X(t))$ is said to be ergodic and the variance $(\mu_x) \rightarrow 0$ as $1 \rightarrow \alpha$ 2) In the suite correlation function if $E(\mathbf{P}_{+}(\pi)) = \mathbf{P}_{-}(\pi)$ and the variance $(\mathbf{P}_{-}(\pi)) \rightarrow 0$ as $T \rightarrow \alpha$
	2) In the auto correlation function if $E(R_{xx}(t)) - R_{xx}(t)$ and the variance $(R_{xx}(t)) \rightarrow 0$ as $1 \rightarrow 0$ Define nower spectral density of stationary random process
	The auto correlation function $R_{rr}(\tau)$ of a stationary random process is such that
17	$\frac{\alpha}{\alpha}$
	$\mathbf{G}_{\mathbf{x}}(\mathbf{f}) = \int \mathbf{R}\mathbf{x}\mathbf{x} \ (\tau) \mathbf{e} - 2\pi j f \tau \mathrm{d}\tau$
	-α
	When a random process is said to be deterministic? (Nov/Dec 2018)
	A process is called deterministic, if the future values of any sample function can be predicted
18	From past values Eq. Consider the random process $x(t) = A\cos(w t)$. In this case, the knowledge
	of the sample function prior to any time instant automatically allows prediction of the future
	values of the sample function since its form is known.
	Define distribution function.
19	Let X be a one dimensional random variable. The function F is defined for all real x ε (- α , α) by
	the equation $F(x) = P(X \le x)$ is called the distribution function of the random variable X.
	Mention any two properties of power spectral density.
20	i) The PSD of a stationary process is always Non- Negative. ii) The PSD of a real valued random
	process is an even function of frequency.
	Mention any two properties of Gaussian Process.
21	1) If a Gaussian process $X(t)$ is applied to a stable filter, then the random process $Y(t)$ developed
	at the output of the filter is also Gaussian.
1	1 II) II a Gaussian Drocess is stationary, then process is strictly Stationary.

REGULATION: 2017 ACADEMIC YEAR : 2019-2020		
	Explain the types of random variable with suitable examples.	
22	A random variable may be discrete or continuous. A discrete random variable can take on only a	
22	countable number of distinct values. A continuous random variable can assume any value within	
	one or more intervals on the real line.	
	What is meant by Random experiment?	
23	The mathematical technique for dealing with the result of an experiment whose outcomes are not	
	known in advance is called random experiment.	
	Define Cross correlation function.	
24	Consider a random process $X(t)$ and $Y(t)$ with auto correlation function $R_x(t,u)$ and $R_y(t,u)$. the	
	two cross correlation of X(t) and Y(t) are $R_{xy}(t,u) = E X(t), Y(u) $ and $R_{yx}(t,u) = E Y(t), X(u) $	
	Mention any two properties of auto correlation function.	
25	i) The mean square value of the process may be obtained from $R_x(\tau)$ simply by putting $\tau = 0$	
	ii) The auto correlation function $R_x(\tau)$ is an even function of τ (i.e) $R_x(\tau) = R_x(-\tau)$	
	Define Q factor of a receiver.(May 2015)	
	Q is defined as the ratio of the energy stored in the resonator to the energy supplied to it, per	
26	cycle, to keep signal amplitude constant, at a frequency where the stored energy is constant with	
	time. It can also be defined for an inductor as the ratio of its inductive reactance to its resistance	
	at a particular frequency, and it is a measure of its efficiency.	
	Write the equation for the mean square value of thermal noise voltage in a resister. (May	
27	2015)	
	$P = V_n^2 / R = 4kbT\Delta f$	
	State the central limit theorem. (May/June 2016) (Nov/Dec 2016)	
20	The central limit theorem states that the distribution of the sum (or average) of a large number of	
28	independent, identically distributed variables will be approximately normal, regardless of the	
	underlying distribution	
	Define a random variable. (Nov/Dec 2015)	
29	A function which can take on any value from the sample space and it's range is some set of real	
	numbers is called a random variable of the experiment.	
	State Bayes rule. (Nov/Dec 2015)	
20	Bayes rule states that	
30	P(A) = P(B/A)P(A)	
	$P\left(\frac{B}{B}\right) = \frac{P(B)}{P(B)}$	
	Write Einstein-Wiener – khintchine theorem. (Nov/Dec 2016) (April/May2017)	
	For continuous time, the Wiener-Khinchin theorem says that if x is a wide-sense stationary	
	process such that its autocorrelation function (sometimes called auto covariance) defined in terms	
	of statistical expected value $r_{rr}(\tau) = E[x(t) x^{*}(t-\tau)]$, (the asterisk denotes complex conjugate, and	
31	of course it can be omitted if the random process is real-valued), exists and is finite at every lag τ .	
51	then there exists a monotone function $F(f)$ in the frequency domain $-\infty < f < \infty$ such that	
	then there exists a monotone function $\Gamma(1)$ in the frequency domain $-\infty < j < \infty$ such that	
	$rxx(\tau) = \left[\int_{0}^{\infty} e^{-2\pi i r f} df(f)\right]$	
	List the sufficient and Necessary conditions for the process to be WSS (April/May2017)	
	If it satisfies the following conditions	
32	(i) the mean value of the process is a constant $\mathbf{F}[\mathbf{X}(t)] - \mathbf{m}$ -constant	
	(i) it's autocorrelation function depends only on $\tau \cdot \mathbf{F}[\mathbf{X}(t)\mathbf{X}(t+\tau)] = \mathbf{R}$ (τ)	
	$(1).t = uutocorrelation function depends only on t : D[x(t)x(t + t)] = \mathbf{A}_{xx}(t).$	
	PART * B	

R	3GULATION: 2017 ACADEMIC YEAR : 2019-2020
	Write the definition, power spectral density and autocorrelation function for white noise and
	narrow band noise (May/June2012)
	Communication system - preprocessing the received signal.
	Preprocessing - narrowband filter - narrow band noise.
	Wideband noise - bandlimited noise.
	Bandlimited noise - small - carrier frequency - narrowband noise.
	Power spectral density Gn(f)
	Auto-correlation function $Rnn(\tau)$
1	narrowband noise as $n(t) = x(t) \cos 2\pi fct - y(t) \sin 2\pi fct$.
	Hibert transform $n^{(t)} = H[n(t)] = x(t) \sin 2\pi f ct + v(t) \cos 2\pi f ct$.
	properties
	1 E[x(t) v(t)] = 0
	2 x(t) and y(t) - same means and variances asn(t)
	3. If $n(t)$ is Gaussian, then $x(t)$ and $y(t)$ - Gaussian
	4 $\mathbf{x}(t)$ and $\mathbf{y}(t)$ have identical power spectral densities
	5 nower spectral density $-Gv(f) = Gv(f) = Gn(f_{-}f_{0}) + Gn(f_{+}f_{0})(28.5)$
	for fc = 0.5B $< f < fc + 0.5B$ and B is the bandwidth of n(t)
	101 IC $-0.50 < 1 < 10 + 0.50$ and 0 is the bandwidth of $h(t)$.
	fig of 0db and an amplifier gain of 15db calculate the overall poise figure referred to the
	input (Nov/Dec2012)
2	Given data (3)
2	Formula used (3)
	Solving (3)
	Answer with Unit (4)
	Write short poice and thermal poice (May/June2013)
	Shot Noise Defn (2)
2	Shot Noise Defii. (2) PSD(2)
5	rSD (2) Thermal Noise Defn (2)
	DSD (2)
	PSD(2)
	Derive the equation for finding the power spectral density of a one to one differential function of a given rendem variable. (New/Dec 2012)
	$\begin{array}{c} \text{Initial of a given random variable. (Nov/Dec 2013)} \\ \text{Dendem processor } X(t) \text{and } V(t) \\ \text{ord } V(t) \\ ord$
	Kandolii process $Z(t)$ - sum of two real jointry was randoli processes $X(t)$ and $T(t)$.
	Cross correlation functions - $K_X Y$ and $K_Y X$.
	Definition of Power Spectral Density
	$S_{m(\alpha)} = \lim_{t \to \infty} F \frac{FTX_T^*(\omega) FTY_T(\omega)}{t}$
	$S_{XY}(\omega) = \prod_{T \to \infty} L$ 2T
4	
•	
	Sum $c_{\infty} = \lim_{t \to \infty} F \frac{FTY_T^*(\omega) FTX_T(\omega)}{FTX_T(\omega)}$
	$S_{YX}(\omega) = \lim_{T \to \infty} L$ 2T
	Wiener-Khinchin-Einstein theorem
	cross-power spectral density
	$R_{WV}(\tau) = \int_{-\infty}^{\infty} S_{WV}(\omega) e^{i\omega\tau} d\omega$
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$

JIT-JEPPIAAR/ECE/Mrs.M.Benisha /IInd Yr/SEM 04/EC8491/ COMMUNICATION THEORY/UNIT 1-5/QB+Keys/Ver2.0

$$R_{YX}(\tau) = \int_{-\infty}^{\infty} S_{YX}(\omega) e^{i\omega\tau} d\omega$$

Properties of the PSD

1. CPSD of two jointly WSS processes X(t) and Y(t)

2. Re (SXY) - even function, Im (SXY) - odd function

3. X(t) and Y(t) - uncorrelated and constant means

4. If X(t) and Y(t) are orthogonal

5. cross power P_{XY} between X(t) and Y(t)

Write Short Notes On Covariance Functioncovariance or kernel - spatial covariance of a random variable process or fieldcovariance function C(x, y) := cov(Z(x), Z(y))

Auto covariance function - time series - multivariate random fields

✓ Mean & Variance of covariance functions:

For locations $x_1, x_2, ..., x_N \in D$ the variance of every linear combination

$$X = \sum_{i=1}^{N} w_i Z(x_i)$$

can be computed as

$$\operatorname{var}(X) = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i C(x_i, x_j) w_j.$$

Covariance function - non negative for all possible choices Function - positive definite

Write Short Notes On Auto Correlation Function.

Statistical relationship - two random variables or two sets of data.

Correlation - statistical relationships involving dependence.

Examples: electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather.

Correlation coefficients - ρ or r, measuring the degree of correlation.

Pearson correlation coefficient - linear relationship between two variables.

Pearson's correlation coefficient:

commonly called - correlation coefficient

6

5

$$\rho = corr (X, Y) = \frac{cov (X, Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Correlation coefficient corr(X,Y) = corr(Y,X).

Pearson correlation +1 - perfect direct (increasing) linear relationship (correlation), Pearson correlation -1 - perfect decreasing (inverse) linear relationship (autocorrelation)

$$r_{xy} = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y} = \frac{n\sum x_i y_i - \sum x_i\sum y_i}{\sqrt{n\sum x_i^2 - (\sum x_i)^2}} \sqrt{n\sum y_i^2 - (\sum y_i)^2}$$
	Explain in detail about Ergodicity Principle				
	time-average computed from a large realization - corresponding ensemble average				
	Example				
	$\int_{-2T}^{2T} C_X(\tau) d\tau = 2\int_{0}^{2T} C_X(\tau) d\tau$				
6	$=\frac{2I_p}{3}$				
	$\therefore \int_{-\infty}^{\infty} C_X(\tau) d\tau < \infty$				
	Autocorrelation ergodicity				
	$\langle R_{x}(\tau) \rangle = \frac{1}{2\tau} \frac{1}{\tau} X(t) X(t+\tau) dt$				
	$\frac{1}{T}$				
	Differentiate The Strict-Sense Stationary With That Of Wide Stationary Process.				
	(APR/IVIAY 2015, IVIAY/JUN 2016)				
	stochastic process - Joint probability distribution does not change when sinited in time parameters				
	any trends stationary process				
	any tickes stationary process				
7	Example: time-homogeneous strict-sense stationary (SSS)				
/	$C \times (t1, t2) = C \times (t1 \square t2)$				
	Wide-sense stationary process				
	very difficult - process SSS - subclass of the SSS - wide sense stationary process				
	$\mathbb{E}[x(t)] = m_x(t) = m_x(t+\tau) \text{ for all } \tau \in \mathbb{R}$				
	What type of Gaussian noise follow or Demonstrate the advantages of Gaussian Modeling				
	of a random process. (8)				
	Random process X(t) - Gaussian process				
	if for all n and all (t1,t2,,tn) - Gaussian density function.				
	Gaussian processes - mean and autocorrelation				
	mX (t) and Rx (t1, t2) - statistical description of the process				
0	Gaussian process $X(t)$ - LTI system - output process $Y(t)$ - Gaussian process.				
8	Gaussian processes - WSS and strict stationary are equivalent.				
	Two or multidimensional Gaussian process - Gaussian random field.				
	ergodicity - stationary zero-mean Gaussian process				
	Jointly Gaussian processes:				
	Nandom processes $A(t)$ and $I(t)$ - uncorrelatedness and independence are equivalent.				
	Density runction - one to one unterential function of a given faildoff valiable.				

R	EGULATION: 2017 ACADEMIC YEAR : 2019-2020
	X(t) – input, impulse response - h(t), Y (t) output
	Autocorrelation: function of the output random process Y (t). $RY(t, u) = E[Y(t)Y(u)]$
	Application :
	Bayesian inference.
	Wiener process - integral of a white noise Gaussian process.
	PART * C
	A receiver has a noise fig of12db and it is fade by allow noise amplifier that has again of
	50db and a temperature of 90k.Calculate the noise temp. of the receiver and the overall
	noise temp. of the receiving system take room temp is290K (Nov/Dec2012)
1	Given data (3)
	Formula used (3)
	Solving (3)
	Answer with Unit (4)
	Explain Central limit theorem and its Convergence to the limit.
	Central limit theorem - arithmetic mean of a sufficiently large number of iterates of independent
	Random variables - well-defined expected value and well- defined variance - Normally
	distributed, regardless of the underlying distribution.
2	Example: if one flips coin many times, the probability of getting a given number of heads should follow a normal curve, with mean equal to half the total number of flips.
	Classical Central limit theorem Sn=X1++Xn/n sample averages converge in probability and almost surely to the expected value μ as $n \rightarrow \infty$.
	Convergence to the limit Asymptotic distribution - reasonable approximation only when close to the peak of the normal distribution - Very large number of observations to stretch into the tails.
	central limit theorem applies - sums of independent and identically distributed discrete random variables
	Moivre Laplace theorem - simple case of a discrete variable taking only two possible values.
	(i) Give a random process, $X(t) = Acos(!t+\mu)$, where A and ! Are constants and μ is a uniform random variable. Show that $X(t)$ is ergodic in both mean and autocorrelation (ii) Write a short note on shot noise and also explain about power spectral density of shot noise. (April/may2010)
3	Given data (3)
	Formula used (3)
	Solving (3)
	Answer with Unit (4)

UNIT IV - NOISE CHARACTERIZATION

Noise sources – Noise figure, noise temperature and noise bandwidth – Noise in cascaded systems. Representation of Narrow band noise –In-phase and quadrature, Envelope and Phase – Noise performance analysis in AM & FM systems – Threshold effect, Pre-emphasis and de-emphasis for FM.

	PART * A			
Q.No.	Questions			
	What is pre emphasis? Why is it needed?(MAY 2015)			
1.	Pre-emphasis is the first part of a noise reduction technique in which a signal's weaker, higher			
	frequencies are boosted before they are transmitted or recorded onto a storage medium.			
	State the cause of threshold effect in AM systems? (MAY 2015) .(April/May2017)			
2	When the carrier-to-noise ratio at the receiver input of a standard AM is small compared to unity,			
	the noise term dominates and the performance of the envelope detector changes completely.			
	What is coherent system? (MAY 2013)			
3	If the carrier signal is synchronous (magnitude and phase) with that of the message signal then			
	such system is called coherent system.			
	Give the expression for noise voltage when several sources are cascaded.			
4	Enr = $\sqrt{(4 \text{ KTB} (\text{R1} + \text{R2} +))}$ Where R1, R2 are the resistances of the noise resistors. K			
	– Boltzman constant T – absolute temperature B – Bandwidth.			
	What is intermediate frequency?			
5	Intermediate frequency (IF) is defined as the difference between the signal frequency and the			
	oscillator frequency. IF = $fs - fo$ when $fs > fo$ (or)IF = $fo - fs$ when $fo > fs$.			
	State the reasons for higher noise in mixers.			
6	Conversion trans conductance of mixers is much lower than the transconductance of amplifiers. If			
	image frequency rejection is inadequate, the noise associated with the image frequency also gets			
	accepted.			
7	Define signal to noise ratio.			
	Signal to hoise ratio is the ratio of signal power to the hoise power at the same point in a system.			
0	what is the need for pre emphasis? (MAY 2013,2014)			
8	Frequencies are boosted before they are transmitted or recorded onto a storage medium			
	Define hand width improvement factor, and paige figure improvement. Cive the formula for			
	Define band width improvement factor and noise figure improvement. Give the formula for			
	Inding Noise figure (April May 2019)			
0	Band width improvement factor (BL) is the ratio of RF bandwidth and IF bandwidth			
9	BE = BandWidth			
	$BI = \frac{RT - Daha W tahn}{RT - D - RW t t h}$			
	IF - BandWidth			
	Noise figure improvement = $10 \log (BI)$			
10	Define Noise figure. (Nov/Dec 2015) (Nov/Dec 2016)			
10	Noise figure is a parameter commonly used to indicate the quality of a receiver. Lower the Noise			
	Ingure value, better is the performance.			
11	what is the figure of merit of DSBSU system?			
	The figure of merit of DSBSC signal is unity			
12	What is Capture effect? (May/June 2016)			
	when the interference signal and FW input are of equal strength, the receiver fluctuates back and			

R	EGULATION: 2017 ACADEMIC YEAR : 2019-2020			
	forth between them .This phenomenon is known as the capture effect.			
	What is threshold effect? (Nov/Dec 2015)			
10	As the input noise power is increased the carrier to noise ratio is decreased the receiver breaks			
13	and as the carrier to noise ratio is reduced further crackling sound is heard and the output SNR			
	cannot be predicted by the equation. This phenomenon is known as threshold effect.			
	How is threshold reduction achieved in FM system? What are the methods to improve FM			
	Threshed reduction? (Nov/Dec 2018)			
	Threshed reduction: (NOV/Dec 2010)			
14	Threshold reduction is achieved in FM system by using an FM demodulator with negative			
	feedback or by using a phase locked loop demodulator			
	reeuback of by using a phase rocked roop demodulator.			
	What is Pre-emphasis?			
	The pre-modulation filtering in the transistor to raise the power spectral density of the base band			
15	signal in its upper-frequency range is called pre-emphasis. Pre-emphasis is particularly effective			
	in FM systems which are used for transmission of audio signals			
	Comment the role of pre-emphasis and de-emphasis circuit in SNR			
	improvement.(April/May2017)			
	How does Pre- Emphasis and De- Emphasis process provide overall SNR improvement in			
	FM Systems? (Anril May 2018)			
16	rivi Systems. (April May 2010)			
	Pre-emphasis is the first part of a noise reduction technique in which a signal's weaker, higher			
	frequencies are boosted before they are transmitted or recorded onto a storage medium.			
	The filtering at the receiver to undo the signal pre-emphasis and to suppress noise is called de-			
	emphasis.			
	What do you infer from the receiver output of a coherent detector?			
17	The output indicates that the message signal and in-phase noise component of the filtered noise			
1/	appear additively at the receiver output. The quadrature component of the narrow band noise is			
	completely rejected by the coherent detector.			
	When the figure of merit of SSBSC system is 1?			
10	For the same average transmitted signal power and the same average noise power in the message			
18	bandwidth, an SSB receiver will have exactly the same output signal to noise ratio as a DSB-SC			
	receiver when both receivers use coherent detection for the recovery of the message signal.			
	Compare the noise performance of AM receiver with that of DSB-SC receiver.			
	The figure of merit of DSB-SC or SSB-SC receiver using coherent detection is always unity, the			
19	figure of merit of AM receiver using envelope detection is always less than unity. Therefore noise			
	performance of AM receiver is always inferior to that of DSBSC due to the wastage of power for			
	transmitting the carrier.			
	What is the figure of merit of a AM system with 100 percent modulation?			
20	The figure of merit of a AM system with 100 percent modulation is 1/3. This means that other			
20	factors being equal an AM system must transmit three times as much average power as a			
	suppressed system in order to achieve the same quality of noise performance.			
21	What are the characteristics of a receiver?			
	The characteristics of a receiver are sensitivity, selectivity, fidelity, signal to noise ratio.			
	Define noise.			
22	Noise is defined as any unwanted form of energy, which tends to interfere withproper reception			
	and reproduction of wanted signal.			
23	Give the classification of noise.			

	Noise is broadly classified into two types. They are External noise and internal noise.			
	What are the types of External noise?			
24	External noise can be classified into Atmospheric noise, Extraterrestrial noises, Man -made			
	noises or industrial noises.			
	What are types of internal noise? (Nov/Dec2018)			
25	Internal noise can be classified into Thermal noise, Shot noise, Transit time noise, Miscellaneous			
	internal noise.			
	What are the types of extraterrestrial noise and write their origin?			
26	noise emphating from the sun			
20	Cosmic noise is the noise received from the center part of our galaxy other distant galaxies and			
	other virtual point sources.			
	Define transit time of a transistor.			
27	Transit time is defined as the time taken by the electron to travel from emitter to the collector.			
	Define flicker noise.			
28	Flicker noise is the one appearing in transistors operating at low audio frequencies. Flicker noise			
20	is proportional to the emitter current and junction temperature and inversely proportional to the			
	frequency.			
• •	Explain thermal noise.			
29	Thermal noise is the name given to the electrical noise arising from the random motion of			
	electrons in a conductor.			
30	Give the expression for noise voltage in a resistor. The mean square value of thermal noise voltage is given by $Vn^2 = 4 K T B R^2$			
30	K = Boltzmann constant R = resistance = absolute temperature R = Bandwidth			
	Explain White Noise. (MAY 2013.2014)			
21	Many types of noise sources are Gaussian and have flat spectral density over a wide frequency			
31	range. Such spectrum has all frequency components in equal portion, and is therefore called white			
	noise. The power spectral density of white noise is independent of the operating frequency.			
	What is narrowband noise? (April/May 2018)			
	The receiver of a communication system usually includes some provision for preprocessing the			
32	received signal. The preprocessing may take the form of a narrowband filter whose bandwidth is			
	large enough to pass modulated component of the received signal essentially undistorted but not			
	so large as to admit excessive noise inrough the receiver. The noise process appearing at the output of such filter is called parrow band noise			
	Define noiseless channel			
	A channel is called noiseless if it is both lossless and deterministic. The channel matrix has only			
33	one element in each row and in each column and this element is unity. The input and output			
	alphabets are of the same size.			
	Give the expression for equivalent noise temperature in terms of hypothetical temperature./			
34	Define noise equivalent temperature. (May/June 2016) (Nov/Dec 2016)			
54	The expression for equivalent noise temperature in terms of hypothetical Temperature is			
	$T_e = (F-1) T_0$ where, F is the noise figure and T_0 absolute temperature.			
25	Give the Friss formula in terms of noise temperature.			
35	The Friss formula in terms of noise temperature is $Te = T_1 + (T_2 / G_1) + (T_3 / G_1)G_2 + \dots$			
	Define Partition noise			
36	In an electron tube having one or more positive grids, this noise is caused by erratic partition of			
L	In an election table narming one of more positive grads, and noise is eaused by chance partition of			

The AM wave may be written as $s(t) = Ac[1 + kam(t)] cos 2\pi fct$

 $n(t) = n_{I}(t) \cos 2\pi f t - n_{0}(t) \sin 2\pi f t$

Discriminator = $n_Q(t)/A_c$ - carrier to noise ratio - removes variation in envelop

Signal to Noise Ratio

$$(SNR)_C = \frac{A^2 c \left[1 + k^2 a P\right]}{2WN_c}$$

Received Signal

$$X(t) = [A_c + A_c K_a m(t) + n_I(t)] \cos 2\pi f_c t - n_0(t) \sin 2\pi f_c t$$

Phasor Diagram

UNIT V - SAMPLING & QUANTIZATION			
Low pass sampling – Aliasing- Signal Reconstruction-Quantization - Uniform & non-uniform			
qua	ntization - quantization noise - Logarithmic Companding –PAM, PPM, PWM, PCM – TDM,		
FDI	M.		
	PART * A		
Q.No.	Questions		
	Define bandpass sampling. (April 2018) (or)		
	State Sampling Theorem. (May 2006) BTL1		
1	If a finite energy signal g(t)contains no frequency components greater than W Hz, it is completely		
1.	determined by specifying in ordinates at a sequence of points spaced 1/(2W) seconds apart.		
	If a finite energy signal g(t)contains no frequency components greater than W Hz, it is completely		
	recovered from its ordinates at a sequence of points spaced 1/(2W) seconds apart.		
	In a PCM system the output of the transmitting quantizer is digital. Then why is it further		
2	encoded? (April 2018) BTL 2		
2	Further encoding is required to translate the discrete set of sample values to a more		
	appropriate form of signal.		
	Derive the expression for the quantization noise of a PCM system. (Nov 2017) BTL 6		
	Quantization error or noise is produced by the quantizer by rounding off the sample values of an		
	analog baseband signal to the nearest permissible representation levels of the quantizer. It is		
2	signal independent and uniformly distributed over the range $-\Delta/2$ to $+\Delta/2$. And it is denoted by		
3	q. The distribution function is $(1/4) = A/2 = a = A/2$		
	$f_0(q) = \begin{cases} 1/2, & -\Delta/2 \le q \le \Delta/2 \\ 0 & \text{otherwise} \end{cases}$		
	Quantization noise power $\sigma_0^2 = \Lambda^2/12$ Where σ_0^2 -Variance of Quantizer noise Λ Step size of		
	uniform quantizer		
	What is Companding? Sketch the characteristics of compander. (April 2017) BTL1		
	The combination of compressor at the input and expander at the output is called Companding.		
	Compressor characteristics are defined by A-law and μ law Companding.		
	$\mu = 255$ $\mu = 100$ $A = 100$		
4	$\frac{1}{2}$ 0.6 - $A = 87.6$ -		
	$\lim_{n \to \infty} 0.4 \mu = 5 \lim_{n \to \infty} 0.4 A = 5 \mu$		
	$\mu = 1$		
	0.2 $\mu = 0$ $ 0.2$ $A = 1$ $-$		
	Input $ w_1(t) $ \downarrow Input $ w_1(t) $ \downarrow V=1.0		
	(b) μ-law Characteristic (c) A-law Characteristic		
	A certain low pass bandlimited signal x(t) is sampled and the spectrum of the sampled		
	version has the first guard band from 1500Hz to 1900 Hz. What is the sampling frequency?		
	What is the maximum frequency of the signal? (April 2017) BTL 3		
5	F1 = 1500 Hz		
	F2= 1900 Hz		
	Guard bandwidth = $f2-f1 = 400$ Hz.		
	Sampling trequency $fs \ge 2^*B = 800$ Hz.		
	Maximum signal frequency = 400 Hz .		

REGULATION: 2017 ACADEMIC YEAR : 2019-2020 What is meant by aliasing? (Nov 2016) BTL1 Aliasing effect takes place when sampling frequency is less than Nyquist rate. Under such condition, the spectrum of the sampled signal overlaps with itself. Hence higher frequencies take 6 the form of lower frequencies. This interference of the frequency components is called as aliasing effect. State Sampling theorem for band limited signals and the filter to avoid aliasing. (Dec 2015) BTL1 If a finite energy signal g(t)contains no frequency components greater than W Hz, it is completely 7 determined by specifying in ordinates at a sequence of points spaced 1/(2W) seconds apart. If a finite energy signal g(t)contains no frequency components greater than W Hz, it is completely recovered from its ordinates at a sequence of points spaced 1/(2W) seconds apart. Low pass anti-aliasing filter is used to avoid aliasing. Write the two-fold effects of Quantization Process. (Dec 2015) BTL1. 1. The peak-to-peak range of input sample values subdivided into a finite set of decision 8 levels or decision thresholds. 2. The output is assigned a discrete value selected from a finite set of representation levels are reconstruction values that are aligned with the treads of the staircase State 4 advantages of digital communication system. (April 2015) BTL1 1. In digital Communication, the speech, video and other data may be merged and transmitted over a common channel using multiplexing technique. 2. The digital Communication system are simpler and cheaper because of advancement 9 made in the IC technologies. 3. Channel Coding is used in digital Communication that why it reduces the amount of errors in the detector and correct them in the receivers. 4. As the transmitted signals are digital in nature thus the amount of interference is controlled in this form of Communication. What are the major disadvantages of digital communication system. (April 2015) BTL2 State the demerit of digital communication. (May 2014) **Disadvantages:** 1. Due to Analog to Digital Conversion the data rate become high. Therefore, more 10 transmission bandwidth is required for digital communication. This is the major disadvantage of Digital communication. 2. Synchronization is required in digital communication during the process of synchronous modulation. Define Non-uniform Quantization. (April 2015) BTL1 In uniform quantization, step or difference between two quantization levels remains constant over the complete amplitude range. So, the maximum quantization error also remains same, which causes problems at some amplitude levels. In such cases, non-uniform quantization is preferred 11 with varying step size. This is achieved by compressor at the transmitter and uniform quantization and expander at the receiver collectively called as compander. What is the difference between natural and flat top sampling? (Nov 2014) BTL 4 Flat top sampling is like natural sampling i.e.; practical in nature. In comparison to natural sampling flat top sampling can be easily obtained. In this sampling techniques, the top of the 12 samples remains constant and is equal to the instantaneous value of the message signal x(t) at the start of sampling process. Sample and hold circuit are used in this type of sampling. Classify communication channels. (May 2014) (May 2013) BTL 4 13 The communication medium between transmitter and receiver is called communication channel.

R	EGULATION: 2017 ACADEMIC YEAR : 2019-2020		
	Types:		
	1. Wired channel (Example, Coaxial cable, Fiber optic cable etc.)		
	2 Wireless channel (Example Air)		
	2. Whereas chample, All) XVI $(1, 1) = 0$ (W (2014) DTL (2)		
	What is the need for non-uniform quantization? (May 2014) BTL 2		
	In uniform quantization, step size or the difference between two quantization levels remains		
14	14 constant over the complete amplitude range. So, the maximum quantization error also remain		
	same, which causes problems at some amplitude levels. In such cases, non-uniform quantization		
	is preferred.		
	What is a channel? Give examples. (May 2014) BTL1		
	The communication medium between transmitter and receiver is called communication channel		
15	Types:		
	1. Wired channel (Example. Coaxial cable, Fiber optic cable etc.)		
	2. Wireless channel (Example. Air)		
	What is natural sampling (May 2014) (May 2013) BTL1		
16	Natural Sampling is a practical method of sampling in which pulse(rectangular) have finite width		
10	reaction of sampling is a practical method of sampling in which pulse (rectangular) have time which τ		
	equal to t. Sampling is done in accordance with the carrier signal which is digital in nature.		
	Write a law of compression (May 2014) BTL1		
	A-law compression:		
	$(A x /x_{max})$		
	$c(x) \qquad \boxed{1 + lnA}, \qquad 0 \le \frac{1}{r_{max}} \le 1/A$		
	$\frac{d(\mu)}{d\mu} = \begin{cases} 1 + \mu(A) \\ 1 + \mu(A) \\ \mu(A) \end{cases}$		
	$x_{max} = \frac{1 + \ln(A x /x_{max})}{1 + \ln(A x /x_{max})} = 1/A \le \frac{ x }{1 + 1} \le 1$		
	$1 + lnA$ $' x_{max} = 1$		
17	Typical Value of $A = 87.56$		
	Value for A giving Uniform Quantization $A = 1$		
	M – law compression:		
	$c(x) = ln(1 + \frac{r_{1}(x)}{r_{max}})$ x		
	$\frac{1}{r} = \frac{1}{r} $		
	$x_{max} = u(1 + \mu) = x_{max}$		
	Typical value of μ - 255		
	Value for A giving Uniform Quantization $\mu = 0$		
	State the advantages and disadvantage of digital communication systems over analog		
	communication systems. (May 2013) (May 2011) BTL 4		
	Advantages:		
	1. In digital Communication, the speech, video and other data may be merged and		
	transmitted over a common channel using multiplexing technique		
	2 The digital Communication system are simpler and cheaper because of advancement		
	2. The digital communication system are simpler and cheaper because of advancement		
	2. Changel Calification dis disited Communication that makes it as the encount of encount		
10	3. Channel Coding is used in digital Communication that why it reduces the amount of errors		
18	in the detector and correct them in the receivers.		
	4. As the transmitted signals are digital in nature thus the amount of interference is		
	controlled in this form of Communication.		
	Disadvantages:		
	1. Due to Analog to Digital Conversion the data rate become high. Therefore, more		
transmission bandwidth is required for digital communication. This is t			
	2. Synchronization is required in digital communication during the process of synchronic		
	modulation.		

RI	REGULATION: 2017 ACADEMIC YEAR : 2019-2020		
	value is assigned to nearest digital value. This is called quantization. The quantized value is then		
	converted into equivalent binary value. The quanti	zation levels are fixed depending upon the	
	number of bits. Quantization is performed in every A	nalog to Digital Conversion.	
	Compare Uniform and non-uniform quantization	(Nov 2011) BTL 4	
	Uniform quantization	non-uniform quantization	
	In uniform quantization, the step size or the	In non-uniform quantization step size	
	difference between two quantization levels remain	varies	
	constant over the complete amplitude range		
	SNR ratio varies with input signal	SNR ratio can be maintained constant	
24	amplitude		
24		Output	
	Output	Cuput	
		yi	
	a x _{i-1} x _i b Input	y _{k1}	
		$ \begin{array}{c} a \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	(a)		
	What is quantization error? (May 2011) B1L1		
	Quantization error or noise is produced by the quant	izer by rounding off the sample values of an	
	analog baseband signal to the nearest permissible i	epresentation levels of the quantizer. It is	
25	signal independent and uniformity distributed over the signal trade over the signal statistical function is	ie range $-\Delta/2$ to $+\Delta/2$. And it is denoted by	
23	q. The distribution function is $(1/A)$	$12 \leq \alpha \leq \Lambda/2$	
	$f_Q(q) = \begin{cases} 1/2, & 2\\ 0 & 0 \end{cases}$	$12 \leq q \leq 2/2$	
	Quantization noise power $\sigma_0^2 = \Lambda^2/12$ Where σ_0^2 -Variance of Quantizer noise Λ - Step size of		
	uniform quantizer		
	Define time limited and time unlimited signals (Apr 2011) BTI 1		
	Time limited signal is one that is non-zero only	for a finite length time interval and time	
26	unlimited signal is one which is non-zero for infinite length time interval. A signal that is band		
	limited is not time-limited and vice-versa.		
	Why is prefiguring done before sampling? (Nov 20)10) BTL 4	
27	To exclude frequencies greater than $\pm W$ Hz, prefigu	ring such as low pass filtering is required to	
	do proper sampling.		
	Define quantization noise power. (Nov 2010) BTL1		
20	Quantization noise power of the uniform	quantizer is nothing but the variance of the	
28	quantizer noise. It can be defined as $\sigma_0^2 = \Delta^2/12$. Where σ_0^2 -Variance of Quantizer noise. Δ - Step		
	size of uniform quantizer.		
	What is meant by distortion less transmission? (N	ov 2010) BTL1	
29	If the overall system response has constant magn	itude and if its phase shift is linear with	
	frequency then that is said to be distortion less transm	ission.	
	Which parameter is called figure of merit of a di	gital communication system? Why? (Nov	
	2010) BTL 4	- · · ·	
30	The ratio of bit energy to noise power spectral dens	ity E_{b/N_0} is called as the figure of merit of a	
	digital communication system. This is because in digital communication system a symbol is		
	transmitted and received by using a transmission window within a symbol tree. Since power goes		
	to zero, symbol energy is a more useful parameter. Se	o, an energy related parameter in terms of bit	

	level is required to compare different systems.		
	PART * B		
	Derive the expression for Signal to Noise ratio of Uniform quantizer (7) (April 2018) BTL 1		
	Answer: Page 190 - S. Haykin		
	Uniform Quantizer : Quantizer - uniform step size $-L$ - Quantization levels $-$ step size Δ (2M)		
	Variance of quantization noise: quantization noise – quantization – unavoidable- noise power- [$\sigma_Q^2 = \Delta^2/12$] (3M)		
	•Average quantization noise power		
1	$\sigma^{2} = \frac{q^{2}}{V_{p} - 3q/2}$		
	Signal peak power		
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} q_{12} \\ -q_{2} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} -q/2 \end{array} \\ \end{array} \\ \begin{array}{c} L \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} L \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} V_{pp} \end{array} \\ \begin{array}{c} V_{p}^{2} \end{array} \\ \begin{array}{c} L^{2} q^{2} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		
	Signal power to average		
	$-V_p + 3q/2$ quantization noise power		
	$\begin{pmatrix} -v_p + q/2 \\ -V_p \end{pmatrix} \begin{pmatrix} S \\ \overline{N} \end{pmatrix}_q = \frac{V_p^2}{\sigma^2} = 3L^2$		
	Signal to Noise Ratio: Ratio – Signal Power- Noise Power - SNR =3L ² – directly proportional – number of quantization levels. (2M)		
	Write a detailed note on aliasing and signal reconstruction (6) (April 2018) (Nov 2017) BTL		
	l Answer: Page 146 - S. Havkin		
	Answer. 1 age 140 - 5. Haykin		
	Aliasing: Overlapping of sampled signal spectrum, low frequency –high frequency mixing,		
	Data loss (1M) Condition for Aliosing: Es < Em (1M)		
	Aliasing Effects:		
2	$G_{\delta}(f)$		
	$ \qquad \qquad$		
	$-2f_s$ $-f_s$ 0 f_s $2f_s$ f		
	Signal reconstruction: Getting back original signal, low frequency, analog signal (2M)		
	Reconstructed signal : $g(t) = \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2W}\right) sinc(2Wt - n)$ (2M)		
	A PCM system has a uniform quantizer followed by a v bit encoder. Show that the rms		
3	signal to noise ratio is approximately given by (1.8 +6 v) dB, assuming a sinusoidal input (7)		
	Answer: Page 190 - S. Haykin		

	Stop size: $A = 2A/2^R$ (1M)		
	Step Size: $\Delta - 2A/2$ (1101)		
	Signal Power: A /2		
(1M)			
	Noise Power: $\Delta^2/12$		
	$(SNR)o,q = A^2/2*2*K*12/4 A^2$		
	(2M)		
	$=3/2 * 2^{2R}$ (2M)		
	SNR in dB = $1.8 + 6$ v (1M)		
	Show that the signal to noise power ratio of a uniform quantizer in PCM system increases		
	significantly with increase in number of bits per sample. Also determine the signal to		
	auantization noise ratio of an audio signal $S(t) = 4\sin(2\pi 500t)$ which is quantized using a 10		
	hit DCM (6) (April 2018) BTL 6		
	Angwan Daga 100 S. Haykin		
	Answer: Page 190 - 5. maykin		
	Signal: $S(t) = 4\sin(2\pi 500t)$		
	bit PCM: $L=2^n$		
	n=10, hence 1024 levels.		
	(1M)		
4	Amplitude: A=4V		
	Peak to peak value $2*A=8V$.		
	Average signal power: Pavg = $A^2/2 = 8$ Watts.		
	Interval: $\Delta V = 2*A/L = 8/1024 = 7.81 \text{ mV}$		
	(2M)		
	Oughtization noise: $Na = \Lambda V^2/12$		
	Signal to noise ratio: $SNR - Payg/Ng = 1573770$		
	(2M)		
	$SNR dB = 10 \log_{10} (SNR) = 61.96 dB$		
	(1M)		
	In detail amhair leantithmic Commonding of grouph signals (4) (New 2017) DTL 1		
	In detail explain logarithmic Companding of speech signals (4) (Nov 2017) BTL 1		
	Answer: Page 193 - S. Haykin		
	Companding : Compression at transmitter sideexpansion at receiver side		
	(1M)		
	Companding Types – A law and μ – law Companding.		
	(1M)		
	A-law Companding with Characteristics		
5	A-law compression:		
5	(1M)		
	$(A x /x_{max}$ x		
	$C(\mathbf{x}) = \left \frac{1}{1 + \ln A} \right , \qquad 0 \le \frac{1}{r} \le 1/A$		
	$\frac{\partial(x)}{\partial x} = \begin{cases} 1 + ln(A) + ln(A) + ln(A) \\ 1 + ln(A) + ln(A) + ln(A) \\ 1 + ln(A)$		
	$\frac{x_{max}}{1 - \frac{1 + m(A x /x_{max})}{1 - \frac{1}{2}}} = \frac{1/A}{2} < \frac{ x }{2} < 1$		
	(1 + lnA)		
	Typical Value - A= 87.56		
	Value for A giving Uniform Quantization A =1		
	µ-law Companding with Characteristics		

RI	EGULATION: 2017 ACADEMIC YEAR : 20	19-2020			
	(1M)				
	μ– law compression:				
	$ln(1 \pm \frac{\mu x }{2})$				
	$C(x) = \frac{m(1 + \frac{1}{x_{max}})}{1 + \frac{1}{x_{max}}} = 0$				
	$\frac{1}{x_{max}} = \frac{1}{\ln(1+\mu)} 0 \leq \frac{1}{x_{max}} \leq 1$				
	Typical Value of $\mu = 255$				
	Value for A giving Uniform Quantization $\mu = 0$				
	ψ unde for M giving emittering quantization $\mu = 0$				
	Show that the signal to noise nower ratio of a uniform quantizer is PCM system	increases			
	significantly with increase in number of hits per semple. Also determine the	signal to			
	significantly with increase in number of bits per sample. Also determine the quantization poise notio of an audio signal $S(t) = 3 \cos(2-500t)$ which is quantized	t signal to			
	quantization noise ratio of an autio signal $S(t)$ – $Scos(2\pi Soot)$ which is quantized bit DCM (0) (New 2017) DTL 6	using a 10-			
	DIL PCIVI (9) (NOV 2017) DIL O Automatica De se 100 \leq Hambin				
	Answer: Page 190 - S. Haykin				
	Signal: $S(t) = 2 \sin(2 - 500t)$				
	Signal: $S(t) = -3Sin(2\pi 300t)$				
6	IUBIT PCMI: $L=2$				
	n=10, hence 1024 levels.	(3M)			
	Amplitude : $A=3V$, Peak to peak value $2^*A=6V$.				
	Average signal power: $Pavg = A^2/2 = 4.5$ Watts	(2M)			
	Interval: $\Delta V = 2*A/L = 8/1024 = 5.859 \text{ mV}$	(2M)			
	Quantization noise : $Nq = \Delta V^2/12 = 2.86*10^{-6}$				
	Signal to Noise Ratio:				
	SNR=Pavg/Nq = 1573426.57	(3M)			
	$SNR dB = 10log_{10}(SNR) = 61.968dB$	(3M)			
	What is meant by quantization? Derive the expression for signal-to-quantization noise ratio				
	in PCM system. (10) (April 2017) BTL 1				
	Answer: Page 190 - S. Haykin				
	Quantization: discretization in amplitude domain.	(1M)			
	Types: Uniform- Uniform step size, Non-uniform - unequal step size.				
		(2M)			
	Diagram:	(2M)			
	Average questization poise power	× ,			
	$\frac{V_p}{\sqrt{1-r^2}}$				
7	$\left \begin{array}{c} v_p - q/2 \\ V_p - 3q/2 \end{array} \right q$ volts $\sigma^2 = \frac{q^2}{12}$				
	Signal peak power				
	a/2 $a/2$ $a/2$				
	L levels $V_{pp} = \frac{L^2 q^2}{4}$				
	$\begin{bmatrix} -q/2 \\ \vdots \end{bmatrix}$ = Signal power to average				
	V 1 2 2 / 2				
	$-V_p + 3q/2$ $-V_r + q/2$				
	$\begin{pmatrix} v_p & v_{p'} & v_$				
	$(N)q \sigma^2$				
	SNR of PCM : With Uniform Quantizer: $SNR = 3L^2$	(2M)			
	The information in an analog signal with maximum frequency of 3 KHz is requ	uired to be			
Q	transmitted using 16 quantization levels in PCM system. Determine				
0	(1) maximum number of bits/sample				

(2) minimum sampling rate required JIT-JEPPIAAR/ECE/Mrs.M.Benisha /IInd Yr/SEM 04/EC8491/ COMMUNICATION THEORY/UNIT 1-5/QB+Keys/Ver2.0

ACADEMIC YEAR: 2019-2020

R	EGULATION: 2017	ACADEMIC YEAR : 2019	-2020	
	Explanation of each block:		(7M)	
	Sampling and Quantization: Analog	g signal - digital signal.		
	Source encoder and decoder : Digital - particular format - transmission.			
	Channel encoder/Decoder: Further of	coding - error free communication		
	Modulator/Demodulator: Long dista	ance transmission - reception of signals.		
	Channel: Communication medium be	etween Tx and RX- wired or wireless.		
	Explain the advantages of digital m	odulation technique. (5) (Nov 2017) BTL 2		
	Answer: Page 1 - S. Havkin			
2	Definition: Transmitting digital mess	age	(3M)	
	Advantages: Robustness – Security –	- Integration- Low cost – Simple - Adaptable, etc.	(2M)	
		integration 2000 cost Simple Tranpucte, con	(====)	
	The bandwidth of TV. Video + audi	io signal is 4.5 MHz If the signal is converted to P	CM bit	
	stream with 1024 quantization level	s. Determine the number of bits per second gener	rated by	
	the PCM system. Assume that signa	al is sampled at the rate of 20% above Nyquist rates	te. (15)	
	BTL 1		~ /	
	Answer: Page 134 - S. Haykin			
3				
	Length: $L=2^k$ (2)	3M)		
	Bits in PCM: $l > \log_2 1/2p$ (2)	3M)		
	Sampling rate: Fs=2*Fm	3M)		
	Bit Tx rate: Rb=1*Fs	3M)		
	Baud Rate: $B = Rb/k$	3M)		
	The information in an analog signal	with maximum frequency of 8 KHz is required t	to be	
	transmitted using 32 quantization levels in PCM systems. Interpret			
	(a) The maximum number of bits p	er sample		
	(b) The minimum sampling rate	······································		
	(c) The resulting transmission data	rate (15) BTL 4		
	(0)			
4	Answer: Page 134 - S. Havkin			
	Length: $L=2^k$ (3)	M)		
	Bits in PCM: $l > \log_2 1/2p$ (3)	SM)		
	Sampling rate: Fs=2*Fm (3	3M)		
	Bit Tx rate: Rb=1*Fs (3	3M)		
	Baud Rate : $B = Rb/k$ (3)	3M)		
	i) Find the sampling rate for the	following signal m(t)=2[cos(500*pi*t) *cos(1000*)	pi*t)]	
	(7)			
ii) Can you find the Nyquist Rate for m(t)=5*cos(5000*pi*t) *cos ² (8000*pi*t)?				
	Answer: Page 134 - S. Haykin			
5				
(7M) (7M)				
	Nyquist Rate: Minimum Sampling Rate: Fs=2* Fm			
	(8M)			

L T P C 4 004

EC8451 ELECTROMAGNETIC FIELDS

OBJECTIVES:

- To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- > To understand wave propagation in lossless and in lossy media
- > To be able to solve problems based on the above concepts

UNIT I INTRODUCTION

Electromagnetic model, Units and constants, Review of vector algebra, Rectangular, cylindrical and spherical coordinate systems, Line, surface and volume integrals, Gradient of a scalar field, Divergence of a vector field, Divergence theorem, Curl of a vector field, Stoke's theorem, Null Identities, Helmholtz's theorem

UNIT II ELECTROSTATICS

Electric field, Coulomb's law, Gauss's law and applications, Electric potential, Conductors in static electric field, Dielectrics in static electric field, Electric flux density and dielectric constant, Boundary conditions, Capacitance, Parallel, cylindrical and spherical capacitors, Electrostatic energy, Poisson's and Laplace's equations, Uniqueness of electrostatic solutions, Current density and Ohm's law, Electromotive force and Kirchhoff's voltage law, Equation of continuity and Kirchhoff's current law

UNIT III MAGNETOSTATICS

Lorentz force equation, Law of no magnetic monopoles, Ampere's law, Vector magnetic potential, Biot-Savart law and applications, Magnetic field intensity and idea of relative permeability, Magnetic circuits, Behavior of magnetic materials, Boundary conditions, Inductance and Inductors, Magnetic energy, Magnetic forces and torques

UNIT IV TIME-VARYING FIELDS AND MAXWELL'S EQUATIONS

Faraday's law, Displacement current and Maxwell-Ampere law, Maxwell's equations, Potential Functions, Electromagnetic boundary conditions, Wave equations and solutions, Time-harmonic fields

UNIT V PLANE ELECTROMAGNETIC WAVES

Electromagnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance, propagation constant – Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting vector – Plane wave reflection and refraction.

OUTCOMES:

- Display an understanding of fundamental electromagnetic laws and concepts
- Write Maxwell's equations in integral, differential and Phasor forms and explain their physical Meaning
- Explain electromagnetic wave propagation in lossy and in lossless media
- Solve simple problems requiring estimation of electric and magnetic field quantities based on these concepts and laws

12

12

12 pote

12

12

TEXT BOOKS:

1. Mathew N. O. Sadiku, 'Principles of Electromagnetics', 6th Edition, Oxford University Press Inc. Asian edition, 2015.

2. William H. Hayt and John A. Buck, 'Engineering Electromagnetics', McGraw Hill Special Indian edition, 2014.

3.Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 2010.

REFERENCES

1. V.V.Sarwate, 'Electromagnetic fields and waves', First Edition, Newage Publishers, 1993.

2. J.P.Tewari, 'Engineering Electromagnetics - Theory, Problems and Applications', Second Edition, Khanna Publishers.

3. Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline Series), McGraw Hill, 2010.

4. S.P.Ghosh, Lipika Datta, 'Electromagnetic Field Theory', First Edition, McGraw Hill Education(India) Private Limited, 2012.

5. K A Gangadhar, 'Electromagnetic Field Theory', Khanna Publishers; Eighth Reprint : 2015

Subject Code: EE8451Year/Semester: II/04Subject Name: Electromagnetic FieldsSubject Handler: Dr. Prajith PrabhakarUNIT I INTRODUCTION

Electromagnetic model, Units and constants, Review of vector algebra, Rectangular, cylindrical and spherical coordinate systems, Line, surface and volume integrals, Gradient of a scalar field, Divergence of a vector field, Divergence theorem, Curl of a vector field, Stoke's theorem, Null Identities, Helmholtz's theorem

Q. No	Questions
1	Define scalar and vector. BTL 1 Scalar: A quantity that is characterized only by magnitude is called a scalar.
	Vector: A quantity that is characterized both by magnitude and direction is called a vector.
2	Define Gradient. BTL 1
	The gradient of any scalar function is the maximum space rate of change of that function. If the scalar V represents electric potential ΞV represents potential and iont
	in the scalar v represents electric potential, \sqrt{v} represents potential gradient.
	$\nabla V = \frac{\partial v}{\partial x} a_x + \frac{\partial v}{\partial y} a_y + \frac{\partial v}{\partial z} a_z$. This operation is called the gradient.
	Define divergence and curl. BTL 1
	Divergence:
3	The divergence of a vector 'A' at any point is defined as the limit of its surface integrated
	per unit volume as the volume enclosed by the surface shrinks to zero. $\nabla \cdot A = Lt \prod_{v \to 0}^{1} \prod_{v \to 0}^{1} A$
	$\frac{1}{n}$ ds.
	$\nabla A = \frac{\partial A_x}{\partial A_x} + \frac{\partial A_y}{\partial A_z} + \frac{\partial A_z}{\partial A_z}$. This operation is called divergence. Divergence of a vector is a
	$\partial x \partial y \partial z$

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

4.2

	Curl: The curl of a vector 'A' at a any point is defined as the limit of its cross product with normal over a closed surface per unit volume as the volume shrinks to zero.
	with normal over a closed surface per unit volume as the volume shrinks to zero. $\nabla x \wedge -\mathbf{I} + \frac{1}{2} \frac{1}$
	$\bigvee X A = Lt_{\nu \to 0} - \bigcup_{\nu} n X AdS.$
4	Show that the vector $H = 3y^4 z^a x + 4x^3 z^2 a y + 2x^3 y^2 a z$ is solenoidal. BTL 1 $\nabla .H = \left(\frac{\partial}{\partial x} \overline{a}_x + \frac{\partial}{\partial y} \overline{a}_y + \frac{\partial}{\partial z} \overline{a}_z \right) . (3y^4 z \overline{a}_x + 4x^3 z^2 \overline{a}_y + 2x^3 y^2 \overline{a}_z)$ $= \frac{\partial}{\partial x} (3y^4 z) + \frac{\partial}{\partial z} (4x^3 z^2) + \frac{\partial}{\partial z} (2x^3 y^2) = 0 + 0 + 0 = 0$ Hence <i>H</i> is solenoidal.
	$\frac{\partial x}{\partial y} = \frac{\partial y}{\partial z}$
5	Determine the angle between $A = 2^{a}_{x} + 4^{a}_{y}$ and $B=6^{a}_{y} - 4^{a}_{z}$. (Nov 2016) BTL 5 $\theta = Cos[A \cdot B/(A \cdot B)]$ $A = 2^{2} + 4^{2} = 4.47$ $B = 6^{2} + 4^{2} = 7.21$
	$A \cdot B = 2 * 6 + 4 * 4 = 28$ $\theta = 0.5182^{\circ}$
6	Define Stoke's and divergence Theorem. (Nov 2013, May 2014, Nov 2016) BTL 1 Stoke's Theorem The line integral of a vector around a closed path is equal to the surface integral of the normal component of its equal to the integral of the normal component of its curl over any closed surface. $\oint H .dl = \iint_{s} \nabla \times HdS$ Divergence theorem The volume integral of the divergence of a vector field over a volume is equal to the surface integral of the normal component of this vector over the surface bounding the volume.
	$\iiint_{V} \nabla . AdV = \iint_{S} A . dS$
7	Write down the expression for conversion of Cylindrical to Cartesian system. BTL 1The Cylindrical co-ordinates (r, Φ , z) can be converted into Cartesian co-ordinates(x, y, z).Given Transformrx = r cos θ Φ y = r sin θ zz= z
8	What is the physical significance of curl in a vector field? (Nov 2011) BTL 1 The curl of a vector is an axial vector whose magnitude is the maximum circulation of A per unit area as the area tends to zero and whose direction is the direction normal direction of the area when the area is oriented to make the circulation maximum.
9	Write down the expression for conversion of Cartesian to Spherical system. BTL 1The Cartesian co-ordinates (x, y, z) can be converted into Spherical co-ordinates (r, θ, Φ) .GivenTransform

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

	x $\mathbf{r} = \sqrt{x^2 + y^2 + z^2}$
	y $\theta = \cos^{-1} \left[\frac{\Box^2}{2} + x^2 \right]$
	$\left(\sqrt{\frac{1}{1+\frac{1}{2}}}, \frac{1}{2}\right)$
	$\frac{z}{W_{\text{rite down the supression for conversion of Scherical to Contagion system DTL 1}}$
	The Spherical co-ordinates (r, θ , Φ) can be converted into Cartesian co-ordinates (x, y, z)
10	Given Transform
	r $x = rsin\theta.cos\Phi$
	θ $y = r \sin\theta . \sin \Phi$
	$\Psi = \frac{\nabla Z}{Z = r\cos\theta}$
	BTL 5
	Given Transform
11	x = 2 $r = \sqrt{x^2 + y^2 + z^2} = 4 + \sqrt{49} = 3.74$
	y = 1 $\theta = \cos^{-1}(\frac{z}{\sqrt{1-2}}) = \cos^{-1}(\frac{3}{\sqrt{1-4}}) = 36.7^{\circ}$
	$\sqrt{x^2 + y^2 + z^2}$ $\sqrt{14}$
	$z = 3$ $\Phi = \tan^{-1}(y/x) = \tan^{-1}(1/2) = 26.56^{\circ}$
	The spherical co-ordinates are (3.74, 36.7°, and 26.56°).
	Define electric flux, electric flux density and electric field intensity. (May 2016) BTL
	1 Flectric flux: The lines of electric force are known as electric flux. It is denoted by Ψ
	$\Psi = O$ (charge) Coulomb.
	Electric flux density: Electric flux density or displacement density is defined as the
12	electric flux per unit area.
	D = Q/A
	Electric field intensity: Electric field intensity is defined as the electric force per unit positive charge. It is denoted by E
	$E = \frac{Q}{E} = \frac{Q}{E}$
	$E = \frac{r}{Q} = \frac{1}{4\pi\epsilon r^2} V/m.$
	Two vectors are given P=3i+5j+2k and O=2i-4i+3k.Determine the angular
13	separation between them. (November 2011) BTL 5
	P. Q= IPIIQI $\cos\theta$, P.Q=-8, IPI=6.1644 IQI=5.38516, $\cos\theta$ =-0.2409, θ =103.94.
	Two vector quantities A=4i+3j+5k and B=i-2j-2k.are oriented in two different dimensions. Determine the engricular time between the engrice the engrice of th
14	alrections. Determine the angular separation between them. (Nov 2012) (May 2012) BTL 5
14	$A B = IAI IBI \cos \theta$
	$\theta = \cos^{-1} \frac{AB}{IAI IBI} = 67.84^{\circ}$

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

	What are the different sources of Electromagnetic fields? (May 2012) (May 2019)
15	BTL 1
	Electromagnetic fields are present everywhere in our environment but are invisible to the human every Electric fields are produced by the local build-up of electric charges in the
	atmosphere associated with thunderstorms. The earth's magnetic field causes a compass
	needle to orient in a North-South direction and is used by birds and fish for navigation.
16	Define the unit vector in cylindrical co-ordinate systems. (Nov 2013) BTL 6
	A vector A in cylindrical coordinates can be written as $(A_{\rho}, A_{\phi}, A_z)$
	State the condition for the vector to be solenoidal and irrotational (Nov 2012)
17	BTL 1
	A.B=0 and A X B=0
	State Gauss's law and Coulomb's law. (May 2016) BTL 1
	Gauss's law: The electric flux passing through any closed surface is equal to the total
	charge enclosed by that surface. $\Psi = Q$
	Coulomb's law. Coulomb's law states that the force between two very small charged objects separated by
	a large distance compared to their size is proportional to the charge on each object and
18	inversely proportional to the square of the distance between them.
	$F \alpha Q_1 Q_2$
	$F_{\alpha} = \frac{1}{2}$
	r^2
	$\sum_{i=1}^{n} Q_1 Q_2 = Q_1 Q_2 - N_{\text{exten}} - \frac{1}{2}$
	$r^{\alpha} = \frac{r^{2}}{r^{2}} - \frac{1}{4\pi \epsilon r^{2}} a_{12}$ Newton
	Name a few applications of Gauss's law in electrostatics. (Nov 2013) BTL 1
19	Gauss's law is applied to determine the electric field intensity from a closed surface. (e.g)
	Electric field can be determined for shell, two concentric shell or cylinders, etc.
	what is the electric field intensity at a distance of 20cm from a charge of 20μ /m ⁻ lying on the z=0 plane, in vacuum?(Nov/Dec 2014) BTL 5
20	ρ_{i} 20×10^{-6} 110×10^{6} 110
	$E = \frac{1}{2} a_z = \frac{1}{2} a_z = \frac{1}{2} a_z = 1.12 \text{ x } 10^{\circ} a_z \text{ V/m.}$
	$2 \delta_0$ $2 \lambda \delta.034 \lambda 10$ Points P and O are located at (0.2.4) and (-3.1.5) Calculate the distance vector from
21	P to O. (Nov/Dec 2014) BTL 5
	$R_{pq}=r_q-r_p=(-3,1,5)$ (0,2,4) = (-3,-1,1)
	Given $\overline{A} = 4\overline{a} + 6\overline{a} - 2\overline{a}$ and $\overline{B} = -2\overline{a} + 4\overline{a} + 8\overline{a}$. Show that the vectors are
22	orthogonal. (April /May 2015) BTL 5
	$A_B = (4^{*}-2) + (6^{*}4) + (-2^{*}8) = -8 + 24 - 16 = 0$. Therefore, A, B are orthogonal.
23	Express in matrix form the unit vector transformation from the rectangular to
	cylindrical co-ordinate system. (April /May 2015) BTL 1
	$a_{\phi} = -\sin \phi \cos \phi = 0$ a_{v}
	$a_z \qquad 0 \qquad 0 \qquad 1 \qquad a_z$

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

4.6

Transform 4āx-2āx-4āz at (2, 3, 5) to spherical coordinates. (Nov 2016) (13 M) BTL 5 Answer: Page - 1.58 -Dr. P. Dananjayan Formula: (3 M) $\begin{vmatrix} A_r \\ A_\theta \\ A_\phi \end{vmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{bmatrix} \begin{vmatrix} A_x \\ A_y \\ A_z \end{vmatrix}$ $A_{r} = 4$ $A_{r} = -2$ $A_{r} = -4$ $A_x = 4 \qquad A_y = -2 \qquad A_z = -4$ $A_p = A_x \cos \phi + A_y \sin \phi = 4 \cos \phi - 2 \sin \phi$ 3 $\phi = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{3}{2}\right) = 56.31^{\circ}$ $A_{\rho} = 4\cos 56.31^{\circ} - 2\sin 56.31^{\circ} = 2.219 - 1.664 = 0.555$ $A_{\perp} = -A_x \sin \phi + A_y \cos \phi$ $= -4 \sin 56.31^\circ - 2 \cos 56.31^\circ = -3.328 - 1.109 = -4.44$ The vector in cylindrical system can be written as 0.555 $a_p - 4.44 a_{\phi} - 4 a_z$. Write short notes on the following (i) Gradient (ii) Divergence (iii) Curl and (iv) Strokes theorem. (Nov 2013, Nov 2011) (13 M) BTL 1 Answer: Page -1.05- Dr. P. Dananjayan Gradient. (3M) (i) The gradient of any scalar function is the maximum space rate of change of that function. If the scalar V represents electric potential, ⊽ V represents potential gradient. $\nabla \mathbf{V} = \frac{\partial V}{\partial x} a + \frac{\partial V}{\partial y} a + \frac{\partial V}{\partial z} a$. This operation is called the gradient. 4 (ii) **Divergence:**(3M) The divergence of a vector 'A' at any point is defined as the limit of its surface integrated per unit volume as the volume enclosed by the surface shrinks to zero. $\nabla .A = Lt \int_{V \to 0}^{1} A . n \, ds.$

 $\nabla .\mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$. This operation is called divergence. Divergence of a vector is a

scalar quantity.

(iii) **Curl:**(3 M)

The curl of a vector 'A' at a any point is defined as the limit of its cross product with normal over a closed surface per unit volume as the volume shrinks to zero.

$$\nabla \mathbf{x} \mathbf{A} = \mathbf{L} \mathbf{t} \int_{V \to 0}^{1} n \mathbf{x} \mathbf{A} d\mathbf{s}.$$

(iv) Stoke's Theorem (4M)

The line integral of a vector around a closed path is equal to the surface integral of the normal component of its equal to the integral of the normal component of its curl over any closed surface.

$$\int H \, .dl = \iint_{S} \nabla \times HdS$$

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

4.11

	Explain the applications of Gauss Law. (13 M) BTL 1
7	Answer: Page - 1.32 - Dr. P. Dananjayan
	Application: (2 M)

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

 $JIT-JEPPIAAR/ECE/Dr.\ Prajith\ Prabhakar/II^{nd}\ Yr/SEM\ 04/E8451/ELECTROMAGNETIC\ FILEDS\ /UNIT\ 1-5/QB+Keys/Ver\ 2.0$

$$-\partial v = (3x^2 - z) \partial y$$

$$-v = 3x^2y - yz + c_2$$

$$-\partial v = (3xz^2 - y) \partial z$$

$$-v = xz^3 - yz + c_3$$

Then, adding these values of v
 $v = -2(3x^2y + xz^3 - yz) + c$
where $c = c_1 + c_2 + c_3$ (7 M)
Check validity of the divergence theorem considering the field D=2xy ax + x²ay c/m²
and the rectangular parallelepiped formed by the planes x=0,x=1,y=0,y=2 & z=0,z=3
(13 M) BTL 2
Answer: Page -1.60 · Dr. P. Dananjayan
Formula: The volume integral of the divergence of a vector field over a volume is equal
to the surface integral of the normal component of this vector over the surface bounding
the volume: (3 M)
Verification: (10 M)

$$\iiint \nabla \cdot AdV = \iint_{\nabla} A dS$$

@Solution: By divergence theorem,
10

$$\iint \overline{D} \cdot n ds = \iiint_{\nabla} \nabla \cdot \overline{D} dv$$

$$\nabla \cdot \overline{D} = \left(\overline{a}_x \frac{\partial}{\partial x} + \overline{a}_y \frac{\partial}{\partial y} + \overline{a}_z \frac{\partial}{\partial z}\right) \cdot (2xy \overline{a}_x + x^2 \overline{a}_y)$$

$$= \frac{\partial}{\partial x} (2xy) + \frac{\partial}{\partial y} (x^2) + 0$$

$$= 2y + 0 = 2y$$

$$\iiint \nabla \cdot \overline{D} dv = \int_{x=0}^{1} \int_{y=0}^{2} \int_{z=0}^{3} 2y \, dx \, dy \, dz$$

$$= \int_{0}^{1} \int_{0}^{2} [2yz]_{0}^{3} dx dy = \int_{0}^{1} \int_{0}^{2} 6y dx dy$$

$$= \int_{0}^{1} \left[6 \frac{y^{2}}{2} \right]_{0}^{2} dx = \int_{0}^{1} 12 dx = \left[12x \right]_{0}^{1} = 12$$

Evaluation of $\iint D \cdot n ds$

$$\iint D \cdot n ds = \iint D \cdot \bar{a}_{x} dy dz + \iint D \cdot (-\bar{a}_{x}) dy dz + \iint D \cdot \bar{a}_{y} dx dz$$

$$+ \iint D \cdot (-\bar{a}_{y}) dx dz + \iint D \cdot \bar{a}_{x} dx dy + \iint D \cdot (-\bar{a}_{z}) dx dy$$

$$\iint D \cdot \bar{a}_{x} dy dz = \iint (2xy \bar{a}_{x} + x^{2} \bar{a}_{y}) (\bar{a}_{x}) dy dz$$

$$= \int_{0}^{2} \int_{0}^{2} 2xy dy dz$$

$$= \left[6x \frac{y^{2}}{2} \right]_{0}^{2} = 12x = 12 \qquad [\because x = 1]$$

$$\iint D \cdot (-\bar{a}_{x}) dy dz = \iint (2xy \bar{a}_{x} + x^{2} \bar{a}_{y}) (-\bar{a}_{x}) dy dz$$

$$= 0 \qquad [\because x = 0]$$

$$\iint D \cdot (-\bar{a}_{x}) dy dz = \iint (2xy \bar{a}_{x} + x^{2} \bar{a}_{y}) (\bar{a}_{y}) dx dz$$

$$= 0 \qquad [\because x = 0]$$

$$\iint D \cdot \bar{a}_{y} dx dz = \iint (2xy \bar{a}_{x} + x^{2} \bar{a}_{y}) (\bar{a}_{y}) dx dz$$

$$= \int_{0}^{1} \int_{0}^{3} x^{2} dx dz = \int_{0}^{1} [x^{2}z]_{0}^{3} dx$$

$$= \int_{0}^{1} \int_{0}^{3} x^{2} dx = 3 \frac{x^{3}}{3} \Big|_{0}^{1} = 1$$

	State and verify Divergence theorem for the vector $A = 4x i - 2y^2 j + z^2 k$, taken over
	the cube bounded by x = 0, x = 1, y = 0, y = 1. (15 M) BTL 3
2	Answer: Page - 1.67 - Dr. P. Dananjayan
	Statement: (3 M)
	Verification: $LHS = RHS = 3 (12 M)$

The volume integral of the divergence of a vector field over a volume is equal to the surface integral of the normal component of this vector over the surface bounding the volume.

$$\iiint \nabla \cdot AdV = \iint \Phi dS$$

Given: $A = 4x \vec{i} - 2y^2 \vec{j} + z^2 \vec{k}$
 $\nabla \cdot A = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) \cdot (4x \vec{i} - 2y^2 \vec{j} + z^2 \vec{k})$
 $= 4 - 4y + 2z$

$$\iiint \nabla \cdot A = \iint \int (4 - 4y + 2z) dx dy dz$$

 $= \iint \int 4z - 4y z + \frac{2}{2} z^2 \Big|_0^1 dx dy$
 $= \iint \int (5 - 4y) dx dy$
 $= \iint \int (5 - 4y) dx dy$
 $= \iint \int (5y - \frac{4}{2} y^2) \Big|_0^1 dx$
 $= \iint 3 dx$
 $= 3x \Big|_0^1 = 3$
 $\oiint A \cdot ds = \iint A \cdot \vec{i} dy dz + \iint A (-\vec{i}) dy dz + \iint A (-\vec{k}) dx dy$
 $\iint [A \cdot \vec{i} x dy dz] = \iint (4x \vec{i} - 2y^2 \vec{j} + z^2 \vec{k}) \vec{i} dy dz$
 $= \iint \int 4xy \Big|_0^1 dz$
 $= 4xz \Big|_0^1 = 4x$
 $= 4$ $[\because x = 1]$
 $\iint A(-\vec{i}) dy dz = 0$

4.21

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

(i)
$$\nabla .P = \frac{\partial P_x}{\partial x} + \frac{\partial P_y}{\partial y} + \frac{\partial P_z}{\partial z}$$

 $= \frac{\partial}{\partial x} (x^2yz) + 0 + \frac{\partial}{\partial z} (xz)$
 $= 2xyz + x$
(ii) $\nabla .Q = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho Q_\rho) + \frac{1}{\rho} \frac{\partial Q_\phi}{\partial \phi} + \frac{\partial Q_z}{\partial z}$
 $= \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho^2 \sin \phi) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (\rho^2 z) + \frac{\partial}{\partial z} (z \cos \phi)$
 $= \frac{1}{\rho} \cdot 2\rho \sin \phi + 0 + \cos \phi$
 $\nabla .T = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_\theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\text{Spherical})$
 $= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \cdot \frac{1}{r^2} \cos \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \cdot r \sin \theta \cos \phi) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\cos \theta)$
 $= 0 + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (r \cos \phi \sin^2 \theta) + 0$
 $= \cos \phi \frac{\partial}{\partial \theta} (\sin^2 \theta) = \cos \phi \cdot 2 \cdot \sin \theta \cdot \cos \theta$
 $= 2 \cos \phi \sin \theta \cdot \cos \theta$
A charge Q₂=121 nCis located in vacuum at P₂ (-0.03, 0.01, -0.04) m. Find the force on Q₂ due to Q₁ = 100 µC at P₁(0.03, 0.08, 0.02) m. (May 2016) (7 M) BTL 3
Answer: Page -1.71 - Dr. P. Dananjayan

$$\begin{split} & \textcircled{OSolution:} \qquad \textcircled{Q}_{1} = 100 \ \mu\text{C} \qquad & P_{1} (0.03, 0.08, 0.02) \\ & & Q_{2} = 121 \ n\text{C} \qquad & P_{2} (-0.03, 0.01, -0.04) \\ & \text{The distance between any two points say } (x_{1}, y_{1}, z_{1}) \ \text{and } (x_{2}, y_{2}, z_{2}) \ \text{is given by} \\ & d = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2} + (z_{1} - z_{2})^{2}} \\ & = \sqrt{(0.03 + 0.03)^{2} + (0.08 - 0.01)^{2} + (0.02 + 0.04)^{2}} \\ & = \sqrt{(0.03 + 0.03)^{2} + (0.08 - 0.01)^{2} + (0.02 + 0.04)^{2}} \\ & = \sqrt{0.0121} \\ & d = 0.11 \ \text{m} \\ & F = \frac{Q_{1} Q_{2}}{4\pi \varepsilon_{0} d^{2}} \\ & = \frac{100 \times 10^{-6} \times 121 \times 10^{-9}}{4 \times 3.14 \times 8.854 \times 10^{-12} \times (0.11)^{2}} \ \text{Newtons} \\ & F = 8.989 \ \text{Newtons} \\ & \therefore \ \text{The force on } Q_{2} \ \text{due to } Q_{1} \ \text{is 8.989 \ Newtons.} \end{aligned}$$

Electric field intensity at P due to Q1 $E = \frac{Q_1}{4\pi \varepsilon_0 r^2} \,\overline{a}_{21}$ $=\frac{2\times10^{-6}}{4\pi\times\frac{1}{36\pi\times10^9}\times(\sqrt{29})^2}\cdot\frac{3\,\overline{a}_x+4\,\overline{a}_y+2\,\overline{a}_z}{\sqrt{29}}$ $= \frac{2 \times 9 \times 10^3}{29 \sqrt{29}} (3 \,\overline{a}_x + 4 \,\overline{a}_y + 2 \,\overline{a}_z)$ $E = 345 \,\overline{a}_x - 460 \,\overline{a}_y + 230 \,\overline{a}_z$ V/m (b) Q2 (-1, 2, 3) 831 P (3, -4, 2) $\overline{a}_{31} = \frac{\overline{a}_x(3-(-1)) + \overline{a}_y(-4-(2)) + \overline{a}_z(2-3)}{(3+1)^2 + (-4-2)^2 + (2-3)^2}$ $=\frac{4\,\overline{a}_x-6\,\overline{a}_y-\overline{a}_z}{\sqrt{16+36+1}}\cdot\frac{4\,\overline{a}_x-6\,\overline{a}_y-\overline{a}_z}{\sqrt{53}}$ Electric intensity at P due to Q2 $E = \frac{Q}{4\pi \epsilon_0 r^2} \bar{a}_{31}$ $= \frac{3 \times 10^{-6}}{4\pi \times \frac{1}{26\pi \times 10^9} \times (\sqrt{53})^2} \cdot \frac{4\,\overline{a}_x - 6\,\overline{a}_y - \overline{a}_z}{\sqrt{53}}$ $= \frac{3 \times 9 \times 10^3}{53 \sqrt{53}} (4 \,\overline{a}_x - 6 \,\overline{a}_y - \overline{a}_z)$ $E = 280 \,\overline{a}_x - 420 \,\overline{a}_y - 70 \,\overline{a}_z \, V/m$

	UNIT II ELECTROSTATICS		
Electric field, Coulomb's law, Gauss's law and applications, Electric potential, Conductors in static electric field, Dielectrics in static electric field, Electric flux density and dielectric constant, Boundary conditions, Capacitance, Parallel, cylindrical and spherical capacitors, Electrostatic energy, Poisson's and Laplace's equations, Uniqueness of electrostatic solutions, Current density and Ohm's law, Electromotive force and Kirchhoff's voltage law, Equation of continuity and Kirchhoff's current law			
Q. No	Part * A		
	Questions		
1	What do you understand by linear, surface and volume charge densities?BTL 1 Linear Charge density: It is the charge per unit length (Col / m) at a point on the line of charge. $\rho_{I} = Lt_{\Delta I \to 0} \left(\begin{array}{c} \Delta Q \\ \Delta I \end{array} \right)$ Surface charge density: It is the charge per surface area (C/m ²) at a point on the surface of the charge. $\rho_{s} = Lt_{\Delta s \to 0} \left(\begin{array}{c} \Delta Q \\ \Delta s \end{array} \right)$ Volume charge density: It is the charge per volume (C/m ³) at a point on the volume of the charge. $\rho_{V} = Lt_{\Delta_{V \to 0}} \left(\begin{array}{c} \Delta Q \\ \Delta s \end{array} \right)$		
2	Define potential and potential difference. (Nov2012)(May2012)(Nov2013)(Nov 2018) BTL 1 Potential: Potential at any point as the work done in moving a unit positive charge from infinity to that point in an electric field = $\begin{pmatrix} Q \\ 4 \pi \varepsilon r \end{pmatrix}$ Volts. Potential Difference: Potential difference is defined as the work done in moving a unit positive charge from one point in an electric field. V= $\begin{pmatrix} Q \\ 4\pi \varepsilon r \end{pmatrix}$ Volts. $4\pi \varepsilon r_A r_B$		
3	Find the electric potential at a point (4, 3) m due to a charge of 10 ⁻⁹ C located at the origin in free space.BTL 5 $V = \frac{Q}{4\pi\varepsilon_{o}r}; r = 4^{2} + 3^{2} = 5m. \qquad V = \frac{10 - 9}{4\pi x 8.854 x 10 - 12 x (5)} = 1.8V$		
4	Define Capacitance. BTL 1 The capacitance of two conducting planes is defined as the ratio of magnitude of charge on either of the conductor to the potential difference between conductors. It is given by, $C = \frac{Q}{V}$ Farad.		

	What is moont by conduction current?RTL 1				
	Conduction current is nothing but the current flows through the conductor Conduction				
5	conduction current is nothing but the current nows through the conductor. Conduction				
	$I_{c} = \sigma E \Lambda m n / m^{2}$				
($JC = 6E \text{ Amp / m}^{-}.$				
6	Write the Poisson's equation and Laplace equation. (May 2014, May 2016, May				
	Poisson equation; $\nabla^2 V = -\rho/\epsilon$				
	where ρ – Volume charge density , ϵ - Permittivity of the medium, ∇ - Laplacian				
	operator.				
	$\partial^2 V + \partial^2 V + \partial^2 V$				
	$\frac{1}{\partial x^2} + \frac{1}{\partial y^2} + \frac{1}{\partial z^2} = -\rho/\epsilon$				
	$\partial^2 V = \partial^2 V$				
	Laplace equation: $\nabla^2 V = 0$; $+ \frac{\partial^2 V}{\partial 2^2} + \frac{\partial^2 V}{\partial 2^2} = 0$				
	$\frac{\partial x}{\partial Y} \frac{\partial y}{\partial z}$				
	Give the relationship between potential gradient and electric field. BTL 1				
7	$\mathbf{E} = -\nabla \mathbf{V} ; \mathbf{E} = -(\begin{array}{c} \partial \\ a \\ \mathbf{v} \end{array} + \begin{array}{c} \partial \\ \mathbf{v} \\ \mathbf{v} \end{array}) \mathbf{V} . $				
	$\partial x \partial y \partial z$				
	Define dipole and dipole moment.BTL 1				
	Dipole or electric dipole is nothing but two equal-and opposite point charges are separated				
8	by a very small distance. The product of electric charge and distance (spacing) is known				
	as dipole moment. It is denoted by m where Q is the charge and 1 is the length (m) =Q.1				
	C/m				
	What is meant by conservative property of Electric field? (Nov 2011)BTL 1				
9	The line integral of electric field along a closed path is zero. Physically this implies that				
,	no net work is done in moving a charge along a closed path in an electrostatic field. Thus				
	an electrostatic field is said to have conservative property.				
	What is meant by Displacement current density?BTL 1				
10	Displacement current is nothing but the current flows through the Capacitor.				
10	Displacement current density is given by $J_d = \frac{\partial D}{\partial M}$ Amp / m ²				
	$\begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ $				
	State the boundary conditions at the interface between two perfect dielectrics.BTL 1				
	The tangential component of electric field E is continuous at the surface. That is E is the				
11	same just outside the surface as it is just inside the surface. $E_{t1} = \overline{E_{t2}}$				
11	The normal component of electric flux density is continuous if there is no surface charge				
	density. Otherwise D is discontinuous by an amount equal to the surface charge density.				
	$D_{n1} = D_{n2}$				
	Find the energy stored in a parallel plate capacitor of 0.5m by 1m has a separation				
	of 2cm and a voltage difference of 10V.BTL 5				
10	$A = \frac{8.854 \times 10^{-10} \times 0.5 \times 1}{-2.2125 \times 10^{-10} \text{E}}$				
12	$c - \epsilon_0 - 2 \times 10^{-2}$ =2.2153X10 ⁻¹ F				
	Energy stored in a capacitor $E=1/2$ CV ² =1/2 X 2 2135 X 10 ⁻¹⁰ X10 ² =1 10675 X 10 ⁻¹⁰				
	⁸ Joules.				

	Express the value of capacitance for a co-axial cable.BTL 5		
13	$C = \frac{2 \pi \varepsilon_{a} \varepsilon_{a}}{2}$; Where b – outer radius: a – inner radius.		
15	b In		
	Determine the capacitance of a parallel plate capacitor with two metal plates of size		
	Given data: $A = 0.3 \times 0.3 = 0.09 \text{m}^2$: $d=5 \times 10^{-3} \text{m}$		
14	$\frac{0.09 \times 8}{100} \times \frac{1000}{100} = 0.00000000000000000000000000000000$		
	$\varepsilon_{0} = 8.854 \times 10^{-2}; C = \int_{-2}^{-2} \varepsilon_{0} = \int_{-2}^{-2} \varepsilon_{$		
	$2 5 \times 10^{-3}$		
	= 15.9 nF		
15	What is the physical significance of divD? BTL 1		
15	$v \cdot D = p_{v}$. The divergence of a vector flux density is electric flux per unit volume leaving a small volume. This is equal to the volume charge density		
	A parallel plate capacitor has a charge of 10-3 C on each plate while the potential		
	difference between the plates is 1000V.Calaculate the value of capacitance. (Nov		
16	2012)(May2012)BTL 5		
	Given data, $O = 10-3C$, $V = 1000V$, $C = \frac{Q}{2} = \frac{10^{-5}}{10^{-5}} = 1\mu F$.		
	V 10 ³		
	Give the significant physical difference between Poisson's and Laplace equation.		
	(NOV 2011, NOV/DEC14, NOV 2010) DTL 2 Poisson equation: $\nabla^2 V = -0/8$		
	Where $\alpha = V_0$ under the density $\beta = Permittivity of the medium \nabla^2 = I_0 and \nabla^2 = I_0$		
	operator.		
17	$\partial^2 V \partial^2 V \partial^2 V$		
	$+$ $+$ $+$ $= -\rho/\epsilon$ $\partial x^2 + \partial y^2 + \partial z^2$		
	$\partial^2 V + \partial^2 V + \partial^2 V = \partial^2 V = \partial^2 V + \partial^2 V = \partial^2 V + \partial^2 V = \partial^2 $		
	Laplace equation: $\nabla V = 0$; $+$ $+$ $+$ $=0$ $\partial x^2 + \partial y^2 + \partial z^2$		
	The Laplace equation is defined only for the region which is free of charges.		
	State the properties of electric flux lines.(Nov/Dec 2014)BTL 1		
	a. It must be independent of the medium.		
18	c. If a point charge is enclosed in an imaginary sphere of radius R the electric flux must		
	pass perpendicularly and uniformly through the surface of the sphere and		
	d. The electric flux density, the flux per unit area is then inversely proportional to R^2 .		
	What is the electric field intensity at a distance of 20 cm from a charge of 2 μ C in		
19	vacuum? (Nov/Dec 2015)BTL 5		
	$E = \frac{\sqrt{2}}{4\pi \epsilon r^2} V/m$; $E = \frac{2\pi r^2}{4\pi * 8.854 * 10^{-12*0.02^2}} V/m$;		
	$E = 4.49 * 10^7 V/m$		

	Calculate the capacitance per Km between a pair of parallel wires each of diameter			
• •	1cm at a spacing of 50cms. (Nov/Dec 2015)BTL 5			
20	$c = \frac{cA}{d}F/km$; A = 2π rh = $2\pi * 1*10^{-5}*1 = 6.28 * 10^{-5}$ km ² ; d = 50 * 10 ⁻³ km;			
	$c = \frac{8.854 \times 10^{-12} \times 6.28 \times 10^{-5}}{50 \times 10^{-5}} \text{ F/km} = 1.112 \times 10^{-4} \text{ F/km}.$			
	Find the electric field intensity in free space if D=30az C/m ² . (April /May 2015)BTL			
21	5			
	D= ; $E = \frac{D}{2}$; $E = \frac{30}{2054 + 10^{-12}} = 3.388 \times 10^{12} \text{ V/m}$			
	e 8.854*10			
	What is the practical significance of Lorentz's Force?(April /May 2015)(Nov/Dec			
	2015)BTL 1			
	When an electric charge element is moving in a uniform magnetic field (B) with velocity			
22	V, the charge experience a force (dF). This force is called as Lorentz's force.			
	$dF = dQVBsin\theta$, θ is angle between V and B.			
	The direction of lorentz's force is maximum if the direction of movement of charge is			
	perpendicular to the orientation of field lines.			
23	Find the capacitance of an isolated spherical shell of radius a. (Nov 2016)B1L 5			
	$C = 4\pi\epsilon r$			
	Find the magnitude of D for a dielectric material in which E=0.15MV/m and ε_r =5.25.			
24	(Nov 2016)BTL 5			
	$; D = 8.854 \times 10^{-12} \times 5.25 \times 0.15 \times 10^{\circ} = 6.9/\mu V/m$			
25	Define capacitor and capacitance. (May 2016)B1L 1			
25	Capacitor is a passive element that stores electrical energy in an electric field.			
	Capacitance is the ability of a body to store an electric charge.			
	PARI * B			
	Derive the expression for energy and energy density in the static electric field.(Nov 2013, New 2015, New 2018) (13 M) DTL 2			
	2015, Nov 2015, Nov 2018) (15 NI) D L 2 Answer: Page 2.24 Dr. P. Denenjeven			
	Energy: (7 M)			
	\sim Canacitor stores the electrostatic energy			
	 Voltage connected across the capacitor capacitor charges 			
	 Potential is defined as work done per unit charge. 			
	\rightarrow V = dW/dQ			
	$\rightarrow dW = V. dQ$			
	\blacktriangleright but $V_{c} = Q/C$			
1.	\succ W = $\frac{QQ}{Q} dQ$			
	$W = O^2/2C$			
	$E = \frac{1}{2} \sum_{i=1}^{n} $			
	$Energy = \frac{1}{2} C V^2$			
	Energy Density: (6 M)			
	\succ Consider a elementary cube of side Δd .			
	$\blacktriangleright \Delta C = \varepsilon A / \Delta d = \varepsilon \Delta d$			
n	T IEDDIAAD/ECE/Dr. Draiith Drahbakar/II nd Vr/SEM 04 /E8451/EI ECTDOMACNETIC EILEDS / UNIT 1 5/OB : Kave/Var 2 0			

```
4.31
```


	Find t	the potential at a point (3,5,2) due to two-point charges one located at (2,0,0)		
	and the other at (-2,0,0). The charges are 4 µc AND -5 µc respectively. (6 M) BT Answer: Page - 2.30 - Dr. P. Dananjayan			
4		r 1 = 7.35 m		
4.		$\Gamma 2 = 5.48 \text{ III}$ $VA = O/4\pi c_0 r_1 = -6122 \text{ V} (2 \text{ M})$		
		$VA = Q/4\pi\epsilon_0 r_1 = -6122$ V (2 M) $VB = Q/4\pi\epsilon_0 r_2 = 6569$ V (2 M)		
		V = VA + VB		
	×	Answer $-447 \text{ V} (2 \text{ M})$		
	Derive the Poisson's and Laplace's Equations. (May/June 2014, Nov/Dec 16,			
	April/	May 2018) (13 M)BTL 1		
	\succ	$\nabla \cdot D = \rho_{v}$; $D = \varepsilon E$		
	\succ	$\nabla \cdot (\varepsilon E) = \rho_{\nu}$		
	\succ	$\mathcal{E} \cdot \nabla \cdot E = \rho_{\nu}$		
	\succ	$\nabla \cdot E = \rho_{\underline{v}}$		
	\triangleright	\mathcal{E} $E = -\nabla V$		
	\checkmark	$\nabla \cdot (-\nabla V) = \frac{\rho_{\nu}}{c}$		
	\triangleright	$\nabla . \nabla V = \frac{\rho_y}{\rho_y}$		
	≻	$\nabla^2 V = -\frac{\rho_v}{\rho_v}$ This is Poisson's equation.(6 M)		
	\triangleright	ε In a certain region, volume charge density is zero, $\rho = 0$ which is true for		
5.		dielectric medium.		
	\succ	Then the Poisson's equation takes the form,		
	\succ	$\nabla^2 V = 0 \nabla^2 V$ is laplacian of 'V'		
	\succ	This is special case of Poisson's equation and is called Laplace equation.		
	A .	∇^2 Operation / Laplace equation in different co-ordinate system:		
		The potential 'V' can be expressed in any of the 3-co-ordinate system as		
		$V(x, y, z), (r, \phi, z) \& (r, \theta, \phi).$		
		Cartesian co-ordinate system or Rectangular co-ordinate system		
	Þ	$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$		
	\succ	Cylindrical co-ordinate system		
	≻	$\nabla^{2}V = \frac{1}{r} \frac{\partial}{\partial r} \left(\begin{array}{c} \partial V \\ r \\ \partial r \end{array} \right) + \frac{1}{r^{2}} \left(\begin{array}{c} \partial^{2}V \\ \partial \phi^{2} \end{array} \right) + \frac{\partial}{\partial z^{2}} = 0$		
	\succ	Spherical co-ordinate system		
		$\nabla^{2}V = \frac{1}{r} \frac{\partial}{\partial r} \left(\begin{array}{c} \partial V \\ + \\ \partial r \end{array} \right) \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\begin{array}{c} \partial V \\ + \\ \partial \theta \end{array} \right) \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}V}{\partial \theta^{2}} = 0 (7M)$		

1

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

PART * C If $V = 2x^2 y + 20z - \frac{4}{x^2 + y^2}$ V, find electric field & flux density at P(6,-2,3). (7 M) BTL 5 Answer: Page - 2.35 - Dr. P. Dananjayan @Solution: $E = -\nabla V$ $= -\left[\bar{a}_x \frac{\partial}{\partial x} + \bar{a}_y \frac{\partial}{\partial y} + \bar{a}_z \frac{\partial}{\partial z}\right] \left[2x^2 y + 20z - \frac{4}{x^2 + y^2} \right]$ $= -\left[\bar{a}_x \left(4xy + \frac{8x}{(x^2 + y^2)^2}\right) + \bar{a}_y \left(2x^2 + \frac{8y}{(x^2 + y^2)^2}\right) + \bar{a}_z 20\right]$ E(6, -2.5, 3) = -[(-60 + 0.0268) $\bar{a}_x + (72 - 0.012) \bar{a}_y + 20 \bar{a}_z$ $D = \varepsilon_0 E$ (4M) D(6, -2.5, 3) = 8.854 × 10^{-12} × [59.97 $\bar{a}_x - 71.99 \bar{a}_y - 20 \bar{a}_z]$ $= 0.53 \bar{a}_x - 0.637 \bar{a}_y - 0.177 \bar{a}_z \text{ nc/m}^2$ (3 M)

	Given an electric field $E = -\frac{6y}{2}\hat{a}_{x} + \frac{6}{2}\hat{a}_{y} + 5\hat{a}$ W/m, find the potential difference			
	Potential difference $V_{AB} = -\int_{B}^{A} E \cdot dl$			
	$= -\int_{4}^{-7} -\frac{6y}{x^2} dx - \int_{1}^{2} \frac{6}{x} dy - \int_{2}^{1} 5 dx$			
3.	$= 6 y \left[\frac{-1}{x} \right]_{4}^{-7} - \frac{6}{x} \left[y \right]_{1}^{2} - 5 \left[x \right]_{2}^{7}$			
	$=\frac{66}{28}y-\frac{6}{x}+5$			
	x = 4, y = 1			
	$v_{AB} = 2.357 - 1.5 + 5 = 5.857$ volts (8 M)			
	Civen that the notential $v^{-120 \sin \theta}$ find the F and V at $r = 3, \theta = 60, \phi = 25$ For spherical co-ordinates,			
	$\nabla V = \frac{\partial V}{\partial r} \overline{a}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \overline{a}_\theta + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \overline{a}_\phi$			
	$\frac{\partial \mathbf{V}}{\partial r} = \frac{-240\sin\theta}{r^3}$			
	$\frac{\partial V}{\partial \theta} = \frac{120 \cos \theta}{r^2}$			
	$\frac{\partial \mathbf{V}}{\partial \mathbf{\phi}} = 0$			
4.	$\nabla V = \frac{-240 \sin \theta}{r^3} \overline{a}_r + \frac{120 \cos \theta}{r^3} \overline{a}_{\theta}$			
	$E = -\nabla V = \frac{240 \sin 60^{\circ}}{3^3} \overline{a}_r - \frac{120 \cos 60^{\circ}}{3^3} \overline{a}_{\theta}$			
	$= 7.7 \overline{a}_r - 2.22 \overline{a}_{\theta}$			
	$ \mathbf{E} = \sqrt{(7.7)^2 + (2.22)^2} = 8.014 \text{ V/m}$ (8 M)			
	Given $V = x^2y + 10 z + 2 \log (x^2 + y^2)$ find V, E, D at (1, 2, 3). (15 M) BTL			
5	(i) $V = x^2 y + 10 z + 2 \log (x^2 + y^2)$			
5.	$V(1, 2, 3) = 1 \times 2 + 10 \times 3 + 2 \log (1 + 4) = 2 + 30 + 2 \log (5)$			
	$= 32 + 2 \log 5 = 33.4 \text{ V} $ (3M)			

	$(ii) \qquad \mathbf{E} = -\nabla \mathbf{V}$			
	$= -\left[\overline{a}_x \frac{\partial}{\partial x} (x^2 y + 2 \log (x^2 + y^2)) + \overline{a}_y \frac{\partial}{\partial y} (x^2 y + \frac{\partial}{\partial y} (x^2 y + y^2)) + \overline{a}_y \frac{\partial}{\partial y} (x^2 y + y^2)\right]$			
	$2 \log (x^2 + y^2)) + \overline{a}_z \frac{\partial}{\partial z} (10 z)$			
	$= -(4.8 \ \overline{a}_x + 2.6 \ \overline{a}_y + 10 \ \overline{a}_z) \ V/m $ (4 M)			
	(iii) $\mathbf{D} = \mathbf{\epsilon} \cdot \mathbf{E}$			
	$\mathbf{D} = \varepsilon_0 \left[\left(2 xy + \frac{4x}{x^2 + y^2} \right) \overline{a}_x + \left(x^2 + \frac{4y}{x^2 + y^2} \right) \overline{a}_y + 10 \overline{a}_z \right]^{\prime}$			
	$D(1, 2, 3) = -8.854 \times 10^{-12} (4.8 \overline{a}_x + 2.6 \overline{a}_y + 10 \overline{a}_z) c/m^2 $ (4 M)			
	$\nabla \cdot \mathbf{D} = -\varepsilon_0 \left[\vec{a}_x \frac{\partial}{\partial x} + \vec{a}_y \frac{\partial}{\partial y} + \vec{a}_z \frac{\partial}{\partial z} \right] $			
	$= \left[\bar{q}_{x} \left(2xy + \frac{4x}{x^{2} + y^{2}} \right) + \bar{a}_{y} \left(x^{2} + \frac{4y}{x^{2} + y^{2}} \right) + \bar{a}_{z} (10) \right]$			
	$= -\varepsilon_0 \left[\frac{\partial}{\partial x} (2xy + \frac{4x}{x^2 + y^2}) + \frac{\partial}{\partial y} (x^2 + \frac{4y}{x^2 + y^2}) + \frac{\partial}{\partial z} (10) \right]$			
	$\rho_{v}(1, 2, 3) = -8.854 \times 10^{-12} \times 2 \times 2$			
	$= 35.416 \times 10^{-12} \text{ c/m}^3 \tag{4 M}$			
	Calculate the capacitance of a parallel plate capacitor with the following details:			
	Plate area $A = 100 \text{ cm}^2$			
	Dielectric 1, $\varepsilon_{r1} = 4$, $d_1 = 2 \text{ mm}$			
	Dielectric 2, $\varepsilon_{r2} = 3$, $d_2 = 3$ mm			
	If 200 V is applied across the plates, what will be the voltage gradient across each			
	dielectric? (8 M)B1L 5			
-	Answer: Fage - 2.44 - Dr. F. Dananjayan $D = O/A$			
6.	$\mathbf{F} = \mathbf{D} / \mathbf{so} \ \mathbf{sr}$			
	c = 0 / V			
	E = 59 pf (2 M)			
	V1 = 66.66 V(2 M)			
	\blacktriangleright V2 = 133.33 V(2 M)			
	$E_1 = 33.33 \text{ kV/m}(2\text{M})$			
	$E_2 = 44.44 \text{ kV/m}$			
	A parallel plate capacitor with $d = 1$ m and plate area 0.8 m ² and a dielectric relative			
	permittivity of 2.8. A dc voltage of 500 V is applied between the plates. find the			
-	capacitance and energy stored. (8 M)BTL 5			
Answer: Page - 2.61 – Dr. P. Dananjayan				
	\blacktriangleright d = 1m			
	$A = 0.8 m^2$			

	\blacktriangleright $\epsilon r = 2.8$		
	\succ C = ε A / d		
	Energy Stored = $\frac{1}{2}$ C V ² = 0.99 J (8 M)		
	UNIT III MAGNETOSTATICS		
Lorent	tz force, magnetic field intensity (H) - Biot-Savart's Law - Ampere's Circuit Law - H		
due to	straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B		
in free	e space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media		
Bound	ary conditions, scalar and vector potential, Poisson's Equation, Magnetic force, Torque,		
	ance, Energy density, Applications.		
Q. No	Part * A		
	Questions		
	Define magnetic flux and magnetic flux density. BTL 1		
	Magnetic flux:		
	Magnetic flux is defined as the flux passing through any area. Its unit is Weber.		
1	$\Phi = \int B da$ Weber. Magnetic flux density.		
	Magnetic flux density is defined as the magnetic flux density passing per unit area.		
	Its unit is Weber / meter or Tesla. $B = {\Phi \atop A}; B = \mu H$		
Define magnetic Gauss's Law. (May 2019) BTL 1			
2	The total magnetic flux passing thorough any closed surface is equal to zero. $\int_{a} B da = 0$		
	State Biot- Savart law. BTL 1		
	It states that the magnetic flux density at any point due to current element is proportional		
3	to the current element and sine of the angle between the elemental length and the line		
	Joining and inversely proportional to the square of the distance between them.		
	$dB = \frac{\mu_o \mathrm{d} a \mathrm{sm} \sigma}{4 \pi r^2}$		
	State the Lorentz force equation. (Nov 2013) BTL 1		
4	The force on a moving particle due to combined electric and magnetic field is given by		
	$F = Q [E + V \times B]$. This force is called Lorentz force.		
	State Ampere's circuital law. (May 2014, May 2016, Nov 2016) BTL 1		
5	Ampere's circuital law states that the line integral of magnetic field intensity H about any		
	closed path is exactly equal to the direct current enclosed by the path.		
	$\int H .dl = I$		

6	 Distinguish between diamagnetic, paramagnetic and ferromagnetic materials. BTL 1 Diamagnetic: In diamagnetic materials magnetization is opposed to the applied field. It has magnetic field. Paramagnetic: In paramagnetic materials magnetization is in the same direction as the field. It has weak magnetic field. Ferro magnetic: In Ferromagnetic materials is in the same direction as the field. It has strong magnetic field. 			
	Compar	e scalar magnetic potential with	vector magnetic potential.(Nov/Dec 2014	4)
-	BTL 1	Scalar magnetic notential	Magnetic vector notential	
/		Scalar magnetic potential		
		It is defined as dead quantity whose negative gradient gives the magnitude intensity if there is no current source present. $H = -\nabla V$ where, Vm is the	It is defined as that quantity whose curl gives the magnetic flux density. $B = \nabla X A$; where A is the magnetic vector potential.	
		magnetic scalar potential. $V_m = -\int H dl$	$A = \int_{4\pi}^{\mu} \iiint_{v} r dr \text{Web / m}$	
8	A solenoid with a radius of 2cm is wound with 20 turns per cm length and carries 10mA. Find H at the centre if the total length is10cm. BTL 5 Given data,N=nl = 20 x 10 = 200 turns; l =10 X 10 ⁻² m; I = 10 x 10 ⁻³ A; $H = {}^{NI} = 20$ AT/m.			
9	Determine the force per unit length between two long parallel wires separated by 5 cm in air and carrying currents 40A in the same direction. BTL 5 Force / length = $\mu_o I_1 I_2$ = 40×40 $2\pi D$ - $2\pi \times 5 \times 10^{-2}$ $x 4 \pi x 10^{-7}$ = 6.4×10^{-3} N/m			
	Define n	nagnetic susceptibility and their	relation with relative permeability BTL	1
	Magnetia	c susceptibility is defined as the ra	tio of magnetization to the magnetic field	1
10	intonaite	It is dimensionless quantity	M	
10	mensity	. It is unitensionless quantity. χ_m =	=	
	$\mu_r = 1 + \chi_m$ Where μ_r is relative permeability; χ_m is susceptibility			
	Give fou	ir similarities between Electrost	atic field and Magnetic field. (Nov/Dec 20)14)
	BTL 1			
		Electrostatic field	Magnetic field	
11	1.	Electric field intensity E (1. Magnetic field intensity H (Amp/m)	
**	vol	lts/m)	2. Magnetic flux density $B=\mu H$ (web /	
	2.]	Electric flux density D=EE c/m	m2)	
	3.	Energy stored is 1/2CV ²	3. Energy stored is $1/2LI^2$	
	4. (Charges are rest	4. Charges are in motion	

	What will be effective inductance, if two induct	ors are connected in (a) series and (b)			
	paramet: DIL 2 (a) For series $I = I + I_0 + 2M$				
10	(a) FOI SETIES $L = L_1 + L_2 \pm 2M$				
12	(b)For Parallel L = $\frac{L_{1_2} - M}{2}$				
	$L_1 + L_2 \pm 2M$				
	Where, (+) sign for aiding , (-) sign for opposition				
	Distinguish between solenoid and toroid. BTL 1				
13					
	Solenoid	Toroid			
	Solenoid is a cylindrically shaped coil	If a long, slender solenoid			
	consisting of a large number of closely	is bent into the form of a			
	spaced turns of insulated wire wound	ring and thereby closed on			
	usually on a non – magnetic frame.	itself, it becomes toroid			
	Inductance of solenoid is given by	Inductance of solenoid is			
	$\mu N^2 A$	given by			
	L =	$\mu_{\rho}N^{2}A \mu_{\rho}N^{2}r^{2}$			
	t	$L = \frac{1}{2\pi R} = \frac{1}{2R};$			
	Define magneto-static energy density. (Nov 201	1) BTL 1			
14	It is defined as the ratio of magnetic energy per un	it volume.			
	Write the expression for the inductance per un	it length of a long solenoid of N turns			
	and having a length 'L' meter carrying a curre	nt of I amperes. (May/June 2014, Nov			
15	2018) BTL 1				
	$H = \frac{M}{[\cos \theta - \cos \theta]}$				
	different normeability (May 2012) BTL 1	etween two magnetic materials of			
16	different permeability. (May 2012) B1L 1 H $_{1}$ -H $_{2}$ B $_{2}$ -B $_{2}$				
10	$\Pi_{t1} = \Pi_{t2}$, $\Pi_{n1} = \Pi_{n2}$, $\Pi_{t1} = \Pi_{t2}$, $\Pi_{t2} = \Pi_{t2}$, $\Pi_{t3} = \Pi_{t2}$, $\Pi_{t3} = \Pi_{t3}$, Π_{t3} , Π_{t3				
	B_{n1} , B_{n2} are the normal magnetic flux density in region 1 and 2 respectively.				
	Write down the magnetic boundary conditions.	(Nov 2013, May 2016) BTL 1			
	1. The tangential component of magnetic field int	ensity is continuous across the			
17	boundary. $H_{t1} = H_{t2}$.				
2. The normal component of magnetic flux density is continuous across the boun					
	= B _{n2}				
18	State Ohm's law for magnetic circuits. (Nov	2012, Nov/Dec14) BTL 1			
	Sum of Magnetic motive force (mmf) in a closed p	bath 1s zero.			
10	State Lorentz Law of force. (May 2012)	BILI			
19	When a current carrying conductor is placed in a magnetic field, it experiences a force				
	given by, $dF = I \times B dI = BI dI \sin\theta$ Newton.				

	State the law of conservation of magnetic flux. (Nov 2011) BTL 1
	An isolated magnetic charge does not exist. Thus, the total flux through a closed surface
20	is zero.
	$\iint B ds = 0$ This is called as law of conservation of magnetic flux.
	Determine the value of magnetic field intensity at the centre of a circular loop
	carrying a current of 10A. The radius of the loop is 2m. (Nov/Dec 2014) BTL 5
	$H = {}^{I} = {}^{10} = 2.5 A/m$
	What is the mutual inductance of two inductively tightly coupled coils with self -
22	inductance of 25mH and 100mH: (Nov/Dec2015) B1L 5
23	$L_1 = 25 \text{mH}, L_2 = 100 \text{mH}, \text{M} = \text{K}$ $L_1 L_2 = 25 \times 100 = 50 \text{mH}$
	Find the force of interaction between two charges 4*10 ⁻³ and 6*10 ⁻³ spaced 10cm
	apart n kerosene ($\varepsilon_r = 2$).(April /May 2015) BTL 5
	Force of repulsion = $\frac{Q_1 Q_2}{4\pi \epsilon_0 R^2} a_r = 1.07908 \text{ N}$
	Find the maximum torque on an 100 turns rectangular coil of 0.2 m by 0.3m,
24	carrying current of 2A in the field of flux density 5 Wb/m ² .(April /May 2015) BTL 5
	$T_{max} = NBIA = 60 Nm$
25	A conductor 4m long lies along the y-axis with the current of 10A in a _y direction, if
25	the field is $B=0.05a_x$ resia. Calculate the force on the conductor. (Nov 2010) BTL 5 $E = UB \sin \theta = 10 \times 4 \times 0.05 \times \sin 90 = 2N$
	$T = HD \sin \theta = 10 \times 4 \times 0.03 \times \sin \theta = 20$
-	Part * B
	Derive an expression for the magnetic field intensity and magnetic flux density at a point P in a modium of normoability (u) due to (i) an infinitely long current corrying
	conductor at a distance 'r' meters from the point (ii) a finite length conductor. (April
	2015. Nov 2011. Nov 2012. May 2012. Nov 2018) (13 M) BTL 2
	Answer: Page –3.3- Dr. P. Dananjayan
	Consider an infinite long straight conductor along z-axis.
	Current passing through a conductor is a direct current of I.
1	> The field intensity H at the point 'p' is to be calculated, which is at the
	distance 'r' from the z-axis.
	Consider small differential element at point 1, along the z-axis at a distance z
	from origin.
	I d L = I dz a (4 M)

4.43

	Derive an expression for Scalar magnetic potential and vector magnetic potential.
9.	(13 M) (Nov 2018)BTL 2
	Answer: Page - 3.20 - Dr. P. Dananjayan

Scalar Magnetic Potential: Ampere's circuital law states that the line integral of magnetic field intensity H about any closed path is exactly equal to the direct current enclosed by the path. (2 M) $\oint H . dl = I$ If there is no current is enclosed. J = 0 $\oint H . dl = 0$ Magnetic field H can be expressed as negative gradient of a scalar function. $H = -\nabla V_m$ where, V_m is called scalar magnetic potential. $V_m = - \int H \cdot dl$ Magnetic field H can be expressed as negative gradient of a scalar function. $H = -\nabla V_m$ where, V_m is called scalar magnetic potential. $V_m = -\int H \cdot dl$ This scalar potential also satisfies Laplace's equation. In free space, $\nabla \cdot \mathbf{B} = 0$ $\mu_0 \nabla \cdot \mathbf{H} = 0$ But, $H = -\nabla V_m$ $\mu_0 \nabla \cdot (-\nabla V_{ee}) = 0$ $-\mu_0 \nabla^2 \mathbf{V}_m = \mathbf{0}$ $\nabla^2 V_m = 0$ (5 M)**Vector Magnetic Potential** Divergence of vector is scalar, vector potential is expressed in terms of curl.(2 M) *i.e.*, $\nabla \cdot \mathbf{B} = 0$ $B = \nabla \times A$ where, A is magnetic vector potential. Take curl on both sides, $\nabla \times B = \nabla \times \nabla \times A$ By the identity, $\nabla \times \nabla \times A = \nabla (\nabla \cdot A) - \nabla^2 A$

But $\nabla \times B = \mu J$ $\nabla (\nabla \cdot A) - \nabla^2 A = \mu J$ For the steady dc, $(\nabla \cdot A) = 0$ then, $-\nabla^2 A = \mu J$ $\overline{a}_x \nabla^2 A_x + \overline{a}_y \nabla^2 A_y + \overline{a}_z \nabla^2 A_z = -\mu (\overline{a}_x J_x + \overline{a}_y J_y + \overline{a}_z J_z)$ Equating $\nabla^2 A_x = -\mu J_x$ $\nabla^2 A_y = -\mu J_y$ $\nabla^2 A_z = -\mu J_z$ The general, magnetic vector potential can be expressed as $A = \frac{\mu}{4\pi} \iiint \frac{J}{r} d\nu$ (4 M)

The internal flux linkage of the conductor A is given by

$$\phi_1 = \frac{\mu_0 \, \mu_1 \, I}{8\pi}$$

The external flux linkage with the conductor A is given by

$$\phi_2 = \frac{\mu_0 I}{2\pi} ln\left(\frac{d}{a}\right)$$

The total flux linkage of A is $\phi = \phi_1 + \phi_2$

$$=\frac{\mu_0\,\mu,\,\mathrm{I}}{8\pi}+\frac{\mu_0\,\mathrm{I}}{2\pi}\ln\left(\frac{d}{a}\right)$$

 $L_{A} = \frac{\phi}{I}$ $L_{A} = \frac{\mu_{0}}{4\pi} \left[\frac{\mu_{r}}{2} + 2 \ln \left(\frac{d}{a} \right) \right] H/m$ JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

	Similarly for conduct	or B, the total flu	x linkage is	201	
	$\phi = \frac{\mu_0 \mu_r \mathrm{I}}{8\pi} + \frac{\mu_0 \mathrm{I}}{2\pi} \ln\left(\frac{d}{a}\right)$				
	The total inductance	of conductor B is		839	
		L _B =	$\frac{\mu_0}{4\pi}\left[\frac{\mu_r}{2}+2\ln\right]$	$\left(\frac{d}{a}\right)$	
	$L = L_A + L_B$	1. (1/-)]			
	$\mathbf{L} = \mu_0 / 4\pi * [\mu r + 4]$	$\ln \left(\frac{d}{a} \right)$	PART * C	(6 Г	VI)
	Evaluate the induc	tance of a soler	$\frac{1}{1}$ $\frac{1}$	rns wound unifor	mly over a length
	of 0.5 m on a cylin	ndrical paper (tube 4 cm in d	iameter. The me	dium is air. (Nov
	2016) (8 M) BTL 3				
1	Answer: Page - 3.7 () - Dr. P. Danai	njayan		
1.	N = 2500 l = 0.5 m				
	d = 4 cm				
	$A = \pi d^2/4 = 12.566$	* 10 ⁻⁴ (4 M)			
	Inductance $L = \mu 0 N$	$^{2}A / l = 19.7386$	5 mh (4 M)		•
	At a point $P(x,y,z)$ ($(Ay + 3y + 2z) \cdot A_{z} =$	the components $(5x \pm 6y \pm 3z)$	s of vector maging and $\Lambda_{-} = (2\mathbf{x} +$	netic potential A a 3y ± 5z) Determi	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$(4x + 3y + 2z)$; $A_y = (5x + 6y + 3z)$ and $A_z = (2x + 3y + 5z)$. Determine magnetic flux density B at any point P. (7 M) BTL 3				
	Г Г	ā	-		T
•	1020 1020 1020 1020	- <u>-</u>	a _y	a_z	
2.	$B = V \times A =$	$\frac{\partial}{\partial r}$	<u>d</u>	<u>∂</u>	
	4	r + 3v + 2z	5 * + 6 2	∂z	
		x · 5 y · 22	3x+6y+3z	2x + 3y + 5z.	(2 M)
	B = 2 a (5 M)				
	In cylindrical co-o	rdinates, $A = 50$	$p \rho^2 \hat{a}$ Wb/m is	a vector magnet	tic potential in a
	certain region of fro	e space. Find t	he magnetic fie	ld intensity H, ma	gnetic flux
	density B and current density J. (15 M) BTL 5				
		$\overrightarrow{a_{\rho}}$ $\overrightarrow{\rho a_{\phi}}$	$\overrightarrow{a_z}$		
	$\mathbf{B} = \nabla \times \mathbf{A} = \frac{1}{2}$	<u><u> </u></u>	<u>∂</u>		
	þ		$\frac{\partial z}{\partial \rho^2}$		
3.	1 . Га	, ບໍ່ບັ່ງ] →[∂	1		
	$= \frac{1}{\rho} \overrightarrow{a_{\rho}} \left[\frac{\partial}{\partial \phi} \right] (5)$	$\left[0 \rho^2\right] - a_{\phi} \left[\frac{\partial}{\partial \rho}\right]$	(50 ρ ²)		
	$= 0 - 100 \rho \overrightarrow{a_{\phi}}$				
	$\mathbf{B} = -100 \rho \stackrel{\rightarrow}{a_{\phi}} \mathbf{W}$	/b/m ²	(7 N	(I)	
			(7.14	±;	

UNIT IV TIME VARYING FIELDS AND MAXWELLS EQUATIONS

Magnetic Circuits - Faraday's law – Transformer and motional EMF – Displacement current - Maxwell's equations (differential and integral form) – Relation between field theory and circuit theory – Applications.

Q. No	Part * A				
1	State Faraday's law of electromagnetic induction. (May 2016, Nov 2016) BTL 1 Faraday's law states that electromagnetic force induced in a circuit is equal to the rate of change of magnetic flux linking the circuit. $\text{Emf} = \frac{d \Phi}{dt}$				
2	Define mmf and reluctance. BTL 1 Magnetic motive force (mmf) is given by mmf = flux x reluctance mmf = Φ^{\Re} Amp.turns. Reluctance is the ratio of mmf of magnetic circuit to the flux through it. $\Re = \frac{mmf}{flux (\Phi)}$. It is also written as $\Re = \frac{l}{\mu A}$; Where <i>l</i> is the length, A is the area of cross- section. u is permeability				
3	What is the expression for energy stored and energy density in magnetic field?BTL1 Energy $W = \frac{1}{2}LI^2$; WhereL is the inductance, I is the current. Energy density $(W) = \frac{1}{2}BH = \frac{1}{2}\mu H^2$				
4	State Lenz's law.BTL 1 Lenz's law states that the induced emf in a circuit produces a current which oppose the change in magnetic flux producing it.emf = $-\frac{d \Phi}{dt}$				
5	What is meant by Displacement current? (Nov 2013, May 2016, Nov 2018) BTL 1 Displacement current is nothing but the current flows through the Capacitor. $I_c=C dV/dt$.				
6	State Ampere's circuital law. Should the path of integration be circular?BTL 1 The integral of the tangential component of the magnetic field strength around a closed path is equal to the current enclosed by the path. $\int dI = I$. The path of integration must be enclosed one. It must be any shape and it need not be circular alone.				

 $JIT-JEPPIAAR/ECE/Dr.\ Prajith\ Prabhakar/II^{nd}\ Yr/SEM\ 04\ /E8451/ELECTROMAGNETIC\ FILEDS\ /UNIT\ 1-5/QB+Keys/Ver\ 2.0$

	Write the fundamental postulate for electromagnetic induction. BTL 1			
	A changing magnetic flux (Φ) through a closed loop, produces an emf or voltage at the			
terminals as given by $v = -\frac{d\Phi}{d\Phi}$ where the voltage is the integral of the ele				
_				
7	around the loop. For uniform magnetic field $\Phi = B.A$ where B is the magnetic flux density			
	∂B			
	and A is the area of the loop. $v = \int E dl = -\iint_{\partial t} ds$. This is Faraday's law. It states that			
	the line integral of the electric field around a stationary loop equals the surface integral of			
	the time rate of change of the magnetic flux density B integrated over the loop area.			

	Write down the Maxwell's equation in point form.BTL 1				
8	From Ampere's Law				
	$\nabla XH = J + \frac{\partial J}{\partial t}$				
	From Faraday's Law				
	$\nabla XE = - \frac{\partial B}{\partial B}$				
	∂t				
	From Electric Gauss's Law, $\nabla . D = \rho$,				
	From Magnetic Gauss's Law, $\nabla B = 0$				
	From Ampere's Law				
	$\begin{pmatrix} \partial \mathbf{D} \end{pmatrix}$				
	$\oint H.dl = \iint \left \begin{array}{c} J + {\partial t} \\ J + {\partial t} \end{array} \right $				
	From Faraday's Law				
9	$\oint E.dt = -\iint \frac{ds}{gt}$				
	From Electric Gauss's Law				
	$ D.ds = \iiint \rho dv $				
	from Magnetic Gauss's Law				
	Mention four similarities between electric circuit and magnetic circuit.(Nov/Dec 2014) BTL 1				
	Electric circuit Magnetic circuit				
	1.emf (volts)1. mmf(Amp-turns)				
	$2.\text{current} = \underline{\qquad}$				
10	resistance 2 .magnetic flux = $\frac{mmr}{mmr}$				
	3. resistance R = $\frac{\rho_1}{r_1}$				
	A 3. Reluctance $\Re = \frac{1}{2}$				
	4. Conductance $G = \frac{1}{R}$				
	4. Permeance $P = \frac{1}{\Re}$				
	Write down the Maxwell's equations in point phasor forms. BTL 1				
	$\nabla xH = J + j\omega D = (\sigma + j\omega\varepsilon) E$				
11	$\nabla xE = -j\omega B = -j\omega\mu H$				
	$\nabla . D = \rho$				
	$\nabla .B = 0$ Write the expression for total current density (May 2012)BTL 1				
12	$\nabla .B = 0$ Write the expression for total current density. (May 2012)BTL 1 J=J C + J D				

13	Why $\nabla B = 0$ and	$\nabla \mathbf{x} \mathbf{E} = 0.$? BTL 1
----	------------------------	---

	$\nabla B = 0$ States that there is no magnetic char	ge. The net magnetic flux emerging through			
	any closed surface is zero.				
	In a region in which there is no time changing magnetic flux, the voltage around the loop				
		$\partial B = 0$ (investigation of 1)			
	would be zero. By Maxwell's equation, V x	$E = - \underline{=} 0$ (irrotational).			
	Why ∇ D = 0.2BTL 4				
14	In a free space there is no charge enclosed l	by the medium. The volume charge density is			
14	zero By Maxwell's equation $\nabla D = a = 0$	sy the meanur. The volume charge density is			
	Et al. C: La transformed to $D = p_y = 0$.	·			
15	Find the emi induced in a circuit having through it vortion at the rate of 5000 A (good	(Now 2011) DTL 2			
15	E-L $di/dt = 700 \text{ mH} \times 5000 \text{ A/sec} = 3.5 \text{ volts}$. (NOV 2011)B1L 5			
	Compare the relation between Circuit th	eary and Field theory (Nov/Dec 2014 Nov			
	2018)BTL 1				
	Circuit Theory	Field Theory			
	This analysis originated by its own.	Evolved from Transmission theory.			
	Applicable only for portion of RF	Beyond RF range (Microwave)			
	range.				
	The dependent and independent	nt Not directly, through E and H.			
	parameters I, V are directly obtained				
	for the given circuit.				
16	Parameters of medium are no	bt Parameter of medium (permittivity			
10	involved.	and permeability) are involved in			
		the analysis.			
	Laplace Transform is employed.	Maxwell's equation is employed			
	Z, Y, and H parameters are used.	S parameter is used.			
	Low power is involved.	Relatively high power is involved.			
	Simple to understand.	Needs visualization ability			
	Two-dimensional analysis	Three – dimensional analysis			
	Frequency is used as reference.	Wave length is used as reference			
	Lumped components are involved	Distributed components are			
		involved.			
	Distinguish between conduction and disp	Dacement current.(Nov 2011, Nov 2018)BTL			
	1				
	Conduction current.	Displacement current			
17	Conduction current is nothing	Displacement current is nothing but			
17	but the current flows through	the current flows through the			
	the conductor.	Capacitor.			
	$I_c = \sigma E.$	$I = \int_{a}^{b} \int_{a}^{b} ds$			
		$d = \int \frac{1}{\partial t} \frac{\partial t}{\partial t}$			
	A conductor of 1m length is moved with	a velocity of 100m/sec. perpendicular to a			
18	field of 1 tesla. What is the value of emf i	nduced?(Nov 2012)BTL 3			
	$E_{induced} = \mathcal{V}_{l}B$, where $\mathcal{F}_{100m/sec}$, $\mathcal{F}_{l}m$, $B = 1$ t	esla, Therefore E _{induced} =100x1x1 =100			
19	What is the significance of displacement	current?(Nov 2012)BTL 1			
II	T-IEPPIAAR/ECE/Dr Praiith Prabhakar/II nd Yr/SEM 04 /E8451/F	ELECTROMAGNETIC FILEDS /UNIT 1-5/OB+Keys/Ver 2.0			

	The displacement current I_D through a specified surface is obtained by integration of the				
	normal component of J_D over the surface.				
	∂D				
	$I_d = \int J_D ds = \int \int ds ds$				
	s $c t_s$				
	∂E				
	$I_d = \varepsilon - ds$				
	Ot This is a second schick diversity of a second diversity of a				
	This is a current which directly passes through the capacitor.				
	A loop is rotating about the Y axis in a magnetic field B= B ₀ sinwt i web/m ² . What is				
20	the type the voltage induced in the loop? (May 2012)BTL 3				
20	Motional or Generator emf is induced in the conductor as the conductor position varies				
	with respect to time.				
	Calculate the characteristics impedance of free space and of the medium whose				
	relative normeghility is 1 and relative normittivity is 3 (New				
	relative perimetability is 1 and relative perimitability is 5. (Nov 2012) (No 2015) DTL 2				
	2012)(N0V/Dec2015)B1L 3				
21	E μ				
	$\eta = - = -$				
	11 2				
	$4\pi \times 10^{-7} \times 1$				
	$=\sqrt{\frac{217.4}{8.854\times10^{-12}\times3}}$				
	A parallel plate capacitor with plate area of 5 cm ² and plate separation of 3 mm has				
	a voltage 50 sin 10^3 t V applied to its plates. Calculate the displacement current				
	a voltage to sim 10 t v applied to his plates. Subclude the displacement current assuming $= 2 E_{\rm s}$ (Nov/Dec2015)BTL 3				
	$\partial D = \partial B = V$				
22	$I_d = \frac{dE}{dt} = \frac{E}{dt}; E = \frac{E}{dt}$				
	$I = e \partial v = 2e_0 \partial v$				
	$I_d = \frac{1}{d} \frac{\partial t}{\partial t} = \frac{1}{12} \frac{d}{\partial t} \frac{\partial t}{\partial t}$				
	$=\frac{2 \times 8854 \times 10^{-12}}{2} \frac{\partial (50 \sin 10^{8} t)}{\partial (50 \sin 10^{8} t)} = 2.951 \times 10^{-4} \cos 10^{3} t \text{ A/m}^{2}$				
	3x10 ⁻³ ∂t Define mutual inductance and self inductance (App/May2015) DTL 1				
	Mutual inductance and sen-inductance. (Api/May2015) D1L 1				
	The mutual inductance between two coils is defined as the ratio of induced magnetic flux $N = 0$				
	linkage in one coil to the current through in other coil(M) = $-\frac{N_2 \Phi_{12}}{2}$; Where N is number				
22	of turns in soil Ω , \mathbf{x}_{i} is magnetic flux links in soil Ω and \mathbf{i}_{i} is the surrout through soil 1				
23	of turns in coll 2; Φ_{12} is magnetic flux links in coll 2 and 1_1 is the current through coll 1.				
	Self -inductance.				
	The self -induction of a coil is defined as the ratio of total magnetic flux linkage in the				
	circuit to the current through the coil $(\mathbf{I}) = \frac{N\Phi}{2}$ Where Φ is magnetic flux. Nis				
	circuit to the current through the con $(L) = _$ where Φ is inaghetic flux, it is				
	number of turns of coil: is the current				
	Distinguish between transformer emi and motional emi. (Nov 2013)(Apr/May				
	2015)BTL 1				
24	The emf induced in a stationary conductor due to the change in flux linked with it, is				
4 4	∂B				
	caned transformer emit or static induced emit. $emi = - \iint \frac{\partial f}{\partial t} ds$ eg.				
	Transformer.				

	The emf induced due to the movement of conductor in a magnetic field is called motional			
	emf or dynamic induced emf. emf =- $\oint v \times B dl$ eg. Generator			
	c			
25	Moist soil has conductivity of 10 ⁻³ S/m and E _r =2.5, determine the displacement current density if E=6.0x10 ⁻⁶ sin 9.0x10 ⁹ t (V/m). (Nov 2016)BTL 4			
	$J_D = \varepsilon_0 \varepsilon_r \frac{\partial E}{\partial t} = 8.854 \times 10^{-12} \times 2.5 \times 6 \times 10^{-6} \times 9 \times 10^9 \times \cos 9 \times 10^9 t = 1.195 \times 10^{-6} \cos 9 \times 10^9 t$			
	PART * B			

Maxwell's equation from Magnetic Gauss's law (Maxwell's equation-IV):(3 M) > Magnetic Gauss law states that the total magnetic flux through any closed surface is equal to zero. $\phi = 0$ $\iint B \cdot ds = 0 \dots (7)$ This is Maxwell's equation in integral form from Magnetic Gauss's law. \geq ➢ By applying divergence theorem $\iint_{S} B . d s = \iiint_{V} \nabla . B d v$ (8)Comparing equations (7) and (8) \geq $\iiint \nabla \cdot B = 0$ $\nabla B = 0$ This is Maxwell's equation in differential form or point form from Magnetic \geq Gauss's law. State the boundary conditions of time varying fields at the interface between two dielectric media, between a dielectric medium and a perfect metal. (13 M) BTL 1 Answer: Page : 4.21- Dr. P. Dananjayan Boundary condition:(3M) Tangential component of E is continuous at the surface. \geq > Tangential component of H is continuous at the surface of perfect conductor; otherwise H is discontinuous by an amount equal to linear current density. Normal component of D is continuous if there is no surface charge density, otherwise D is discontinuous by an amount equal to surface current density Normal component of B is continuous at the surface. 2 H_{x2} Medium 1 Medium 2 Ex2 μ1 μ_2 ٤1 62 σ. 02

The integral form of the second Maxwell's equation is

$$\oint \mathbf{E} \cdot dl = \iint_{\mathbf{S}} \frac{\partial \mathbf{B}}{\partial t} \cdot ds$$

This is applied to a rectangle

$$E_{y_1} \Delta y + E_{x_1} \frac{\Delta x}{2} + E_{x_2} \frac{\Delta x}{2} - E_{y_2} \Delta y - E_{x_4} \frac{\Delta x}{2} - E_{x_3} \frac{\Delta x}{2} = \frac{\partial B}{\partial t} \Delta x \Delta y$$

Consider the area of the rectangle is made to approach zero by reducing the width Δx to approach zero.

Then,

$$\mathbf{E}_{y_1} = \mathbf{E}_{y_2}$$

 $\mathbf{E}_{y_1} \Delta y - \mathbf{E}_{y_2} \Delta y = 0$

The tangential component of E is continuous.

The integral form of first Maxwell's equation is

.

$$\oint_{l} \mathbf{H} \cdot dl = \iint_{\mathbf{S}} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) ds$$

Applying to the rectangle,

$$\begin{array}{ll} H_{y_{1}} \Delta y + H_{x_{1}} \frac{\Delta x}{2} + H_{x_{2}} \frac{\Delta x}{2} - H_{y_{2}} \Delta y - H_{x_{4}} \frac{\Delta x}{2} - H_{x_{3}} \frac{\Delta x}{2} = \left(J + \frac{\partial D}{\partial t}\right) \Delta x \ \Delta y \\ \text{If } \Delta x \rightarrow 0, \text{ then } & H_{y_{1}} \Delta y - H_{y_{2}} \Delta y = 0 \\ & H_{y_{1}} = H_{y_{2}} \\ & Lt \\ \Delta x \rightarrow 0 \ J \cdot \Delta x = J_{f} \ A/m \end{array}$$

If the Maxwell's I equation is applied to the rectangle, then

$$H_{y_{1}} \Delta y + H_{x_{1}} \frac{\Delta x}{2} + H_{x_{2}} \frac{\Delta x}{2} - H_{y_{2}} \Delta y - H_{y_{4}} \frac{\Delta x}{2} - H_{y_{3}} \frac{\Delta x}{2} = \left(J + \frac{\partial D}{\partial x}\right) \Delta x \Delta y$$
$$= J \Delta x \Delta y + \frac{\partial D}{\partial x} \Delta x \Delta y$$

$$H_{y_1} \Delta y - H_{y_2} \Delta y = J_i \Delta y$$
$$H - H = J_i$$

Dn2

	Apply for M	axwell's equation Re [⊽ ⊽	× E] = – Re [$j\omega\mu$ H $e^{j\omega t}$ 7 × E = – $j\omega\mu$ H]
	Differ	ential Form	Integral Form	
	$\nabla \times H \simeq (\sigma$	+jωε)Ε	$\oint \mathbf{H} \cdot dl = \iint (\boldsymbol{\sigma} + j \boldsymbol{\omega} \boldsymbol{\varepsilon} \mathbf{E}) d\boldsymbol{\varepsilon}$	r
	$\nabla \times E = -$	<i>j</i> ωμΗ	$\oint \mathbf{E} \cdot dl = -\mu \iint j \omega \mathbf{H} \cdot ds$	
	$\nabla \cdot \mathbf{D} = \mathbf{\rho}$		$\oint \mathbf{D} \cdot ds = \iiint \rho dv$	\mathbf{D}
	$\nabla \cdot \mathbf{B} = 0$	0.0	$\oint \mathbf{B} \cdot ds = 0$	
4	For 1 A conductor current current at 100 MHz. Assur Conduction current $I_C = J_C$ $J_C = \frac{1}{A}$ $E = \frac{J_C}{\sigma}$ Displacement current I_D For copper $\varepsilon_r = 1$, I_D I_D	in copper wire ne for copper of A = 1 Amp $= \sigma E$ $= \frac{1/A}{\sigma} = \frac{0.172}{\sigma}$ $= \omega \epsilon E \cdot A = 0$ $= 2\pi \times 100 \times 10$ $= 9.556 \times 10^{-11}$	e, find the corresponding $s = 5.8 \times 10^7$ mho/m. (7M $\frac{2 \times 10^{-7}}{A}$ V/m $\omega \varepsilon_0 \varepsilon_r E A$ $10^{-9} \times \frac{10^{-9}}{36 \pi} \times \frac{0.172 \times 10^{-7}}{A}$ A Ans. $-\infty$ (3)	displacement) BTL 3 3 M)
5	A parallel plate capacitor v a voltage 100 sin 314 t V assuming $\varepsilon = 10 \varepsilon_0$ (May 201 Answer: Page : 4.32 - Dr. I Displacement current density $J_D = \frac{\partial D}{\partial t} = \varepsilon \frac{\partial E}{\partial t}$ $E = \frac{V}{d}$ $J_D = \frac{\varepsilon}{d} \cdot \frac{\partial V}{\partial t} = \frac{\varepsilon}{d}$	with plate area applied to its 2, Nov 2014, N P. Dananjayan da (100 sin 314)	of 0.01 m ² and plate sep plates. Calculate the dis ov 2018) (8 M) BTL 3	aration of 5 cm has placement current

	$= \frac{100 \varepsilon}{d} \cos (314 t) \cdot 314$					
	$= \frac{100}{5 \times 10^{-2}} \times \frac{10}{36 \pi \times 10^9} \times 314 \cos(314 t)$					
	$= 5.55 \times 10^{-5} \cos(314t) \text{ A/m}^2 \qquad (4 \text{ M})$					
	Displacement current $I_{\rm D} = J_{\rm D} \cdot A$					
	5.55 10-5 0.01 (214.) 4					
	$= 5.55 \times 10^{-5} \times 0.01 \cos(3147) \text{ A}$					
	= $5.55 \times 10^{-7} \cos(314 t)$ A Ans. \sim (4 M)					
	Explain in detail conduction current and displacement currents. (April 2015, Nov					
	2015) (13 M) BTL 1					
	Answer: Page : 4.10 - Dr. P. Dananjayan					
	Conduction current:(6 M)					
	Current flowing through resistive element.					
	\blacktriangleright Ic = V/R					
	$R = \rho 1/A$					
	$ ightarrow R = 1/\sigma A$					
	\blacktriangleright V = E 1					
6	\blacktriangleright Ic = V/R = El/l = E σ A					
Ũ	\blacktriangleright Jc = Ic/A = σE					
	\Rightarrow J = σE					
	Displacement Current: (/ M)					
	Current flowing through capacitor element.					
	$P I_D = dQ/dt = C dV/dt$					
	$\mathbf{F} = \mathbf{c} \mathbf{A}/\mathbf{d} + \mathbf{d}\mathbf{V}/\mathbf{d}t$					
	$P = \frac{1}{2} - \frac{1}{2} \frac{1}{4} \frac{1}{4$					
	$ I_{\rm D} = I_{\rm D}/\Delta $					
	$J_{D} = a_{D}/At$					
	Do the fields $E = Em \sin x \sin t a_y$ and $H = (Em/u_0)^*(\cos x \cos t) a_z$ satisfy Maxwell's					
	$B = \frac{\partial B}{\partial H}$					
	$\mathbf{v} \times \mathbf{E} = -\frac{1}{\partial t} = -\mu_0 \frac{1}{\partial t}$					
	$\nabla \times \mathbf{E} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \end{bmatrix}$					
7						
/	$\Box 0 = E_m \sin x \sin t = 0$					
	$= \overline{a}_{x} \left[-\frac{\partial}{\partial z} \left(\mathbf{E}_{m} \sin x \sin t \right) \right] + \overline{a}_{z} \left[\frac{\partial}{\partial x} \left(\mathbf{E}_{m} \sin x \sin t \right) \right]$					
	$= \mathbf{E}_{m} \cos x \sin t \overline{a}_{z} \tag{4 M}$					

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0
2	If the magnetic field $H = ($	$(3x \cos \beta +$	- 6 y sin α)a	azfind current density	y J if fields are

invariant with time. (8 M) BTL 5 Answer: Page: 4.35 - Dr. P. Dananjayan $\nabla \times H = J + \frac{\partial D}{\partial t}$ If the fields are invariant with time $\frac{\partial D}{\partial t} = 0$. $\nabla \times H = J$ (3 M) $\mathbf{J} = \begin{bmatrix} \overline{a}_x & \overline{a}_y & & a_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & & \frac{\partial}{\partial z} \end{bmatrix}$ $J = \frac{\partial}{\partial y} (3x \cos \beta + 6y \sin \alpha) \overline{a}_x - \frac{\partial}{\partial \dot{x}} (3x \cos \beta + 6y \sin \alpha) \overline{a}_y$ $J = 6 \sin \alpha \, \bar{a}_x - 3 \cos \beta \, \bar{a}_{y,v} A/m^2$ Ans. $-\infty$ 00 (5 M)The conduction current flowing through a wire with conductivity $\sigma = 3 \times 10^7$ s/m and relative permittivity $\varepsilon_r = 1$ is given by Ic 3 sin ωt (mA). If $\omega = 10^8$ ras/sec. Find the $I_c = \sigma E A$ $E = \frac{I_{C}}{\sigma A} = \frac{3 \times 10^{-3} \sin \omega t}{3 \times 10^{7} \times A} = \frac{1 \times 10^{-10}}{A} \sin \omega t$ $\frac{\partial E}{\partial t} = \frac{1 \times 10^{-10}}{A} \omega \cos \omega t$ $J_{\rm D} = \varepsilon \frac{\partial E}{\partial t}$ $J_{\rm D} = \varepsilon \, \omega \cdot \frac{1 \times 10^{-10}}{\rm A} \cos \omega t$ 3 $= 8.85 \times 10^{-12} \times 10^8 \times \frac{10^{-16}}{A} \cos 10^8 t$ (4 M)Displacement current $I_D = J_D \cdot A$ $= 8.85 \times 10^{-12} \times 10^8 \times \frac{10^{-16}}{A} \cos 10^8 t \text{ A}$ $I_D = 8.85 \times 10^{-4} \cos 10^8 t$ Amperes Ans. -(4 M)Given the conduction current density in a lossy dielectric ad $Jc = 0.02 \sin 10^9 t \text{ A/m}^2$. Find the displacement current density if $\sigma = 10^3$ mho/m and $\varepsilon r = 6.5$ (8 M) BTL 5 4 Answer: Page: 4.35 – Dr. P. Dananjayan

 $J_{C} = 0.02 \sin 10^{9} t \quad A/m^{2}$ $\sigma = 10^{3} \text{ mho/m}$ $\varepsilon_{r} = 6.5$ $J_{C} = \sigma E$ $E = \frac{J_{C}}{\sigma}$ $= \frac{0.02 \sin 10^{9} t}{10^{3}} = 2 \times 10^{-5} \sin 10^{9} t \quad V/m \quad (4 \text{ M})$ Displacement current density $J_{D} = \frac{\partial D}{\partial t} = \varepsilon \frac{\partial E}{\partial t}$ $\frac{\partial E}{\partial t} = 2 \times 10^{-5} \times 10^{9} \cos 10^{9} t$ $J_{D} = \varepsilon \frac{\partial E}{\partial t} = \varepsilon_{0} \varepsilon_{r} \frac{\partial E}{\partial t}$ $= 8.854 \times 10^{-12} \times 6.5 \times 2 \times 10^{-5} \times 10^{9} \cos 10^{9} t \quad A/m$ $= 115.1 \times 10^{-8} \cos 10^{9} t \quad A/m \quad Ans. \neg \qquad (4 \text{ M})$

	Derive the emf equations for transformer and motional emf. (15 M) BTL1 Answer: Page : 4.04 – Dr. P. Dananjayan		
	EMF Equation of The Transformer (7 M)		
5	 Let, N₁ = Number of turns in primary winding N₂ = Number of turns in secondary winding Φ_m = Maximum flux in the core (in Wb) = (B_m x A) f = frequency of the AC supply (in Hz) As, shown in the fig., the flux rises sinusoidally to its maximum value Φ_m from 0. It reaches to the maximum value in one quarter of the cycle i.e in T/4 sec (where, T is time period of the sin wave of the supply = 1/f). average rate of change of flux = Φ_m/(T/4) = Φ_m/(1/4f) average rate of change of flux = 4f Φ_m(Wb/s). Induced emf per turn = rate of change of flux per turn. Therefore, average emf per turn = 4f Φ_m(Volts). Now, we know, Form factor = RMS value / average value Therefore, RMS value of emf per turn = Form factor X average emf per turn. As, the flux Φ varies sinusoidally, form factor of a sine wave is 1.11 Therefore, RMS value of emf per turn = 1.11 x 4f Φ_m = 4.44f Φ_m. RMS value of induced emf in whole primary winding (E₁) = RMS value of emf per turn X Number of turns in primary winding E₁ = 4.44f N₁ Φ_m		

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0 4.84

UNIT V PLANE ELECTROMAGNETIC WAVES			
Electromagnetic wave generation and equations – Wave parameters; velocity, intrinsic			
impedance, propagation constant – Waves in free space, lossy and lossless dielectrics,			
condu	ctors- skin depth - Poynting vector – Plane wave reflection and refraction.		
Q. No	Part * A		
1	 Mention the properties of uniform plane wave. (Nov 2016) BTL 1 The properties of uniform plane wave are as follows: At every point in space, the electric field E and Magnetic field H are perpendicular to each other and to the direction of the travel. The fields vary harmonically with the time and at the same frequency, everywhere in space. Each field has the same direction, magnitude and phase at every point in any plane perpendicular to the direction of wave travel. 		
2	Write down the wave equations for E and H in a non-dissipative (free space) and conducting medium. (May 2012) BTL 1 In Free space. $\nabla^{2}E - \mu_{0}\varepsilon_{0}\frac{\partial^{2}E}{\partial t^{2}} = 0 ; \qquad \nabla^{2}H - \mu_{0}\varepsilon_{0}\frac{\partial^{2}E}{\partial t^{2}} = 0$ In conducting medium. $\nabla^{2}E - \mu\varepsilon\frac{\partial^{2}E}{\partial t^{2}} - \mu\sigma\frac{\partial E}{\partial t} = 0 ; \qquad \nabla^{2}H - \mu\varepsilon\frac{\partial^{2}H}{\partial t^{2}} - \mu\sigma\frac{\partial H}{\partial t} = 0$		
3	Define uniform plane wave. (Nov 2013) BTL 1 If the phase of a wave is the same for all points on a plane surface it is called plane wave. If the amplitude is also constant in a plane wave, it is called uniform plane wave.		
4	Define intrinsic impedance or characteristic impedance. (Nov 2018) BTL 1 It is the ratio of electric field to magnetic field. Or It is the ratio of square root of permeability to permittivity of the medium. $\eta = \frac{\overline{E}}{H} = \frac{\sqrt{\mu}}{\varepsilon}$ Ohms		
5	Calculate intrinsic impedance or characteristic impedance of free space. (Nov 2011) BTL 3 $\eta = \frac{E}{H} = \sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}} = \sqrt{\frac{4\pi \times 10^{-7}}{8.854 \times 10^{-12}}} = 120\pi = 377 \text{ ohms}$		
6	Define polarization. BTL 1 Polarization is defined as the polarization of a uniform plane wave refers to the time varying nature of the electric field vector at some fixed point in space.		

7	Define Surface impedance. BTL 1 Surface impedance is defined as the ratio of tangential component of electric field at the surface of a conductor to the linear current density.
	$Z_s = \frac{\pi}{I} = \frac{\sigma}{\sigma}$; Where γ is propagation constant.
	sis conductivity medium
	Define Deventing vector (May 2014 May 2016) PTL 1
8	The pointing vector is defined as rate of floe of energy of a wave as it propagates. It is the
0	vector product of electric field and magnetic field $P - F \times H$
	State Slepian vector. BTL 1
l	Slepian vector is a vector which defined at every point, such that its flux coming out of
9	any volume is zero. $(\nabla S) = 0$. Slepian vector is given by $S = \nabla \times (\nabla H)$
	Where, V is electric potential. H is magnetic field intensity.
	State Povnting theorem. (Nov 2013, Nov 2018) BTL 1
10	The vector product of electric field intensity at any point is a measure of the rate of
	energy flow per unit area at that point. $P = E \times H$
	Fine the skin depth at a frequency of 2MHz is Aluminum where $\sigma = 38.2$ m s/m and
	μ r = 1. BTL 3
	Solution:
	Given data: $\zeta = 38.2 \text{ M s/m} = 38.2 \text{ x } 10^6 \text{ s/m}; \ \mu_r = 1; \ \omega = 2 \ \pi f = 2 \ \pi x \ 2 \ x 10^6$
11	
	For Good conductor, Skin depth $\delta = =$ =
	2
	$=5.758 \times 10^{-5} \text{ m}.$
	$2\pi \times 2 \times 10^{\circ} \times 1 \times 4\pi \times 10^{\circ} \times 38.2 \times 10^{\circ}$
	State Snell's law. BIL I When a ways is travelling from one medium to another modium the angle of incidence is
	when a wave is travening from one medium to another medium, the angle of incidence is
	related to angle of <u>effection as follows</u> . $\eta_1 = \varepsilon_2$
10	$\sin \theta_{t} = \eta_{2} = \varepsilon_{1}$
14	$(\mu_1 = \mu_2 = \mu_0)$
	Where θ_i is angle of incidence; θ_i is angle of refraction; ε_i is dielectric constant of
	medium 1
	ε is dielectric constant of medium 2.
	Write Helmholtz's equation. BTL 1
13	$\nabla^2 F = \chi^2 F = 0$; where $\chi = -i\omega \mu (\sigma + i\omega c)$
	What is Browstor angle? BTI 1
	Brewster angle is an incident angle at which there is no reflect wave for parallel polarized
	s
14	wave. $\theta = \tan^{-1} \varepsilon_2$ Where, ε_1 is dielectric constant of medium $1, \varepsilon_2$ is dielectric
	ε_1 $$
	constant of medium

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

4.88

15	What do you meant by total internal reflection? BTL 1 When a wave is incident from the denser medium to rarer medium at an angle equal to or greater than the critical angle, the wave will be totally internally reflected back. This phenomenon is called Total internal reflection.		
16	What is practical significance of skin depth? (Nov 2015, May 2016) BTL 1 Skin depth or depth of penetration (δ) is defined as that of depth in which the wave has been attenuated to 1 / e or approximately 37% of its original value. $\delta = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}} \qquad \text{for good conductor. } \delta = \sqrt{\frac{1}{\pi f \mu\sigma}}; \delta \alpha \frac{1}{f}$ For low frequency, the skin depth δ is large. For High or microwave frequency range, the skin depth δ is small		
17	 Define normal incidence and oblique incidence. BTL 1 Normal incidence: When a uniform plane wave incidences normally to the boundary between the media, then it is known as normal incidence. Oblique incidence: When a uniform plane wave incidences obliquely to the boundary 		
18	 between the two media, then it is known as oblique incidence. Define voltage reflection coefficient at the load end of the transmission line.(Nov 2011) BTL 1 It is defined as the ratio of the magnitude of the reflected wave to that of the incident wave 		
	What is 'standing wave ratio'? (Nov 2012, May 2014, Nov 2016) BTL 1 It is defined as the ratio of maximum to minimum amplitudes of voltage. $S = \frac{E_{1 \text{ s max}}}{E_{1 \text{ s min}}} = \frac{1 + \Gamma}{1 - \Gamma }$		
21	The capacitance and inductance of an overhead transmission line are 0.0075μ F/km and 0.8 mH/km respectively. Determine the characteristic impedance of the line.(Nov/Dec 2014) BTL 3 The characteristic impedance of a transmission line is equal to the square root of the ratio of the line's inductance per unit length divided by the line's capacitance per unit length		
	$Z_{0} = \sqrt{\frac{L}{C}} = 326.5\Omega$		
22	Compare the equi-potential plots of uniform and non-uniform fields. (April /May2015) BTL 1Uniform fieldNon-uniform fieldUniform fieldThe equipotential surface are perpendicular to \vec{E} and are equidistant for fixed increment of voltagesNon-uniform fieldWhat is the wavelength and frequency of a wave propagation in the propagation in the propagation in frequency of a wave propagation in frequency of a wave propagation in the propagat		
23	β=2? (April /May 2015) BTL 3		

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

	$\beta = \omega \sqrt{\mu_0 \omega_0}$; $2 = 2\pi f \sqrt{\mu_0 \omega_0}$; $f = 0.955 * 10^8$ Hz; wavelength = 3.14m			
	If a plane wave is incident normally from medium 1 to medium2, write the reflection			
	and transmission co-efficients. (Nov/Dec 2014) BTL 3			
• •	Reflection Co-efficients $\text{Er}_{0} = \frac{\eta_{2} - \eta_{1}}{Ei}$			
24	$\eta_2 + \eta_1$			
	Transmission Co-efficients Et = $-\frac{2\eta_2}{Ei}$			
	$\eta_2 + \eta_1^{0}$			
	A plane wave travelling in air is normally incident on a block of paraffin with			
25	$\epsilon_{r=2.3}$. Find the reflection co-efficient. (Nov/Dec 2015)BTL 3			
	Reflection co-efficient = $\frac{\sqrt{\epsilon_1} - \sqrt{\epsilon_2}}{\sqrt{\epsilon_1} - \sqrt{\epsilon_2}} = \frac{\sqrt{23} - \sqrt{1}}{\sqrt{25} + \sqrt{\epsilon}} = 0.5165/2.565 = 0.2053$			
	$\frac{\sqrt{E_s + \sqrt{E_s}}}{PART * B}$			
	Obtain the electromagnetic wave equation for free space in terms of electric field			
	and magnetic fields.(13 M) (Nov 2012, Nov 2015, Nov 2018) BTL 2			
	Answer: Page 5.03 - P. Dananjayan			
	For free space (dielectric medium) the conductivity of the medium is zero. (i.e.,			
	$\rho = 0$) and there is no enarge containing in it (i.e., $\rho = 0$). The electromagnetic wave equations for free space can be obtained from			
	Maxwell's equations			
	 The Maxwell's equation from Faraday's law for free space in point form is 			
	$\partial B = \partial H$			
	$\nabla \times E = -\frac{1}{\partial t} = -\mu \frac{1}{\partial t}$			
	 Taking curl on both sides, 			
	• $\nabla \times \nabla \times E = -\mu \nabla \times \frac{\partial H}{\Box}$ (1)			
	∂t Dut Mayyall's equation from amore's law for free space in point form is			
	But Maxwell's equation from ampere's law for free space in point form is $\partial D \qquad \partial E$			
1	$\nabla \times H = -\frac{1}{\partial t} = -\mathcal{E} \frac{1}{\partial t}$			
	$\bullet \partial H \partial \nabla \times H \partial (\partial E)$			
	$\nabla \times \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} \begin{bmatrix} \varepsilon & -\frac{1}{\partial t} \end{bmatrix}$			
	$\partial H \left(\partial^2 E \right)$			
	$\nabla \times \frac{1}{\partial t} = \left \varepsilon \frac{1}{\partial t^2} \right $ (2)			
	Substituting the equation (2) in (1)			
	$\left(\partial^2 E\right)$			
	$\nabla \times \nabla \times E = -\mu \varepsilon \times \left \frac{\partial^2 E}{\partial t^2} \right $			
	$\nabla \times \nabla \times E = -\mu \varepsilon \times \left(\frac{\partial^2 E}{\partial t^2}\right)(3)$ But the identity is g iven by			
	$\nabla \times \nabla \times E = -\mu \varepsilon \times \left(\frac{\partial^2 E}{\partial t^2}\right)$			
	$\nabla \times \nabla \times E = -\mu \varepsilon \times \left[\frac{\partial^2 E}{\partial t^2} \right]^2 - \dots $			
	$\nabla \times \nabla \times E = -\mu \varepsilon \times \left[\frac{\partial^2 E}{\partial t^2} \right]^2 - \dots $			

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/II^{ad} Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

$$\nabla \times \nabla \times E = -\nabla^{2}E - \dots - (4)$$
> Comparing equations (3) and (4)

$$\nabla^{2}E = \mu \varepsilon \quad \frac{\partial^{2}E}{\partial t^{2}} = 0 = \dots - (5)$$
(6 M)
> This is the wave equation for free space in terms of electric field.
> The wave equation for free space in terms of electric field.
> The wave equation for free space in terms of magnetic field H is obtained in a similar manner as follows.
> The Maxwell's equation from ampere's law for free space in point form is given by

$$\nabla \times H = \varepsilon \quad \frac{\partial E}{\partial t}$$
> Taking curl on both sides

$$\nabla \times \nabla \times H = -\varepsilon \nabla \times \frac{\partial E}{\partial t} - \dots - (6)$$
> But Maxwell's equation from free data as we wave the space in terms of magnetic field H is obtained in a similar manner as follows.
> The Maxwell's equation from free data as we have the space in point form is given by

$$\nabla \times \nabla \times H = -\varepsilon \nabla \times \frac{\partial E}{\partial t} - \dots - (6)$$
> But Maxwell's equation from faraday's law

$$\nabla \times E = -\mu \quad \frac{\partial H}{\partial t}$$
> Differentiating,

$$\nabla \times \frac{\partial E}{\partial t} = -\mu \varepsilon \quad \frac{\partial^{2} H}{\partial t^{2}} - \dots - (7)$$
• Substituting equation (7) in (6)

$$\nabla \times \nabla \times H = -\mu \varepsilon \quad \frac{\partial^{2} H}{\partial t^{2}} - \dots - (8)$$
• By the identity is given by

$$\nabla \times \nabla \times H = -\mu \varepsilon \quad \frac{\partial^{2} H}{\partial t^{2}} - \dots - (0)$$
o
$$\nabla \cdot H = \nabla (\nabla \cdot H) - \nabla^{2} H - \dots - (0)$$
• Comparing equations (8) and (10)

$$\nabla^{2} H = \mu \varepsilon \frac{\partial^{2} H}{\partial t^{2}}$$

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

4.91

$$\nabla^{2} H - \mu \varepsilon \frac{\partial^{2} H}{\partial t^{2}} = 0 - - - - - - - (11)$$

> This wave equation for free space in terms of H.
> For free space $\mu = 1$ and $\varepsilon = 1$ (air) then wave equation becomes

$$\nabla^{2} H - \mu_{o} \varepsilon \frac{\partial^{2} H}{\partial t^{2}} = 0$$

$$\mu_{o} \varepsilon_{o} = 4 \pi \times 10^{-7} \times \frac{1}{36 \pi \times 10^{-9}} = \frac{1}{9 \times 10^{10}}$$

$$\mu_{o} \varepsilon_{o} = 4 \pi \times 10^{-7} \times \frac{1}{36 \pi \times 10^{-9}} = \frac{1}{9 \times 10^{10}}$$

$$\frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} = 3 \times 10^{8} m/s = v_{o}$$

$$\int Where v_{o} \text{ is the velocity of light.}$$

$$\sum \text{ Then the wave equation,}$$

$$\sum \nabla^{2} H - \frac{1}{v_{o}^{2} \partial t^{2}} = 0 \quad (\text{or}) \quad \nabla^{2} E - \frac{10^{2} E}{v_{o}^{2} \partial t^{2}} = 0 \quad (7 \text{ M})$$

$$v = \operatorname{Re} \left[\operatorname{V} e^{j \, \omega \, t} \right] = |\operatorname{V}| \cos \left(\omega \, t + \theta_{v} \right)$$
$$i = \operatorname{Re} \left[1 \, e^{j \, \omega \, t} \right] = |1| \cos \left(\omega \, t + \theta_{i} \right)$$

The instantaneous power is given by

$$W = |V||1|\cos(\omega t + \theta_v)\cos(\omega t + \theta_i)$$
$$W = \frac{|V||1|}{2} [\cos(\theta_v - \theta_i) + \cos(2\omega t + \theta_v + \theta_i)]$$

The instantaneous power flow per square meter *i.e.*, Poynting vector is

$$\tilde{P} = \tilde{E} \times \tilde{H}$$

The average power is given by

$$W_{av} = \frac{|V||1|}{2} \cos(\theta_v - \theta_i)$$

If $\theta_v - \theta_i = \theta$, the angle between voltage and current, then

$$W_{av} = \frac{|V||1|}{2}\cos\theta$$

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0

$$\nabla \times \nabla \times H = \nabla \cdot (\nabla \cdot H) - \nabla^2 H$$
$$= \sigma (\nabla \times \vec{E}) + \varepsilon \frac{\partial}{\partial t} (\nabla \times \vec{E})$$
$$= \sigma \left(-\mu \frac{\partial \vec{H}}{\partial t} \right) + \varepsilon \frac{\partial}{\partial t} \left(-\mu \frac{\partial \vec{H}}{\partial t} \right)$$

 \geq Since fromeqn5.29(d),wecanwrite

$$\nabla^2 \overrightarrow{H} = \mu \sigma \left(\frac{\partial \overrightarrow{H}}{\partial t} \right) + \mu \varepsilon \left(\frac{\partial^2 \overrightarrow{H}}{\partial t^2} \right)$$

 \geq Thesetwo equations

$$\nabla^{2}\vec{E} = \mu\sigma\frac{\partial\vec{E}}{\partial t} + \mu\varepsilon\frac{\partial^{2}\vec{E}}{\partial t^{2}}$$
$$\nabla^{2}\vec{H} = \mu\sigma\left(\frac{\partial\vec{H}}{\partial t}\right) + \mu\varepsilon\left(\frac{\partial^{2}\vec{H}}{\partial t^{2}}\right)$$

Are known as wave equations.

> It maybe noted that the field components are functions of both space and time.

For example, if we consider a Cartesian coordinate system, essentially represents $\vec{E}(x,y,z,t)$ and $\vec{H}(x,y,z,t)$.

- ➢ For simplicity, we consider
- Propagation in free space, i.e.,

$$\mu = \mu_0_{\text{and}} \varepsilon = \varepsilon_0_{\text{.}}$$

The wave equation in equations 5.30and 5.31reduces to

$$\nabla^{2}\vec{E} = \mu_{0}\varepsilon_{0} \left(\frac{\partial^{2}\vec{E}}{\partial t^{2}} \right)$$

$$\nabla^{2}\vec{H} = \mu_{0}\varepsilon_{0} \left(\frac{\partial^{2}\vec{H}}{\partial t^{2}} \right)$$
(5.32(a))
(5.32(b))

> Further simplifications can be made if we considering Cartesian coordinate

system a special case where are considered to be independent in two are assumed to be independent of y and z. Such waves dimensions, say are called plane waves. (7 M)

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0 4.97

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0 4. 99

$$\beta = \omega \sqrt{\mu \varepsilon} \left[1 + \frac{1}{2} \left(\frac{\sigma}{2 \omega \varepsilon} \right)^2 \right]$$

$$= 2 \pi (10 \times 10^3) \sqrt{4\pi \times 10^{-7} \times 80 \times 8.854 \times 10^{-12}} \left[1 + \frac{1}{2} \left(\frac{10^{-3}}{2 \times 2\pi \times 10^4 \times 80 \times 8.854 \times 10^{-12}} \right)^2 \right]$$

$$\beta = 0.12 \text{ rad}$$

$$\lambda = \frac{2\pi}{\beta} = 52.35 \text{ m}$$
(4 M)

Derive the expression for characteristics Impedance. (15 M) BTL 1

Answer: Page 5.07 - P. Dananjayan
$$\frac{\partial^2 E}{\partial x^2} = \mu \varepsilon \frac{\partial^2 E}{\partial t^2}$$
The general solution of this differential equation is in the form
$$E = f_1 (x - v_0 t) + f_2 (x + v_0 t)$$
where
$$v_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

$$E = f(x - v_0 t)$$

$$\nabla \times E = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$
Example a and
$$\frac{\partial E}{\partial y} = \frac{\partial E}{\partial z} = 0$$

$$\nabla \times E = -\frac{\partial E_x}{\partial x} \overrightarrow{y} + \frac{\partial E_y}{\partial x} \overrightarrow{z}$$
(5 M)

Comparing these two equations,
$$\frac{\partial H_z}{\partial x} = \varepsilon \frac{\partial E_z}{\partial t}$$

$$\frac{\partial H_y}{\partial x} = \varepsilon \frac{\partial E_z}{\partial t}$$

JIT-JEPPIAAR/ECE/Dr. Prajith Prabhakar/IInd Yr/SEM 04 /E8451/ELECTROMAGNETIC FILEDS /UNIT 1-5/QB+Keys/Ver 2.0 4. 103

9

9

EC8453

LINEAR INTEGRATED CIRCUITS 3 0 0 3

OBJECTIVES:

- To introduce the basic building blocks of linear integrated circuits
- To learn the linear and non-linear applications of operational amplifiers
- To introduce the theory and applications of analog multipliers and PLL
- To learn the theory of ADC and DAC
- To introduce the concepts of waveform generation and introduce some special function ICs

UNIT I BASICS OF OPERATIONAL AMPLIFIERS

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic information about op-amps – Ideal Operational Amplifier - General operational amplifier stages -and internal circuit diagrams of IC 741, DC and AC performance characteristics, slew rate, Open and closed loop configurations – JFET Operational Amplifiers – LF155 and TL082.

UNIT II APPLICATIONS OF OPERATIONAL AMPLIFIERS

Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters, adder, subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, high-pass and band-pass Butterworth filters.

UNIT III ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell – Variable transconductance technique, analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLLfor AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing and clock synchronisation.

UNIT IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG 9 CONVERTERS

Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R - 2R Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications - Flash type - Successive Approximation type - Single Slope type – Dual Slope type - A/D Converter using Voltage-to-Time Conversion - Over-sampling A/D Converters, Sigma – Delta converters.

UNIT V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS 9

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators – Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Low Drop – Out(LDO) Regulators - Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto- couplers and fibre optic IC.

TOTAL:45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Design linear and non linear applications of OP AMPS
- Design applications using analog multiplier and PLL
- Design ADC and DAC using OP AMPS
- Generate waveforms using OP AMP Circuits
- Analyze special function ICs.

TEXT BOOKS:

- 1. D.Roy Choudhry, Shail Jain, -Linear Integrated Circuits^I, New Age International Pvt. Ltd., 2018, Fifth Edition. (Unit I V)
- 2. Sergio Franco, -Design with Operational Amplifiers and Analog Integrated CircuitsI, 4th Edition, Tata Mc Graw-Hill, 2016 (Unit I V)

REFERENCES:

Ramakant A. Gayakwad, -OP-AMP and Linear ICsl, 4th Edition, Prentice Hall / Pearson Education, 2015.

Robert F.Coughlin, Frederick F.Driscoll, -Operational Amplifiers and Linear Integrated Circuits, Sixth Edition, PHI, 2001.

B.S.Sonde, -System design using Integrated Circuits, 2nd Edition, New Age Pub, 2001.

Gray and Meyer, -Analysis and Design of Analog Integrated

Circuitsl, Wiley International,5th Edition, 2009.

William D.Stanley, -Operational Amplifiers with Linear Integrated Circuits, Pearson Education,4th Edition,2001.

S.Salivahanan & V.S. Kanchana Bhaskaran, -Linear Integrated Circuits^I, TMH,2nd Edition, 4th Reprint, 2016.

Subject Code:EC8453 Subject Name: LINEAR INTEGRATED CIRCUITS

Year/Semester: II /04 Subject Handler: W.Nancy

UNIT I - BASICS OF OPERATIONAL AMPLIFIERS		
Currer	nt mirror and current sources, Current sources as active loads, Voltage sources, Voltage	
Refere	ences, BJT Differential amplifier with active loads, Basic information about op-amps - Ideal	
Operat	tional Amplifier - General operational amplifier stages - and internal circuit diagrams of IC 741,	
DC ai	nd AC performance characteristics, slew rate, Open and closed loop configurations – JFET	
Operat	tional Amplifiers – LF155 and TL082.	
	PART * A	
Q.No.	Questions	
	Define an Integrated circuit. BTL1	
1	An integrated circuit(IC) is a miniature, low cost electronic circuit consisting of active and	
1.	passive components fabricated together on a single crystal of silicon. The active components are	
	transistors and diodes and passive components are resistors and capacitors.	
	What are the basic processes involved in fabricating ICs using planar technology? BTL1	
	Silicon wafer (substrate) preparation	
	Epitaxial growth	
	Oxidation	
	• Photolithography	
2	• Diffusion	
	• Ion Implantation	
	• Isolation technique	
	Metallization	
	• Assembly processing & packaging	
	rissemery processing & packaging	
	List out the steps used in the preparation of Si – wafers. BTL1	
	• Crystal growth & doping	
	• Ingot trimming grinding	
3	 Ingot slicing 	
	• Wafer policing etching	
	• Wafer cleaning	
	Define virtual ground of OP-Amn. BTL1	
	A virtual ground is a ground which acts like a ground. It is a point that is at the fixed ground	
4	potential (0y), though it is not practically connected to the actual ground or common terminal of	
	the circuit.	
	What are the advantages and limitations of ionimplantation? BTL1	
	Advantages:	
	Accurate control over doping	
5	• Very good reproducibility	
	Precise resistance value	
	• A room temperature process	
	Limitations:	

	• Annealing at higher temperature is required for avoiding the crystal damage
	The possibility of doping implanting through various layers of wafer.
	Why IC 741 is not used for high frequency applications? BTL2
6	IC741 has a low slew rate because of the predominance of capacitance present in the circuit at
	higher frequencies. As frequency increases the output gets distorted due to limited slew rate.
	In practical op-amps, what is the effect of high frequency on its performance? BTL2
7	The open-loop gain of op-amp decreases at higher frequencies due to the presence of
,	parasitic capacitance. The closed-loop gain increases at higher frequencies and leads to
	instability.
	Define input offset voltage. BTL1
8	A small voltage applied to the input terminals to make the output voltage as zero when the two
	input terminals are grounded is called input offset voltage.
	Define input offset current. State the reasons for the offset currents at the input of the op-
	amp. BTL1
9	The difference between the bias currents at the input terminals of the op-amp is called as input
	transistors. Since the input transistors cannot be made identical, there exists a difference in bios
	uransistors. Since the input transistors cannot be made identical, there exists a difference in bias
	Define consitivity BTI 1
10	Sensitivity is defined as the percentage or fractional change in output current per percentage or
10	fractional change in power-supply voltage
	What are the limitations in a temperature compensated zener-reference source? BTL2
11	A power supply voltage of at least 7 to 10 V is required to place the diode in the breakdown
	region and that substantial noise is introduced in the circuit by the avalanching diode.
	Define CMRR of an op-amp. (DEC 09) BTL1
10	The relative sensitivity of an op-amp to a difference signal as compared to a common –mode
12	signal is called the common –mode rejection ratio. It is expressed in decibels.
	CMRR = Ad/Ac
	What are the applications of current sources? BTL1
13	Transistor current sources are widely used in analog ICs both as biasing elements and as
	load devices for amplifier stages.
	Justify the reasons for using current sources in integrated circuits. BTL4
	• Superior insensitivity of circuit performance to power supply variations and temperature.
	• More economical than resistors in terms of die area required providing bias currents of
14	small value.
	• When used as load element, the high incremental resistances of current source results in
	high voltage gain at low supply voltages.
	what is the advantage of widiar current source over constant current source? BTL1
15	Using constant current source output current of small magnitude (micro amp range) is not attain
	able due to the limitations in chip area. Widiar current source is useful for obtaining small output
	Montion the advantages of Wilson current source. PTL 1
16	Drovidos high output resistance
10	 Provides mgn output resistance. Offens low consistent have surrents
	Others low sensitivity to transistor base currents.

	Mention the advantages of integrated circuits over discrete components. (May2010) BTL1
	• Miniaturization and hence increased equipment density.
	Cost reduction due to batch processing.
17	• Increased system reliability due to the elimination of soldered joints.
	Improved functional performance.
	Matched devices.
	• Increased operating speeds.
	Reduction in power consumption.
18	Define sheet resistance. (May 2010) BTL1
18	Sheet resistance is defined as the resistance in ohms /square offered by the diffused area.
	What is the use of buried n+ layer in monolithic IC transistor? (MAY 2010) BTL1
19	The buried n+ layer provides a low resistance path in the active collector region for the flow of
	current.
	What is active load? Where it is used and why? (MAY/JUNE 2010) BTL1
20	The active load realized using current source in place of the passive load in the collector arm of
	differential amplifier makes it possible to achieve high voltage gain without requiring large
	power supply voltage.
	2010) BTL 2
21	The open loop gain of the op-amp is not a constant and it varies with changing the temperature
21	and variations in power supply. Also the bandwidth of the open loop op-amp is negligibly small.
	For this reasons open loop OP-AMP configurations are not used in linear applications.
	What are the two common methods for obtaining integrated capacitors? (May 2010)
22	BTL2
22	Monolithic junction capacitor
	Thin-film capacitor
	Define slew rate. (MAY 2010) BTL1
23	The slew rate is defined as the maximum rate of change of output Voltage caused by a step input
23	voltage. An ideal slew rate is infinite which means that op- amp's output voltage should change
	instantaneously in response to input step voltage.
2.1	What causes slew rate? (DEC 09) BTL1
24	There is a capacitor with-in or outside of an op-amp to prevent oscillation. The capacitor which
	prevents the output voltage from responding immediately to a fast changing input.
	what happens when the common terminal of $v + and v - sources is not grounded; (DEC 00) RTI 1$
25	If the common point of the two supplies is not grounded, twice the supply voltage will get
	applied and it may damage the on-amp
	PART * B
	Describe the AC nerformance characteristics of an onerational amplifier (QM) RTL 2
	Answer: nage 112 – 115 LIC D. Rov Choudhurv
	Frequency Response (2M)
1	Infinite Bandwidth at ideal condition.
1	At higher frequencies practical op-amp gain rolls off.
	High frequency op-amp circuit figure 1.18 (2M)

	• Oujescent drop across it increases.		
	• $I_{1}=I_{2}=I_{2}=a_{1}(V_{2}-V_{2})=a_{2}V_{3}$	$(2\mathbf{M})$	
	Pole zero compensation	(2M)	
	Transfer function A alters	(1111)	
	Add both pole and a zero		
	• Add both pole and a zero		
	• Zero at higher frequency than pole		
	• $Z_1 = R_1 \text{ and } Z_2 = R_2 + 1/(j\omega C2)$	$(2\mathbf{M})$	
	• $A' = \frac{v_0}{v_1} = \frac{v_0}{v_2} \cdot \frac{v_2}{v_i}$	(1M)	
	Describe the DC performance characteristics of operational amplifier. (13M)	(Nov/Dec	
	2014) BTL 2	(
	Answer: page 104 – 111 LIC D. Roy Choudhury		
	• Input Bias current	(3M)	
	$I = I_B^{\dagger} + I_B^{\dagger}$		
	$I_B = \frac{2}{2}$		
	Input Offset Voltage	(3M)	
	$V_0 = (1 + \frac{K_f}{R_0})V_{ios}$		
4	Input Offset current	(3M)	
	$I_{12} = I_{1}^{+} - I_{2}^{-}$	(0111)	
	$V_0 = R_0 I_{00}$		
	Thermal drift	$(4\mathbf{M})$	
	Bias current offset current offset voltage change with temperature	(4141)	
	Current drift expressed $nA/^{\circ}C$		
	Voltage drift expressed $mV/^{\circ}C$		
	Careful PCB forced air cooling $-$ reduce thermal drift		
	Explain the working of Widlar current source (8M)(Nov/Dec 2008)(Nov/Dec 200	9) BTL 2	
	Answer: page 68 – 69 LIC D Roy Choudhury		
	• limitation of basic current mirror – not suitable for low value current source	$(2\mathbf{M})$	
	• R1 required high _ impossible to fabricate in IC	(2111)	
_	• Widlar current source suitable for low value of currents	$(2\mathbf{M})$	
5	• Within current source suitable for low value of currents	$(21\mathbf{v}\mathbf{I})$	
	• Circuit differs only in resistance Ke in Q2		
	• Current to smaller than 101		
	• Due to Re base emitter voltage V be2 <<< V be1	(2M)	
	• Basic current mirror circuit, $I_0 = I_{ref}$ $I_{ref} = \frac{V_{cc}}{R_1}$	(2M)	
	Discuss the frequency compensation in operational amplifier. (13M) (May/J	une 2009)	
	BTL2		
	Answer: page 119 – 122 LIC D. Roy Choudhury		
	Dominant pole compensation		
	• External frequency compensation method	(1M)	
6	$A' = \frac{V_o}{V_o}$	(2M)	
	$f_{A} = \frac{1}{1}$	$(2\mathbf{M})$	
	$\int a = \frac{1}{2\pi RC}$	$(2\mathbf{M})$	
	$ J_d \sim J_1 \sim J_2 < J_3 $	$(\angle IVI)$	
	• Pole zero compensation		
	External frequency compensation method	(IM)	

Subject Code:EC8453 Subject Name: LINEAR INTEGRATED CIRCUITS

UNIT II - APPLICATIONS OF OPERATIONAL AMPLIFIERS

Year/Semester: II /04 Subject Handler: W.Nancy

Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters. Instrumentation amplifier, Integrator, Differentiator, Logarithmic adder. subtractor. amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, high-pass and band-pass Butterworth filters. PART * A O.No. Questions Mention some of the linear applications of op – amps. (DEC 09) BTL 2 Adder, sub tractor, Voltage -- to current converter, • current -to- voltage converters, 1. • Instrumentation amplifier. • Analog computation • • power amplifier Mention some of the non – linear applications of op-amps. BTL 2 Rectifier, peak detector, • 2 clipper, clamper, • sample and hold circuit, • • log amplifier, anti –log amplifier What are the areas of application of non-linear op- amp circuits? BTL 1 Industrial instrumentation • 3 Communication • Signal processing What is voltage follower?(MAY 2010) BTL 1 4 A circuit in which output follows the input is called voltage follower. What is the need for an instrumentation amplifier? BTL 1 In a number of industrial and consumer applications, the measurement of physical quantities is 5 usually done with the help of transducers. The output of transducer has to be amplified So that it can drive the indicator or display system. This function is performed by an instrumentation amplifier. List the features of instrumentation amplifier. BTL 1 High gain accuracy • 6 High CMRR • High gain stability with low temperature co-efficient 4 low DC offset Low output impedance What are the applications of V-I converter? BTL 1 Low voltage dc and ac voltmeter • 7 LED • Zener diode tester • Define Band pass filter. (MAY 2010) BTL 1 8 The band pass filter is the combination of high and low pass filters, and this allows a specified

	range of frequencies to pass through.	
Write transfer function of op amp as an integer. (MAY 2010) BTL 1		
9	The transfer function of the integer is	
	$ \mathbf{A} = 1/\omega \mathbf{R} 1 \mathbf{c} \mathbf{f}$	
	What do you mean by a precision diode? BTL 1	
10	The major limitation of ordinary diode is that it cannot rectify voltages below the cut – in	
10	voltage of the diode. A circuit designed by placing a diode in the feedback loop of an op – amp	
	is called the precision diode and it is capable of rectifying input signals of the order of milli volt.	
	Write down the applications of precision diode. BTL 1	
	• Half - wave rectifier	
11	• Full - Wave rectifier	
	• Peak – value detector	
	• Clipper	
	• Clamper	
	Define Logarithmic and antilogarithmic amplifier. (MAY 2010) BTL 1	
	When a logarithmic PN junction is used in the feedback network of op-amp, the circuit exhibits	
12	log or antilog response. The logarithmic amplifier is a current to voltage converter with the transfer characteristics $x(0-x)$ in (If(Ii))	
	Antilog amplifier is a decoding circuit which converts the logerithmically encoded signal back	
	Anthog amplifier is a decoding circuit which converts the logarithmically encoded signal back to the original signal levels as given by $y_1 = v \mathbf{R} 10$, by	
	Differentiate Schmitt trigger and comparator BTL 4	
	• It compares the input signal with references voltage then yields the output voltage	
13	 It reed not consist of feedback 	
	 comparator output need not to be square wave 	
	List the applications of Log amplifiers. BTL 1	
	• Analog computation may require functions such as lnx, log x, sin hx etc. These functions	
14	can be performed by log amplifiers	
	• Log amplifier can perform direct dB display on digital voltmeter and spectrum analyzer	
	• Log amplifier can be used to compress the dynamic range of a signal	
	What are the limitations of the basic differentiator circuit? BTL 1	
15	• At high frequency, a differentiator may become unstable and break into oscillations	
15	• The input impedance decreases with increase in frequency, thereby Omaking the circuit	
	sensitive to high frequency noise.	
	Write down the condition for good differentiation. BTL 1	
	• For good differentiation, the time period of the input signal must be greater than or equal	
16	to Rf C1	
	• $T > R f C1$ Where, Rf is the feedback resistance	
	Cf is the input capacitance	
	What is a comparator? (MAY 2010) BTL 1	
17	A comparator is a circuit which compares a signal voltage applied at one input of an op amp	
	with a known reference voltage at the other input. It is an open loop op - amp with output +	
	V Sat. What are the applications of comparator? DTL 1	
10	venat are the applications of comparator: B1L1	
18	Zero crossing detectors	
	• window detector	

	Time marker generator	
	Phase detector	
	What is a Schmitt trigger? (DEC 09,MAY 10) BTL 1	
10	Schmitt trigger is a regenerative comparator. It converts sinusoidal input into a squ	are wave
19	output. The output of Schmitt trigger swings between upper and lower threshold voltage	ges, which
	are the reference voltages of the input waveform.	
	What is a multivibrator? BTL 1	
20	Multi vibrators are a group of regenerative circuits that are used extensively	in timing
20	applications. It is a wave shaping circuit which gives symmetric or asymmetric square	output. It
	has two states stable or quasi- stable depending on the type of multivibrator.	
	What do you mean by monostable multivibrator? BTL 1	
	• Monostable multivibrator is one which generates a single pulse of specified d	uration in
	response to each external trigger signal. It has only one stable state.	
21	• Application of a trigger causes a change to the quasi-stable state.	
	• An external trigger signal generated due to charging and discharging of the	
	capacitor produces the transition to the original stable state.	
	What is an astable multivibrator? BTL 1	
22	Astable multivibrator is a free running oscillator having two quasi-stable states. Thus,	, there are
	oscillations between these two states and no external signal are required to produce the	he change
	in state.	
	What are the characteristics of a comparator? BTL 1	
23	Speed of operation	
23	• Accuracy	
	Compatibility of the output	
	What is a filter? BTL 1	
24	Filter is a frequency selective circuit that passes signal of specified band of frequ	encies and
	attenuates the signals of frequencies outside the band.	
	What are the demerits of passive filters? BTL 1	
0.5	Passive filters works well for high frequencies. But at audio frequencies, the inductor	rs become
25	problematic, as they become large, heavy and expensive. For low frequency application	ons, more
	number of turns of wire must be used which in turn adds to the series resistance	degrading
	inductor's performance ie, low Q, resulting in high power dissipation.	
	PART * B	
	With neat sketch explain the operation of a 3 op-amp instrumentation amplifier.	
	(13M) (Nov/Dec 2014) BTL 1	
	Answer: page 141 – 144 LIC D.Roy Choudhury	
	• High gain accuracy	(1M)
1	• High CMRR	(1M)
	• High gain stability with low temperature coefficient	(1M)
	• Low dc offset	(1M)
	• Low output impedance	(1M)
	• $V_0 = \frac{R_2}{R_1}(V_1 - V_2)$	(2M)
	Instrumentation Amplifier figure 2.18, 2.19	(6M)

	Fig.2.14 Non inverting summer
8	Explain voltage follower with neat sketch. (8M) BTL2 Answer: page 49 – 50 LIC D.Roy Choudhury $Rf = 0, R1 = \infty$ (1M) Non inverting amplifier Output voltage follows input voltage Buffer for impedance matching (1M) Connect a high impedance source to a low impedance load (1M) Diagram : (3M)
	PART *C
1	Sketch the basic circuit using op-amp to perform the mathematical operation of differentiation and explain. What are the limitations of an ordinary op-amp differentiator? Draw and explain the circuit of a practical differentiator that will eliminate these limitations. (15M) (May/June 2012) BTL3. Answer: page 164 – 170 LIC D.Roy Choudhury Differentiator circuit and waveform figure 2.24,2.25 (7M) Contains capacitor at input $V_o = -R_f C_1 \frac{dv_i}{dt}$

5.24

Subject Code: EC8453Year/Semester: II /04Subject Name: LINEAR INTEGRATED CIRCUITSSubject Handler: W.Nancy

	UNIT III - ANALOG MULTIPLIER AND PLL		
Analo	Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell - Variable trans		
condu	conductance technique, analog multiplier ICs and their applications, Operation of the basic PLL,		
Close	d loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for		
AM d	letection, FM detection, FSK modulation and demodulation and Frequency synthesizing and		
clock	synchronisation.		
	PART * A		
Q.No.	Questions		
	List the basic building blocks of PLL. BTL1		
	Phase detector/comparator		
1.	• Low pass filter		
	• Error amplifier		
	Voltage controlled oscillator		
	Define FSK modulation.(MAY 2010) BTL1		
2	FSK is a type of frequency modulation in which the binary data or code is transmitted by means		
Z	of a carrier frequency that is shifted between two fixed frequency namely mark(logic1) and		
	space frequency(logic 0).		
	What is analog multiplier?(MAY 2010) BTL1		
3	A multiplier produces an output V_0 , which is proportional to the product of two inputs V_x and		
	$V_{\mathbf{y}}$. $V_{0} = \mathbf{K} V_{\mathbf{x}} V_{\mathbf{y}}$		
	List out the various methods available for performing for analog multiplier. BTL1		
	Logarithmic summing technique		
4	Pulse height /width modulation technique		
4	• Variable trans conductance technique		
	• Multiplication using gilbert cell		
	• Multiplication technique using trans conductance technique		
	Mention some areas where PLL is widely used. (DEC 2009) BTL1		
	Radar synchronizations		
~	Satellite communication systems		
5	• Air borne navigational systems		
	• FM communication systems		
	• Computers.		
	What are the three stages through which PLL operates? BTL1		
-	• Free running		
6	• Capture		
	• Locked/ tracking		
	Define lock-in range of a PLL. (MAY 2010) BTL1		
_	The range of frequencies over which the PLL can maintain lock with the incoming signal is		
7	called the lock-in range or tracking range. It is expressed as a percentage of the VCO free		
	running frequency.		

	Define capture range of PLL. (MAY 2010) BTL1
8	The range of frequencies over which the PLL can acquire lock with an input signal is called the
	capture range. It is expressed as a percentage of the VCO free running frequency.
	Write the expression for FSK modulation.(MAY 2010) BTL1
9	The expression for FSK modulation is,
	$\Delta v f = f2 - f1/k0$
10	Define free running mode .(MAY 2010) BTL1
10	An interactive computer mode that allows more than one user to have simultaneous use of a
	program.
11	For perfect lock, what should be the phase relation between the incoming signal and VCO output signal? BTL 2
11	The VCO output should be 90 degrees out of phase with respect to the input signal
	Give the classification of phase detector BTL1
12	Analog phase detector
12	Digital phase detector
	What is a switch type phase detector? BTL1
	An electronic switch is opened and closed by signal coming from VCO and the input signal is
13	chopped at a repetition rate determined by the VCO frequency. This type of phase detector is
	called a half wave detector since the phase information for only one half of the input signal is
	detected and averaged.
	What are the problems associated with switch type phase detector? BTL1
	• The output voltage V _e is proportional to the input signal amplitude. This is undesirable
14	because it makes phase detector gain and loop gain dependent on the input signal
	amplitude.
	• The output is proportional to cosφ making it non linear.
	What is a voltage controlled oscillator? B1L1
15	Voltage controlled oscillator is a free running multi vibrator operating at a set frequency called
	the free running frequency. This frequency can be shifted to either side by applying a dc control voltage
	Define Voltage to Frequency conversion factor, BTL 1
	Voltage to Frequency conversion factor is defined as
16	Kv = fo / Vc = 8fo / Vcc
	Where, Vc is the modulation voltage fo frequency shift.
	What is the purpose of having a low pass filter in PLL? BTL1
	• It removes the high frequency components and noise.
17	• Controls the dynamic characteristics of the PLL such as capture range, lock-in range,
	band-width and transient response.
	• The charge on the filter capacitor gives a short- time memory to the PLL
	Discuss the effect of having large capture range. BTL2
	The PLL cannot acquire a signal outside the capture range, but once captured, it will hold on till
18	the frequency goes beyond the lock-in range. Thus, to increase the ability of lock range, large
	capture range is required. But, a large capture range will make the PLL more susceptible to
	noise and undesirable signal.
19	Mention some typical applications of PLL. B1L1
	Frequency multiplication/division

	• Frequency translation
	• AM detection
	• FM demodulation
	• FSK demodulation.
	What is a compander IC? Give some examples.(DEC 2009) BTL1
20	The term commanding means compressing and expanding. In a communication system, the
	Examples: I M 2704 I M 2707: NE 570/571
	What are the merits of companding? BTL1
	• The compression process reduces the dynamic range of the signal before it is
	transmitted.
21	• Companding preserves the signal to noise ratio of the original signal and avoids non
	linear distortion of the signal when the input amplitude is large.
	• It also reduces buzz, bias and low level audio tones caused by mild interference.
	List the applications of applog multipliors (May/Jupa 2013) BTI 1
	• Analog computer
	 Analog computer Analog signal processing
22	Automatic gain control
22	True RMS converter
	• Analog filter (especially voltage-controlled filters)
	 PAM-pulse amplitude modulation
	In what way vCO is different from other oscillator. (May/June 2012) B1L2
	• To adjust the output nequency to match (or perhaps be some exact multiple or) an accurate external reference
23	 Where the oscillator drives equipment that may generate radio-frequency
	interference, adding a varying voltage to its control input can disperse the
	interference spectrum to make it less objectionable. See spread spectrum clock.
	List the applications of NE565. (Nov/Dec2010) BTL1
24	Frequency multiplier
	• FM Demodulator is the applications of NE565.
	Why the VCO is called voltage to frequency converter? (Nov/Dec 2012) BTL1
25	The VCO provides the linear relationship between the applied voltage and the oscillation
25	frequency. Applied voltage is called control voltage. The control of frequency with the help of
	control voltage is also called voltage to frequency conversion. Hence VCO is also called voltage to frequency converter
	DADT * B
	Explain the working of voltage controlled oscillator (8M) (Nov/Dec 2000) (April/May
	2010) BTL2
1	Answer: page 334 – 336 LIC D. Roy Choudhury
	IC signetics NE/SE566 (4M)

Subject Code:EC8453 Subject Name: LINEAR INTEGRATED CIRCUITS

Year/Semester: II /04 Subject Handler: Mrs.W.Nancy

UNIT IV - ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS

Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode *R* - 2*R* Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications - Flash type - Successive Approximation type - Single Slope type – Dual Slope type - A/D Converter using Voltage-to-Time Conversion - Over-sampling A/D Converters, Sigma – Delta converters. **PART * A**

Q.No.	Questions
	Give the operation of basic sample and hold circuit. BTL1
	A typical sample and hold circuit stores electric charge in a capacitor and contains at least one
	fast FET switch and at least one operational amplifier. To sample the input signal the switch
1	connects the capacitor to the output of a buffer amplifier. The buffer amplifier charges or
1.	discharges the capacitor so that the voltage across the capacitor is practically equal, or
	The capacitor is invariably discharged by its own leakage currents and useful load currents, which
	makes the circuit inherently volatile, but the loss of voltage (voltage drop) within a specified hold
	time remains within an acceptable error margin.
	State the advantages and applications of sample and hold circuits. BTL1
2	A sample and hold circuit is one which samples an input signal and holds on to its last sampled
2	value until the input is sampled again. This circuit is mainly used in digital interfacing, analog to
	digital systems, and pulse code modulation systems.
	List the drawbacks of binary weighted resistor technique of D/A conversion.BTL1
3	• Wide range of resistor values needed.
	• Difficulty in achieving and maintaining accurate ratios over a wide range of variations
	What is the advantage and disadvantages of flash type ADC? BTL1
4	Flash type ADC is the fastest as well as the most expensive.
	The disadvantage is the number of comparators needed almost doubles for each added bit (For a
	n-bit convertor 2(n-1) comparators, 2n resistors are required).
	The basic step of a 9 bit DAC is 10.3 mV. If 000000000 represents 0Volts, what is the output
5	The system tends as for input of 101101111 is
3	= 10.2 mV (1*28+0*27+1*26+1*25+0*24+1*22+1*22+1*21+1*20)
	$= 10.5 \text{ mV} (1^{+}26+0^{+}27+1^{+}20+1^{+}23+0^{+}24+1^{+}23+1^{+}22+1^{+}21+1^{+}20)$ - 10.3 * 10-3 * 367 - 3.78 V
	Find the resolution of a 12 bit DAC converter. BTL1
6	Resolution (volts) = $VFS/(212-1) = I LSB$ increment VFS – Full scale voltage
	What are the advantages and disadvantages of R-2R ladder DAC? BTL1 Advantages:
7	• Easier to build accurately as only two precision metal films are required.
	• Number of bits can be expanded by adding more sections of same R/2R values.

	What are the disadvantages of R-2R ladder DAC? BTL1
8	In this type of DAC, when there is a change in the input, changes the current flow in the resistor
	which causes more power dissipation which creates non-linearity in DAC.
	Define Start of Conversion. BTL1
9	This is the control signal for start of conversion which initiates A/D conversion process.
10	Define End of Conversion. BTL1
10	This is the control signal which is activated when the conversion is completed.
	What are the types of ADC? BTL1
	• Flash (comparator) type converter
11	Counter type converter
	Tracking or servo converter
	Successive approximation type converter
	What are the types of DAC? BTL1
12	Weighted resistor DAC
12	• R-2R Ladder
	Inverted R-2R Ladder
	What is the difference between direct ADC and integrating type ADC? BTL1
13	The integrating type of ADC's do not need a sample/Hold circuit at the input.
	It is possible to transmit frequency even in noisy environment or in an isolated form.
	Define Resolution. BTL1
	The resolution of a converter is the smallest change in voltage which may be produced at the
14	output or input of the converter. Resolution (in volts)= VFS/2n-1=1 LSB increment. The
	resolution of an ADC is defined as the smallest change in analog input for a one bit change at the
	Output. What is moant by Accuracy? BTI 1
15	It is the maximum deviation between the actual converter output & the ideal converter output
15	it is the maximum deviation between the actual converter output & the facar converter output.
_	What is the nurness of DAC Monotonicity? PTL 1
16	A monotonic DAC is one whose analog output increases for an increase in digital input
	Define Conversion time BTL 1
	It is defined as the total time required to convert an analog signal into its digital output. It depends
	on the conversion technique used & the propagation delay of circuit components.
17	The conversion time of a successive approximation type ADC is given by
17	T(n+1)
	where Tclock period
	Tcconversion time no of bits
	Define Relative accuracy. BTL1
18	Relative Accuracy is the maximum deviation after gain & offset errors have been removed. The
	accuracy of a converter is also specified in form of LSB increments or % of full scale voltage.
10	Define dither. BTL1
19	Dither is very small amount of noise to add a before the A/D conversion.

	Define sampling period and hold period. BTL1
20	Time duration of capacitor to sample and hold the equal value of voltage input period is called as
20	sampling period and the time duration of voltage across the capacitor at constant time duration is
	called as hold period.
	Define the term settling time. BTL1
21	It represents the time it takes for the output to settle within a specified band+- $(1/2)$ LSB of its final value. It depends upon the switching time of the logic circuitry due to internal peresitie
21	capacitances and inductances. Settling time ranges from 100ns to 10us depending on word length
	and type of circuit used
	Define conversion time. BTL1
22	It is the time taken for the D/A converter to produce the analog output for the given binary input
22	signal. It depends on the response time of switches and the output of the Amplifier. D/A
	converters speed can be defined by this parameter. It is also called as setting time.
	Define slew rate and state its significance. (Apr/May 2010) BTL1
	The circuit of successive approximation ADC consists of a successive approximation register
23	(SAR), to find the required value of each bit by trial & error. With the arrival of START summand SAR sate the MSR bit to 1. The O/R is converted into an analog signal θ it is
	command, SAR sets the MSB bit to 1. The O/P is converted into an analog signal & it is compared with I/P signal. This O/P is low or high. This process continues until all hits are
	checked
	What is the fastest ADC and why? (Nov/Dec 2010) BTL1
	The circuit of successive approximation ADC consists of a successive approximation register
24	(SAR), to find the required value of each bit by trial & error. With the arrival of START
24	command, SAR sets the MSB bit to 1. The O/P is converted into an analog signal & it is
	compared with I/P signal. This O/P is low or high. This process continues until all bits are
	checked.
	An 8 bit DAC has a resolution of $20 \text{m} \text{ v/bit}$. what is the analog output voltage for the digital input code 00010110(the MSB is the left most bit)?(A pr/May 2010) BTL 2
	The output voltage for input 00010110 is
25	$20 \times 0 \times 28 \times 0 \times 27 \times 0 \times 26 \times 1 \times 25 \times 0 \times 24 \times 1 \times 23 \times 1 \times 22 \times 0 \times 21$
	= 20 * 0* 2 * 0* 2 * 0* 2 * 1* 2 * 0* 2 * 1* 2 * 0* 2
	= 880 My
	PART * B
	With neat internal diagram, explain the following
	(i) Dual slope ADC (7M)
	ii) Successive Approximation ADC. (6M) BTL1
	Answer: page 361 – 365 LIC D.Roy Choudhury
	Dual slope : (7M)
	In Integrating ADC, current, proportional to input voltage, charges a capacitor for a fixed time
1	interval T charge. (2M)
	At the end of this interval, the device resets its counter and applies an opposite-polarity negative
	reference voltage to the integrator input. (2M)
	Because of this, the capacitor is discharged by a constant current until the integrator output
	voltage zero again. (1M)
	The T discharge interval is proportional to the input voltage level and the resultant final count

	$\begin{array}{c} MSB \\ Binary \\ npuf \\ LSB \\ \hline \\ 2R \\ 2R \\ 2R \\ 2R \\ R \\ R \\ R \\ R \\ R$	
	Enhancement of binary-weighted resistor DAC - R-2R ladder network.	(1M)
	DAC utilizes Thevenin's theorem in arriving at desired output voltages.	
	Disadvantage of the former DAC design - its requirement of several different precise	e input
	resistor values.	(1M)
	one unique value per binary input bit.	
	R-2R network consists of resistors with only two values - R and 2xR.	(1M)
	If each input supplied either 0 volts or reference voltage, the output voltage will be an	analog
	equivalent of the binary value of the three bits.	
	VS2 corresponds to the most significant bit (MSB) while VS0 corresponds to the least sign	nificant
	bit (LSB).	
	With circuit schematic explain analog switches using FET. (13M) BTL1 Answer: page 361 – 365 LIC D.Roy Choudhury	
	Two types of analog switches.	(1M)
3	Series and Shunt switch.	(2M)
	Switch operation is shown for both the cases VGS=0 VGS= VGs (off)	(2M)
	Diagram:	(8M)

		-
		• These errors are measured in a unit called the LSB, which is an abbreviation for least
		significant bit.
		Quantization error (3M)
		• Quantization error is due to the finite resolution of the ADC, and is an unavoidable imperfection in all types of ADC.
		• The magnitude of the quantization error at the sampling instant is between zero and half of one LSB.
		• In the general case, the original signal is much larger than one LSB.
		• When this happens, the quantization error is not correlated with the signal, and has a uniform distribution
		Non-linearity (3M)
		• These errors can sometimes be mitigated by calibration, or prevented by testing.
		• Important parameters for linearity are integral non-linearity (INL) and differential non-
		linearity (DNL).
		• These non-linear ties reduce the dynamic range of the signals that can be digitized by the
		ADC, also reducing the effective resolution of the ADC.
		Show the operation of any two direct type of ADC. (13M) BTL2
		Answer: page 361 – 365 LIC D.Roy Choudhury
		Process extremely fast with a sampling rate of up to 1 GHz. (1M)
		Resolution however, limited because of large number of comparators, reference voltages
	5	required. (1M)
-	5	Input signal fed simultaneously to all comparators. (1M)
		Priority encoder then generates a digital output that corresponds with the highest activated
		comparator. (1M)
		Diagram: (3M)
1		

	provides the digital output, corresponding to the input signal.	(1M)
	PART *C	
1	With example explain the successive Approximation ADC Technique. (11M) Discuss the important specification of Data Converters. (4M) Answer: Page 361 - 363 LIC D.Roy Choudhury Successive Approximation:	(6M)
	bit-weighting conversion, similar to a binary.	(1M)
	Analogue value rounded to the nearest binary value below,	(1M)
	Because the approximations are successive (not simultaneous),	(2M)
	conversion takes one clock-cycle for each bit of resolution desired.	(1M)
	ii)Data converters:	
	input n bit binary word D	(1M)
	reference voltage Vr	(1M)
	analog output signal	(1 M)
	output of DAC – voltage or current (1M)	
	Derive the Inverted or Current mode R-2R Ladder Digital to analog converter and Examine the inverted R-2R ladder (refer above question) has R=Rf=10k Ω and Calculate the total current delivered to the op-amp and the output voltage when t input is 1110. (15M) BTL3 Currents given as	l explain. VR=10V. he binary (4M)
	$i1 = V_{\text{REF}}/2R = (V_{\text{REF}}/R) 2-1,$	~ /
2	$i2 = (V_{REF})/2)/2R = (V_{REF}/R) 2-2$	
	$in = (V_{\text{REF}}/\text{R})$ 2-n.	
	Relationship between the currents given as	(4M)
	i2 = i1/2	

Subject Code:EC8453 Subject Name: LINEAR INTEGRATED CIRCUITS

Year/Semester: II /04 Subject Handler: Mrs.W.NANCY

UNIT V - WAVEFORM GENERATORS AND SPECIAL FUNCTION ICs

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators – Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Low Drop – Out(LDO) Regulators - Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto- couplers and fibre optic IC.

PART * A			
Q.No.	Questions		
1.	 What are the operating modes of a 555 timer? BTL1 Monostable mode Astable mode 		
2	List out the applications of 555 timer. BTL1 Oscillator pulse generator ramp and square wave generator d. mono-shot multivibrator burglar alarm traffic light control. 		
3	Define sink current. BTL1 When the output is low, the load current that flows through cted between Vcc and o/p terminal is called sink current.		
4	Define source current. BTL1 When the output is high, the load current that flows through the load connected between ground and o/p terminal is called source current.		
5	What is the use of reset pin of 555 timer? BTL1 This is an interrupt for the timing device when pin 4 is grounded, it stops the working of device and makes it off.		
6	What is the purpose of control voltage pin (5) of 555 timer? BTL1 This pin is the inverting input terminal of comparator. This is reference level for comparator with which threshold is compared. If reference level is other than 2/3 VCC, then external input is to be given to pin 5. Pulse width modulation is possible due to pin 5.		
	List out the major blocks in functional diagram of 555 timer. BTL1		
7	 The IC 555 timer combines the following elements. A relaxation oscillator RS flip-flop Two comparators Discharge transistor 		
8	List the types of regulators? BTL1		

	• Linear regulator		
	Switched regulator		
	Write the expression for pulse width of 555 timer in monostable mode. BTL1		
9	Pulse width $W = 1.1 \text{ RC}$ seconds		
	R – resistor in ohms,		
	C – capacitor in farads		
	Write the expression for total time period of 555 timer in astable mode. BTL1		
10	T = 0.693 (RA + 2 RB) C seconds		
10	Where RA,RB are resistors		
	C is capacitor		
	What is the frequency of oscillation of free running mode of 555 timer? BTL1		
11	F = 1.44/(RA + 2 RB) C Hz		
11	Where RA,RB are resistors		
	C is capacitor		
	List out the applications of 555 timer in astable mode. BTL1		
	missing pulse detector		
12	Linear ramp generator		
	Frequency divider		
	Pulse width modulation.		
	List out the applications of 555 timer in monostable mode. BTL1		
13	• FSK generator		
	Pulse-position modulator		
	Define voltage regulators and give the types. BTL1		
	• A voltage regulator is an electronic circuit that provides a stable dc voltage independent		
14	of the load current, temperature, and ac line voltage variations.		
	• The classification of voltage regulators: Series / Linear regulators		
	Switching regulators.		
	What do you mean by linear voltage regulators? BTL1		
15	Series or linear regulator uses a power transistor connected in series between the unregulated dc		
15	input and the load and it conducts in the linear region .The output voltage is controlled by the		
	continuous voltage drop taking place across the series pass transistor.		
	Define switched voltage regulators. BTL1		
16	Switching regulators are those which operate the power transistor as a high frequency on/off		
	switch, so that the power transistor does not conduct current continuously. This gives improved		
	efficiency over series regulators.		
	What are the advantages of adjustable voltage regulators over the fixed voltage regulators? BTL1		
17	• Improved line and load regulation by a factor of 10 or more.		
	• Because of the improved overload protection, greater load current can be drawn.		
	• Improved reliability.		

	List out the parameters related to the fixed voltage regulators. BTL1
	• Line regulation
	Load regulation
18	Ripple rejection
	• Output impedance
	• Maximum power dissipation
	• Rated output current
	Define dropout voltage of a fixed voltage regulator. BTL1
19	It is the minimum voltage that must exist between input and output terminals. For most of
	regulators, it is 2 to 3 volts.
	What is an opto-coupler IC? Give examples. BTL1
	• Opto-coupler IC is a combined package of a photo-emitting device and a photosensing
20	device.
20	• Examples for opto-coupler circuit : LED and a photo diode, LED
	and photo transistor, LED and Darlington.
	• Examples for opto-coupler IC : MCT 2F, MCT 2E
	Mention the advantages of opto-couplers. BTL1
21	• Better isolation between the two stages.
21	• Impedance problem between the stages is eliminated.
	Wide frequency response.
	Why do switching regulators have better efficiency then series regulators? (May/June 2012)
	BTL1
22	In switching regulators, the transistor is operated in cut off region or saturation region. In cut
	off region, there is no current and hence power dissipation is almost zero. In the saturation
	List the important parts of regulated power supply (April/May2010) BTI 1
	Reference voltage circuit
23	Frror amplifier
23	Series pass transistor
	 Feedback network
	What are the advantages of a switch mode power supplies? (April/May2010) BTL1
	Smaller size
24	• Lighter weight (from the elimination of low frequency transformers which have a
	high weight)
	 Lower heat generation due to higher efficiency.
	What are the disadvantages of linear voltage regulators? (Nov/Dec2011) BTL1
	The input step down transformer is bulky and expensive because of low line frequency.
25	Because of low line frequency, large values of filter capacitors are required to decrease the
	ripple. Efficiency is reduced due to the continuous power dissipation by the transistor as it
	operates in the linear region.
	PART * B
	Write a short notes on
1	Opto couplers (4M)
	Switched capacitor filter (4M)

ACADEMIC YEAR: 2019 - 2020

• High peak current capability.

LTPC 3003

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING

OBJECTIVES:

- \checkmark To the study of nature and the facts about environment.
- \checkmark To find and implement scientific, technological, economic and political solutions to environmental problems.
- ✓ To study the interrelationship between living organism and environment.
- \checkmark To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- \checkmark To study the dynamic processes and understand the features of the earth's interior and surface.
- \checkmark To study the integrated themes and biodiversity, natural resources, pollution control and waste management.
- UNIT Ι **ENVIRONMENT**, **ECOSYSTEMS** AND BIODIVERSITY 14

Definition, Scope and Importance of Environment - Need for Public Awareness - Concept of an Ecosystem - Structure and Function of an Ecosystem - Producers, Consumers and Decomposers -Energy Flow in the Ecosystem – Ecological Succession – Food Chains, Food Webs and Ecological Pyramids - Introduction, Types, Characteristic Features, Structure and Function of the (A) Forest Ecosystem (B) Grassland Ecosystem (C) Desert Ecosystem (D) Aquatic Ecosystems (Ponds, Streams, Lakes, Rivers, Oceans, Estuaries) - Introduction to Biodiversity Definition: Genetic, Species and Ecosystem Diversity – Bio geographical Classification of India – Value of Biodiversity: Consumptive Use, Productive Use, Social, Ethical, Aesthetic and Option Values - Biodiversity at Global, National and Local Levels – India as a Mega-Diversity Nation – Hot-Spots of Biodiversity – Threats to Biodiversity: Habitat Loss, Poaching of Wildlife, Man-Wildlife Conflicts - Endangered and Endemic Species of India - Conservation of Biodiversity: In-Situ and Ex-Situ Conservation of Biodiversity. Field Study of Common Plants, Insects, Birds Field Study of Simple Ecosystems -Pond, River, Hill Slopes, etc.

ENVIRONMENTAL UNIT Π **POLLUTION** 8

Definition – Causes, Effects and Control Measures of: (A) Air Pollution (B) Water Pollution (C)Soil Pollution (D) Marine Pollution (E) Noise Pollution (F) Thermal Pollution (G) Nuclear Hazards -Soil Waste Management: Causes, Effects and Control Measures of Municipal Solid Wastes - Role of an Individual in Prevention of Pollution – Pollution Case Studies – Disaster Management: Floods, Earthquake, Cyclone and Landslides. Field Study of Local Polluted Site - Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL 10

Forest Resources: Use and Over-Exploitation, Deforestation, Case Studies - Timber Extraction, Mining, Dams and Their Effects on Forests and Tribal People - Water Resources: Use and Over-Utilization of Surface and Ground Water, Floods, Drought, Conflicts Over Water, Dams-Benefits

RESOURCES

REGULATION :2017

and Problems – Mineral Resources: Use and Exploitation, Environmental Effects of Extracting and Using Mineral Resources, Case Studies – Food Resources: World Food Problems, Changes Caused by Agriculture and Overgrazing, Effects of Modern Agriculture, Fertilizer-Pesticide Problems, Water Logging, Salinity, Case Studies – Energy Resources: Growing Energy Needs, Renewable and Non Renewable Energy Sources, Use of Alternate Energy Sources. Case Studies – Land Resources: Land as a Resource, Land Degradation, Man Induced Landslides, Soil Erosion and Desertification – Role of an Individual in Conservation of Natural Resources – Equitable Use of Resources for Sustainable Lifestyles. Field Study of Local Area to Document Environmental Assets – River / Forest / Grassland / Hill / Mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 7

From Unsustainable to Sustainable Development – Urban Problems Related to Energy – Water Conservation, Rain Water Harvesting, Watershed Management – Resettlement and Rehabilitation of People; its Problems and Concerns, Case Studies – Role of Non-Governmental Organization-Environmental Ethics: Issues and Possible Solutions – Climate Change, Global Warming, Acid Rain, Ozone Layer Depletion, Nuclear Accidents and Holocaust, Case Studies. – Wasteland Reclamation – Consumerism and Waste Products – Environment Production Act – Air (Prevention And Control Of Pollution) Act – Water (Prevention And Control Of Pollution) Act – Water (Prevention And Control Of Pollution) Act – Enforcement Machinery Involved in Environmental Legislation-Central and State Pollution Control Boards- Public Awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT 6

Population Growth, Variation Among Nations – Population Explosion – Family Welfare Programme – Environment and Human Health – Human Rights – Value Education – HIV / AIDS – Women and Child Welfare – Role of Information Technology in Environment and Human Health – Case Studies.

TOTAL: 45 PERIODS

OUTCOMES:

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the

- ✓ Public awareness of environmental is at infant stage.
- ✓ Ignorance and incomplete knowledge has lead to misconceptions
- ✓ Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS:

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.

REFERENCES:

REGULATION :2017

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press 2005.

Subject Code: GE8291 Year Subject Name: ENVIRONMENTAL SCIENCE AND ENGINEERING Subject Handler: Dr. N. BHUVANA & Dr. C. KAVITHA

Year/Semester: I&II /02&04

UNIT I - ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

Q. No.	PART – A			
	State the significance and scope of environmental education. May 2011 BTL1			
	• People will understand the concept of need of development without destruction of			
1.	environment.			
	• Motivate the active participants in environmental protection and improvement.			
	• Develop a concern and respect for the environment.			
	Give some important physical hazards and their health effects. BTL2			
2	• The substance (or) activities that threaten your physical safety. E.g. Heat, Cold,			
2	Radiation, noise.			
	• Health effects – Damage of cells, Skin cancer, Damage of ear drum etc.			
	Define environment and ecosystem. April 2011, April 2019 BTL1			
	• Environment: The sum of total of all the living and non-living things around us			
3	influencing one another.			
	• Ecosystem: A group of organisms interacting among themselves and with environment			
	for exchanging energy and matter.			
	Explain the concept of an ecosystem. (Chen AU Jun 2007, Apr 2011, Dec2013) BTL2			
4	A group of organism interacting among themselves and with the environment. May be natural			
-	like a pond, a lake, a river, an ocean, or a forest or may be manmade like an aquarium, cropland,			
	garden, dam etc.			
5	What are the components of ecosystem? BTL1			
	i) Abiotic or Non-living component - Physical components and Chemical components			
	ii) Biotic or Living component – Autotrophs (Producers), Heterotrophs (Consumers),			
	Saprotrophs (Decomposers-Microconsumers)			
6	Define Ecological succession. (NOV/DEC 2013, April 2019) BTL1			

	The progressive replacement of one community by another till the development of stable		
	community in a particular area.		
	Name the types of consumers. B1L4		
7	• Herbivores (or) Primary Consumers (plant eater)		
	• Carnivores (or) Secondary Consumers (meat eater)		
	Omnivores (or) Tertiary Consumers (meat + plant eater)		
0	What are Decomposers? BILL		
8	Organisms which feed on dead organisms, plants and animals and decompose them into simpler		
	Compounds. Examples – Bacteria, lungi etc.		
	(Coim, A.U. Dec 2009) BTL1		
	Autotrophic components		
	Self-nourishing organisms. The members of autotrophic components are producers. They		
-	derive energy from sunlight and make organic compounds from inorganic substances.		
9	Examples: Green plants, algae, bacteria, etc.,		
	• Heterotrophic components		
	Components that dependent on others for food. The members of heterotrophic		
	components are consumers and decomposers. Herbivores, carnivores (or) omnivores.		
	• Saprotrops: They are decomposers - bacteria, fungi, etc.		
	Define the terms producers and consumers. (A.U. May 2008, Dec 2011) BTL1		
10	• Producers -Synthesize their food themselves through photosynthesis.		
10	• Consumers-Organisms which cannot prepare their own food and depends directly or		
	indirectly on the producers.		
	Define primary production and secondary production. (Chen A.U. Dec 2008) BTL1		
	• Primary production - The conversion of radiant energy into organic substances by		
11	photosynthesis by producers (Plants).		
	• Secondary production- Distribution of energy in the form of food to the consumer (or)		
	the energy stored by the consumer.		
	What is Ecological pyramids? BILI Creation of translation of structures and function of translation for account of an account of the starting with		
12	braducers at the bottom and each successive tropic level forming the apex is known as accledical		
	producers at the bottom and each successive tropic rever forming the apex is known as ecological		
	Name different types of ecosystems (Chen AU Jan 2006) BTL1		
	• Natural ecosystem: 1) Terrestrial ecosystem 2) Aquatic ecosystem		
13	a. Forest ecosystems b. Grassland ecosystems c. Desert ecosystems d. Pond ecosystem.		
15	e. Lake ecosystem f. River ecosystem g. Marine ecosystem		
	• Man-made ecosystem		
	What are the characteristics of desert ecosystem? (Chen A.U. Dec 2008, June 2018) BTL1		
14	• The desert air is dry and the climate is hot.		
	• Annual rainfall is less that 25cm.		
	• The soil is very poor in nutrients and organic matter.		
	• Vegetation is poor		
15	What is meant by keystone species? (Chen A.U. Dec 2008, June 2018) BTL1		
15	Within a habitat each species connects and depends on other species. But, while each species		

REGULATION :2017 ACADEMIC YEAR : 2019-2020				
	contribute to habitat functioning, some species do more than others in the overall scheme or			
	things. Without the work of these key species, the habitat changes significantly. These species are			
	called keystone species. When a keystone species disappears from its habitat, that habitat changes			
	drastically.			
	What are the types of grassland ecosystem? (Chen A.U. Dec 2010) BTL1			
16	There are three types of grassland ecosystem based on the climate condition.			
	i) Tropical grassland ii) Temperate grassland iii) Polar grassland			
	What are food chains? Mention their type. (Chen A.U. Dec 2010) BTL1			
	Food chain- The sequence of eating and being eaten in an ecosystem.			
17	Types:			
17	1) Grazing food chain (from the living green plants goes to grazing herbivores, and on to			
	carmivores)			
	11) Detritus food chain (Primary source of energy is dead organic matter called detritus			
	which are fallen leaves, plant parts or dead animal bodies)			
	Define Biodiversity (or) what is biodiversity and its significance? (Chen AU Dec 2005, Jun 2006 App 2011 App 2015) DTI 1			
	2000, Apr 2011, Apr 2015) DILI			
	• The variety and variability among all groups of fiving organisms and the ecosystem in which they occur			
	Significance:			
18	• Very important for human life as we depend on plants micro-organisms earth's animals			
10	for our food medicine and industrial products			
	• Also important for forestry fisheries and agriculture which depend on rich variety of			
	various biological resources available in nature			
	 Protects the fresh air clean water and productive land 			
	 Loss of biodiversity has serious economic and social costs for any country 			
	Define genetic diversity, species diversity and ecosystem diversity. (TNV AU Dec 2008,			
	Chen AU Dec 2007, May 2008, Dec2010, 2011) BTL1			
19	• Genetic diversity-Diversity of genes within a species.			
	• Species diversity –Diversity among species in an ecosystem.			
	• Ecosystem diversity -Diversity at the ecological or habitat level.			
	What are biodiversity hot-spots? (Chen AU Apr 2011) BTL1			
20	The geographic areas which possess the high endemic species. The two important biodiversity			
	hot spots in India- 1. Eastern Himalayas 2. Western Ghats.			
	What are the criteria for recognizing hot spots? (Chen AU Dec 2011) BTL1			
	• The Richness of the endemic species is the primary criterion for recognizing hot spots			
21	• The hot spots should have a significant percentage of specialized species.			
	• The site is under threat.			
	• It should contain important gene pools of plants of potentially useful plants.			
	India is a mega diversity nation–Account. (Chen A.U. Dec 2008, Dec 2009) BTL4			
22	India is one among the 12 mega diversity countries in the world. It has 89,450 animal species			
22	accounting for 7.31% of the global faunal species and 47,000 plant species which accounts for			
	10.8% of the world floral species. The loss of biodiversity or endemism is about 33%.			
23	Give few examples for endangered and endemic species of India. (Chen A.U. Dec 2008)			
	BTL3			
	Endangered species			

REGULATION :2017 ACADEMIC YEAR : 2019-2020	
	i) <u>Reptiles:</u> Tortoise, python; ii) <u>Mammals:</u> Indian wolf, Red fox, Tiger; iii) <u>Primates:</u> Hoolock
	gibbon, Golden monkey; iv) Plants : Rauvol serpentina, Santalum
	Endemic Species
	i) Flora: Sapria Himalayan, Ovaria lurida ; ii) Fauna: Monitor lizards, Indian salamander
	Define endangered and endemic species. (Chen A.U. Dec 2006, Apr 2011, Dec 2014) BTL2
24	Endangered Species-Species which number has been reduced to a critical level. Unless
∠ 4	protected and conserved, it becomes immediate danger of extinction.
	Endemic species-The species which found only in a particular region.
	Define in-situ conservation and ex-situ conservation BTL1
25	In-situ conservation - Protection of fauna and flora within their natural habitat, where the
23	species normally occurs is called in-situ conservation.
	Ex-situ conservation - Protection of fauna and flora outside their natural habitats
	Enumerate the human activities which destroy the biodiversity. (Chen AU Jan 2006) BTL2
	• The farmers prefer hybrid seeds; as a result many plant species become extinct.
26	• For the production of drugs the pharmaceutical companies collect wild plants, so several
20	medicinal plants now become extinct.
	• Tropical forest is the main sources of world's medicine. Every year these forests are
	disappearing due to agriculture, mining and logging
	Define food web. BTL1
27	A network of food chains where different types of organisms are connected at different tropic
	levels.
28	Write the food chain in forest ecosystem. BTL4
20	$Grasshopper \rightarrow Woodpecker \rightarrow Snake \rightarrow Owl$
29	Write the food chain in lake ecosystem. BTL4
_>	Algae \rightarrow Ciliates \rightarrow Small fish \rightarrow Large fish
	What is biome? BTL1
30	Set of ecosystems which are exposed to same climatic conditions and having dominant species
	with similar life cyclic, climatic adoptions and physical structure.
	What is photosynthesis? (or) How the carbohydrates are produced by plants? BTL1
31	Chlorophyll present in the leaves of plants converts CO_2 and H_2O in the presence of sunlight into
51	carbohydrates.
	$6CO_2 + 12H_2O \xrightarrow{m} C_6H_{12}O_6 + 6O_2 + 6H_2O$
27	List the different processes of ecological succession. BTL1
32	i) Nudation ii) Invasion iii) Competition iii) Reaction iv) Stabilizations
	Define extinct, threatened and vulnerable species. (Chen A.U. Dec 2006, Apr 2011, Dec
33	2014) BTL2
	• Extinct species – The species no longer found in the world.
	• Threatened Species Becoming rare and that may become in danger of extinction if
	current trends continue.
	• Vulnerable Species- Species which population facing continuous decline due to habitat
	destruction or over exploitation.
34	Mention the types of lakes. BTL4
	Oligotrophic lakes: Have low nutrient concentrations.
	• Eutrophic lakes: Over nourished by nutrients like N and P.
	• Dystrophic lakes : Have low pH, high humic acid content and brown waters.

REGUI	LATION :2017 ACADEMIC YEAR : 2019-2020		
	Volcanic lakes: Receive water from magma after volcanic eruptions.		
	• Meromictic lakes: Rich in salts.		
	Artificial lakes: Created due to construction of dams		
	List the different zones of oceans. BTL4		
	• Coastal zone: Relatively warm, nutrient rich shallow water, High primary productivity.		
25	• Open sea : Deeper part of the ocean. Vertically divided into three regions.		
33	i) Euphotic zone: Receives abundant light and shows high photosynthetic activity	ty	
	ii) Bathyal zone: Receives dim light and is usually geologically active.	.,	
	iii) Abyssal zone: Dark zone and is very deep (2000 to 5000 meters)		
	How do the desert plants adopt to the climate? (MAY 2018) BTL4		
	Most of the plants have the ability to lack of rainfall. They have widespread roots which are clo	ose	
36.	to the surface. This enables the roots to absorb water quickly, before it evaporates. Plants li	ke	
	cactus survives because of their thick waxy layer on the outside of its stems and leaves. The	nis	
	helps to retain water and protect tissues severe sunlight.		
	Define nitrogen cycle and oxygen cycle. BTL1		
27	Nitrogen cycle-Exchange of nitrogen between the lithosphere and atmosphere in cyclic manner		
37.	Oxygen cycle -Exchange of O_2 between the lithosphere and atmosphere and hydrosphere ir	ı a	
	cyclic manner. Cyclic process of Photosynthesis and respiration.		
	What is an indicator species? (MAY 2018) BTL1		
	An indicator species is an organism whose presence, absence or abundance reflects a speci	fic	
20	environmental condition. Indicator species can signal a change in the biological condition of	fa	
50.	particular ecosystem, and thus may be used as a proxy to diagnose the health of an ecosystem.		
	Example: Plants or lichens sensitive to heavy metals or acids in precipitation may be indicators	of	
	air pollution.		
	PART – B		
1.			
	What is environment? List its types. Explain its scope and significance of environme	ent	
	studies. (13M) BTL2		
	Answer: Page: 1.2–1.4-A. Ravikrishnan		
	Definition- The sum of all living and non-living things around us influence one another. (2 I	M)	
	Types- i) Natural environment – naturally created all biotic and non-biotic components.		
	ii) Man-made environment- Created by man.	(2	
<i></i>	M)		
	Scope of environmental studies		
	i) Awareness and sensitivity + related problems.		
	ii) Motivate active participation.		
	iii) Identification and solving environmental problems.		
	iv) Awareness on conservation of natural resources.	(4	
	M)		
	Significance or importance		
	i) Environment issues being of internal importance.		
	ii) Problems cropped in the wake of development.		
	iii) Explosively increase in pollution.		
	iv) Need for an alternative solution.		

	v) Need to save Humanity from extinction.
	vi) Need for Wise planning of development. (5
	M)
2.	
	Explain the flow of energy through the atmosphere and its utilities in an ecosystem. (8M)(AU Dec. 2008) BTL2
	Answer: Page: 2.10–2.11-A. Ravikrishnan Atmosphere → Sunlight major source of energy → Plants (Photosynthesis) Primary Consumer → Secondary consumer → Decomposer First law of thermodynamics. Plants (Photosynthesis) Second law of thermodynamics. Primary Consumer → Secondary consumer → Decomposer • Loss of energy takes place through respiration, running, hunting etc • Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (5 M) ENERGY FLOW FLOW FOR T CYCLAD ABIOTIC OUMPONENT Note: • Loss fored Energy • Loss of energy together through energy flow and • Loss of energy flow together through energy flow together through energy flow and • Loss of energy flow
2	(3 M)
3.	Explain abiotic and various biotic components of an Ecosystem with neat sketch. (13M) (A.U. Dec 2007, Jan 2018) BTL2
	Abiotic-Nonliving components-Physical and chemical components. (2 M)
	i) Autotrophs-Producers (Plants)–Self nourishing Organisms. (3 M)
	 ii) Consumers (Animals) (Heterotrophs)–Cannot make their own food. Herbivores-Carnivores-Omnivores. (3 M)
	 iii) Decomposers (Micro-Organisms) (Saprotrops)- Feed on dead organisms. (3 M)

JIT-JEPPIAAR/S&H/Dr.N.BHUVANA/I &II Yr/SEM 02&04/GE8291/EVS/ UNIT1-5/Q.B.+Keys/ Ver. 3.0

5.				
	Explain the structure and function	of the following. (i) F	orest ecosystem	(ii) Grassland
	ecosystem (iii) Desert ecosystem (iv) Aquatic ecosystem (13M) (A.U. May2011, May 2006)			
	BTL2			
	Answer: Page: 2.30 – 2.31, 2.33 – 2.34	l, 2.36 – 2.37, 2.38 – 2.40), 2.43 – 2.44-A. F	Ravikrishnan
	(1) Structure and Function of forest	ecosystem:		1 5
	• Abiotic components - Physica Climatic factors (temperature, li	al components found in ght, rainfall) and mineral	s.	mosphere. Exs:
	Biotic components-Produce vegetation.	rs-Plants-Photosynthesis	-Trees, shrubs	and ground
	• Consumers -Primary consumers	(herbivores)-Ants, flies,	insects, mice, dee	er, squirrels.
	• Secondary consumers (primary	carnivores)- Snakes, bir	ds, fox.	· 1
	• Tertiary consumers -Tigre, lion	i, etc.		
	• Decomposers –Bacteria	and		fungi.
	(3M)			-
	(ii) Structure and Function of Grassl	and Ecosystem		
	• Abiotic–C, H, O, N, P, S etc.–S	upplied by rates, nitrates,	phosphates and s	ulphates.
	• Biotic –Producers–Grasses, forb	s and shrubs		
	 Consumers–Cows, cows, buffa 	loes, deer, sheep		
	• Decomposers –Fungi	and		bacteria.
	(3M)			
	(iii) Structure & Function of Desert E	cosystem-		
	• Abiotic-temperature, rainfall, su	unlight, water,		
	• Biotic – Producers – shrubs, bus	shes, grasses,		
	• Consumers –Squirrels, mice, for	xes;	,	1 / 1
	• Decomposers –	fungi	and	bacteria.
	(3M) (iv) Structure and Function of A quati	a Foosystom Dond Tor	norary Frach wat	or body
	(IV) Su ucture and Function of Aquat	ter organic and inorgani	a compounds	er bouy.
	Biotic-Producers-green photosy	uci, organic and morgani	e compounds.	
	Consumers_Protozoa small fis	h ciliates flagellates		
	 Decomposers—Fungi bacteria a 	nd flagellates		(2M)
	Structure and Function of Aquati	c Ecosystem-Lakes–Nat	ural shallow wate	r bodies
	• Abiotic–Temperature, light, pro	teins and lipids, turbidity	. oxygen and carb	on dioxide.
	• Biotic–Producers –Phytoplankt	ons, algae, flagellates.	,, 8	
	• Consumers –Protozoans, insects	s. small fishes. large fish:		
	• Decomposers –Bacteria, fungi a	nd actinomycetes.		(2M)
6.	· · · · · · · · · · · · · · · · · · ·	J		
	Classify and explain the values of bi	iodiversity. (13M) (A.U	. Dec 2010, Mav	11, Jan 2018)
	BTL2	v x x x x x x	, J	
	Answer: Page: 3.5 – 3.9-A. Ravikrish	nan		

REGUI	LATION :2017 ACADEMIC YEAR : 2019-2020			
	Classify values biodiversity – Consumptive use values; Productive use values; Social values;			
	Ethical values; Optional values. (1M)			
	Consumptive use values–Direct use values; products are harvested and consumed directly.			
	Food, Drugs, Fuel.			
	(2 M)			
	Productive use values –Products derived from the animals and plants-commercial value. (2M)			
	Social values-Bio-resources used to the society. Associated with the social life, religion and			
	spiritual aspects of the people. (2M)			
	Ethical values-"All life must be preserved". In India biodiversity have great value on religious			
	and cultural basis.			
	(2M)			
	Optional values –Any species may be proved to be a valuable species after someday. (2M)			
	Aesthetic values- Beautiful nature of plants and animals insist us to protect the biodiversity.			
	"Eco-tourism"			
	(2M)			
7.				
	Explain the role of biodiversity at global, national and local levels. (13M) (A.U. May 07, Apr			
	10, May 11, June 2019) BTL2			
	Answer: Page: 3.9 – 3.14-A. Ravikrishnan			
	Role of Global biodiversity- Total number of living species in the world are about 20 million.			
	But, of which only about 1.5 million species are found and given scientific names.			
	Tropical deforestation alone is reducing the biodiversity by 0.5% every year.			
	Terrestrial biodiversity or biomass			
	i) Largest ecological units present in different geographic areas named in different ways			
	ii) Tropical rain forests -About 50 to 75% of global biodiversity lies in these tropical rain			
	forest.			
	iii) More than 25% of the world's prescription drugs are extracted from plants in tropical rain			
	forest			
	iv) Nearly 1,30,000 flowering plants are found available			
	v) Temperate rain forests - Have much less biodiversity. 1,70,000 flowering plants, 30, 000			
	vertebrates, 2,50,000 other group of species are found. (3M)			
	Marine diversity			
	i) Much higher than terrestrial biodiversity			
	ii) Estuaries coastal waters and oceans are biologically diverse but the diversity is very low			
	iii) Out of 35 existing phyla of multicellular animals, 34 are marine			
	iv) List of few living species (2M)			
	National level biodiversity:			
	i) India is second largest nation containing 5% of world's biodiversity and 2% of the earth			
	surface. The second largest nation containing 50% of world's biodiversity and 2% of			
	earth surface.			
	ii) 10^{m} rank among the plant rich countries of the world.			
	iii) 11^{m} rank among the endemic species of higher vertebrates.			
	iv) 6^{m} rank among the centers of diversity and origin of agricultural crops.			
	v) An agricultural country and its economic growth depend on the production of many crops.			
	vi) India "mega - diversity" nation because it is rich in both fauna and flora.			

REGUI	ACADEMIC 1EAK : 2017-2020
	vii)Many species in India has Medicinal value and Commercial value (5M)
	Biodiversity at local level -1. Point richness 2. Alpha richness 3. Beta richness 4. Gamma richness.
	(3M)
8.	
	(i) Give the various hot spots of biodiversity.(ii) Explain the various threats to biodiversity along with the means to conserve them. (13M) (May 2008, MAY/JUNE 2013, Dec 2019) BTL4
	Answer: Page: 3.18 – 3.25-A. Ravikrishnan
	(i) Biodiversity hotspot -The geographic areas which possess high endemic species. Eastern
	Himalayas, Western Ghats. (2M)
	(ii)Threats to biodiversity
	 Habitat loss-The loss of populations of interbreeding organisms. Threatened a wide range of animals and plants. Factors influencing habitat loss and any two remedies. (3M) Poaching-Killing of animals (or) commercial hunting. Leads to loss of animal biodiversity. Factors influencing poaching loss and any two remedies to overcome. (3M)
	 Man-Wild life conflict- Arise when wildlife starts causing immense damage and danger to the man. Factor influencing man-wild life conflict and two conserve methods. (3M) Over exploitation of natural resources i) Serious threat to the wildlife.
	ii) Disturbance in migratory routes of animals.
0	111) Cause of destruction of many species. (2M)
9.	
	Explain in-situ and ex-situ conservation along with their merits and limitations. (A.U. May 2008, Dec 2010, May 11, Dec 11) (13M) BTL2
	Answer: Page: 3.34 – 3.40-A. Kavikrishnan Conservation of Biodiversity: management of biographics so that it will yield the greatest
	sustainable benefit to present generation while maintaining its potential to meet the needs of (1M)
	In-Situ Conservation (within habitat) - Protection of wild flora and fauna within their habitat nature. (1 M)
	Biosphere reserves, National Parks, Sanctuaries, Reserve forests etc. $(Each 1 M = 4M)$
	Advantages: Cheap and convenient method. Species gets adjusted the natural disasters like
	drought, floods, forest fires. (1 M)
	Limitations: Large surface area of the earth required – shortage of staff and pollution may lead to improper maintenance of the habitat (1 M)
	Ex-Situ Conservation (outside habitat) – Protection of flora and fauna outside their habitat
	nature. (1 M)
	Gene banks, seed banks, zoos, botanical gardens, culture collections. (2 M)
	Advantages: Special care and attention lead, Assured food, water, shelter and security. Longer

ACADEMIC YEAR : 2019-2020

	life span.			(1 M)
	Limitations: Expensive method	- Loss of freed	lom of wild life –	Animals cannot survive in such
	environments.			(1 M)
10.				
	Write a note on endangered ar	nd endemic spe	ecies of India. (13)	M) (A.U. Dec 2009) BTL2
	0		× ×	, , , ,
	Answer: Page: 3.28 – 3.33-A. I	Ravikrishnan		
	Endangered Species – Species	number has be	en reduced to a crit	tical level. Unless it is protected
	and conserved, it is in immediate	e danger of exti	nction.	
	i) In India 450 plant specie	s identified as e	endangered species	
	ii) About 100 mammals and	150 birds are	endangered species	3.
	iii) India biodiversity threate	ened due to hab	itat destruction, de	gradation and over exploitation.
	iv) No. of endangered specie	es in India		
		Group of	Number	f of
	Three	eatened species	Threatened	species
	Plants			250
	Birds			70
	Mamma	ls		86
	Reptiles			25
	Amphib	ians		3
	Fishes			3
	Mollusc	S		2
				(6M)
	Factors affecting endangered s	species		
	• Pollution			
	• Over exploitation			
	Climate change			
	Remedial measures			
	• International Treaties on	Endangered Sp	becies (ITES)	(1M)
	Endemic Species-Species found	l only in a parti	cular region	
	1) In India, Out of $47,000 \text{ s}$	pecies 7,000 pl	ants are endemic.	
	11) About 62% endemic flor	a found in Him	alayas, Khasi Hills	and western Gnats.
	III) Fauna -Animais present	in particular r	egion or period. E	lente and Orabide etc.
	iv) Out of 81 000 animal spe	ula, Feulcularis	parroter, Flicher p	described to be endemic
	(x) 62% amphibians 50% L	izards are ende	mic to Western Gh	ats
	vi) No of endemic species i	n India	line to western On	ats
	vii)	ii iiidid		
		Group	No. of Species	
		Land	878	
		Freshwater	89	
		Insecta	16214	
		Amphibia	110	
		Reptilia	214	
		Aves	69	

REGUL	ATION :2017		А	CADEMIC YEAR : 2019-2020
		Nannakua	38	
	viii) Flora -P	lants present in a partic	ular region or p	eriod. Friendly bacteria which
	helps to protec	t the human body agains	st invasion by pa	athogens. E.g. Monitor lizards,
	reticulated pyth	on, Indian Salamander, V	iviparous toad	
		Group	No. of S	pecies
		Pteridophyta	200	
		Angiosperms	4950	
				(5M)
	Factor affecting ender	nic species		
	• Habitat loss and	fragmentation		
	 Pollution 	C		(1M)
11.				
	What are the major o	auses of Man- wild life	conflict? Discus	ss the remedial steps that can
	curb the conflict. (13)	(A.U. Dec 2011, Apr 2	2015) BTL4	» the femeratin steps that can
		-) ()		
	Answer: Page: 3.26–3	.28-A. Ravikrishnan		
	Man-Wildlife Conflict	s-Causes:		
	i) Shrinking of for	rest		
	ii) Human encroac	hment into forest areas		
	iii) Animals sufferi	ng from illness, weak and	l injured take hun	nans
	iv) Lack of alternat	te cultivation practices by	forest departmen	ıt
	v) Electric fencing	causes injury to animals.	which in return t	turn violent
	vi) Poor cash com	pensation by govt. to farm	ers	
	vii)Food crops nea	r forest areas attract wild	animals.	(10 M)
	Remedies to curb the	conflict		
	i) Adequate crop a	and cattle compensation so	chemes must be s	tarted.
	ii) Solar powered f	encing must be provided	along with electri	c current proof trenches.
	iii) Cropping patter	n should be changed near	the forest border	s
	iv) Adequate food a	and water should be made	available within	the forest areas.
	v) The development	nt and constructional worl	k near the forest a	rea must be avoided. (3 M)
		PART	- C	
1.				
	(i) Elaborate about	the different biological	zones of India. (5M) BTL6
	(ii) Discuss a case	study on (a) Man an	d wild life cor	flicts (b) Productive use of
	biodiversity. (10	M) BTL6		
	Answer: Page: 3.4 – 3	.5, 3.26–3.28, 3.8-3.9 A. I	Ravikrishnan	
	(i) Biogeographically	Classification of India:		
	i) Division of Indi	a according to biogeograp	phic characteristic	cs. The study of the distribution
	of species, orga	nisms, and ecosystems in	n geographic space	e and through geological time.
	The biogeograp	hic zones of India are as	follows:	
	ii) Himalayan zone	; Desert zone; Semiarid z	zone; Western Gl	nats zone; Deccan plateau zone;
	Gangetic plain	zone; North east zone; C	oastal zone; Islan	nds present near the shore line;
	Trans Himalaya	n zone.		(5 M)
	(ii) Case study on Ma	n-Wildlife Conflicts:		

ACADEMIC YEAR: 2019-2020

- i) Wildlife causing damage and danger to humans and properties crops/houses
- ii) In Samalpur (Orissa) 195 humans were killed in the last 5 years by elephants.
- iii) Humans responded by killing 98 elephants and injuring 30 elephants.
- iv) In Nepal, 17 peoples were killed in the Royal Chitwan National Park by a man-eating tiger.
- v) Electrical fencing, explosives were some of the methods adopted by villages to kill wild animals.

Causes:

- i) Shrinking of forest
- ii) Human encroachment into forest areas
- iii) Animals suffering from illness, weak and injured take humans
- iv) Lack of alternate cultivation practices by forest department.
- v) Electric fencing causes injury to animals, which in return turn violent
- vi) Poor cash compensation by govt. to farmers

vii) Garbage near human settlements or food crops near forest areas.

(7 M)

Productive use of biodiversity

Products derived from the animals and plants have obtained a commercial value.

Plant product	Industry
Wood	Paper and pulp industry, plywood industry
	Railway sleeper industry.
Cotton	Textile industry
Fruits, vegetables	Food industry
Leather	Leather industry
Ivory	Ivory - works
Pearl	Pearls industry

(3M)

2.

Inspect about the characteristic features of a pond, river and marine ecosystem and also quote a typical food chain based on that respective ecosystem. (15M) BTL4

Answer: Page: 2.27 – 2.29, 2.33 – 2.36-A. Ravikrishnan

Pond Ecosystem

- i) Small bodies of freshwater with shallow and still water, marsh, and aquatic plants.
- i) Temporary, only seasonal.
- ii) Stagnant fresh water body.
- iii) Get polluted easily due to limited amount of water
- iv) The size and depth of ponds often varies greatly
- v) Diverse array of aquatic life
- vi) Top predators may include large fish, herons, or alligators.

Food Chain–Producers- Green plants, phytoplanktons like hydrilla, vallisneria, pistia, sagittaria \rightarrow Primary consumers- Zooplanktons like insects, dragon fly larvae, crustaceans, Larvae of insects, beetles, fishes, molluscs \rightarrow Secondary consumers- Insects like water beetles, frogs, fishes \rightarrow Tertiary Consumers-Big fishes, kingfisher, water birds \rightarrow Decomposers–Fungi, bacteria.

(2M)

(3 M)

River Ecosystem:

REGUI	ATION :2017 ACADEMIC YEAR : 2019-2020
	i) River viewed as a system operating in its natural environment includes biotic as well
	as abiotic.
	i) Fresh water and free flowing water systems.
	ii) Due to mixing of water, dissolved oxygen content is more.
	iii) River deposits large amount of nutrients
	iv) Unidirectional flow.
	v) State of continuous physical change.
	High degree of spatial and temporal heterogeneity at all scales. (3M)
	Food Chain–Producers-Phytoplankton, algae, water grasses, aquatic masses, amphibious plants
	\rightarrow Primary consumers-Water insects, snails, fishes \rightarrow Secondary consumers-Birds and
	mammals \rightarrow Decomposers –Fungi, bacteria. (2M)
	Ocean Ecosystem:
	i) Largest of Earth's aquatic ecosystems.
	ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and
	coral reefs, the deep sea and the sea floor.
	iii) Since ship, submarines can sail in ocean, commercial activities may be carried out.
	iv) Rich in biodiversity.
	v) Moderates the temperature of the earth
	vi) Contrasted with freshwater ecosystems.
	vii) Very important for the overall health of both marine and terrestrial environments. (3M)
	Food Chain–Producers-Phytoplanktons, marine plants \rightarrow Consumers-Primary consumers-
	Crustaceans, moiluscs, fish \rightarrow Secondary consumers-Herring sahd, mackerel \rightarrow Tertiary
	Consumers -Cod. Haddock \rightarrow Decomposers–Fungi, bacteria and flagellates. (2M)
3.	
3.	What is forest ecosystem? List the types of forest ecosystem Explain the features
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics structure and function forest ecosystem (15M) BTL1
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense, trees grow that support many animals and birds (2M)
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem i) Tropical rain forests
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem i) Tropical rain forests. ii) Tropical deciduous forests
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem i) Tropical rain forests. ii) Tropical deciduous forests. iii) Tropical scrub forests.
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem i) Tropical rain forests. ii) Tropical deciduous forests. iii) Tropical scrub forests. iv) Temperate rain forests.
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Tropical scrub forests. Temperate rain forests. Temperate deciduous forests.
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem i) Tropical rain forests. ii) Tropical deciduous forests. iii) Tropical scrub forests. iv) Temperate rain forests. v) Temperate deciduous forests. (2M) Features of Forest ecosystems
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem i) Tropical rain forests. ii) Tropical deciduous forests. iii) Tropical scrub forests. iv) Temperate rain forests. v) Temperate deciduous forests. iv) Temperate deciduous forests. v) Temperate deciduous forests. ii) Tropical forest ecosystems ii) Tropical scrub forests. iv) Temperate rain forests. v) Temperate deciduous forests. iv) Temperate deciduous forests. v) Temperate deciduous forests. ii) Tropical rain forests.
3.	What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem i) Tropical rain forests. iii) Tropical deciduous forests. iv) Temperate rain forests. v) Temperate deciduous forests. v) Temperate deciduous forests. ii) Tropical scrub forests. iv) Temperate rain forests. v) Temperate deciduous forests. ii) Tropical scrub forests. iv) Temperate rain forests. v) Temperate deciduous forests. ii) Tropical scrub forests. vi) Temperate rain forests. vi) Temperate deciduous forests. vi) Temp
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Temperate rain forests. Temperate deciduous forests. Tropical rain forests. Tropical rain forests. Features of Forest ecosystems Tropical rain forests: Found near the equator. High temperature. Broad leaf trees and lion, tiger and monkey are present. Tropical deciduous forests: Found little away from the equator. Warm climate and rain
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Tropical scrub forests. Temperate deciduous forests. Tropical rain forests. Features of Forest ecosystems Tropical rain forests: Found near the equator. High temperature. Broad leaf trees and lion, tiger and monkey are present. Tropical deciduous forests: Found little away from the equator. Warm climate and rain only during monsoon. Have deciduous trees and deer, fox, rabbit and rat.
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Tropical scrub forests. Tropical rain forests. Tropical rain forests. Tropical rain forests. Features of Forest ecosystems Tropical rain forests: Found near the equator. High temperature. Broad leaf trees and lion, tiger and monkey are present. Tropical deciduous forests: Found little away from the equator. Warm climate and rain only during monsoon. Have deciduous trees and deer, fox, rabbit and rat.
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Tropical scrub forests. Features of Forest ecosystems Tropical rain forests: Found near the equator. High temperature. Broad leaf trees and lion, tiger and monkey are present. Tropical deciduous forests: Found little away from the equator. Warm climate and rain only during monsoon. Have deciduous trees and deer, fox, rabbit and rat.
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Topical scrub forests. Tropical rain forests. Tropical rain forests. Features of Forest ecosystems Tropical rain forests. Tropical rain forests. Tropical rain forests. Tropical rain forests. Tropical rain forests: Found near the equator. High temperature. Broad leaf trees and lion, tiger and monkey are present. Tropical deciduous forests: Found little away from the equator. Warm climate and rain only during monsoon. Have deciduous trees and deer, fox, rabbit and rat. Tropical scrub forests: Dry climate for longer time. Have small deciduous trees and shrubs and deer, fox, etc., iv)
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Tropical scrub forests. Tropical rain forests. Features of Forest ecosystems Tropical rain forests. Tropical rain forests. Tropical rain forests. Features of Forest ecosystems Tropical rain forests: Found near the equator. High temperature. Broad leaf trees and lion, tiger and monkey are present. Tropical deciduous forests: Found little away from the equator. Warm climate and rain only during monsoon. Have deciduous trees and deer, fox, rabbit and rat. Tropical scrub forests: Dry climate for longer time. Have small deciduous trees and shrubs and deer, fox, etc., Temperate rain forests: Found in temperate areas with adequate rainfall. Coniferous trees and suirrels, fox, cats, bear etc
3.	 What is forest ecosystem? List the types of forest ecosystem. Explain the features, characteristics, structure and function forest ecosystem. (15M) BTL1 Answer: Page: 2.17–2.21-A. Ravikrishnan Definition - Contains tall and dense trees grow that support many animals and birds. (2M) Types of Forest ecosystem Tropical rain forests. Tropical deciduous forests. Tropical scrub forests. Tropical rain forests. Tropical rain forests. Tropical rain forests. Features of Forest ecosystems Tropical rain forests: Found near the equator. High temperature. Broad leaf trees and lion, tiger and monkey are present. Tropical deciduous forests: Found little away from the equator. Warm climate and rain only during monsoon. Have deciduous trees and deer, fox, rabbit and rat. Tropical scrub forests: Dry climate for longer time. Have small deciduous trees and shrubs and deer, fox, etc., Temperate rain forests: Found in temperate areas with adequate rainfall. Coniferous trees and squirrels, fox, cats, bear etc., Temperate deciduous forests: Found in areas with moderate temperatures. Broad leaf

JIT-JEPPIAAR/S&H/Dr.N.BHUVANA/I &II Yr/SEM 02&04/GE8291/EVS/ UNIT1-5/Q.B.+Keys/ Ver. 3.0

 Amospheric orgen (C) Photo Photo Orgenic occle Or		
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sall in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. iii) Contrasted with freshwater ecosystems. iii) Octorbared by anotypical physical arc inspiration and the earth of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers- Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. a. N. The conversion of organic matter into nutrients is very fast. 		Atmospheric oxygen (O ₂)
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Largest of Earth's aquatic ecosystems. Largest of Earth's aquatic ecosystems. Stoch in biodiversity. Wodertase the temperature of the earth Outrasted with freshwater ecosystems. 5. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers. Ford Chain-Producers. Fluoplanktons, marine plants → Consumers-Primary consumers. Crustaceans, moliuses, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. vii) The soil is rich in organic matter into nutrients, which support the growth of trees. The conversion of organic matter into nutrients, which support the growth of trees. 		and Ber (all)
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BT1/4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Loss of Earth's aquatic ecosystems. Include oceans, salt marsh and intertial ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Rich in biodiversity. Notrasted with freshwater ecosystems. 5. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers. Crustaceans, molluses, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. vii) The soil is rich in organic matter and nutrients, which support the growth of trees. a) The conversion of organic matter into nutrients is very fast. 		Organic
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) (iii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) (iii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) (iii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) (iii) Bugeston: (i) Largest of Earth's aquatic ecosystems. (i) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral refs, the deep sea and the sea floor. (ii) Since ship, submarines can sail in ocean, commercial activities may be carried out. (iv) Rich in biodiversity. (v) Moderates the temperature of the earth (v) Contrasted with freshwater ecosystems. 5. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers. Food Chain-Producers-P		molecule
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. ii) Since ship, submarines can sall in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, molluses, fish → Secondary consumers-Herring sahd, mackerel → Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. vii) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. vii) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter and nutrients is very fast. 		
 Philoin Coxygen Consumers-Cox, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Consumers and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. Vi Warn temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. Vi The soil is rich in organic matter and nutrients, which support the growth of trees. X) The conversion of organic matter and nutrients, which support the growth of trees. 		
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sall in ocean, commercial activities may be carried out. Noderates the temperature of the earth Contrated with freshwater ecosystems. 5. vi) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, molluses, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		Photo Oxygen Respiration
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sall in ocean, commercial activities may be carried out. Noderates the temperature of the earth Orntrated with freshwater ecosystems. 5. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. vii) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter and nutrients is very fast. 		Synthesis cycle
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Noderates the temperature of the earth Contrasted with freshwater ecosystems. Some Schain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel → Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Wi Warm temperature and adequate rainfall → Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. Wi The soil is rich in organic matter and nutrients, which support the growth of trees. The conversion of organic matter into nutrients is very fast. 		
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral refs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Noderates the temperature of the earth Contrasted with freshwater ecosystems. 5. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moliuscs, fish → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem: Wam temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. Will or supports many wild animals and protects biodiversity. X) The conversion of organic matter and nutrients, which support the growth of trees. 		
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Oce 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. ii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. Moderates the temperature of the earth contrasted with freshwater ecosystems. 5. Vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. vii) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		
 If you for the product of the second state state of the second state state of the second state state second state st		
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. vii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		
 (i) (c) Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Overy important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. vii) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		H ₂ O
 (i)(c)Energy Flow In The Ecosystem Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. ii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. vii) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		
 Sunlight → Plants (photosynthesis) → Primary Consumer → Secondary consumer → decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. vii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		(i)(c)Energy Flow In The Ecosystem
 decomposer Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere–Establishment starting in a watery area; Xerarch–Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. N Moderates the temperature of the earth Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem: W) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., wii)Maintains climate and rainfall. Wiii) Supports many wild animals and protects biodiversity. The soil is rich in organic matter into nutrients, which support the growth of trees. The conversion of organic matter into nutrients is very fast. 		Sunlight \rightarrow Plants (photosynthesis) \rightarrow Primary Consumer \rightarrow Secondary consumer \rightarrow
 Loss of energy takes place through respiration, running, hunting etc Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere–Establishment starting in a watery area; Xerarch–Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter and nutrients is very fast. 		decomposer
 Biotic components and abiotic components are linked together through energy flow and nutrient cycling. (2 M) (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		• Loss of energy takes place through respiration, running, hunting etc
 (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		• Biotic components and abiotic components are linked together through energy flow and
 (ii) Hydrosere-Establishment starting in a watery area; Xerarch-Establishment starting in a dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. Vii) Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		nutrient cycling. (2 M)
 dry area like, desert and rock. (3 M) Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. vii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		(ii) Hydrosere –Establishment starting in a watery area; Xerarch –Establishment starting in a
 Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (Dec 2018) BTL4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		dry area like, desert and rock. (3 M)
 (15 M) (Dec 2018) B1L4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. N Moderates the temperature of the earth Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. Viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. The conversion of organic matter into nutrients is very fast. 		Compare the physical and chemical characteristics of Marine water with terrestrial water.
 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.10-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. Viii) Supports many wild animals and protects biodiversity. The soil is rich in organic matter and nutrients, which support the growth of trees. The conversion of organic matter into nutrients is very fast. 		
 i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		(15 NI) (Dec 2010) D1L4
 1) Largest of Earth's adjuate ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan
 (i) Include occans, sait marsh and interfudar ecology estuaries and fagoons, mangroves and coral reefs, the deep sea and the sea floor. (ii) Since ship, submarines can sail in ocean, commercial activities may be carried out. (iv) Rich in biodiversity. (v) Moderates the temperature of the earth (vi) Contrasted with freshwater ecosystems. (vii) Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: (vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. (viii) Supports many wild animals and protects biodiversity. (x) The soil is rich in organic matter and nutrients, which support the growth of trees. (x) The conversion of organic matter into nutrients is very fast. 		Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem:
 iii) Since ship, submarines can sail in ocean, commercial activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		 (15 M) (Dec 2010) B1L4 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt, marsh and intertidal, ecology, estuaries and lagoons, mangroves and
 iii) Since sing, submatines can san in occan, confine total activities may be carried out. iv) Rich in biodiversity. v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		 (15 M) (Dec 2016) B114 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: i) Largest of Earth's aquatic ecosystems. ii) Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs the deep sea and the sea floor
 v) Moderates the temperature of the earth v) Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		 (15 M) (Dec 2016) B114 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship submarines can sail in ocean commercial activities may be carried out
 vi) Contrasted with freshwater ecosystems. 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		 (15 M) (Dec 2016) B114 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity
 5. vii) Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		 (15 M) (Dec 2016) B114 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth
 Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 		 (15 M) (Dec 2016) B1L4 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems.
Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii)Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast.	5.	 (15 M) (Dec 2016) B114 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments.
 Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 	5.	 (15 M) (Dec 2016) B1L4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-
 Terrestrial Ecosystem Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 	5.	 (15 M) (Dec 2018) B114 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary
 Characteristics of Forest ecosystem: vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 	5.	 (15 M) (Dec 2018) B114 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth vi) Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates.
 vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 	5.	 (15 M) (Dec 2016) B114 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates.
 vii) Maintains climate and rainfall. viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 	5.	 (15 M) (Dec 2018) B114 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem
 viii) Supports many wild animals and protects biodiversity. ix) The soil is rich in organic matter and nutrients, which support the growth of trees. x) The conversion of organic matter into nutrients is very fast. 	5.	 (15 M) (Dec 2013) B1L4 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc
ix) The soil is rich in organic matter and nutrients, which support the growth of trees.x) The conversion of organic matter into nutrients is very fast.	5.	 (15 M) (Dec 2018) B114 Answer: Page: 2.37 - 2. and 2.9 – 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: Wi Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., wii)Maintains climate and rainfall.
x) The conversion of organic matter into nutrients is very fast.	5.	 (15 M) (Dec 2010) B1L4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain–Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers–Fungi, bacteria and flagellates. Terrestrial Ecosystem Characteristics of Forest ecosystem: Wi Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., wii) Maintains climate and rainfall. Supports many wild animals and protects biodiversity.
	5.	 (15 M) (Dec 2018) B114 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. Viii) Supports many wild animals and protects biodiversity. The soil is rich in organic matter and nutrients, which support the growth of trees.
Structure and Function of forest ecosystem:	5.	 (15 M) (Det 2018) B1L4 Answer: Page: 2.37 - 2. and 2.9 - 2.11 and 2.16-A. Ravikrishnan Marine Ecosystem: Largest of Earth's aquatic ecosystems. Include oceans, salt marsh and intertidal ecology estuaries and lagoons, mangroves and coral reefs, the deep sea and the sea floor. Since ship, submarines can sail in ocean, commercial activities may be carried out. Rich in biodiversity. Moderates the temperature of the earth Contrasted with freshwater ecosystems. Very important for the overall health of both marine and terrestrial environments. Food Chain-Producers-Phytoplanktons, marine plants → Consumers-Primary consumers-Crustaceans, moiluscs, fish → Secondary consumers-Herring sahd, mackerel→Tertiary Consumers-Cod, Haddock → Decomposers-Fungi, bacteria and flagellates. Terrestrial Ecosystem Vi) Warm temperature and adequate rainfall →Generation of number of ponds, lakes etc., vii) Maintains climate and rainfall. Viii) Supports many wild animals and protects biodiversity. The soil is rich in organic matter and nutrients, which support the growth of trees. The conversion of organic matter into nutrients is very fast.
v) Abiotic components - Physical components found in the soil and atmosphere. E.g. Climatic factors and minerals.
 vi) Biotic components-Producers-The plants absorb sunlight and produce food through photosynthesis–E.g. Trees, shrubs and ground vegetation.
 vii) Consumers-Herbivores-E.g. Ants, flies, insects, mice, deer, squirrels. Secondary consumers -primary carnivores-E.g. Snakes, birds, fox. Tertiary consumers- Tiger, lion, etc.
 Decomposers–E.g. Bacteria and fungi.

UNIT –	- II ENVIRONMENTAL POLLUTIO	Ν
--------	-----------------------------	---

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

		idy of local p	Jonated			liaustiiui	/ 115110	unturur.		
2.110	Define the term pollution. List its types. BTL1									
	Pollution- The unfavorable alteration of our surroundings									
	Types of P	Types of Pollution-								
	• Air	Pollution								
	• Wat	er Pollution								
1.	Soil	Pollution								
	• Mar	ine Pollution								
	Nois	se Pollution								
	• The	rmal Pollutio	n and							
	Nuc	lear hazards								
	What is air	r pollution?	BTL1							
2.	The presen	ce of one or	more c	ontaminants like	dust	, smoke,	mist a	nd odou	r in the	atmosphere
	which are in	njurious to h	uman be	ings, plants and ar	nimal	ls.				1
	Define bio-	degradable	pollutar	nt and non-biode	grad	able pol	lutant.	BTL1		
3.	Bio-degrad	lable polluta	nt - Dec	compose rapidly b	y nat	ural proc	cesses			
	Non-biode	gradable pol	llutant -	Do not decompos	se or	decompo	ose slov	vly in the	e environ	ment
	State the c	omposition o	of atmos	pheric air. BTL1						
				Constituents		%				
				Nitrogen		78				
				Oxygen		21				
4.				Argon (Ar)		< 1				
				CO ₂		0.037				
			Water vapour	R	emaining	g				
				O ₂ , He, NH ₂	Tra	ace amou	int			
	State the I	ndian ambie	nt air a	uality standards.	BTI	[.1				
			1			Con	centrat	ion in µg	g/m3	
		Category		Area		SPM	SO.	NO_	CO	
5		A .	Induc	trial and mixed up	10	500	$\frac{2}{120}$	120 X	5,000	
5.		B	Reg	sidential and rural	ж.	200	80	80	2 000	
		D	Sens	sitive (hill stations		200	00	00	2,000	
		C	tourist	resorts monume	, nts	100	30	30	1,000	
	Outline the	e causes of a	ir pollut	tion? BTL2	nto					
	• Inco	omplete burn	ing of fo	ossil fuels. liberate	e CO). NO2. S	Suspend	ed Parti	culate Ma	atter (SPM)
6.	etc.	-r 0 <i>w</i> iii	-0 -1 1			, = · • 2, ×	r v			(
	• Coa	l burning in	power pl	ants, liberate SO ₂						
II		0)	- r-	,						

REGULATION :2017 ACADEMIC YEAR : 2019-2020 • Ozone • Agriculture, decay of plants, liberate hydrocarbons. Define photochemical smog. (NOV/DEC 2006) BTL2 It is not related to smoke (or) fog. It is formed by the combination of NO, NO₂, CO₂, H₂O, CO, 7. SO_2 and unburnt hydrocarbon particles. The important reaction is dissociation of NO_2 in sunlight. It is also named as los Angeles smog. What are the effects of various air pollutants on human health? BTL1 Name of the Pollutant Name of the Diseases NO₂ Lung irritation and damage Reacts with hemoglobin in red blood cells and reduces the ability of blood to bring oxygen to body cells and tissues, which causes headaches and anemia. At high 8. CO levels it causes coma, irreversible brain cell damage and death. Breathing problems for healthy people. SO₂ Nose and throat irritation, lung damage, bronchitis, asthma, reproductive problems SPM and cancer Hydrocarbon Carcinogenic What are oxygen demanding wastes? (APR/MAY 2011) BTL1 Oxygen demanding wastes is the one to reduce amount of oxygen water in water is known as oxygen demanding wastes. The oxygen demanding wastes are BOD and COD 9. BOD is the amount of oxygen required for the biological decomposition of organic matter present in the water. COD is the amount of oxygen required for chemical oxidation of organic matter using some oxidizing agent like K₂Cr₂O₇ and KMnO₄ What Is PAN? Give Its Detrimental Effects. BTL1 PAN • Peroxy Acetyl Nitrates - Secondary Pollutant Present In Photochemical Smog. • It is a lachrymatory substance. • It is thermally unstable and decomposes into peroxy ethanol radicals and nitrogen dioxide gas. 10. • It is an oxidant and more stable than ozone **Detrimental Effects** • It is a powerful respiratory and eye irritants, toxic in nature. Cause extensive damage to vegetation, causing skin cancer • Damages plants and art. • React explosively. • Plays a very large role in photochemical smog How CFC's are accumulated in atmosphere. (MAY/JUNE 2006) BTL1 CFC's are accumulated in atmosphere through Propellant in Aerosol spray cans • • Cleaning solvents 11. • Refrigerants (Freon) in refrigerators, air conditioners Foam plastic blowing agent • Blowing agent •

RE	GULATION :2017			А	CADEMIC YEAR : 20	19-2020	
	Define primary air	pollutant and secondary	v air pollutant.	BTL1			
	Primary air pollutants - Those emitted directly in the atmosphere in harmful form. E.g. CO, NO,						
	SO ₂ ,		2	1	U		
12.	Secondary air pollu	utant – New pollutants	formed by the	reaction	n of some of the pr	rimary air	
	pollutants with one a	nother or with the basic c	omponents of a	ir.	1	5	
	E.g. NO /NO ₂ \rightarrow HN	O_3 / NO_3	1				
	State the composit	ion of soil. BTL1					
	-	Com	oonents	%			
10		Mineral mat	ter (inorganic)	45			
13.		Organi	c matter	5			
		Soil	water	25			
		So	il air	25			
	State the water qual	lity standards. BTL1					
			WHO stan	dard	ISI standard		
	S. No.	Parameter	in mgs/li	tre	in mgs/litre.		
			Colourle	ess.	Colourless.		
	1.	Colour, odour and	odourless	and	odourless and		
		taste	tasteles	s	tasteless		
	2.	p ^H	6.9		6.9		
	3.	Total dissolved solids	1500		-		
14.	4.	Dissolved oxygen	-		3.0		
	5.	Chloride	250		600		
	6.	Sulphate	400		1000		
	7.	Nitrate	45		-		
	8.	Cyanide	0.2		0.01		
	9.	Fluoride	1.5		3.0		
	10.	Chromium	0.05		0.05		
	11.	Lead	0.05		0.1		
	12.	Arsenic	0.05		0.2		
	List the self-cleaning	g processes of atmosphe	re. BTL4				
	• Dispersion						
15	Gravitatio	onal settling					
15.	Flocculati	on					
	Absorption						
	Rain wash	nout and so on					
	What are point and	non-point sources of wa	ater pollution?	BTL1			
	Point sources are discharged pollutants at specific location through pipes, ditches or sewers into						
16	bodies of surface wat	bodies of surface water.					
10.	Non-point sources: They cannot be traced at any single site of discharge. They are usually large						
	land areas or air sh	land areas or air sheds that pollute water by runoff, subsurface flow or deposition from the					
	atmosphere.	· · · · · · · · · · · · · · · · · · ·					
	Write any four maj	or water pollutants. (M	AY/JUNE 2006) BTL1			
17	Infectious	sagents					
1/.	Oxygen d	Oxygen demanding wastes					
	Inorganic	chemicals					

	Organic chemicals
	Plant nutrients
	• Sediments
	Radioactive materials
	• Heat (any four)
	What is marine pollution? Name the sources and effects of marine pollution.
	(MAY/JUNE 2005, NOV/DEC 2014) BTL1
18	The discharge of waste substances into the sea resulting in harm to living resources, hazards to
10.	human health, hindrance to fishery and impairment of quality for use of sea water.
	• Dumping the wastes - Marine birds ingest plastic which causes gastrointestinal disorders
	• Oil - Damage to marine fauna and flora, retard the rate of O ₂ uptake by water.
	Define noise pollution. When a sound does cause noise pollution? (NOV/DEC 2013,
	APR/MAY 2015) BTL1
10	• Noise pollution is defined as the unwanted, unpleasant or disagreeable sound that causes
19.	discomfort for all living beings.
	• The sound intensity is measured in decibel (dB), which is tenth part of the longest unit
	Bel. One dB is equal to the faintest sound, a human ear can hear. If the intensity of the
	Sound exceeds 80 dB, noise pollution occurs. Noise above 140 dB becomes painful.
	Give any four methods to control noise pollution. (WIA 1/JUNE 2007) BILL
	Transmission Dath Intervention
20.	Pagentor control
	Oiling
	• Onling
	Define thermal pollution. (NOV/DEC 2005, NOV/DEC 2008) BTL1
21	The addition of excess of undesirable heat to water that makes it harmful to man, animal or
21.	aquatic life or otherwise causes significant departures from the normal activities of aquatic
	communities in water.
	What are the causes of thermal pollutions? BTL 1
	Nuclear power plants
22	Coal-fired power plants
22.	• Industrial effluents
	• Domestic sewage
	Hydro-electric power
	Define hazardous wastes. Why nuclear hazards are so dangerous? (NOV/DEC 2006) BTL1
	• Wastes like toxic chemicals, radioactive or biological substances which contribute to an
	increase in mortality or in serious irreversible illness to human health and environment are
23.	called nazardous wastes.
	• Radioactive radiation, liberated by nuclear hazards, affects the cells in the body and the function of clouds and organs. Deeple suffer from blood concer and have concer if exposed
	to doses around 100 to 1000 roentgens. Unlike the other pollution, radioactive pollution can
	cause genetic disorders even in the subsequent generations
	What are the various sources of radioactive pollution? (NOV/DEC 2008 APR/MAV 2015)
24.	BTL1
	• Natural sources.

RE	GULATION :2017 ACADEMIC YEAR : 2019-2020
	The very important natural source is space, which emit cosmic rays.
	Soil, rocks, air, water, food, radioactive radon-222 etc. also contain one or more
	radioactive
	substances.
	Man-made sources
	Man-made sources are nuclear power plants, X-rays, nuclear accidents, nuclear bombs,
	diagnostic kits, etc., where radioactive substances are used.
	List any four causes of floods. (NOV/DEC 2010) BTL4
	Heavy rain, rainfall during cyclone causes flood.
25	• Sudden snow melt also raises the quantity of water in streams and causes flood.
23.	Clearing of forests for agriculture has also increased severity of floods.
	• Reduction in the carrying capacity of the channel, due to accumulation of Sediments cause
	floods
26	What are the types of solid wastes? (NOV/DEC 2006, MAY/JUNE 2007) BTL2
20.	a. Municipal wastes ; b. Industrial wastes ; c. Hazardous wastes
	Mention the sources of solid wastes. (NOV/DEC 2009) BTL1
	• Domestic wastes – cloth, waste papers
	• Commercial wastes – cans, bottle, polythene bags
27.	Construction wastes – Wood, Concrete
	Biomedical wastes – Infectious wastes
	 Industrial wastes – Nuclear and thermal power plants
	Hazardous wastes – Toxic wastes, chronic toxicity
	Differentiate between recycling and reuse. (NOV/DEC 2007, APR/MAY 2011) BTL4
	• Reuse
	The refillable containers, which discarded after use can be reused. Rubber rings can be
	made from the discarded cycle tubes which reduces the waste generation during manufacturing
28	of rubber bands.
20.	• Recycling
	Recycling is the reprocessing of the discarded materials into new useful products
	Example
	• Old aluminum cans and glass bottles are melted and recast into new cans and bottles
	Preparation of cellulose insulation from paper.
	What are the roles of women in environmental pollution? (NOV/DEC 2008) BTL1
29.	In rural areas women plant trees and grass, grow vegetables with the drip-irrigation method on
	order to save water. b. In urban areas they go shopping using cloth bags to reduce white pollution.
	What are the effects of thermal pollution? (APR/MAY 2011) BTL1
	Reduction in dissolved oxygen
	Increase in toxicity
30.	• Interference with biological activity
	Interference with reproduction
	• Direct mortality
	Food storage for fish
	What do you meant by soil pollution? Or Define soil pollution. (NOV/DEC 2010) Write the
31.	causes of soil pollution. BTL1
	The pollution affects and alter the chemical and biological properties of soil. As a result, hazardous

RE	GULATION :2017 ACADEMIC YEAR : 2019-2020
	chemical can enter into human food chain from the soil or water disturbs the biochemical process
	and finally lead to serious effects on living organism.
	What are causes of noise pollution? (NOV/DEC 2010) BTL1
	• By machine like mechanical saws and pneumatic drill.
32.	• From transport, rail, air craft, road vehicles like scooters, cars, motorcycles, buses.
	• Common noise makers are musical instruments, TV, VCR, radios, transistors,
	• Telephone and loudspeakers.
	What is a Dobson unit? (MAY/JUNE 2007) BTL1
	The amount of atmospheric ozone is measured by "Dobson spectrometer" and is expressed in
	Dobson units (DU). 1 DU is equivalent to a 0.01 mm thickness of pure ozone at the density it
33.	possesses if it is brought to the ground level (1atm) pressure
	• In temperate latitude its concentration is 350 DU
	• In tropics its concentration is 250 DU
	• In sub polar region its concentration is 450 DU
	What are the harmful effects of landslides? BTL1
24	• Landslides block the roads and diverts the passage
54.	• Erosion of soil increases.
	• Sudden landslides damage the houses, crop yield, live stock etc.
	What do you know about particulate? (MAY/JUNE 2018) BTL1
	Particulate refers to all atmospheric substances that are not gases. They can be suspended droplets
35.	or solid particles or mixtures of the two. Particulates can be composed of materials ranging in size
	from 100mm to 0.1mm and less. The chemical composition of particulate pollutants is very much
	dependent upon the origin of the particulate.
	What are landslides? (MAY/JUNE 2018) BTL1
36.	The movement of earthy materials like coherent rock, mud, soil and debris from higher region to
	lower region due to gravitational pull is called landslides.
	Define the term Tsunami. BTL2
37.	A tsunami is a large wave that is generated in a water body when the sea floor is deformed by
	seismic activity. This activity displaces the overlying water in the ocean.
	PARI * B
	ADD/MAY 2010 NOV/DEC 2011) BTL 6
	An K/MAT 2010, NOV/DEC 2011) $BTEO$ Answer · Page· A 32 - A 34- A Revikrishnen
	• Definition. The discharge of waste substances into the sea resulting in harm to living
	organisms hazards to human health hindrance to fishery and impairment of quality for use
	of sea water (1 M)
	• Sources (Causes) of marine pollution
1	Dumping the wastes-large amount of sewage, garbage, agricultural discharge, pesticides
-	and huge amount of plastics. (1 M)
	Oil pollution of marine water-Imposed by petroleum and its products. (1 M)
	• Effects of marine pollution on human health and environment – Oil spilling in sea inhibit
	the photosynthesis-damage to marine fauna and flora including algae, fish, birds,
	invertebrates-hydrocarbons and benzpyrene accumulate in food chain and consumption of
	fish by man cause cancer. (2 M)
	Control measures – Plans for conserving marine biodiversity-education about marine

	ecosystems-industrial units on the coastal lines equipped with pollution control instruments-
	urban growth should be regulated-fisherman needs should be accommodated.
	(2 M)
	What is an earthquake? Write about its causes, effects and measures to face the
	earthquake. (8 M) (APR/MAY 2008, NOV/DEC 2008, NOV/DEC 13, NOV/DEC 2014)
	Answer: Reier: 4.78 – 4.80 - A. Ravikrishnan
	• Definition: An earinquake is a sudden vibration caused on the earth's surface due to the sudden release of tremendous amount of energy stored in the rocks under the earth's crust
	(2 M)
	• Causes- disequilibrium in any part of the earth crust-volcanic eruption, hydrostatic pressure
2	and manmade activities-underground nuclear testing-decrease of groundwater level. (2M)
	• Effects- hilly and mountains cause landslides-collapses houses due to poor construction,
	peoples die increases depending on the severity-seismic waves caused by earth quakes
	under the sea.
	(2 M)
	• Preventive measures-constructing earthquake resistant buildings, wooden houses are
	by Seismologist
	M)
	Describe the sources, effects and various measures to control of noise pollution. (7 M)
	(NOV/DEC 2009, MAY/JUNE 11, NOV/DEC 2014) BTL4
	Answer : Page: 4.37 to 4.40 - A. Ravikrishnan
	• Definition – The unwanted , unpleasant or disagreeable sound that causes discomfort for all
	the living beings (1 M)
	• Types and sources
	unbearable and is a nuisance to public
	(1 M)
	Transport noise-road traffic noise, rail traffic noise and craft noise. (1M)
	Neighborhood noise-household gadgets and community like musical instruments,
3	transistors, telephones, TV, VCR, radios, etc. (1M)
	• Effects (2M)
	Interferes communication
	Physiological and Psychological disorders
	Control and preventive measures (1M)
	Reduction in source of noise
	Noise making machines should be kept in containers with sound absorbing media
	Proper oiling will reduce noise from machinery
	Using silencers – fibrous material
	Planting trees
	T faiting trees
	Legislation can prevent excess sound production, unnecessary horn blowing etc.
4	Legislation can prevent excess sound production, unnecessary horn blowing etc. What are types, sources and the effects of improper municipal solid waste management?

RE	GULATION :2017	ACADEMIC YEA	AR : 2019-2020
	Reuse of waste materials		
	Recycling of material		(1 M)
	Discarding wastes		
	Landfill – Advantages - Disadvantages		(1 M)
	Incineration - Advantages - Disadvantages		(1 M)
	Composting - Advantages - Disadvantages		(1 M)
	Mention any five air pollutants with their source, (NOV/DEC 2005 APR/MAY 2006 NOV/DEC 2005 N	, effects and control m	easures. (7 M)
	(1007) DEC 2003, AI MAIA I 2000, 1107) DEC 2003, 10		
	Answer : Page: 4.4 to 4.11 - A. Ravikrishnan		
	• Any five air pollutants	(1 M)	
	• Sources health effects environmental effects and	control measures	
5	Carbon monoxide (CO)	(1 M)	
0	Nitrogen dioxide (NO ₂)	(1 M)	
	Sulphur dioxide (SO_2)	(1 M)	
	Suspended Particulate Matter (SPM)	$(1 \mathbf{M})$	
	Ozone	(1 M)	
	Hydrocarbons (Aromatic and aliphatic)	(1 M) Any five	(5 M)
	Control measures	(1 M) $(1 M)$	
	How can you, as an individual, prevent environment	tal pollution? Why such	an effort at an
	individual level is important. (6 M) (NOV/DEC 20	09. NOV/DEC 2010.MA	\mathbf{Y}
	NOV/DEC 2014. APR/MAY 2015) BTL4		11/001/12 2014,
	Answer : Page: 4.61 to 4.62 - A. Ravikrishnan		
	Role and responsibility of individual participation:		
	Use stairs instead of elevators		
	Use public transportation walk or ride a bicycle		
	Plant trees around building		
6	Turn off lights, television sets and computer wher	n not in use.	
Ũ	Pay immediate attention to leaks in pipes		
	Install waste saving equipments		
	Recycle glass metal and paper		
	Compost garden waste		
	Segregate waste and recycle		
	Buy locally made long losing material		
	Buy environmentally degradable products		
	Take some bag from home to market to purchase.		
	Explain the causes, effects and control measure of wat	ter pollution. (13 M) (M)	AY/JUNE 2013)
	(NOV/DEC 2013) BTL 42		
	Answer : Page: 4.12 to 4.24 A. Ravikrishnan		
	• Definition – The alteration and physical chemic	cal and biological charact	teristics of water
	which may cause harmful effects on humans and	aquatic life (1 M)	constructs of water
7	Causes	(4M)	
	Infectious agents	(4141)	
	Oxygen demanding wastes		
	Inorganic chemicals		
	Organic chemicals		
	Organic chemicals		

NE.	GULATION .2017	ACADEMIC IEAK: 2019-2020
	Plant nutrients	
	Sediments	
	Radioactive materials	
	Heat	
	Point and non-point sources	
	Effects of water pollution	(4M)
	 Objectionable colour and odour is unpurposes. highly turbid and very hard water is acid and alkaline water cause seriou water borne infectious enteric diseas predominant health hazard arising fr radioactive pollution enter human bogland, liver, bones and muscles biodegradable waster deplete D O in anaerobic conditions non biodegradable waste and pestici human where they accumulate in fat thermal discharge in stream depletes phosphate, nitrate, promote the grow 10. Industrial effluents result in addition 	hacceptable and unsuitable for drinking and other unpleasant to drink, food processing is health problem be like typhoid, cholera, dysentery, are the rom drinking contaminated water ody through food and get accumulated in thyroid in the receiving stream, affect the flora cause creates des travel the food chain and ultimately reach ty tissues D O with of algae and encourage eutrophication of poisonous chemicals such as arsenic, mercury.
	lead may reach human body through	contaminated food
	Control measures of water pollution	(4M)
	 a) lay down standard for a. drinking water b. disposal of waste water into water b) Waste water treatment preliminary treatment primary treatment secondary treatment advanced treatment 	course/sewer/land monitoring
8	 Explain the sources, effects and various of (MAY/JUNE 2013, NOV/DEC 2013) BTL4 Answer : Page: 4.40 to 4.46 - A. Ravikrishn Definition Definition The addition of excess of undesirable aquatic life of otherwise causes signific communities in water Sources of thermal pollution Nuclear power plants Coal-fired power plants Industrial effluents 	measures to control of thermal pollution. (13 M) an heat to water that makes it harmful to man, animal or icant departures from the normal activities of aquatic (1 M)

	Domestic sewage	
	Hydro-electric power	(5 M)
	• Effects of thermal pollution on human	health
	Reduction in dissolved oxygen	
	Increase in Toxicity	
	Interference with biological activities	
	Interference with reproduction	
	Direct mortality	
	Food storage for fish	(3 M)
	Control measures	
	Cooling towers	
	Cooling ponds	
	Spray ponds	
	Artificial lakes	(4 M)
	Give a note on	
	(a) Floods	
	(b) Cyclone	
	(c) Landslides	(13M) BTL2
	Answer : Refer : 4.72 – 4.77 - A. Ravikrish	nan
	• Definition of flood: Whenever the magn	itude of water flow exceeds the carrying capacity of
	the channel within its banks, the exc	ess of water over flows on the surroundings causes
	floods	(1 M)
	• Causes and effects	(2 M)
9.	• Preventive measures of floods	(1 M)
	• Definition: Cyclone is a meteorological	l phenomenon, intense depressions forming over the
	open oceans and moving towards the	and. On reaching the shores, it move into the interior
	of the fand of along the shore lines.	
	• Causes and effects	$(2 \mathrm{M})$
	• Preventive measures of cyclone	(1 M)
	• Definition: The movement of earthy ma	terials like concret rock, mud, soil and debris from
	nigher region to lower region due to g	ravitational pull is called landslides. (1 M)
	• Causes and effects	$(2 \mathrm{M})$
	Preventive measures of nanosinges	(2 M)
	BTL 2	irinking water quality standards. (7 MI) (Dec. 2008)
	Answer · Page· 1 22 to 1 23 - A Revikrishr	non
	 Dhysical parameters 	1411
	Colour	
	Tastes and Odours	
10.	Turbidity and Sediments	(2 M)
	Chamical parameters	(2 101)
	• Chemical parameters	
	Acidity	
	Alkalinity	
	Flouride	
	11001100	

JIT-JEPPIAAR/S&H/Dr.N.BHUVANA/I &II Yr/SEM 02&04/GE8291/EVS/ UNIT1-5/Q.B.+Keys/ Ver. 3.0

JIT-JEPPIAAR/S&H/Dr.N.BHUVANA/I &II Yr/SEM 02&04/GE8291/EVS/ UNIT1-5/Q.B.+Keys/ Ver. 3.0

NĽ		ACADEMIC TEAK : 2019-2020
	a)Natural Sources:	
	Solar rays	
	Radio nuclides in earth"s crust	
	Environmental radiation	
	b)Manmade Sourse:	
	Medical X-rays	
	Radio isotopes	
	Nuclear test	
	Nuclear installations	
	Nuclear reactor	
	Fffects-	(2M)
	Causes skin hurns loss of teeth vomiting anemia	(2111)
	Blood cancer	
	Diodu calicei Proin domogo	
	Control magninge	
	Control measures:-	(211)
	Radiation exposure protection	
	Radiation contamination protection	
	Controlled area	
	Disposal of radioactive waste	
	Explain the sources, effects and control measures	of soil pollution. (8 M) BTL2
	Answer : Page: 4.54 - A. Ravikrishnan	
	Definition- The contamination of soil which may can	use harmful to environment (1 M)
	Sources and effects	
	Industrial wastes (1 M)
	Urban wastes (1 M)
	Agricultural practices (1 M)
	Radioactive pollutants (1 M)
13.	Biological agents	(1 M)
	Control Measures	
	Control of soil erosion	
	Proper dumping of unwanted materials	
	Production of natural fertilizers	
	Proper hygienic conditions	
	Public awareness	
	Recycling and reuse of wastes	
	Pan on toxic chemicals	
	Bail of toxic chemicals (2	.111)
	$\mathbf{PARI} = \mathbf{C}$	and any fine and a (b) Call War (a) Management
	Discuss about the following case study (a) Bho	pal gas tragedy (b) Gull war (c) Mercury
	wastes (15 M) B1Lo	
1	Answer : Page: 4.65,4.68 to 4.69 - A. Ravikrishna	a (7) ()
1	• Causes and effects of Bhopal gas tragedy:	(5M)
	Pesticide factory-Union Carbide- corporation	n leak large volume of methyl iso cyanate –
	atmosphere Bhopal- India-midnight on Dece	mber 3,1984-city- change- gas chamber-within
	a week 10,000 people died – 1000 people	turned blind-lakhs of people still continue to

	 suffer various diseases Causes and effects of Gullf War: (5 M) Gulf war was fought between Iraq and US-Period of 6 weeks in 1991-American fighters dropped a lakh of bombs-force the Iraq army to withdraw from Kuwait- retreat of Iraq- burning of 700 oil wells-near sea shore –oil from well spills out into the sea-the floating oil oversea water nearly 80 km long-burning of oil wells nearly 10 months-released huge amounts of pollutants likeCO2 and SO2 into the atmosphere-1 million birds killed. Causes and effects of mercury wastes: (5 M) Minamata- Small hostel village in Japan –Chicago-chemical company produces Venyl polymer plastics-industry release its effluent into Minamata sea-Effluents by fishes – affect human being through food chain-damage central nervous system-loss of vision and hearing-loss of muscular coordination and severe headache- nervous disorders.
	Discuss about the following case study (a) Palar river pollution (b) Textile and dye industries
	(C) Chernobyl nuclear disaster. (15 M) B1L4 Answer · Page· 4 66 4 69 - A Ravikrishnan
2	Answer : Page: 4.60, 4.69 - A. KavikrishnanExplanation of Palar river pollution(5 M)Palar river originates in Nandidurgam of Karnataka state and flows for about 350 kmthroughKarnataka, Andra Pradesh and Tamil Nadu.Palar supply drinking water forseveral municipalities, towns and villages in Vellore district, Tamil Nadu. The effluent fromthe above industries affect the surface and underground water and make the water unfit fordomestic work. The effluent also increase the pH of the soil and affect the cultivation. Therivers like Bhavani, Noyyal and Cauvery get polluted due to mixing of effluent from theabove industries. Tamil Nadu Pollution Control Board (TNPCB) has directed all textileprinters and dyers of Thirupur to not allow the effluent to mix in the river systems.Explanation of Textile and dye industries(5 M)There are nearly 500 dying units and 195 bleaching units operating in and around Tirupur.They consume large quantity of water for processing and later discharge waste water. Theeffluent from the above industries affect the surface and underground water and make thewater unfit for domestic work. The effluent also increase the pH of the soil and affect thecultivation. The rivers like Bhavani, Noyyal and Cauvery get polluted due to mixing ofeffluent from the above industries. Tamil Nadu Pollution Control Board (TNPCB) hasdirected all textile printers and dyers of Thirupur to not allow the effluent to mix in the riversystems.Explanation of Chernobyl nuclear disaster(5 M)Occur at Chernobyl in USSR 28 th April,1986-the reactor exploded- result of uncontrolled
3.	20,000 people-damage to soil, water and vegetation around 60 km. Compare the physical and chemical characteristics of Marine water with terrestrial water. (15 M) (May 2018) BTL4 Answer : Page: 4.23 to 4.25 and 2.44 to 2.46 - A. Ravikrishnan Physical and Chemical Characteristics of terrestrial water: (8M) The common specifications recommended by the US Public Health for Drinking Water are

REGULATION :2017

ACADEMIC YEAR: 2019-2020

given	S No	Parameter	WHO standard	ISI standard	below.
1.	5.1.0.	i uluitetet	in mgs/litre	in mgs/litre.	
		Colour odour and	Colourless,	Colourless,	
	1.		odourless and	odourless and	
		laste	tasteless	tasteless	
	2.	p^{H}	6.9	6.9	
	3.	Total dissolved solids	1500	-	
	4.	Dissolved oxygen	-	3.0	
	5.	Chloride	250	600	
	6.	Sulphate	400	1000	
	7.	Nitrate	45	-	
	8.	Cyanide	0.2	0.01	
	9.	Fluoride	1.5	3.0	
	10.	Chromium	0.05	0.05	

Water should be clear and odourless.

- 2. It should be cool.
- 3. It should be pleasant to taste.
- 4. Turbidity of the water should not exceed 10 ppm.
- 5. pH of the water should be in the range of 7.0 8.5.
- 6. Chloride and sulphate contents should be less than 250 ppm.
- 7. Total hardness of the water should be less than 500 ppm.
- 8. Total dissolved solids should be less than 500 ppm.
- 9. Fluoride content of the water should be less than 1.5 ppm.
- 10. The water must be free from disease-producing bacteria.
- 11. Water should be free from objectionable dissolved gases like H_2S .
- 12. Water should be free from objectionable minerals such as lead, chromium, manganese and arsenic salts.

REGULATION :2017

ACADEMIC YEAR: 2019-2020

11	Land	0.05	0.1	
11.	Leau	0.03	0.1	
12.	Arsenic	0.05	0.2	
		Γ.		

UNIT III – NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins –Biochemical 39 degradation of pollutants, Bioconversion of pollutants. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

Q.No.	PART * A		
1.	How are forest classified? BTL2 1. Evergreen forests; 2. Deciduous forests; 3. Coniferous forests		
2	 What are the preventive measures of deforestation? BTL1 Steps should be taken by the government to discourage the migration of people into the islands from mainland. To counter the depletion of forest areas, tree plantation programs have been started. Education and awareness programmes must be conducted. Strict implementation of law of Forest Conservation Act Forest fire must be controlled by modern techniques Use of wood for fuel should be discouraged 		
3	Define sustainable forestry (Chen AU Dec 2005) BTL1 Sustainable forestry is the optimum use of forest resources, which meet the needs of the present without compromising the ability of future generations to meet their own needs.		
4.	 Write the functions of forests. (Chen A.U. Jun 2006) BTL2 Forests perform very important functions both to humans and nature. They are habitats to millions of plants, animals and wildlife. They recycle rainwater and remove pollutants from air. They control water quality and quantity They moderate temperature and weather and help to maintain humidity. They influence soil Conditions and prevent soil erosion and perform watershed functions. They promote tourism and contribute aesthetic beauty 		
5	 Define deforestation. What are the causes of deforestation? (Chen A.U. Jun 2006, Dec 2010) BTL1 Deforestation: The process of destruction of forest (or) process of removal of or elimination of forest resources due to many natural or man-made activities. The process of removal 		

REGULATION :2017 ACADEMIC YEAR : 2019-2020					
	Causes of deforestation: 1. Developmental projects. 2. Mining operations. 3. Raw-materials for				
	industries. 4. Fuel requirements. 5. Shifting cultivation. 6. Forest fires				
	Differentiate between deforestation and forest degradation. (Chen A.U. Dec 2007, Dec2010)				
	BTL4				
	Forest Degradation	Deforestation			
6	It is the process of deterioration forest	It is the process of destruction of			
	materials.	forest materials.			
	Slow process	Rapid process.			
	Can be removed.	Cannot be recovered.			
	What are the consequences of timber extractio	n? BTL1			
	• Large scale timber extraction causes defor	restation.			
7.	• Timber extraction leads to soil erosion, loss of fertility, landslides and loss of biodiversity.				
	 Timber extraction also leads to loss of tribal culture and extinction of tribal people. 				
	• Timber extraction reduces thickness of the	e forest			
	List the adverse effects of mining. (TNV A.U. I	Dec 2009, 2013) BTL1			
	• During mining operations, the vibrations a	are developed, which leads to earthquake.			
	• When materials are disturbed in significan	at quantities during mining process, large			
8.	• quantities of sediments are transported by	water erosion			
	 Noise pollution is another major problem from mining operations. 				
	 Mining reduces the shape and size of the forest areas. 				
	 Destruction of natural habitat at the mine and waste disposal sites. 				
	State the problems caused by the construction of Dam. (Chen AU Jan 2006) BTL3				
	 Displacement of tribal people. 				
	 Loss of non-forest land. 				
	 Loss of forests, flora and fauna. 				
9	 Landslips, sedimentation and siltation occur. 				
	 Stagnation and water logging around reservoirs retards plant growth. 				
	 Breeding of vectors and spread of vector-borne diseases. 				
	 Reservoir induced seismicity (RIC) causes earthquakes. 				
	 Navigation and aquaculture activities can be developed in the dam area. 				
	What are the effects of dams on tribal? BTL1				
	• The greatest social cost of big dam is the widespread displacement of tribal people, such a				
	biodiversity cannot be tolerated.				
	• Displacement and cultural change affects the tribal people both mentally and physically.				
10	They do not accommodate the modem food habits and life styles				
10	• Tribal people are ill-treated by the modem society.				
	• Many of the displaced people were not recognized and resettled or compensated.				
	• Tribal people and their culture cannot be c	uestioned and destroyed.			
	• Generally, the body conditions of tribal people (lived in forest) will not suit with the new				
	areas and hence they will be affected by many diseases.				
	Compare merits and problems of dams. (Chen	A.U. Jun 2007) BTL4			
11.	Nerits of dams	Problems of dams			
	Dams are built to control flood and store flood	Displacement of tribal people.			
	water.				

Sometimes dams are used for diverting part or		Loss of non-forest land.				
	all of the water from river into					
	Dams are used mainly for drinking and			Loss of forests, flora and Fauna.		
	agricultural purposes.					
	Dams are built for	generatin	g electricity.		Water logging and salinity due to over	
					irrigation.	
	Dams are used for	recreation	nal purposes.		Reduced water flow and silt deposition in	
					rivers.	
	Navigation and fis	hery can	be developed in	n the	Salt water intrusion at river mouth.	
	dam areas.					
	Evaloin flood mon	agomont				
	Explain floods can b	agement	DIL2	ting	lame or reconvoire	
12	Filous call to Channel may		and omborism	onte e	lans of reservoirs.	
12.	Channel mai Encroschmo	nt of floo	d wave should	ba ha	nnod	
	 Electoachine Flood bazare 	lit of fiou 1 may als	o be reduced by	utore	casting or flood warning	
	Write short note of	n minera	l resources of	India	(Coim A II Dec 2009) BTI 3	
	India has the follow	ing mine	ral resources	111010		
		S. No.	Mineral	Plac	ce	
		1.	Iron	Biha	ar, Orissa, Tamil Nadu, Goa	
		2.	Coal	A.P.	Bihar, MP, West Bengal	
13.		3.	Manganese	MP.	Orissa, A.P, Rajasthan	
		4.	Copper	Biha	ar, A.P, MP, Orissa	
		5.	Gold	Kar	nataka, A.P	
		6.	Aluminum	MP,	TN, Bihar, Orissa	
		7.	Tin	Biha	ar, Orissa and Rajasthan	
		8.	Chromium	Biha	ar, Orissa, MP, TN	
	State the environn	nental ef	fects of (mini	ng) e	xtracting and using mineral resources. (Chen	
	AU Jun 2005) BTL1					
	Devegetation and defacing of landscape					
	Ground wate	er contam	ination			
	Surface water pollution					
	• Air pollution					
14.	• Subsidence of land					
	• During mining operations, the vibrations are developed, which leads to earthquake.					
	• When mater	• When materials are disturbed in significant quantities during mining process, large				
	• quantities of	sedimen	ts are transport	ed by	water erosion	
	Noise pollut	ion is and	other major pro	blem	from mining operations.	
	Mining redu	ces the sh	hape and size of	t the 1	orest areas.	
	Destruction	of natura	habitat at the	mine	and waste disposal sites.	
	what do you m	ean Dy	environmenta mont (Coim	ai in Atī`	Ipaci: (Unen A.U. Dec 2000) (Or) Define Dag 2000) BTI 1	
15	Environmental imp	act is no	thing but the	A.U.	on the natural environment caused by various	
15	human actions. It includes two types					
	(i) Indirect effects. H	Example:	Pollution.			

	(ii) Direct effects. Example: Cutting down trees				
	Define overgrazing. Write the adverse effects caused by overgrazing. (TNV A.U. Dec				
	A.U. May 2008 ,Dec 2013, Chen AU Dec 2006)	BTL1, BTL3			
16	Overgrazing: Process of "eating away the for	prest vegetation without giving it a chance to			
	regenerate".				
	Effects of overgrazing: (i) Land degradation (ii)	Soil erosion (iii) Loss of useful species			
	What is water logging? List the effects of wate	r logging. (Coim A.U. Dec 2009, Chen AU Dec			
	2006, Apr 11) BTL1				
17	Water logging is the land where water stand for m	nost of the year or time.			
1/	Problems in water logging:	as soil sot filled with water and the soil air sets			
	deploted In such a condition the roots of the n	le son get inted with water and the son-air gets			
	mechanical strength of the soil decreases and cror	vield falls			
	Enumerate the desired qualities of an ideal nes	ticide (A II Dec 2007) BTL 3			
	• An ideal pesticide must kill only the target	t species			
	 It must be a biodegradable 	species.			
	 It should not produce new pests 				
18.	• It should not produce any toxic pesticide	vapour Excessive synthetic pesticide should not			
	be used.				
	• Chlorinated pesticides and organophosph	ate pesticides are hazardous, so they should be			
	used.	1			
	Define desertification, land degradation and la	nd slide. BTL1			
	Desertification: A progressive destruction or degradation of arid or semiarid lands to desert				
19	Land degradation or Soil degradation: The pro-	ocess of deterioration of soil or loss of fertility of			
17	the soil				
	Land slide: Landslides are the downward and outward movement of a slope composed of earth				
	materials such as rock, soil, artificial fills.				
	What are the advantages in conjunctive use of water? (Chen A.U. Dec 2006) B1L3				
20	• Control of water logging.				
20	 Use of saline water, especially for cooling purposed. Control of solt intrusion in acceptal actification. 				
	 Control of salt intrusion in coastal aquifers. Controlled withdrawal of water from ground water equifer 				
	Controlled withdrawal of water from ground water aquifer What are renewable and non-renewable energy resources? (Chen. A.U. Dec 2000, TCV A.U.				
	Dec 2008 Dec 2009 Apr 2015) BTL 1	y resources: (Chen. A.U. Dec 2009, 1C1 A.U.			
	Renewable energy resources are natural resources which can be regenerated continuously by the				
	ecological process within a reasonable time period and are inexhaustible. They can be used again				
21	and again in an endless manner. Examples: solar energy, wind energy, tidal energy, ocean thermal				
	energy				
	Non-Renewable energy resources are natural resources which cannot be regenerated. E.g. coal,				
	petroleum, minerals, oils, ground water				
	Differentiate renewable and non-renewable s	sources of energy. (TNV A.U. Dec 2008, 11)			
	BTL4				
22	Renewable energy	Non-renewable energy			
	It is regenerated continuously	Cannot be regenerated.			
	In exhaustible	Exhaustible			

	It can be used again and again	Cannot be used again		
	It is pollution free	It pollutes the atmosphere		
	Available in unlimited amount in nature	Available in limited amount		
	It is developed in a short period	It is developed in a long period It is developed		
		in a long period		
	What are the conventional sources of energy for	or the mankind? (Chen AU Jan 2006) BTL1		
23	Non-renewable energy resources are natural reso	urces, which cannot be regenerated once they are		
	exhausted. They cannot be used again.			
	What is geothermal energy? (Coim A.U. Dec 2	009) BTL1		
24	The energy harnessed form the high temperatu	re present inside the earth is called geothermal		
	energy			
	What is meant by soil erosion? List its types. (Chen A.U. Jun 2007) BTL1		
25	Soil erosion is the process of removal of superficial layer of the soil from one place to another.			
25	Soil erosion also removes the soil components an	d surface litter.		
	1. Normal erosion 2. Accelerated erosion			
	Explain soil leaching. (Chen A.U. Dec 2006) B	ГL2		
26	1. It removes valuable nutrients from the soil.			
	2. It may catty buried wastes into ground water an	nd contaminates it.		
27	Mention the factors causing soil erosion. (TCY	A.U. Dec2008) BTL4		
21	1. Water 2. Wind 3. Biotic agents 4. Landslides 5	. Construction		
	What are the present food problems of the wor	rld? (Chen A.U. Dec 2010) BTL4		
	We know that 79% of the area is covered with water and rest is land, of which most of the			
	are forest, desert, mountain, barren area only less percentage of land is cultivated. So the food			
28.	supplied from the rest of the land is not enough to feed all the people. The problem of population			
	explosion has made it worse. The world population increases and cultivable land area decreases			
	therefore the world food problem arises.			
	Urbanization is another problem in developing co	ountries which deteriorates the agricultural lands.		
	What are the effects of over utilization of groundwater? (Chen A.U. Dec 2010) BTL1			
29.	1. Decrease ground water 2. Ground subsidence 3. Lowering of water table 4. Intrusion of salt			
	water 5. Earthquake and landslides 6. Drying up of wells 7. Pollution of water			
	Define the term Nuclear energy. (A.U DEC2014, A.U.Apr.2018) BTL1			
30.	Energy released during a nuclear reaction is call	led nuclear energy. Nuclear reactors produce the		
	nuclear energy either by nuclear fission (or) nuclear fusion. The nuclear power (or) nuclear energy			
	1s clean and safe			
	Define sustainable life style and blo gas. B1L1	nt is the development of healthy anying ment		
	sustainable life style: Sustainable developme	in is the development of heating environment		
31.	without damaging the natural resources. In other	words, an the natural resources must be used in		
	Bio gas: Mixture of various gases formed by a	parabic degradation of biological matter in the		
	absence of oxygen	nacione degradation of biological matter in the		
	PART * B			
	Discuss the causes, ill effects and preventive	measures of deforestation. (13M) (A.U. Dec		
1	2005, Dec 2014, Apr 2015, A.U. Jan 2006, Dec	09, Apr 2015, A.U. Dec 2006, June 2007, A.U.		
	May 2008) BTL2			

Answer :Page : 5.7 – 5.9 - A. Ravikrishnan

Causes (Sources) of Deforestation

Developmental Projects:

Development projects cause deforestation in two ways.

(i) Through submergence of forest area underwater.

(ii) Destruction of forest area.

Examples. Big dams, hydroelectric projects, construction (1 M)

Mining operations

Mining have a serious impact on forest areas. Mining operation reduces the forest area. Examples Mica, coal, manganese, limestone, etc. (1 M)

Raw materials for industries

Wood is the important raw material for so many purposes.

Example - For making boxes, furniture, match-boxes, pulp, etc., (1 M)

Fuel requirements

In India both rural and tribal population depend on the forest for meeting their daily need of fuel wood, which leads to the pressure on forest, ultimately to deforestation. (1 M)

Shifting cultivation: Replacement of forest ecosystem for monospecific tree plantation can lead to disappearance of number of plant and animal species.

Examples: India is the richest nation with more than 15,000 species of plants, many of which is endangered due to deforestation (1M)

Forest fires: Forest fire is one of the major causes for deforestation. Due to human interruption and rise in ambient temperature, forest fire is happened often nowadays. Thus, due to forest fire thousands of forest area gets destructed. (1 M)

Ill effects of deforestation on the environment

<u>**Global warming:**</u> Cutting and burning of forest trees increases the CO_2 content in the atmosphere, which in turn changes the global climatic pattern, rising sea levels and depletion of the protective ozone layer.

Loss of genetic diversity: Destruction of our forest destroys the greatest storehouse of genetic diversity on earth, which provides new food and medicines for the entire world

<u>Soil erosion</u>: Deforestation also causes soil erosion, landslides, floods and drought. Natural vegetation acts as a natural barrier to reduce the wind velocity, this in turn reduces soil erosion. 6000 million tons of soil gets eroded every year in India

Loss of biodiversity: Most of the species are very sensitive to any disturbance and changes. When the plants no longer exist, animals that depend on them for food and habitat become extinct.

Loss of food grains: As a result of soil erosion, the countries lose the food grains

<u>Unemployment problems:</u> The people living around forest areas lose their livelihood

Flood and Landslides: Frequent floods, landslides in hilly areas and wind speed are heavy. (Any five Each 1 M = 5 M)

Preventive measures (or) avoid of deforestation (or) methods of conservation of forest

- New plants of more or less the same variety should be planted to replace the trees cut down for timber.
- Use of wood for fuel should be discouraged.
- Forest pests can be controlled by spraying pesticides by using aeroplanes.
- Forest fire must be controlled by modem techniques.
- Over grazing by cattle must be controlled.
- Steps should be taken by the government to discourage the migration of people into the

	islands from mainland.			
	 Education and awareness programmes must be conducted. 			
	• Strict implementation of law of Forest Conservation Act (2 M)			
	What are the measures recommended for conservation of natural resources? (7 M) (A.U.			
	June 2005, Jan 2006, A.U. Apr 2010, Dec 2013) BTL2			
	Answer : Page : 5.76 – 5.80 - A. Ravikrishnan			
	Measures recommended for (Role of Individual)conservation of natural resource			
Conservation of Energy				
	• Switch off lights, fans and other appliances when not in use.			
	• Use solar heater for cooking your food on sunny . days, which will cut down your LPG			
	expenses.			
	• Dry the clothes in sunlight instead of driers.			
	• Grow trees near the houses and get a cool breeze and shade. This will cut off your			
	electricity charges on AC and coolers.			
	• Use always pressure cooker.			
	• Ride bicycle or just walk instead of using car and scoot (2 M)			
	Conservation of water			
	• Use minimum water for all domestic purposes.			
	• Check for water leaks in pipes and toilets and repair them promptly.			
	• Reuse the soapy water, after washing clothes, for washing off the courtyards, drive ways,			
	etc.,			
	• Use drip irrigation to improve irrigation efficiency and reduce evaporation.			
	• The wasted water, coming out from kitchen, bath tub, can be used for watering the plants.			
2	• Build rainwater harvesting system in your house (2 M)			
	Conservation of soil			
	• Grow different types of plants, herbs, trees and grass in your garden and open areas, which			
	bind the soil and prevent its erosion.			
	• While constructing the house don't uproot the trees as far as possible.			
	• Don't irrigate the plants using a strong flow of water, as it will wash off the top soil.			
	• Soil erosion can be prevented by the use of sprinkling irrigation.			
	• Use green manure in the garden, which will protect the soil.			
	• Use mixed cropping, so that some specific soil nutrients will not get depleted (1 M)			
	Conservation of Food Resources			
	• Eat only minimum amount of food. A void over eating.			
	 Don't wastes the food instead gives it to someone before getting spoiled. 			
	• Cook only required amount of the food.			
	• Don't cook food unnecessarily.			
	• Don't store large amounts of food grains and protect them from damaging insects (1 M)			
	Conservation of Forest			
	• Use non-timber products.			
	• Plant more trees and protect them.			
	• Grassing, fishing must be controlled.			
	• Minimise the use of papers and fuel wood.			
1	• Avoid of executing developmental work like dam, road, construction in forest areas (1 M)			

RE	GULATION :2017	ACADEMIC YEAR : 2019-2020			
	What are the effects, causes of soil erosion and the m	ethods of preventing it? (7 M) (A.U. Dec			
	2005,11) BTL3				
	Answer : Page : 5.70 – 5.73 - A. Ravikrishnan				
	Soil erosion- Damage or removal of top soil renders the	soil infertile. Erosion may occur in many			
	ways				
	Effects of soil erosion	(1M)			
	Causes of (factors causing) soil erosion				
3	Water ; wind; biotic agents; landslides; construction	(1 M)			
	Control of soil erosion (Soil conservation practices)				
	• Conservation of till farming or no-till-farming	(1 M)			
	Contour farming	(1 M)			
	• Terracing	(1 M)			
	• Alley cropping or agro forestry	(1 M)			
	 Wind breaks or shelter helts 	(1 M)			
	Decreasing soil pollution is also a method which helps	in soil conservation			
	Discuss briefly on the consequences of every drawing	of ground water (13 M) (A U Dec 2006)			
	BTL 2	51 ground water. (15 M) (A.C. Dec 2000)			
	Answer \cdot Page \cdot 5 19 – 5 21 - A Ravikrishnan				
	Decrease of Ground Water ·				
	Due to increased usage of ground water the ground water	er level decreases			
	Reason	ci ievei deeredses.			
	(a) The erratic and inadequate rainfall results in t	reduction in storage of water in reservoirs			
	(b) The building construction activities are seal	ing the permeable soil zone, reducing the			
	area for percolation of rain water and increase in surface	runoff (2 M)			
	Ground subsidence				
	When the ground water withdrawal is more than the recharge rate, the sediments in the aquifer get				
	compacted which results in sinking of over lying land	surface. This process is known as ground			
	subsidence.	(2M)			
	Lowering of water table	× ,			
~	Over utilization of ground water in arid and semi-arid	regions for agriculture disturbs the state of			
3	equilibrium of the reservoir (disturb the hydrological c	ycle) in the region. This causes following			
	problems.	(1 M)			
	Intrusion of salt water				
	In coastal areas, over exploitation of ground water woul	d lead to rapid intrusion of salt water from			
	sea.	(2M)			
	Earthquake and landslides				
	Over-utilization of ground leads to decrease in water 1	evel, which cause earth quake, landslides			
	and famine	(2M)			
	Drying up of wells				
	As a result of over utilization of ground water, the level of ground water getting depleted at much				
	faster rates than they can be regenerated. This leads t	o drying up of dug as well as bore wells.			
	(2M)				
	Pollution of water				
	When ground water level near the agricultural land de	creases, water, containing the nitrogen as			
	nitrate fertilizer, percolates rapidly into the ground and p	collute the ground water (2M)			
6	Write a brief note on changes caused by agricultural	and overgrazing. (7 M) (A.U May 2007,			

7

ACADEMIC YEAR : 2019-2020 Dec 2014) BTL2 Answer : Page : 5.36 – 5.38 - A. Ravikrishnan Overgrazing: Process of, "eating away the forest vegetation without giving it a chance to regenerate" Agriculture: An art, science and industry of managing the growth of plants and animals for human use. (1 M)Effects (or) impacts of overgrazing Land degradation \checkmark Overgrazing removes the cover of vegetation over the soil and the exposed soil gets compacted. \checkmark So the roots of plant cannot go much deep into the soil and the adequate soil moisture is not available. \checkmark Thus, overgrazing leads to organically poor, dry, compacted soil, this cannot be used for further cultivation. (1 M) Soil erosion \checkmark Due to overgrazing by livestock, the cover of vegetation gets removed from the soil. \checkmark The roots of the grass are very good binders of the soil. \checkmark The soil becomes loose by the action of wind and rainfall. (1 M) Loss of useful species \checkmark Overgrazing also affects the composition of plant population and other regeneration capacity. \checkmark When livestock grazes the grasses heavily, the root stocks, which carry the food reserve gets destroyed. (1 M) **Traditional agriculture:** It involves small plot, simple tools, surface water, organic fertilizers and a mix of crops. \checkmark \checkmark They produce enough and a mix of crops. They produce enough food for their families and to sell it for their income Effects (or) impacts of Traditional agriculture **Deforestation:** \checkmark Cutting and burning of trees in forests to clear the land for cultivation results in loss of forest cover. Soil erosion: ✓ Clearing of forest cover exposes the soil to wind and rainfall, resulting in loss of top fertile soil layer. Loss of nutrients: ✓ During cutting and burning of trees, organic matter in the soil gets destroyed and most of the nutrients are taken up by the crops within a short period (each 1M) Explain how the alternate energy sources play an important role in environmental impact. (8 M) (A.U. May 2007) BTL4 Answer : Page : 5.63 – 5.64 - A. Ravikrishnan Need of Alternate (Renewable) Energy Sources (or) Role of Alternate (Renewable) Energy sources in environmental impact 1. The importance of solar energy can be emphasized particularly in view of the fact that

fossil fuels and other conventional sources are not free from environmental implications. 2. Energy sources which have least pollution, safety and security snags and are universally available have the best enhance of large scale utilization in future.

	3.	Hydro-electric power generation is expected to upset the ecological balance existing on			
		earth.			
	4.	Besides space heating, hydroelectric power plants critically pollute the aquatic and			
	F	terrestrial blota			
	5.	commissioning of boiling water power reactors (BWPS) have resulted in the critical			
		accumulation of large number of long lived radionuclides in water			
	6	The dangerous radio waste cannot be buried in land without the risk of polluting soil and			
	0.	underground water. Nor the waste can be dumped into the rivers without poisoning aquatic			
		life and human beings as well			
	7.	The burning of coal, oil, wood, dung cakes and petroleum products have well debated			
	,.	environmental problems. The smoke so produced causes respiratory and digestive			
		problems leading to lungs, stomach and eve diseases.			
	8.	The disposal of fly ash requires large ash ponds and may pose a severe problem			
		considering the limited availability of land. So, the non conventional sources of energy			
		needed (8 M)			
	Discus	ss the effects of timber extraction, effects of dams on forests and tribal people. (7 M)			
	(A.U.	May 2008, Dec 2013) BTL2			
	Answe	er : Page : 5.11, 5.13 – 5.15 - A. Ravikrishnan			
	Conse	quences (or) effects of timber extraction			
	1.	Large scale timber extraction causes deforestation.			
	2.	Timber extraction leads to soil erosion, loss of fertility, landslides and loss of biodiversity.			
	3.	Timber extraction also leads to loss of tribal culture and extinction of tribal people.			
	4.	Timber extraction reduces thickness of forest (IM)			
	Effect	s of dam on Forest			
	1.	I nousands of nectares of forest have been cleared for executing river valley projects.			
	Ζ.	in addition to the dain construction, the forest is also cleared for residential			
	3	Hydroelectric projects also have led to widespread loss of forest in recent years			
	З. Д	Construction of darns under these projects led to killing of wild animals and destroying			
8	т.	aquatic life			
	5.	Hydroelectric projects provide opportunities for the spread of water borne diseases.			
	6.	The big river valley projects also cause water logging which leads to salinity and in turn			
		reduces the fertility of the land. (3M)			
	Effects of dam on tribal people				
	1.	The greatest social cost of big dam is the widespread displacement of tribal people, such a			
		biodiversity cannot be tolerated.			
	2.	Displacement and cultural change affects the tribal people both mentally and physically.			
		They do not accommodate the modem food habits and life styles.			
	3.	Tribal people are ill-treated by the modem society.			
	4.	Many of the displaced people were not recognized and resettled or compensated.			
	5.	Tribal people and their culture cannot be questioned and destroyed.			
	6.	Generally, the body conditions of tribal people (lived in forest) will not suit with the new			
		areas and hence they will be affected by many diseases (3 M)			
9	(i)	Discuss the problems of fertilizer and pesticide on modern agriculture. (7 M) (A.U.			
-		May 2008, Dec 2010) B1L2			

(1M)

- (ii) List the desired qualities of pesticide. (2M) BTL4
- (i) Answer : Page : 5.38 5.40 A. Ravikrishnan

Problems in using fertilizer

(a) Micronutrient imbalance

- ✓ Most of the chemical fertilizers, used in modem agriculture, contain nitrogen, phosphorus and potassium (N, P, K), which are macronutrients.
- \checkmark When excess of fertilizers are used in the fields, it causes micronutrient imbalance.
- ✓ Examples: Excessive use of fertilizer in Punjab and Haryana has caused deficiency of the micronutrient zinc in the soil, which affects the productivity of the soil. (1M)

(b) Blue Baby syndrome (Nitrate pollution)

- ✓ When Nitrogenous fertilizers are applied in the fields, they leach deep into the soil and contaminate the ground water.
- \checkmark The nitrate concentration in the water gets increased.
- ✓ When the nitrate concentration exceeds 25 mg / lit, they cause serious health problem called "Blue Baby syndrome".
- \checkmark This disease affects infants and leads even to death.

(c) Eutrophication.

- ✓ A large proportion of N and P fertilizers, used In crop field is washed off by the runoff water and reaches the water bodies causing over nourishment of the lake. This process is known as Eutrophication.
- \checkmark Due to eutrophication lake gets attacked by algal bloom.
- \checkmark These algal species use up the nutrients rapidly and grow very fast.
- ✓ Since the time of algal species is less they die quickly and pollute the water, which in turn affect the aquatic life.
 (1M)

Problems in using pesticides

In order to improve the crop yield, lot of pesticides are used in the agriculture.

- (i) First generation pesticides Sulphur, arsenic, lead or mercury are used to kill the pests.
- (ii) Second generation pesticides DDT (Dichloro Diphenyl Trichloromethane) kill the pests.

Although these pesticides protect our crops from huge losses due to pests, they produce number of side-effects.

Death of non-target organisms

- ✓ Some pest species usually survive even after the pesticide spray, which generates highly resistant generations.
- \checkmark They are immune to all type of pesticides and are called super pests. (1 M)

. Producing new pests

- ✓ Some pest species usually survive even after the pesticide spray, which generates highly resistant generations.
- $\checkmark They are immune to all type of pesticides (1 M)$

(c)Bio-magnification

- \checkmark Many of the pesticides are non-biodegradable and keep on concentrating in the food chain.
- ✓ This process is called bio-magnification.

RE	GULATION :2017 ACADEMIC YEA	R : 2019-2020
	\checkmark These pesticides in a bio-magnified form are harmful to the human beings.	(1 M)
	(d) Risk of cancer	
	\checkmark Pesticides enhance the risks of cancer in two ways.	
	\checkmark It directly acts as carcinogens.	
	\checkmark It indirectly Suppress the immune system.	(1 M)
	(ii) Answer : Page : 5.40 - A. Ravikrishnan	``
	Desired qualities of an ideal pesticide	
	\checkmark An ideal pesticide must kill only the target species.	
	\checkmark It must be a biodegradable.	
	\checkmark It should not produce new pests.	
	\checkmark It should not produce any toxic pesticide vapour.	
	\checkmark Excessive synthetic pesticide should not be used.	
	\checkmark Chlorinated pesticides and organophosphate pesticides are hazardous, so the	nev should not
	be used	(2 M)
	Explain the environmental impacts of mineral extraction (mining) and uses (7	M) (A.U. Dec.
	2009. Apr 2015) BTL 2	
	Answer : Page : $5.29 - 5.31$ and $5.24 - 5.26$ - A. Ravikrishnan	
	Mining: Mining is the process of extraction of metals from a mineral deposit	
	Types of mining	
	(a) Surface mining: Surface mining is the process of extraction of raw material	ls from the near
	surface deposits	is from the neur
	(b) Underground mining . The process of extraction of raw materials bel	ow the earth's
	surface. It includes	ow the curths
	(c) Open-pit mining : Open-pit mining machines dig holes and remove the ores	
	Example: Iron, copper, limestone, and marble etc	•
	Environmental damage, caused by mining activities	
	Devegetation and defacing of landscape: Topsoil as well as the vegetation are rer	noved from the
	mining area. Large scale deforestation or devegetation leads to several ecological	losses and also
	landscape gets badly affected. (1 M)	
10	Groundwater contamination: Mining disturbs and also pollutes the ground	water. Usually
10	sulphur, present as an impurity in many ores, gets converted into sulphuric acid d	ue to microbial
	action, which makes the water acidic. Some heavy metals also get leached into gr	oundwater (1
	M)	(1
	Surface water pollution: Drainage of acid mines often contaminates the near	by streams and
	lakes. The acidic water is harmful to many aquatic lives. Radioactive substances like	ke uranium also
	contaminate the surface water and kill many aquatic animals. (1 M)	
	Air pollution: Smelting and roasting are done to purify the metals which e	mits enormous
	amounts of air pollutants damaging the nearby vegetation. The suspended par	rticulate matter
	(SPM) SOx arsenic particles cadmium lead etc. contaminate the atmosphere an	d public suffer
	from several health problems (1 M)	la public suller
	Subsidence of land: It is mainly associated with underground mining Subsidence	of mining area
	results in cracks in houses tilting of buildings bending of rail (1 M)	or mining area
	Effects of over exploitation of Mineral resources	
	1 Rapid depletion of mineral deposits	
	2 Over exploitation of mineral resources leads to wastage and disseminat	ion of mineral
	deposits	

	3. Over exploitation of mineral resources causes environmental pollution.
	4. Over exploitation needs heavy energy requirement (1 M)
	Uses of mining
	The extraction of metals and other materials from a mineral deposit by mining has verity of uses.
	1. Development of industrial plants and machinery. Examples - Iron, aluminium, copper,
	etc
	2. Construction, housing, settlements. Example - Iron, aluminium, nickel, etc.,
	3. Jewellery – Example - Gold silver, platinum and diamond
	4 Generation of energy Example – Coal Lignite Uranium etc
	5 Designing of defence equipments weapons ornaments
	6 Agriculture purposes as fertilizers seed dressings and fungicides Example Zineb -
	containing zinc and Maneb - containing manganese (1 M)
	Explain the various food resources (7 M) (A LL Apr 2010 Apr 2015 Dec 2010) PTL 2
	Explain the various lood resources. (7 W) (A.O. Apr 2010, Apr 2013, Dec 2010) B1L2 Answer - Dage - 5.22 - 5.26 - A Devilwishner
	Answer : Page : 5.55 – 5.50 - A. Kavikrisnnan
	Food Resources
	Food is an essential requirement for the human survival. Each person has a minimum food
	requirement. The main components of food are carbohydrates, fats, proteins, minerals and
	vitamin
	(1 M)
	Types of Food Supply
	Historically humans have dependent on three systems for their food supply.
	1. Croplands:
	It mostly produces grains and provide about 76% of the world's food. (1 M)
	Examples: Rice, wheat, maize, barley, sugarcane, potato, etc
11	2. Rangelands:
11	It produces food mainly from the grazing livestock and provide about 17% of the
	world's food. Examples: Meat, milk, fruits, etc., (1 M)
	3. Oceans:
	Oceanic fisheries supply about 7% of the world's food. Examples: Fish, prawn, crab, etc.
	(1 M)
	Major Food Sources
	Earth is provided with more than thousands of edible plants and animals. However only 15
	plants and 8 terrestrial animal species supply 90% of our global intake of calories Examples:
	Rice wheat maize notato harley sugarcane pulses fruits vegetables milk meat fish and sea
	food
	Rice wheat and maize are the major grains, provide more than 50% of the calories people
	Nee, wheat and malze are the major grams, provide more than 50% of the earones people (2 M)
	(1 M)
	Explain the various conventional (nonrenewable) energy resources. (7 M) (A.U. Dec 2010)
13	
	Answer : Page : $5.56 - 5.60 - A$. Kavikrishnan
	Coal – (1 M), Petroleum – (2 M) LPG - (1 M) Natural gas - (1 M) Nuclear energy - (2 M)
	Discuss in detail the over-exploitation of forests. (7 M) (A.U. Dec 2010) BTL2
12	Answer : Page : 5.6 – 5.7 - A. Ravikrishnan
12	Over Exploitation of Forest
	• Due to overpopulation the materials supplied by the forest like food, medicine, shelter.

ACADEMIC YEAR : 2019-2020

REGULATION :2017

REG	REGULATION :2017 ACADEMIC YEAR : 2019-2020					
	wood and fuel is not sufficient to meet the people's demand.					
	• Hence exploitation of forest materials is going on increasing day by day.					
	• With growing civilization the demand for raw materials like timber pulp minerals fuel					
	wood, etc., increases resulting in large scale logging mining, road building and cleaning of					
	forests (3 M)					
	Passon for availation in India					
	Keason for over exploitation in mula It has been estimated that in India the minimum area of formation in the model to the second					
	It has been estimated that in India the minimum area of forests required to maintain good					
	ecological balance is about 35% of total area. But, at present it is only about 22%. So ove					
	exploitation of forest materials occur. (2 M)					
	Causes of over exploitation					
	(a) Increasing agricultural production.					
	(b) Increasing industrial activities.					
	(c) Increase in demand of wood resources (2 M)					
	Discuss any four factors responsible for land degradation. (8 M) (A.U. Dec 2010, May 11, Dec					
	2013, A.U. Dec 2014) (BTL2					
	Answer : Page : 5.69 – 5.70 - A. Ravikrishnan					
	Causes of (or factors influencing) land degradation					
	1. Population: As population increases, more land is needed for producing food, fibre and					
	fuel wood. Hence there is more and more pressure on the limited land resources, which are					
	getting degraded due to over exploitation. (2 M)					
	2. Urbanization: The increased urbanization due to population growth reduce the extent of					
10	agricultural land. To compensate the loss of agricultural land, new lands comprising natural					
13	ecosystems such as forests are cleared. Thus urbanization leads to deforestation, which					
	intum affects millions of plant and animal species. (2 M)					
	3 Fertilizers and pesticides: Increased applications of fertilizers and pesticides are needed					
	to increase farm output in the new lands, which again leads to pollution of land and water					
	and soil degradation (1 M)					
	4 Damage of top soil: Increase in food production generally leads to damage of top soil					
	through nutrient depletion (1 M)					
	5 Water logging soil erosion salination and contamination of the soil with industrial wastes					
	all cause land degradation (2 M)					
	What are the coological convices randomed by forests? Discuss (7 M) (A U Dec 2010) DTI 2					
	what are the ecological services rendered by forests: Discuss. (7 M) (A.U. Dec 2010) B1L2					
	$\frac{d \ln D \Gamma L}{d \ln D \Gamma L}$					
	Allswer: Page: $5.2 - 5.5 - A$. Kavikrisillall					
	List the ecological uses of forest (1 M)					
	Ecological Uses or services rendered by forest					
	Production of oxygen: During photosynthesis trees produce oxygen which is essential for life on					
1.5	earth. (1 M)					
15	Reducing global warming: The main greenhouse gas carbon dioxide (CO_2) is absorbed by the					
	trees (forests). Trees absorb the main greenhouse gas CO_2 which is a raw material for					
	photosynthesis. Thus the problem of global warming, caused by greenhouse gas CO_2 , is reduced.					
	Soil conservation: Roots of trees (forests) bind the soil tightly and prevent soil erosion. They also					
	act as wind breaks. (1 M)					
	Regulation of hydrological cycle: Watersheds in forest act like giant sponges, which absorb					
	rainfall, slow down the runoff and slowly release the water for recharge of springs. (1 M)					

RE	REGULATION :2017 ACADEMIC YEAR : 2019-2020				
	Pollution moderators : Forests can absorb many toxic gases and noises and help in preventing air				
	and noise pollution. (1 M)				
	Wildlife habitat: Forests are the homes of millions of wild animals and plants. (1 M)				
	What is land degradation? Explain the causes and effects land (soil) degradation. (7 M) (AU				
	A.U. Dec 2010.May 11.Dec 2013, A.U. Dec 2014) BTL2				
A newar \cdot Daga \cdot 5 60 \pm 5 70 \pm A Davikrishnan					
	Land degradation: The process of deterioration of soil or loss of fertility of the soil (1 M)				
	Causes of land degradation (ar) factors regnangible for land degradation				
	1 Population				
	\checkmark As population increases more land is needed for producing food fibre and fuel				
	wood				
	\checkmark Hence there is more and more pressure on the limited land resources, which are				
	getting degraded due to over exploitation (1M)				
	2 Urbanization:				
	2. Of Damization. \checkmark The increased urbanization due to population growth reduce the extent of				
	• The increased droamzation due to population growth reduce the extent of agricultural land. To compare to the loss of agricultural land, new lands comprising.				
	agricultural land. To compensate the loss of agricultural land, new lands comprising				
16.	Thus urbanization leads to deforestation, which in turn affects millions of plant and				
	animal spacios (1M)				
	2 Fortilizers and posticides:				
	5. For time is and positive s .				
	• Increased applications of refunzers and pesticides are needed to increase farm				
	degradation (1M)				
	4 Domago of ton soil:				
	4. Damage of top soil:				
	depletion (1M)				
	5 Weter leaging soil erosion solination and contamination of the soil with industrial wester				
	5. Water-togging, son erosion, samation and containination of the son with industrial wastes all cause land degradation $(1M)$				
	In cause failed degradation (1111)				
	The soil texture and structure are deterioreted				
	 The solitiest due to loss of involvable nutrients 				
	 Loss of son returnly, due to loss of invaluable nutrients. Increase in water logging collimity alkalinity and opidity problems 				
	 Increase in water logging, samily, arkamity and actuity problems. Loss of economic social and biodiversity (1 M) 				
	What is described in 2 Describe the sources and effects of description (7 M) (AU May				
	2015 Dec. 2016) DTL 2				
	2013, Dec. 2010) D1L2 Answer + Dece + 5.74 5.75 A Devilveighnen				
	Answer : Page : 5./4 – 5./5 - A. Kavikrisnnan				
	Descrutication: A progressive destruction of degradation of and of semiand fands to desert (1M)				
	(11/1) Courses of description (or) reason for description				
17	1 Deforestation:				
1/.	1. $\underline{DCIVICSIAUUII.}$				
	 The process of uchuung and degrading a forest faild initiates a desert. If there is no vegetation to hold back the rain water, soil connet sock and 				
	roundwater level do not increases				
	groundwater rever do not increases.				
	 This also increases, soli erosion, loss of tertility. Over grazing: 				
	2. <u>Over grazing:</u> $$ The increase in cattle population heavily graze the grass land or forests and as a				
1	\sim The mercuse in each population nearing grade the grass faile of totests alle as a				

REGULATION :2017 ACADEMIC YEAR : 2019-						
			result denude the land area.			
		\checkmark	The denuded land becomes dry, loose and more prone to soil erosion and leads to			
			desert.			
	3.	Water	Management:			
		\checkmark	Over utilization of groundwater, particularly in coastal regions, resulting in saline			
			water intrusion into aquifers, which is unfit for irrigation.			
	4.	<u>Minin</u>	g and quarrying :			
		\checkmark	These activities are also responsible for loss of vegetal cover and denudation of			
	_		extensive land area leading to desertification.			
	5.	<u>Clima</u>	te change:			
		\checkmark	Formation of deserts may also take place due to climate change, ie., failure of			
	-		monsoon, frequent droughts.			
	6.	Pollut				
		v	Excessive use of fertilizers and pesticides and disposal of toxic water into the land			
	Harma	£1 .££.	also leads to desertification (Each 1 M; any $5 = 5$ M)			
	Harm	<u>A roun</u>	<u>18 01 desertification</u>			
	•	desert	1 80% of the productive fand in the and and semi-and regions are converted into			
	\checkmark	Aroun	1600 million people are threatened by desertification (1 M)			
	Descri	ibe the	following effects and their remedies on modern agriculture. (a) Water logging			
	(b) Sa	linity. (7 M) BTL2			
	(a)	Answe	r : Page : 5.40 - A. Ravikrishnan			
	Water logging: The land where water stand for most of the year.					
	Cause	s of wa	Ler logging			
	\checkmark	Excess	ive water supply to the croplands.			
	\checkmark	Heavy	rain.			
	\checkmark	Poor d	rainage. (1 M)			
	Proble	ems (or) Effects in water logging			
	\checkmark	During	water-logged conditions, pore-voids in the soil get filled with' water and the soil-air			
		gets de	pleted.			
\checkmark In such a condition the roots of		In suc	h a condition the roots of the plants do not get adequate air for respiration. So,			
18.	D	mecha	nical strength of the soil decreases and crop yield falls. (1 M)			
	<u>Reme</u>	Drovor	<u>ater logging</u>			
	×	like E	ung excessive intigation, sub surface draining technology and bio-drainage by trees			
	(b) A n	Swor • 1	Refer noge : 5 41 - A Revikrishnen			
	(D)AI	SWCI . I	Kerer page : 5.41 - A. Kaviki Isinian			
	Salinit	t v: The	water not absorbed by the soil undergo evaporation leaving behind a thin layer of			
	dissolv	ved salts	in the topsoil. This process of accumulation of salts is called the salinity. (1 M)			
	Proble	ems in S	balinity			
	\checkmark	Most	of the water, used for irrigation comes only from canal or ground, which unlike			
		rainwa	ter contains dissolved salts. Under dry climates, the water gets evaporated leaving			
		behind	the salt in the upper portion of the soil.			

✓ Due to salinity, the soil becomes alkaline and crop yield decreases. (1 M)

• Solar Heat Collectors

Solar heat collectors consist of natural materials like stones, bricks (or) materials like glass, which can absorb heat during the day time and release it slowly at night. (1M)

• Solar water heater

It consists of an insulated box inside of which is painted with black paint. It is also provided with a glass lid to receive and store solar heat. Inside the box it has black painted copper coil, through which cold water is allowed to flow in, wl1ich gets heated up and flows out into a storage tank. From the storage tank water is then supplied through pipes.

- 2. Wind energy : Energy recovered from the force of wind (moving air) is wind energy
 - Wind mill: When fast moving air strikes the wind mill blades, it starts to rotate. This rotational motion of the blades derives a number of machines like water pumps, flour mills and electric generators.

• Wind Farms.

When a large number of wind mills are installed and joined together in a definite pattern ir forms a wind farm. The wind farms, produce a large amount of electricity (2M)

3. Ocean energy

Ocean can also be used for generating energy of the following ways.
5.

(2M)

Tidal energy (or) Tidal power • Ocean tides, produced by gravitational forces of sun and moon, contain enormous amount of energy. \checkmark The 'high tide' and 'low tide' refer to the rise and fall of water in the oceans. The tidal energy can be harnessed by constructing a tidal barrage. \checkmark \checkmark During high tide, the sea-water is allowed to flow into the reservoir of the barrage and rotates the turbine, which in turn produces electricity by rotating the generators. \checkmark During low tide, when the sea level is low, the sea water stored in the barrage reservoir is allowed to flow into the sea and again rotates the turbine. Tidal barrage Water stored at high tide Sea (High tide) Reservoir

4. Ocean thermal energy (OTE)

Energy available due to the difference in temperature of water known as ocean thermal energy.

REG	GULATION :2017 ACADEMIC Y	EAR : 2019-2020
	\checkmark Slurry (animal dung + water) is fed into the digester through the inlet cha	amber. The slurry,
	in the digester, is left for about two months for fermentation.	
	\checkmark Anaerobic micro-organisms are responsible for this action. As a re	esult of anaerobic
	fermentation, bio-gas is collected in the dome.	
	\checkmark When sufficient amount of bio-gas is collected in the dome, it exerts a lar	rge pressure on the
	slurry and this in turn forces the spent slurry to the over flow tank	through the outlet
	chamber.	
	(1N	A)
	Uses of Bio Gas	
	1. Bio-gas is used for cooking food and heating water.	
	2. It is used to run engines.	
	3. It is also used as an illuminant in villages.	
	4. It is used for running tube-well and water pump-set	
	engines.	
	5. It is directly used in gas turbines and fuel cells for	
	producing electricity. (1M)	
	Discuss the following case studies on	
	(a) Deforestation (2 M)	
	(b) Mining (8 M)	
	(c) Food resources (3 M)	
	(d) Renewable and Non-renewable energy resources (2 M) BTL4	
5.		
	Answer : Page : 5.10, 5.31, 5.42, 5.64 - A. Ravikrishnan	
	(a) Deforestation (2 M)	
	(b) Mining (8 M)	
	(c) Food resources (3 M)	
	(d) Renewable and Non-renewable energy resources (2 M)	

UNIT - IV SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable Development – Urban Problems Related to Energy – Water Conservation, Rain Water Harvesting, Watershed Management – Resettlement and Rehabilitation of People; its Problems and Concerns, Case Studies – Role of Non-Governmental Organization-Environmental Ethics: Issues and Possible Solutions – Climate Change, Global Warming, Acid Rain, Ozone Layer Depletion, Nuclear Accidents and Holocaust, Case Studies. – Wasteland Reclamation – Consumerism and Waste Products – Environment Production Act– Air (Prevention And Control Of Pollution) Act – Water (Prevention And Control Of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Enforcement Machinery Involved in Environmental Legislation-Central and State Pollution Control Boards- Public Awareness.

Q. No.	PART – A
1	Define the term sustainable development. (NOV/DEC 2005, NOV/DEC 2007, NOV/DEC 2009, APR/MAY 2011) BTL1
	Sustainable development is defined as, "meeting the needs of the present without compromising the ability of future generations to meet their own needs".
	What are the advantages of rain water harvesting? (MAY/JUNE 2008) BTL1
	Reduction in the use of current for pumping water.
	• Mitigating the effects of droughts and achieving drought proofing.
h	• Increasing the availability of water from well.
Z	• Rise in ground water levels.
	• Minimizing the soil erosion and flood hazards.
	• Upgrading the social and environmental status.
	• Future generation is assured of water.
	List the objectives of watershed management. (NOV/DEC 2009) BTL4
	• To minimize the risks, of floods, drought and landslides.
	• To develop rural areas in the region with clear plan for improving the economy of the
	region.
3	• To manage the watershed for developmental activities like domestic water supply,
	irrigation, hydropower generation etc.,
· · · · ·	• To generate huge employment opportunities in the backward rain- fed areas to ensure
	livelihood security.
	• 5. To promote social forestry and horticultural activity on all suitable areas of land.
	Define the term environmental ethics. (NOV/DEC 2011, NOV/DEC 2013) BTL1
4.	Environmental ethics refers to the issues, principles and guidelines relating to human
	interactions with their environment.
	State a few drawbacks of pollution related acts. (NOV/DEC 2008) BTL1
	• The penalties in the act are very small when compared to the damage caused by the
5.	big industries due to pollution.
	• A person cannot directly file a petition in the court.
	• Litigation, related to environment is expensive, since it involves technical
	Knowledge.

REGU	LATION :2017 ACADEMIC YEAR : 2019-2020
	• For small unit it is very expensive to install Effluent Treatment – Plant
	• The position of chairman of the boards is occupied by political appointee. Hence it is
	difficult to implement the act without political interference.
	What is meant by ISO 14000? (NOV/DEC 2008) BTL1
6.	ISO 14000 is the environmental management standards which exist to help Organizations
	minimize how their operations negatively affect the environment and Comply with applicable
	laws and regulations.
	what are the objectives of public awareness? B1L1
	• To create awareness among people of rural and city about ecological imbalances, local
	environment, technological development and various development plants.
	• To organize meetings, group discussion on development, tree plantation programmers,
7	exhibitions.
	• To focus on current environment problems and situations
	• To train our planners, decision – makers, politicians and administrators.
	• To eliminate poverty by providing employment that overcome the basic environmental
	To loom to live simple and and friendly menner
	• To learn to live simple and eco-mendly manner What are the objectives of environmental impact assessment (FIA)? BTI 1
	FIA is defined as a formal process of predicting the environmental consequences of any
	Development projects. It is used to identify the environmental social and economic impacts
	of the Project prior to decision making. Objectives of FIA
8.	• To identify the main issues and problem of the parties
	 To identify who is the party.
	• To identify what are the problems of the parties.
	• To identify why the problems are arise.
	Define urbanization. (NOV/DEC 2010) BTL1
9.	Urbanization is the movement of human population from rural area to urban area for the want
	of better education, communication, health and employment.
	How can global warming be controlled? (NOV/DEC 2010, APR/MAY 2011) BTL2
	• By reducing the use of fossil fuels.
10	• Utilize renewable resources such as wind, solar and hydropower.
10	• Plant more trees.
· · · · ·	• Stabilize population growth.
	• Remove atmospheric CO ₂ by utilizing photo synthetic algae.
	Mention any four fundamental rights of the individual. (NOV/DEC 2010) BTL1
	• Human right to freedom.
11	• Human right to property.
	• Human right to religion.
	• Human right to culture and education.
	Human right to equality.
10	What is E-Waste? (NOV/DEC 2011) BTL2
12.	The waste of electronic equipment like computers, printers and mobile phones, Xerox
	machines, calculators, etc. are e-waste.

REGU	LATION :2017 ACADEMIC YEAR : 2019-2020
	What do we mean by environment refugees? (NOV/DEC 2011) BTL2
13.	Environmental refugee is a person displaced due to environment causes, especially land loss,
	and degradation and natural disaster.
	List the objectives of Forest Conservation act. (NOV/DEC 2013) BTL1
14.	• To protect and conserve the forest
	To ensure judicious use of forest
	What are the objectives of water act? (NOV/DEC 2014) BTL1
	Prevention and control of water pollution.
15.	Maintaining or restoring the wholesomeness of water.
	• Establishing central and state boards for the prevention and control of water
	pollution.
	Define consumerism and disaster. (NOV/DEC 2015) BTL2
	Consumerism refers to the interrelationship between sellers and buyer.
16	Disaster is a geological process and is defined as an event concentrated in time and space, in
	which a society or sub-division of a society undergoes severe danger and causes loss of its
	members and physical property.
17	What are landslides? (MAY/JUNE 2008, NV/DEC 2014) B1L2
1/	to lower region due to gravitational pull is called landslides
	What are the harmful offects of landslides? RTL2
	• Landslides block the roads and diverts the passage
18	 Landshues block the roads and diverts the passage Erosion of soil increases
	 Elosion of son mercases. Sudden landslides damage the houses gron yield live stock etc.
	• Sudden landshues damage the houses, crop yield, live stock etc.
19	A tsunami is a large wave that is generated in a water body when the sea floor is deformed
17.	by seismic activity. This activity displaces the overlying water in the ocean
	Give comprehensive definition for air pollution. (NOV/DEC 2010, APR/MAY 2011)
20	BTL2
20	The presences of one are more contaminants like dust, smoke, mist and dour in the
	atmosphere, which are injurious to human beings, plants and animal.
	Mention four causes of floods. (NOV/DEC 2010) BTL2
	Heavy rain, rainfall during cyclone causes flood.
21	• Sudden snow melt also raises the quantity of water in streams and causes flood.
21	• Clearing of forests for agriculture has also increased severity of floods.
	• Reduction in the carrying capacity of the channel, due to accumulation of Sediments
	cause floods.
	List the objectives of Forest Conservation Act. (NOV/DEC 2013) BTL1
	• Illegal non-forest activity within a forest area can be immediately stopped under this
22	act.
	• Provides conservation of all types of forests. Non forest activities include clearing of
	forest land for cultivation of any types of crops.
	What are the important aspects of sustainable development? BTL2
23	• Inter – generational equity
	It states that we should hand over a safe, healthy and resourceful environment to our
	tuture generations.

	• Intra – generational equity
	It states that the technological development of rich countries should support the economic
	growth of the poor countries and help in narrowing the wealth gap and lead to sustainability
	Explain the need for water conservation. BTL2
	• Though the resources of water are more, the quality and reliability are not high due
	to changes in environmental factors.
24	Better lifestyles require more fresh water.
27	• As the population increases, the requirement of water is also more.
	• Due to deforestation, the annual rainfall is also decreasing.
	• Over exploitation of ground water, lead to drought.
	Agricultural and industrial activities require more fresh water.
	Define the term environmental ethics. (NOV/DEC 2011, NOV/DEC 2013) BTL2
25	"Environmental ethics refers to the issues, principles and guidelines relating to human
	interactions with their environment".
	What is meant by environmental audit? (NOV/DEC 2008) BTL2
26	Environmental audits are intended to quantify environmental performance and Environmental
	position. In this way they perform analogous function to financial Audits. It also aims to
	What is consumptism? List ony two objectives of consumptism. PTL 1
	The consumption of resources by the people is known as consumerism
27	Objectives
27.	It improves the rights and powers of the buyer
	It forces the manufacturer to reuse and recycle the product after usage.
	What is Eco-mark? BTL1
20	Environmentally friendly products are generally indicated by the symbol called Eco-mark.
28.	Eco-mark is a certification mark issued by the Bureau of Indian Standard (BIS) to the
	environmental friendly products.
	PART – B
	What are the salient features of the Air pollution act, Water pollution act and
	Environment protection Act? Give the reason for why do we prefer environmental
	protection act as an Umbrella act. (13 M) (MAY/JUNE 2005, NOV/DEC 2005, JAN
1	2006, NOV/DEC 2006, NOV/JUNE 2007, NOV/DEC 2009, NOV/DEC 2010, MAN/HINE 2011 NOV/DEC 2012 DEC 2014) DEL 4
1	MAY/JUNE 2011, NOV/DEC 2013, DEC 2014) B1L4 Answor: Defor: 6.34 , 6.38 , A Devikrishnen
	• Objectives and features of environment protection act (5 M)
	 Objectives and features of air pollution act Objectives and features of air pollution act (4 M)
	Objectives and features of water pollution act (4 M)
	Explain in detail the strategies adopted for conservation of water (6 M) (NOV/DEC
	2009, APR/MAY 2010, NOV/DEC 2010, APR/MAY 2011, NOV/DEC 2014) BTL2
	Answer : Refer : 6.7 – 6.8 - A. Ravikrishnan
	• Reducing evaporation loss (1 M)
2	• Reducing irrigation loss (1 M)
	• Re-use of water (1 M)
	• Preventing wastage of water (1 M)
	• Decreasing run-off losses (1 M)

	• Avoid discharge of sewage (1 M)
	Discuss in detail about Wild life protection act 1972 and Forest conservation act 1980.
	(13 M) (NOV/DEC 2010, NOV/DEC 2014) BTL4
	Answer : Refer : 6.38 – 6.40 - A. Ravikrishnan
3	• Objectives of Wildlife protection act (2 M)
	• features of wildlife protection act (4 M)
	• Objectives of Forest conservation act (2 M)
	Features of Forest conservation act (5 M)
	Explain the following
	(a) Sustainable development (6 M) BTL2
	(b) Urban problems related to energy. (7 M) (NOV/DEC 2005, NOV/DEC 2006,
	MAY/JUNE 2007, NOV/DEC 2010, NOV/DEC 2011, MAY/JUNE 2013) BTL2
	1. Answer : Keier : 0.21 – 0.0 - A. Kavikrisnnan
	World summit (A conde) (2 M)
	• World summit (Agenda) (2 M)
4	• Aspects (2 M)
	• Concept and significance (2 M) ii Answer • Refer • 6.21
	II. Answer . Refer : 0.21 – 0.0 - A. Raviki Isinian Urban problems related to energy :
	• Definition of urbanization (2 M)
	Urbanization is the movement of human population from rural areas to urban areas for
	the want of better education, communication, health, employment, etc.
	• Energy demanding activities (3 M)
	• Solution for urban energy problem (2 M)
	Discuss the phenomenon of global warming and the factors contributing to it. (13 M)
F	BTL4
3	• Explanation of phenomenon of global warming (7 M)
	Contributing factors (6 M)
	Give a note on nuclear accidents and holocausts. (6 +7 M) (MAY/JUNE 2013,
	NOV/DEC 2013) BTL4
	Answer : Refer : 6.24 – 6.26 - A. Ravikrishnan
6	• Nuclear energy and nuclear accidents (2 M)
	• Types of nuclear accidents (4 M)
	• Effect of nuclear holocaust (4 M)
	• Control measures of holocausts (3 M)
	State the 12 principles of green chemistry. (7 M) B1L1
	Answer: Refer: - A. Ravikrisnnan Provention It is better to provent wests then to treat or clean up wests after it is
	• Frevention. It is better to prevent waste than to treat of clean up waste after it is formed
	• Atom Economy Synthetic methods should be designed to maximize the
7.	incorporation of all materials used in the process into the final product
	• Less Hazardous Chemical Synthesis Whenever practicable synthetic
	methodologies should be designed to use and generate substances that possess little
	or no toxicity to human health and the environment.
	• Designing Safer Chemicals . Chemical products should be designed to preserve

	efficacy of the function while reducing toxicity.
	• Safer Solvents and Auxiliaries. The use of auxiliary substances (solvents,
	separation agents, etc.) should be made unnecessary whenever possible and, when
	used, innocuous.
	• Design for Energy Efficiency. Energy requirements should be recognized for
	their environmental and economic impacts and should be minimized. Synthetic
	methods should be conducted at ambient temperature and pressure
	• Use of Renewable Feed stocks. A raw material or feedstock should be renewable
	rather than depleting whenever technically and economically practical.
	• Reduce Derivatives. Unnecessary derivatization (blocking group,
	protection/deprotection, temporary modification of physical/chemical processes) should be avoided whenever possible.
	• Catalysis. Catalytic reagents (as selective as possible) are superior to
	stoichiometric reagents.
	• Design for Degradation . Chemical products should be designed so that at the end
	of their function they do not persist in the environment and instead break down
	into innocuous degradation products.
	• Real-time Analysis for Pollution Prevention. Analytical methodologies need to
	be further developed to allow for real-time in-process monitoring and control prior
	to the formation of hazardous substances.
	• Inherently Safer Chemistry for Accident Prevention. Substance and the form of
	a substance used in a chemical process should be chosen so as to minimize the
	potential for chemical accidents, including releases, explosions, and fires (7 M)
	Answer + Defen + 6.8 A Devilvishnen
	Answer: Keler: 0.0 - A. Kavikrisinian Dain water hervesting : A technique of conturing and storing of rain water for further
	utilization (1 M)
	Objective.
	• To meet increasing demands of water
	Raise water table by recharging ground water
	Reduce ground water contamination from salt water intrusion
	To reduce the surface run-off losses
	 To reduce storm water and soil erosion
	To increase hydrostatic pressure to stop land subsidence
8.	• To reduce water crises and water conflicts (1 M)
	Roof top rainwater harvesting
	• Involves collecting water that falls on roof of house
	• Rainwater from roof top, road surface, playground diverted to surface tank.
	Explanation (2 M)
	• Diagram (2 M)
	Advantages of rainwater harvesting
	 Increases the well water availability § Raise ground water level
	Minimizes soil erosion and flood hazards
	Upgrading the environmental and social status

JIT-JEPPIAAR/S&H/Dr.N.BHUVANA/I &II Yr/SEM 02&04/GE8291/EVS/ UNIT1-5/Q.B.+Keys/ Ver. 3.0

REGULATION :2017 ACADEMIC YEAR : 2019		ACADEMIC YEAR : 2019-2020
	• Future generation is assured for water	(1 M)
	What is wasteland? Mention its types and sourc of wasteland reclamation. (7 M) BTL2	es. Explain the objectives and methods
	Answer : Refer : 6.28 - A. Ravikrishnan	
9.	The land which is not in use is named as waste	eland. Types: 1. Uncultivable wasteland 2.
	Cultivatable wasteland	(1 M)
	Objectives of wasteland reclamation	$(1 \mathbf{M})$
	Methods of wasteland reclamation	(1 W) (4 M)
	List the traditional rights of seller and buyer.	Describe the objectives of consumerism
	and factors affecting consumerism. (7 M) BTL2	sesence the objectives of consumerism
	Answer : Refer : 6.31 - A. Ravikrishnan	
10.	Traditionally favourable rights of seller (1 M)	
	Traditional buyer rights (1 M)	
	Objectives of consumerism (3 M)	
	Factors affecting comsumerism(2 M)	
	What is biomedical waste? Describe types	and the various steps involved in
	management of biomedical waste. (7 M) BTL2	
11.	Answer : Refer : 6.41 - A. Ravikrishnan	
	Waste generated from health care activities. (1 M)	
	Types of biomedical waste (5 M)	wasta $(3 M)$
	Define watershed and watershed management	t? Explain the concent of watershed
	management in detail. (13 M) BTL2	Laplan the concept of watershed
	Answer : Refer : 6.11 - A. Ravikrishnan	
	Watershed – The land area from which water d	rains under the influence of gravity into a
	stream, lake, reservoir or other body of surface wat	er, (1 M)
12.	Watershed management - The management of rain	fall and resultant runoff is called watershed
	management.	(1 M)
	Factors affecting watershed management	(1 M)
	Objectives of watershed management	(2 M)
	Watershed management techniques	(2 M)
	Components of integrated watershed management	(6 M)
	PART-C	
	What is an earthquake? Write about its can	uses, effects and measures to face the
	earthquake. (15 M) (APR/MAY 2008, NOV	/DEC 2008, NOV/DEC 13, NOV/DEC
	2014) BTL4	
	Answer : Keter : 6.58 – 5.58 - A. Ravikrishnan	
1	• Definition: An earthquake is a sudden vibration	on caused on the earth's surface due to the
	sudden release of tremendous amount of er	(2 M)
	Clust.	$(2 \mathbf{M})$
	• Causes	$(4 \mathbf{M})$
	Effects Dreventive measures	(4 IVI)
2	- Hevenuve measures	(3 191)
2	Give a note on	

REG	OLATION 2017 ACADEMIC LEAR 2017-2020
	(d) Floods
	(e) Cyclone
	(f) Landslides (15 M) BTL2
	Answer : Refer : 6.52 – 6.57 - A. Ravikrishnan
	•Definition of flood: Whenever the magnitude of water flow exceeds the carrying
	capacity of the channel within its banks, the excess of water over flows on the
	surroundings causes floods (1 M)
	• Causes and effects (2 M)
	• Preventive measures of floods (2 M)
	• Definition: Cyclone is a meteorological phenomenon, intense depressions forming over
	the open oceans and moving towards the land. On reaching the shores, it move into
	the interior of the land or along the shore lines. (1 M)
	• Causes and effects (2 M)
	• Preventive measures of cyclone (2 M)
	•Definition: The movement of earthy materials like coherent rock, mud, soil and debris
	from higher region to lower region due to gravitational pull is called landslides. (1 M)
	• Causes and effects (2 M)
	• Preventive measures of landslides (2 M)
	UNIT V HUMAN POPULATION AND THE ENVIRONMENT
Populati	on Growth, Variation Among Nations - Population Explosion - Family Welfare Programme -
Environ	ment and Human Health – Human Rights – Value Education – HIV / AIDS – Women and Child
Welfare	– Role of Information Technology in Environment and Human Health – Case Studies.
Q. No.	PART-A
	Define immigration and emigration. (Coim A.U. Dec 2009) BTL1
1.	Immigration - Arrival of individuals from neighbouring population.
	Emigration - Dispersal of individuals from the original population to new areas
	Define population and population density. (Coim A.U. Dec 2009, Chen A.U. Apr 2011) BTL1
2	Population-Group of Individuals belonging to the same species, which live in a given area at a
2.	given time.
	Population density -Number of individuals of the population per unit area (or) unit volume
2	Define birth rate and death rate. BTL1
3.	Birth rate or Natality-No. of live birth per 1000 people in a population in a given year
	Death rate or Mortality -No. of deaths per 1000 people in a population in a given year
	Define doubling time with reference in population growth. (Chen A.U. Dec 2008, 2013)
	DILI Time required for a population to double its size at a constant annual rate
4.	This required for a population to double its size at a constant annual rate. Desching a time $Td = \frac{70}{70}$ When we have a second exactly rate. If a metion has 20% exactly its its
	Doubling time = $Ia = \frac{r}{r}$ where, r - Annual growth rate. If a nation has 2% annual growth; its
	population will double in the next 35 year.
	What are the reasons behind the increased population growth in the less developed nations
5.	compared with developed nations? (Chen AU Dec 2007) BTL1
	• Due to decrease in the death rate and increase in the birth rate
	• The availability of antibodies, immunization, increased food production, clean water and
	air decreases the famine-related deaths and infant mortality.
	• In agricultural based countries, children are required to help parents in the fields.

REG	ULATION :2017 ACADEMIC YEAR : 2019-2020
	Write population equation. (Coim. A.U. Dec 2008) BTL1
6.	Pt + 1 = Pt + (B - D) + (I - E)
	Where Pt and $Pt+1 =$ sizes of population in an area at two different point s in time t and t+1; B-
	Birth rate I-Immigration; D-Death Rate; E-Emigration.
	List the characteristics of population growth. BTL4
	Exponential growth
	Doubling time
7	Infant mortality rate
7.	• Total fertility rates (TFR)
	Replacement level
	Male-Female Ratio
	Demographic transition
	Mention the various problems of population growth. BTL4
	Increasing demands for food and natural resources
8	Inadequate housings and health services
0.	Loss of agricultural lands
	Unemployment and socio-political unrest
	Environmental pollution
	What is population explosion? (Chen AU Jun 2007, May 2008, TCY A.U. Dec 2008, Dec
9.	2009, Dec2010, Apr 2015) BTL1
	The enormous increase in population due to low death rate and high birth rate.
	What are the effects of population explosion? (Chen A.U. Dec 2009) BTL1
	• Poverty
	• Environmental degradation
10	• Over exploitation of natural resources
10.	• Renewable resources like forests, grass lands are also under threat
	• Will increase disease, economic inequity and communal war
	• Leads to development of slums
	• Lack of basic amenities like water supply and sanitation, education, health, etc
	• Unemployment and low living standard of people
	Dra productive population (0, 14 years)
11.	 Pre-productive population (0-14 years) Perroductive population (15, 44 years)
	 Reproductive population (15-44 years) Dest reproductive population (Above 45 years)
	• Fost reproductive population (Above 45 years)
	Invention of modern medical facilities: Illiteracy
	 Decrease in death rate and increase in birth rate
12.	Availability of antibiotical Food, alaan water, air, ata
	 Availability of antibiotics, Food, clean water, an, etc. Decreases the femine related deaths and infent montality.
	• Decreases the famine-related deaths and infant mortanty
	In agricultural based countries- Unildren are required
	what is family welfare programme? BILI Programme implemented by the government of India. An integral part of grandling the strength actional actions in the strength of the st
13.	of growth covering human health maternity family welfare shild care and women's right
	education nutrition health employment shelter safe drinking water
	education, nutrition, health, employment, sheller, sale drinking water

REG	ULATION :2017 ACADEMIC YEAR : 2019-2020
14	Define population stabilization ratio. BTL1
14.	Ratio of crude death rate to crude birth rate.
	What are the objectives of family welfare programme? (TNV A.U. Dec 2009) BTL1
15.	• Slowing down the population explosion by reducing the fertility
	• Pressure on the environment due to over exploitation of natural resources is reduced
	List the factors influencing family size. BTL4
	• Reduce infant mortality rate to below 30 per 1000 infant
	• Achieve 100% registration of births, deaths, marriage and pregnancy
10	• Encourage late marriage, late child-bearing, breast feeding
16.	• Enables to improve women's health, education and employment
	Prevent and control of communicable disease and AIDS/HIV
	• Promote vigorously the family norms
	• Making school education up to age 14 free and compulsory
	What is meant by NIMBY syndrome? (Chen A.U. Dec 2008) BTL1
17.	NIMBY-Not In My Back Yard. Describes the opposing of residents to the nearby location of
	something they consider undesirable, even clearly a benefit for many
	List the factors influencing human health. BTL4
	Nutritional Factors
18.	Biological Factors
	Chemical Factors
	Psychological Factors
	What is meant by human rights? BTL1
10	The fundamental rights which are possessed by all human beings irrespective of their caste,
19.	nationality, sex and language. These cannot be taken away by any legislature. Every citizen must
	enjoy certain rights and also has certain duties towards the country.
	List the features of draft declaration of human rights. BTL4
	Human rights to freedom
	Human rights to property
	Human rights to freedom of religion
20	Human rights to culture and education
20.	Human rights to constitutional remedies
	Human rights to equality
	Human rights against exploitation
	Human rights to food and environment
	Human rights to good health
	What is education? List its types. BTL1
	Education-learning through which knowledge about the particular thing can be acquired
21.	Types of Education
	• Formal Education-Self related. Will read, write, get jobs and tackle the problems
	• Value Education-Instrument to analyse our behavior and provide proper direction to
	youth. Teaches distinction between right and wrong, helpful, loving, etc.
	• Value-based environmental education-Provide knowledge on principles of ecology,
	tundamentals of environment and biodiversity
22.	Write the importance of value education. (Chen A.U. Dec 2008, 2013) BTL2

REGULATION :2017 ACADEMIC YEAR : 2019-202	
	• Improve the integral growth of human being
	Create attitudes and improvement towards sustainable lifestyle
	• Increase awareness about our national history, cultural heritage, constitutional rights,
	national integration, community development and environment
	Create and develop awareness about the values, role and their significance
	What is role playing element of value education? BTL1
23.	Acting out the true feelings of the actors by taking the role of another person but without the risk
	of reprisals.
	Mention the types of values imported through value education. BTL1
	Universal Values or Social Values
24	Cultural Values
2	Individual Values
	Global Values
	Spiritual Values
	Define the term HIV/AIDS. BTL1
25.	HIV-Human Immunodeficiency Virus; AIDS-Acquired Immuno Deficiency Syndrome; a
	condition in humans in which the immune system begins to fail, leading to life-threatening
	opportunistic infections.
26	what are the factors which do not influence transmission of HIV? BILI
26.	lears, food, air, cougn, nandsnake, mosquito, files, insect bites, urine, saliva during kissing,
	Montion some offects of HIV/AIDS (Chen A II Dec 2008 2011 2014) PTI 1
	• Large number of death occurs, which affect environment and natural resources
	 Large number of death occurs, which affect environment and natural resources Loss of labour and lavel of production decreases
27.	 Loss of labour and level of production decreases Bequired more water for maintaining bygione in AIDS affected locality
	 Required more water for maintaining hygiene in ADS affected locality Paopla affected by HIV cannot perform work wall, due to lack of energy and frequent
	• reopie anected by mv, cannot perform work wen, due to lack of energy and nequent fever and sweating
	What are the major precautions to avoid AIDS? (Chen AIJ May 2008) BTI 1
	• Avoid indiscriminate sex and encourage the use of condoms and also avoid the use of
	sharing razors needles and syringes
28	Prevention of blood borne HIV transmission
20.	• Aids awareness programmes should be encouraged
	Counseling services should be provided
	• Drug treatment
State the role of information technology in Environment, (Coim A.U. Dec 2009, Cher	
	Jan 2006) BTL4
	• Plays a vital role in the field of environmental education.
20	• Means collection, processing, storage and dissemination of information.
29.	• Numbers of software have been developed to study about the environment.
	• The internet facilities, information through satellites, World Wide Web, and geographical
	information systems provide us up-to-date information on various aspects of environment
	and weather.
	What is value education? Give its significance. (NOV/DEC 2013) BTL4
30.	An instrument used to analyse our behavior and provide proper direction to our youths. Teaches
	them the distinction between right and wrong, to be compassionate, helpful, loving, generous and

REGULATION :2017

	tolerant. So that a youth can move towards the sustainable future.		
	What do you mean by Doubling Time? (NOV/DEC 2013) BTL1		
31.	Period of time required for a quantity to double in size or value. Generally applied to denote the		
	population growth.		
State the role of Information Technology in health protection. BTL1			
	• Health organization turning to package solution of IT for streamlining services oriented		
	work in effective manner.		
	• Health service technology such as finance and accounting, pathology, patient		
	administration		
20	Helps the doctor to monitor the health of the people effectively		
32.	Online help of expert doctors can be used for the patient		
	• The outbreak of epidemic diseases can be conveyed easily		
	• Effective function of a hospital		
	Drugs and its replacement can be administered efficiently		
	• The data regarding birth and death rate, immunization and sanitation programmes can be		
	maintained accurately with the help of computers		
	What is environmental impact assessment? BTL1		
33	Formal process of predicting the environmental consequences of any development projects. Used		
55.	to identify the environmental, social and economic impacts of the project prior to decision		
	making.		
	What is GIS? BTL1		
34.	Graphical Information System (GIS) acts as a technique of superimposing various thematic maps		
	with the use of digital data on a large number of inter-related aspects. Considered to be an		
	effective tool in environmental management.		
	List out the benefits of EIA. B1L4		
	• Reduce the cost and time		
25	• Performance of the project improved		
35.	• Waste treatment and cleaning expenses are minimized		
	• Usages of resources are decreased		
	• Biodiversity is maintained		
	• Human health is improved (
	Mention the key element of EIA. BILI		
	• Scoping – To identify the key issues of the concern in the planning process at early stage,		
	and site selection and identify any possible alternatives.		
	• Screening - 10 decide whether an EIA is required or not.		
36.	• Identifying and evaluating alternatives-Knowing alternative sites and techniques and their impacts		
	Mitigation mansures dealing with uncertainty Action taken to prevent adverse affect of		
	• Whitigation measures dealing with uncertainty-Action taken to prevent adverse effect of		
	• Environmental statements . Final stage of FIA process which reports the findings of the		
	FIA		
	What is child welfare? Mention the schemes towards child welfare RTI 1		
	Child Welfare		
37.	• Children occupy 40% of the total population.		
	• Out of 21 Million Children born every year in India. 20 Million are estimated to be		

NLO	ACADEMIC LEAK : 2017-2020
	working as Child Labour in hazardous industries
	Organizations towards Child Welfare
	• UN Conventions on Rights of Child or International Laws
	• Rights of child
	•Right to Survival
	• Right to Participation
	• Right to Development
	Right to Protection
	• Ministry of HRD
	• Centre for Science and Environment (CSE)
	 Environment degradation and child welfare
	So it is essential to keep our environment clean to children for better and healthy life Poverty
	What is women welfare? List the various organization function towards women welfare.
	BTL1
	Welfare to improve the status of the women by providing opportunities in education, employment
	and economic independence (1M)
	Organizations Towards Women Welfare
20	• NNWM (National Network for Women and Mining): Fighting for the "Gender Audit"
38.	of India's mining companies
	• UNDW (United Nations Decade for Women): Women welfare related issues on
	international agenda
	• CEDAW (Convention on Elimination of all forms of Discrimination against Women)
	NGO's as Mahila Mandals
	• Ministry for Women and Child Welfare (1M)
	PART – B
1.	
	(i) Can you recall population characteristics & variations among nations? (7M) BTL1
	(ii) What is population explosion and state the views on population growth. (6M) BTL2
	(i) Answer: Page: 7.3 – 7.8-A. Ravikrishnan
	Characteristics of population growth
	• Exponential growth
	Doubling time
	Infant mortality rate
	• Total fertility rates
	• Replacement level
	• Male-Female ratio
	• Demographic transition (3M)
	Variation of nonulation among nation based on age structure
	• Pre-productive population (0-14 years)
	 Reproductive population (15-44 years)
	 Post Reproductive population (above 15 years)
	 Dynamid shaped variation of nonulation (Increase)
	 Bell shaped variation of population (Stable)
	- DEII SHADEU VAHALIOH OF DUDUIALIOH (STADIE)

REGULATION :2017	ACADEMIC YEAR : 2019-2020
Constrain the spread of AIDS/HIV	
Prevent and control of communicable disease	
Promote vigorously the family norms	
• Making school education up to age 14 free and compulse	ory (3M)
Methods of family planning	
Traditional method	
Modern method	
Temporary method	(3M)
(ii) Answer: Page: 7.14-A. Ravikrishnan. (BTL2)	
Family planning in India	
• It was started in the year 1952	
• In 1970's Indian government forced family planning can	npaign all over the country
• In 1977, national family programme and ministry of heat	th and family welfare redesigned
• In 1978, the government legally raised the minimum ag 21 and for women 15 to 18	e of marriage for men from 18 to
• In 1981, census report showed that there was no drop in family planning programmes has been increased further	population. Since then funding for
The first country that implemented the family welfare pr	ogramme at government level
 Centrally sponsored programme. For this, the states rec. 	eive 100% assistance from central
government	
• The ministry of health and family welfare have started the of family welfare	he operational aims and objectives
• To promote the adoption of small family size acceptance	norm, on the basis of voluntary
• To ensure adequate supply of contraceptives to	all eligible couples within easy
• Extensive use of public health education for fami	ly planning (5M)
3.	
Discuss the influence of environmental parameters and pol	lution on human growth. (13M)
BTL2	
Answer: Page: 7.14 – 7.17-A. Ravikrishnan	
Factors influencing human health-A state of complete phy	sical, mental, social and spiritual
well-being and not merely the absence of disease or infirmity.	"The Ability To Lead A Socially
And Economically Productive Life."	
Nutritional factors	
Biological factors	
Chemical factors	
Psychological factors	(3M)
Holistic concept of health-Recognizes the strength of s	ocial, economic, political and
environmental influences on health	
Determinants of health- Heredity, Health and family welfare	services, Environment, Life-style
Socio-economic conditions. Disease result from complex is environment.	nteraction between man and the
Disease -"Maladjustment of the human organism to the environ	ment". (2M)

REG	ULATION :2017 ACADEMIC YEAR : 2019-2020
	Environmental degradation due to population explosion
	• All that which is external to man is the environment
	• The concept of environment is complex
	• The external environment or the Macro-environment to be responsible for millions of
	preventable diseases originating in it (1M)
	Environmental hazards
	• Physical: Air, water, soil, housing, climate, geography, heat, light, noise, debris,
	radiation, etc. and their health effects
	• Biological: bacteria, viruses, parasites, microbial agents, insects, rodents, animals and
	plants, etc. and their health effects
	• Chemical: Combustion of fossil fuel liberates SO ₂ , NO ₂ , CO ₂ ; Industrial effluents;
	Pesticides; Heavy metals; Chloro fluoro carbons and their health effects
	• Psychosocial: Cultural values, customs, beliefs, habits, attitudes, morals, religion,
	education, lifestyles, health services, social and political organization and their health
	effects (7M)
4.	
	(i) Write short notes on human rights. (5M) BTL4
	(ii) Discuss the salient features of draft declaration of Human Rights and environment.
	(8M) BTL2
	(i) Answer: Page: 7.17-7.19 A. Ravikrishnan.
	Human rights
	• The fundamental rights which are possessed by all human beings irrespective of their
	caste, nationality, sex and language
	• These cannot be taken away by any legislature or an government act
	• Seen as belonging to men and women by their very nature
	• India is a democratic country
	• Aim of India is to ensure happiness to all the citizens with equal rights, opportunities
	and comforts
	• Every citizen must enjoy certain rights and also has certain duties towards the country
	• Include civil and political rights, such as the right to life and liberty, freedom of
	expression, and equality before the law; and social, cultural and economic rights,
	including the right to participate in culture, the right to food, the right to work, and the
	All human hair as any ham free and equal in digrity and rights
	• All numan beings are born nee and equal in dignity and rights
	• They are endowed with reason and conscience and should act towards one another in a spirit of brotherhood (5 M)
	(ii) Answer: Dego: 7.17.7.10 A Devilreichnen DTL2
	(II) Allswel. I age. 7.17-7.19-A. Kaviki Isiliali. D1L2 Footures of droft declaration of human rights
	• Human rights to freedom
	Human rights to menority
	 Human rights to property
	 Human rights to sulture and education
	 Human rights to constitutional remedies
	Human rights to constitutional remedies
1	Human rights to equality

 Human rights against exploitation Human rights to food and environment Human rights to good health (SM) Summarize the objectives, concepts, types of values and elements of value education? How can the same be achieved? (13M) BTL3 Answer: Page: 7.20 – 7.24-A. Ravikrishnan Education-learning through which knowledge about the particular thing can be acquired Types of Education Formal Education-Self related Value Education-Instrument to analyse our behavior and provide proper direction to youth Value-based environment and biodiversity (IM) Objectives of value education To improve the internal growth of human beings. To create attitudes and improvement towards sustainable life style. To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. To create and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why do we need to keep our surrounding clean? Why do we need to keep our surrounding clean? Why do we need to keep our surrounding clean? Why do we need to keep our surrounding clean? Suriversal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, deucation, law, economics, etc Individual Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, eco	REG	GULATION :2017 ACA	DEMIC YEAR : 2019-2020
 Human rights to food and environment Human rights to good health (8M) Summarize the objectives, concepts, types of values and elements of value education? How can the same be achieved? (13M) BTL3 Answer: Page: 7.20 - 7.24-A. Ravikrishnan Education-learning through which knowledge about the particular thing can be acquired Types of Education Formal Education-Self related Value Education-Instrument to analyse our behavior and provide proper direction to youth Value-based environmental education-Provide knowledge on principles of ecology, fundamentals of environment and biodiversity (1M) Objectives of value education To improve the internal growth of human beings. To create attitudes and improvement towards sustainable life style. To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. To create and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why do we need to keep our surrounding clean? Why do we need to keep our surrounding clean? Why do we need to keep our surrounding clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individu		Human rights against exploitation	
• Human rights to good health (8M) 5. Summarize the objectives, concepts, types of values and elements of value education? How can the same be achieved? (13M) BTL3 Answer: Page: 7.20 - 7.24-A. Ravikrishnan Education-learning through which knowledge about the particular thing can be acquired Types of Education • Formal Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education • To improve the internal growth of human beings. • To improve the internal growth of human beings. • To create and develop awareness about the values and their significance and role. • To create and develop awareness about the values and their significance and role. • To understand about our natural environment. • To create and develop awareness about the values and heir significance and role. • To create and develop awareness about the values and heir significance and role. • To understand about our natural environment.		Human rights to food and environment	
5. Summarize the objectives, concepts, types of values and elements of value education? How can the same be achieved? (13M) BTL3 Answer: Page: 7.20 - 7.24-A. Ravikrishnan Education-learning through which knowledge about the particular thing can be acquired Types of Education - Instrument to analyse our behavior and provide proper direction to youth Value Education-Self related Value Education-Instrument to analyse our behavior and provide proper direction to youth Value-based environmental education-Provide knowledge on principles of ecology, fundamentals of environment and biodiversity (1M) Objectives of value education To improve the internal growth of human beings. (1M) To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. (2M) Concepts of value education Why and how can we use less resources and energy? Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why do we need to keep our surrounding clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Universal Values: To reflect true and the false behaviour of human beings in language, aesthetics, educatio		Human rights to good health	(8M)
Summarize the objectives, concepts, types of values and elements of value education? How can the same be achieved? (13M) BTL3 Answer: Page: 7.20 - 7.24-A. Ravikrishnan Education-learning through which knowledge about the particular thing can be acquired Types of Education • Formal Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education our provide knowledge about the particular thing can be acquired • To improve the internal growth of human beings. • To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. • To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education • Why and how can we use less resources and energy? • Why and how can we use less resources and energy? • Why and how can we use less fertilizers and pesticides? • Why i	5.		
Answer: Page: 7.20 – 7.24-A. Ravikrishnan Education-learning through which knowledge about the particular thing can be acquired Types of Education • Formal Education-Self related • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value Education-Instrument to analyse our behavior and provide proper direction to youth • Value-based environmental education-Provide knowledge on principles of ecology, fundamentals of environment and biodiversity (IM) Objectives of value education • To improve the internal growth of human beings. • To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. • To create and develop awareness about the values and their significance and role. • To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education • Why and how can we use less resources and energy? • Why and how can we use less frilizers and pesticides? • Why and how can we use less frilizers and pesticides? • Why and how can we use less frilizers and pesticides? • Why and how can we use less frilizers and pesticides? • Why and how can we use less frilizers and pesticides? • Why and we need to keep our s		Summarize the objectives, concepts, types of values and elements can the same be achieved? (13M) BTL3	of value education? How
 Formal Education-Self related Value Education-Instrument to analyse our behavior and provide proper direction to youth Value-based environmental education-Provide knowledge on principles of ecology, fundamentals of environment and biodiversity (1M) Objectives of value education To improve the internal growth of human beings. To create attitudes and improvement towards sustainable life style. To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. To create and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why and how can we use less resources and energy? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 		Answer: Page: 7.20 – 7.24-A. Ravikrishnan Education-learning through which knowledge about the particular thin Types of Education	g can be acquired
 Value Education–Instrument to analyse our behavior and provide proper direction to youth Value-based environmental education–Provide knowledge on principles of ecology, fundamentals of environment and biodiversity (1M) Objectives of value education To improve the internal growth of human beings. To create attitudes and improvement towards sustainable life style. To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. To arceate and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why and how can we use less resources and energy? Why should we use less fertilizers and pesticides? Why should we use less fortilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, conomics, etc Individual Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, conomics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education—How the objectives can be achieved Telling Modeling		Formal Education-Self related	
 Objectives of value education To improve the internal growth of human beings. To create attitudes and improvement towards sustainable life style. To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. To create and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education—How the objectives can be achieved Telling Modeling Problem solving Studying biographies of great man (5M) Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		 Value Education–Instrument to analyse our behavior and provid Value-based environmental education-Provide knowledge of fundamentals of environment and biodiversity 	the proper direction to youth on principles of ecology, (1M)
 To improve the internal growth of human beings. To create attitudes and improvement towards sustainable life style. To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. To create and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education—How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. 		Objectives of value education	
 To create attitudes and improvement towards sustainable ine style. To increase awareness on national history, our cultural heritage, constitutional rights, national integration, community development and environment. To create and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 		• To improve the internal growth of human beings.	
 To create and develop awareness about the values and their significance and role. To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 		 To create attitudes and improvement towards sustainable life sty To increase awareness on national history, our cultural heri national integration, community development and environment. 	itage, constitutional rights,
 To understand about our natural environment in which land and, air and water are interlinked. (2M) Concepts of value education Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education—How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. 		• To create and develop awareness about the values and their sign	nificance and role.
interlinked. (2M) Concepts of value education (2M) Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reflect true and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2		• To understand about our natural environment in which lan	nd and, air and water are
 Concepts of value education Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. 		interlinked.	(2M)
 Why and how can we use less resources and energy? Why do we need to keep our surrounding clean? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. 		Concepts of value education	
 Why do we need to keep our surrounding clean? Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 		• Why and how can we use less resources and energy?	
 Why should we use less fertilizers and pesticides? Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. 		• Why do we need to keep our surrounding clean?	
 Why it is important for us to save water and keep our water sources clean? Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. 		• Why should we use less fertilizers and pesticides?	
 Separate our garbage into degradable and non-degradable types before disposal (2M) Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 		• Why it is important for us to save water and keep our water sou	rces clean?
 Types of values Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. 		• Separate our garbage into degradable and non-degradable types	before disposal (2M)
 Universal Values or Social Values: Expresses the human nature reflected as joy, compassion, tolerance, service, truth, etc Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		Types of values	
 Cultural Values: To reflect true and the false behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 		• Universal Values or Social Values: Expresses the human	n nature reflected as joy,
 Content of values. For reflect the unit fulls behaviour of human beings in language, aesthetics, education, law, economics, etc Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		• Cultural Values: To reflect true and the false behaviour of l	human beings in language
 Individual Values: Parents and Teachers shape individual values to a greater extent Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		aesthetics education law economics etc	numun beings in language,
 Global Values: To reduce disturbance of Harmony leading to ecological imbalance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		 Individual Values: Parents and Teachers shape individual value 	es to a greater extent
 Spiritual Values: To reduce distance of Hambiny reduing to ceological infoatance Spiritual Values: To become more self-disciplined (3M) Elements of value education-How the objectives can be achieved Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		 Global Values: To reduce disturbance of Harmony leading to e 	cological imbalance
Elements of value education-How the objectives can be achieved • Telling • Telling Modeling • Role playing • Problem solving • Studying biographies of great man (5M) 6. • Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2		 Spiritual Values: To become more self-disciplined 	(3M)
 Telling Modeling Role playing Problem solving Studying biographies of great man (5M) 6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		Elements of value education–How the objectives can be achieved	
Modeling • Role playing • Problem solving • Studying biographies of great man 6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2		• Telling	
 Role playing Problem solving Studying biographies of great man (5M) 6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		Modeling	
 Problem solving Problem solving Studying biographies of great man (5M) Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2 		• Role playing	
• Studying biographies of great man (5M) 6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2		• Problem solving	
6. Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2		• Studying biographies of great man	(5M)
Explain the objectives, benefits and key elements of EIA (13M) (TNV AU Dec. 2009) BTL2	6.		
		Explain the objectives, benefits and key elements of EIA (13M) (T	NV AU Dec. 2009) BTL2
			,

	Answer: Page:7.32 – 7.34-A. Ravikrishnan	
	Objectives of EIA	
	• To identify the main issues and problems of the parties	
	• To identify who is the party	
	• To identify what are the problems of the parties	
	• To identify why are the problems arise	(2 M)
	Benefits of EIA	
	• Reduce the cost and time	
	Performance of the project improved	
	• Waste treatment and cleaning expenses are minimized	
	Usages of resources are decreased	
	Biodiversity is maintained	
	Human health is improved	(2M)
	Key element of EIA	
	• Scoping – To identify the key issues of the concern in the planning pro	cess at early stage,
	aid site selection and identify any possible alternatives.	(2M)
	• Screening - To decide whether an EIA is required or not.	(2M)
	• Identifying and evaluating alternatives-Knowing alternative sites a	nd techniques and
	their impacts.	(1 M)
	• Mitigation measures dealing with uncertainty-Action taken to prever	nt adverse effect of
	a project.	(2M)
	• Environmental statements-Final stage of EIA process which reports	the findings of the
7	EIA.	(2M)
1.	Emploin in details about momen welfare and shild welfare (12M) DTI 2	
	Explain in details about women wenare and clind wenare. (15M) B1L2	
	Answer: Page: 7.28 – 7.32-A. Ravikrishnan	
	Women welfare	
	Welfare to improve the status of the women by providing opportunities in educ	ation. employment
	and economic independence	(1M)
	Need for Women Welfare	
	• As women suffer Gender Discrimination	
	• Due to physical and mental torture given to them	
	• Violation of Human Rights to Women.	
	• Neglecting of Women in Policy making and decision making	(2M)
	Objectives of Women Welfare	(=::1)
	• To provide Education	
	To impart Vocational Training	
	 To generate awareness about the environment 	
	 To improve employment opportunities 	
	 To restore Dignity Status and Equality 	$(2\mathbf{M})$
	Objectives National Commission for Women by Government of India	(2111)
	• To examine constitutional and human rights for women.	
	• To review existing legislations.	
	• To sensitize the enforcement and administrative machinery to wome	n's causes (1M)
		· · · · ·

REG	ULATION :2017 ACADEMIC YEAR : 2019-2020
	Organizations Towards Women Welfare
	• NNWM (National Network for Women and Mining): Fighting for the "Gender Audit" of India's mining companies
	• UNDW (United Nations Decade for Women): Women welfare related issues on international agenda
	 CEDAW (Convention on Elimination of all forms of Discrimination against Women) NGO's as Mabila Mandals
	 NOO'S as Mainia Manuals Ministry for Women and Child Welfere (2M)
	Child Welfare
	• Children occupy 40% of the total population.
	Out of 21 Million Children born every year in India, 20 Million are estimated to be working as Child Labour in hazardous industries (1M)
	Reason for Child Labour
	• Poverty
	• Want of Money (1M)
	Organizations towards Child Welfare
	• UN Conventions on Rights of Child or International Laws-Formulated a set of
	International Standards to promote and protect the wellbeing of Children in our society
	Rights of child
	Right to Survival
	Right to Participation
	•Right to Development
	•Right to Protection
	• Ministry of HRD -Concentrates on child's health, education, nutrition, clean and safe drinking water, sanitation and environment
	• Centre for Science and Environment (CSE)-Scientific report says that "Children
	consume more water, food and air than adults and hence more susceptible to
	environmental contamination
	• Environment degradation and child welfare-Children are more affected due to
	environmental pollution. So it is essential to keep our environment clean to children
	for better and healthy life Poverty (3M)
8.	
	Write a note on Indian constitution. (13M) BTL1
	Answer: Page: 7.19 – 7.20-A. Ravikrishnan
	Indian constitution; Article 14-30.
	• Article 14: Provides Equality before Law
	Article 15: Prohibits Discrimination
	• Article 16: Provides Equal Opportunity
	• Article 19: Provides Freedom of Speech and Expression
	• Article 20: Provides Protection from Conviction
	• Article 22: Lays down the Rights of a person in Custody
	Article 23: Prohibits forms of Forced Labour
	Article 24: Prohibits appointment of Child Labour
	Article 25: Provides Freedom to Practice any Religion
	• Annew 23. 1 Iovides Freedom to Fractice any Kengion

REG	GULATION :2017 ACAI	DEMIC YEAR : 2019-2020
	Article 26: Right to establish Charitable Institutions	
	Article 27: Prohibits Tax for Promoting Religion	
	Article 28: Guarantees Secular Character in Education	
	• Article 29: Right to conserve their Language for Minorities	
	Article 30: Right of Minority to run Educational Institutions	
	Article 32: Right to Constitutional Remedies for enforcement of Supreme Court	of Rights by proceeding in (13M)
	PART-C	
1.		
	(i) Narrate the role of information technology in environmer Dec.2008 Dec. 2009, June 2013, Nov. 2011) (8M) BTL4	nt protection (TNV AU
	(ii) Describe the case studies on role of IT in environment protectio	n. (7M) BTL5
	Answer: Page: 7 34 – 7 37-A Ravikrishnan	
	(i) Role of IT in environment	
	Software for environment education	
	• Remote Sensing-Gather information about an object without co	ntact with it
	• In agriculture	
	• In forestry	
	• In land cover	
	Water resources Remote sensing	(2M)
	Data base	
	• The ministry of environment and forest	
	National Management Information System (NMIS)	
	• Environment Information System (ENVIS)	(1M)
	Geographical Information System (GIS) – Superimposing vari	ous thematic maps
	• Water resources, soil type, forest land	
	• Interpretations of polluted zones, degraded lands	
	• Check unplanned growth and environmental problems	(1NI)
	• Satellite data • Forest cover information	
	 Information on monsoon, ozone layer depletion, smog etc. 	
	 Discovery of new reserves of oils minerals etc. 	(1 M)
	World Wide Web	(1111)
	• Online learning centers	
	• Provides the current and relevant information on principles	s, queries, and applications
	of environmental science.	
	• Stores all digital files related to teaching	(1M)
	General applications	
	Easily Accessible around The World	
	Disaster Management-Suitable warning system, disaster prep	baredness
	• Opened up a large number of scientific and technologica reduce disaster risk.	al resources and skills to
	• Internet	

REG	JLATION :2017 ACADEMIC YEAR : 2019-2020
	• Aerial sensor technologies to detect and classify objects on earth.
	• To capture, store, manipulate, analyse, manage and present geographical data.
	• Store books, pictures and other data that reduces paper waste that helps us in saving
	trees.
	• E-bills has significantly increased, which also contribute in saving trees. (2M)
	(ii) Answer: Page: 7.38 – 7.39-A. Ravikrishnan
	Case studies on Role of IT in environment
	• Study on polluted back waters of Kerala
	• Ocean study monitor (OCM) to study phytoplanktons
	GIS for forest management
	• National Emission Data System (NEDS)
	• Environment Information System (ENVIS) (7M)
2.	
	(i) Explain the role of IT in protection of human health. (10 M) (AU June 2013, Dec. Nov.
	2009)(10M) BTL4
	(ii) Explain the case study on role of IT in human health protection. (5M) BTL5
	(i) Answer: Page: 7.39–7.40-A. Ravikrishnan
	Role of IT in human protection
	• Health service technology- Finance and accounting, pathology, patient administration.
	 Helps the doctor to monitor the health of the people effectively.
	• Online help of expert doctors can be used for the patient.
	• The outbreak of epidemic diseases can be conveyed easily.
	• Effective function of a hospital.
	 Drugs and its replacement can be administered efficiently.
	• The data maintenance- birth and death rate, immunization and sanitation programmes
	 Spreading awareness about diseases and preventive measures to be taken.
	 Reduces panic and provides information about prevention and treatment options.
	 Airports-Screened passengers for high temperature and other symptoms
	 Robots that emulate or simulate living biological organisms.
	 Nano-Robots act as delivery systems within the organism
	• e-Health for healthcare practice.
	• Gaining momentum in academic research as well as in psychology, clinical work, and
	mental health counselling.
	• Statistics about diseases like malaria, fluorosis, AIDS, etc.
	 DNA databases about population, medical records, fingerprints, etc
	 Saves lives in critical care and emergency situations.
	 Bioinformatics for drug discovery and thus contributing to human health.
	• Provide a great support in maintaining individual fitness. (10M)
	(ii) Answer: Page: 7.40–7.41-A. Ravikrishnan
	Case study
	Health services on New south wales (3 M)
	National Institute of Occupational health (2M)
3.	

Explain HIV/AIDS, its sources, diagnosis, mode of transmission of HIV infection and
control and preventive measures.(15M) BTL2
Answer: Page: 7.24 – 7.28-A. Ravikrishnan
HIV-Human Immunodeficiency Virus; AIDS-Acquired Immuno Deficiency Syndrome; a
condition in humans in which the immune system begins to fail, leading to life-threatening
opportunistic infections. (2M)
Sources of HIV infection.
• AIDS has spread from Africa.
• HIV has transferred to human from African monkey or Chimpanzees.
• HIV contaminated polio vaccine, prepared from monkey's kidney.
• Spread through hepatitis-B viral vaccine in Los Angels New York.
• Spread through small pox vaccine programme of Africa. (2 M)
Symptoms or diagnosis of HIV/AIDS
Minor symptoms
• Persistent cough for more than one month
• General skin disease
• Viral infection
• Fungus infection in mouth and throat
• Frequent fever, headache, fatigue
Major symptoms
• Fever for more than one month
• Diarrnea for more than one month
• Cough and TB for more than six months
• Fall of hair from the head $100($ of h a hear is in the set of heat maximal (100)
• 10% of body weight get reduced within a short period. (414)
• Sevual transmission presence of STD increases likelihood of transmission
 Sexual transmission, presence of STD increases incentiood of transmission. Exposure to infected blood or blood products.
 Exposure to infected blood of blood products. Use of contaminated clotting factors by hemophiliacs
 Sharing contaminated needles
 Transplantation of infected tissues or organs
 Certain body fluids from an HIV-infected person-Blood Semen Rectal fluids yaginal
fluids. Breast milk.
• Having unprotected sex with someone who has HIV.
• Receiving blood transfusions, blood products, or organ/tissue transplants that are
contaminated with HIV.
• Contact between broken skin, wounds, or mucous membranes and HIV-infected blood or
blood-contaminated body fluids.
• Women are more vulnerable to HIV. Transmission of HIV to their new born babies
happen easily.
• Women around 18-20 years are at risk, since their cervical tissue is more vulnerable to
invading HIV. (5M)
Control and preventive measure
Education

- Prevention of blood borne HIV transmission
- Primary health care
- Counselling services
- Drug treatment

(2M)