

QUESTION BANK

Regulation	: 2017	
Year/Semester	: II	
Semester	: 03	
Batch	: 2018-2022)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision of the Institution:

Jeppiaar Institute of Technology aspires to provide technical education in futuristic technologies with the perspective of innovative, industrial and social application for the betterment of humanity.

Mission of the Institution:

- To produce competent and disciplined high-quality professionals with the practical skills necessary to excel as innovative professionals and entrepreneurs for the benefit of the society.
- To improve the quality of education through excellence in teaching and learning, research, leadership and by promoting the principles of scientific analysis, and creative thinking.
- To provide excellent infrastructure, serene and stimulating environment that is most conducive to learning.
- To strive for productive partnership between the Industry and the Institute for research and development in the emerging fields and creating opportunities for employability.
- To serve the global community by instilling ethics, values and life skills among the students needed to enrich their lives.

Department Vision

To enhance and impart futuristic and innovative technological education for the excellence of Electronics and Communication Engineering with new ideas and innovation to meet industrial expectation and social needs with ethical and global awareness reinforced by an efficiency through research platform for the advancement of humanity.

Department Mission

M1: To produce competent and high quality professional Engineers in the field of Electronics and Communication Engineering for the benefit of the society globally.

M2: To provide a conducive infrastructure and environment for faculty and students with enhanced laboratories, to create high quality professionals

M3: To provide Prerequisite Skills in multidisciplinary areas for the needs of Industries, higher education and research establishments and entrepreneurship

M4: To handle Socio Economic Challenges of Society by Imparting Human Values and Ethical Responsibilities.

PEO's of the Department:

PEO 1: Graduate Engineers will have knowledge and skills required for employment and an advantage platform for lifelong learning process.

PEO 2: Graduate Engineers will be provided with futuristic education along with the perspective research and application based on global requirements.

PEO 3:Graduate Engineers will have effective communication skills and work in multidisciplinary team.

PEO 4: Graduate Engineers will develop entrepreneurship skills and practice the profession with integrity, leadership, ethics and social responsibility.

Program Specific Outcomes (PSO's):

PSO 1 : Ability to develop and utilize novel, compact and power efficient coherent theoretical and practical methodologies in the field of analog and digital electronics.

PSO 2: Ability to implement analog, digital and hybrid communication Protocol to aspect the challenges in the field of Telecommunication and Networking.

BLOOM'S TAXONOMY

Definition:

Bloom's taxonomy is a classification system used to define and distinguish different levels of human cognition like thinking, learning, and understanding.

Objectives:

To classify educational learning objectives into levels of complexity and specificity. The classification covers the learning objectives in cognitive, affective and sensory domains.

> To structure curriculum learning objectives, assessments and activities.

Levels in Bloom's Taxonomy:

- **BTL 1 Remember** The learner recalls, restate and remember the learned information.
- BTL 2 Understand The learner embraces the meaning of the information by interpreting and translating what has been learned.
- BTL 3 Apply The learner makes use of the information in a context similar to the one in which it was learned.
- BTL 4 Analyze The learner breaks the learned information into its parts to understand the information better.
- BTL 5 Evaluate The learner makes decisions based on in-depth reflection, criticism and assessment.
- BTL 6 Create The learner creates new ideas and information using what has been previously learned.

TABLE OF CONTENT

MA8352 -Linear Algebra and Partial Differential EquationsUnit No.TopicPage No.		
0111110.	Syllabus	1.1
Ι	Vector Spaces	1.3
II	Linear Transformation and Diagonalization	1.11
III	Inner Product Spaces	1.18
IV	Partial Differential Equations	1.27
V	Fourier Series Solutions of Partial Differential Equations	1.34
	EC8393-Fundamentals of Data Structures In C	
	Syllabus	2.1
Ι	C Programming Basics	2.2
II	Functions, Pointers, Structures and Unions	2.9
III	Linear Data Structures	2.27
IV	Non-Linear Data Structures	2.48
V	Searching and Sorting Algorithms	2.76
	EC8351- Electronic Circuits- I	
	Syllabus	3.1
Ι	Biasing of Discrete BJT, JFET and MOSFET	3.3
II	BJT Amplifiers	3.14
III	Single Stage FET, MOSFET amplifiers	3.24
IV	Frequency Response of Amplifiers	3.35
V	Power Supplies and Electronic Device testing	3.49
	EC8352 - Signals and Systems	
	Syllabus	4.1
Ι	Classification of Signals and Systems	4.2
II	Analysis of Continuous Time Signals	4.29
III	Linear Time Invariant Continuous Time Systems	4.52
IV	Analysis of Discrete Time Signals	4.76
V	Linear Time Invariant-Discrete Time Systems	4.103
	EC8392 - Digital Electronics	
	Syllabus	5.1
Ι	Digital Fundamentals	5.3
II	Combinational Circuit Design	5.11
III	Synchronous Sequential Circuits	5.19
IV	Asynchronous Sequential Circuits	5.27
V	Memory Devices and Digital Integrated Circuits	5.31

EC8391 - Control Systems Engineering		
	Syllabus	6.1
Ι	Systems components and their representation	6.2
II	Time Response Analysis	6.18
III	Frequency Response and System analysis	6.30
IV	Concepts of Stability Analysis	6.39
V	Control System Analysis using State Variable methods	6.51

MA8352

12

12

12

12

LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS

L T P C 4 00 4

OBJECTIVES:

- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To understand the concepts of vector space, linear transformations and diagonalization.
- To apply the concept of inner product spaces in orthogonalization.
- To understand the procedure to solve partial differential equations.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I

VECTOR SPACES

Vector spaces – Subspaces – Linear combinations and linear system of equations – Linear independence and linear dependence – Bases and dimensions.

UNIT II LINEAR TRANSFORMATION AND DIAGONALIZATION

Linear transformation - Null spaces and ranges - Dimension theorem - Matrix representation of a linear transformations - Eigenvalues and eigenvectors - Diagonalizability.

UNIT III

INNER PRODUCT SPACES

Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations - Least square approximation.

UNIT IV PARTIAL DIFFERENTIAL EQUATIONS

Formation – Solutions of first order equations – Standard types and equations reducible to standard types – Singular solutions – Lagrange's linear equation – Integral surface passing through a given curve – Classification of partial differential equations - Solution of linear equations of higher order with constant coefficients – Linear non-homogeneous partial differential equations.

UNIT V FOURIER SERIES SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 12

Dirichlet's conditions – General Fourier series – Half range sine and cosine series - Method of separation of variables – Solutions of one dimensional wave equation and one-dimensional heat equation – Steady state solution of two-dimensional heat equation – Fourier series solutions in Cartesian coordinates.

TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students should be able to:

- Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
- Demonstrate accurate and efficient use of advanced algebraic techniques.
- Demonstrate their mastery by solving non trivial problems related to the concepts and by proving simple theorems about the statements proven by the text.
- Able to solve various types of partial differential equations. Able to solve engineering problems using Fourier series.

TEXTBOOKS:

1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.

2. Friedberg, A.H., Insel, A.J. and Spence, L., "Linear Algebra", Prentice Hall of India, New Delhi, 2004. **REFERENCES:**

- 1. James, G. "Advanced Modern Engineering Mathematics", Pearson Education, 2007.
- 2. Kolman, B. Hill, D.R., "Introductory Linear Algebra", Pearson Education, New Delhi, 2009.

SUBJECT CODE: MA8352YEAR/SEMESTER: II/03SUBJECT NAME: LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONSSUBJECT HANDLER: MR.M. RANJITHKUMAR

UNIT I – VECTOR SPACES		
_	paces – Subspaces – Linear combinations and linear system of equations – Linear independence and	
linear de	pendence – Bases and dimensions.	
	PART * A	
Q.NO.	QUESTIONS	
	Define vector space.BTL1A vector space V over a field F consists of a set on which two operations(additions and scalar)	
1.	multiplication) are defined	
-	i. $x + y \in V$ for each pair of elements $x, y \in V$	
ii. $a \cdot x \in V$ for each element $a \in F$ and $x \in V$.		
	Prove cancelation law for vector addition. BTL2	
	Let $x, y, z \in V$, where V is a vector space over a field F.	
2	Assume $x + z = y + z$ to prove $x = y$.	
4	There exists a vector v in V such that $z+v=0$.	
	$\Rightarrow x = x + 0 = x + (z + v) = (x + z) + v$	
	= (y+z) + v = y + (z+v) = y + 0 = y.	
	Prove that the identity element of the vector space is unique. BTL2	
3	Let $x \in V$ and $e, e' \in V$	
3	x+e = x and x+e' = x $\Rightarrow x+e = x+e'$	
	By left cancellation law, $\Rightarrow e = e'$	
	Prove that the inverse element of the vector space is unique. BTL3	
	Let $x \in V$ and $y, y'V$	
4	x + y = e and $x + y' = e$	
	$\Rightarrow x + y = x + y'$	
	By left cancellation law, \Rightarrow $y = y'$.	
	Write the distributive law for vector space. BTL1	
5	i. $a(x+y) = ax+ay$	
	$\mathbf{ii.} (a+b)x = ax + bx$	
	Let $S = \{0, 1\}$ and $F = R$. Show that $f = g$ where $f(t) = 2t + 1, g(t) = 1 + 4t - 2t^2$. BTL1	
	i. $f(0) = g(0)$	
6	ii. $f(1) = g(1)$.	
U		
	Here $f(0) = 1$ and $g(0) = 1$	
	f(1) = 3 and $g(1) = 3$	
-	Define subspace of a vector space. BTL1	
7	A subset W of a vector space V over a filed F is called a subspace of V , if W is a vector space over F with operations of addition and scalar multiplication defined on V .	
	Define direct sum. BTL1	
8	A vector space V is called the direct sum of the subspaces W_1 and W_2 such that $W_1 \cap W_2 = \{0\}$ and	
v	$W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.	
	$w_1 + w_2 = r$. We denote that r is the direct sum of w_1 and w_2 by writing $r = w_1 \oplus w_2$.	

9	How many matrices are there in the vector space $M_{m \times n}(z_2)$? BTL3		
9	There are 2^{mn} vectors in the given vector space.		
	Prove that $(A^t)^t = A$ for each $A \in M_{m \times n}(F)$. BTL2		
10	We have $(A^t)_{ij} = A_{ji}$		
	Thus $\left\lfloor \left(A^{t}\right)^{t} \right\rfloor_{ij} = \left(A^{t}\right)_{ji} = A_{ij}$		
	So that $(A^t)^t = A$ as required.		
	Prove that $tr(aA+bB) = a tr(A)+b tr(B)$. BTL2		
	$tr(aA+bB) = \sum_{i=1}^{n} (aA+bB)_{ii}$		
11	$=\sum_{i=1}^{n}aA_{ii}+bB_{ii}$		
	$=a\sum_{i=1}^{n}A_{ii}+b\sum_{i=1}^{n}B_{ii}$		
	= a tr(A) + b tr(B).		
	Define Linear combination.BTL1Let V be a vector space and S be a non-empty subset of V. A vector $v \in V$ is called a linear		
12	combination of vectors of S if there exists a finite number of vectors v_1, v_2, \dots, v_n in S and scalars		
	a_1, a_2, \dots, a_n in F such that $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$		
	Define linear span with example.BTL1Let S be a non-empty subset of a vector space V. The span of S denoted as L(S), is the set		
13	consisting of all linear combinations of the vectors in S.		
	Example: $L(S) = \{ \alpha(1, 2) + \beta(2, 1) / \alpha, \beta \in F \}.$		
	Let V be a vector space over F and $S_1 \subseteq S_2 \subseteq V$ then prove $L(S_1) \subseteq L(S_2)$. BTL3		
14	Let $v_i \in S_1$ then $\alpha_i v_i \in L(S_1)$.		
14	$S_1 \subseteq S_2 \implies v_i \in S_2 \text{ and } \alpha_i v_i \in L(S_2)$		
	This implies $L(S_1) \subseteq L(S_2)$.		
	Define linear dependence and linear independence. BTL1 A subset S of a vector space V is called linearly dependent if there exist a finite number of distinct		
15	vectors u_1, u_2, \dots, u_n in S and scalars a_1, a_2, \dots, a_n not all zero, such that		
	$a_1u_1 + a_2u_2 + \dots + a_nu_n = 0.$		
	If the subset S is not linear dependent is called linearly independent.		
	Verify whether the given set in $M_{2X3}(R)$ is linearly dependent or not. Where		
16	$S = \left\{ \begin{bmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{bmatrix}, \begin{bmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{bmatrix}, \begin{bmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{bmatrix} \right\} $ BTL3		

	$\begin{vmatrix} a_1 \begin{bmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{bmatrix} + a_2 \begin{bmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{bmatrix} + a_3 \begin{bmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		
	$a_1 = 5, a_2 = 3, a_3 = -2$, therefore S is linearly dependent.		
	Define Minimal generating set. BTL1		
	Let V be a vector space over F and S contained in V then S is called minimal generating set for V		
17	if		
	(i). $L(S) = V$		
	(ii). No proper subset of S will generate.		
	Define basis of a vector space. BTL1		
	A basis B for a vector space V is a linearly independent subset of V that generates V. If B is a		
18	basis for V,		
	(i). If B consists of linearly independent vectors.		
	(ii). $L(B) = V$.		
	Define finite dimensional vector space. BTL1		
19	A vector space is called finite dimensional if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted by		
	dim(V).		
	Find the dimensions of W, where $W = \{(x_1, x_2, x_3) / x_1 + x_2 + x_3 = 0\}$. BTL4		
20	Here $(x_1, x_2, -x_1 - x_2) = x_1(1, 0, -1) + x_2(0, 1, -1)$		
20			
	Therefore, $B = \{(1, 0, -1), (0, 1, -1)\}$ is a basis of W.		
	PART * B		
	In any vector space V, prove the following statements are true: i. $0 \cdot x = 0$ for each $x \in V$.		
	ii. $(-a)x = -ax = a(-x)$ for each $a \in F$ and each $x \in V$.		
	iii. $a(0) = 0$ for each $a \in F$		
1	iv. $ax = 0$ either $a = 0$ or $x = 0$. (8 M) BTL1		
	Answer : Page : 1.7 – Dr.M. Chandrasekar		
	• Commutative law. (2 M)		
	• Identity law. (2 M)		
	• Distributive law (2 M)		
	• Inverse law (2 M)		
	Verify that the set V of all ordered triples of real numbers of the form $(x, y, 0)$ and defined		
	the operations $+$ and \sqcup by		
i. $(x, y, 0) + (x', y', 0) = (x + x', y + y', 0)$			
2	ii. $c \cdot (x, y, 0) = (cx, cy, 0)$ is a vector space or not. (8 M) BTL3		
-			
	Answer : Page : 1.11– Dr.M. Chandrasekar		
	a. Closure axiom(2 M)b. Associative axiom(2 M)		
	c. Existence of identity element (2 M)		
	C. EXISTENCE OF IDENTITY CIEFINEIIL (2 IVI)		

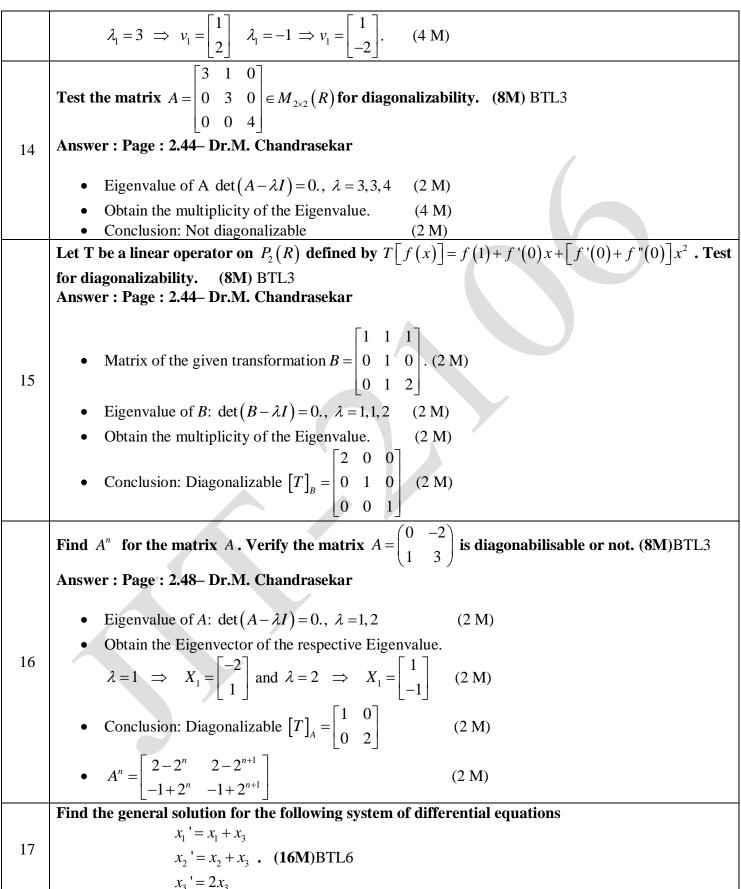
	d. Existence of inverse element (2 M)
3	Let V be a vector space and W a subset of V. then prove that W is subspace of V if and only if the following 3 conditions hold.a. $0 \in W$ b. $x + y \in W$ whenever $x, y \in W$ c. $cx \in W$ whenever $x \in W, c \in F$. (8 M) BTL4Answer : Page : 1.14- Dr.M. Chandrasekari. Definition of vector spaceii. Cancellation lawiii. To prove (a), (b) and (c) uses the properties of vector space. (2 M)iv. Converse part: use the axioms (a), (b) and (c).
4	Prove that a subset W of a vector space V is a subspace of V if and only if $ax + by \in W$ for all $x, y \in W$, $a, b \in F$. (8 M) BTL5Answer : Page : 1.15 - Dr.M. Chandrasekari. Proof of necessary part: $ax + by \in W$ (4 M)ii. Proof of sufficient part: (4 M)
5	Let $V = R^3$; $W = \{(a_1, a_2, a_3)/2a_1 - 7a_2 + a_3 = 0\}$ verify whether it is a subspace or not. (8 M) BTL5 Answer : Page : 1.18 • Definition of subspace (2 M) • $\alpha w_1 + \beta w_2 = (\alpha a_1 + \beta b_1, \alpha a_2 + \beta b_2, \beta a_3 + \beta b_3) = 0$ • W - subspace of V. (6 M)
6	Let $V = R^3$; $W = \{(a_1, a_2, a_3) / a_1 = a_3 + 2\}$ verify whether it is a subspace or not. (8 M) BTL5 Answer : Page : 1.19 – Dr.M. Chandrasekar • Definition of subspace (2 M) • $\alpha w_1 + \beta w_2 = (\alpha a_1 + \beta b_1, \alpha a_2 + \beta b_2, \beta a_3 + \beta b_3)$ $= 2\alpha + 2\beta - 2$ $\alpha w_1 + \beta w_2 \notin W$ • W - not a subspace. (6 M)
7	Prove that the intersection of subspace of a vector space is a subspace of V.(8 M) BTL4Answer : Page : 1.19 – Dr.M. Chandrasekar• Definition of subspace(2 M)• Let $W = \{ \bigcap W_i / W_i - subspace of V \}$ • $x, y \in W \Rightarrow x + y \in W$ $x \in W, \alpha \in F \Rightarrow \alpha x \in W$ • Subspace.(6 M)
8	Prove that the union of two subspaces of V need not be a subspace of V. (8 M) BTL3 Answer : Page : 1.20 – Dr.M. Chandrasekar • Definition of subspace (2 M)

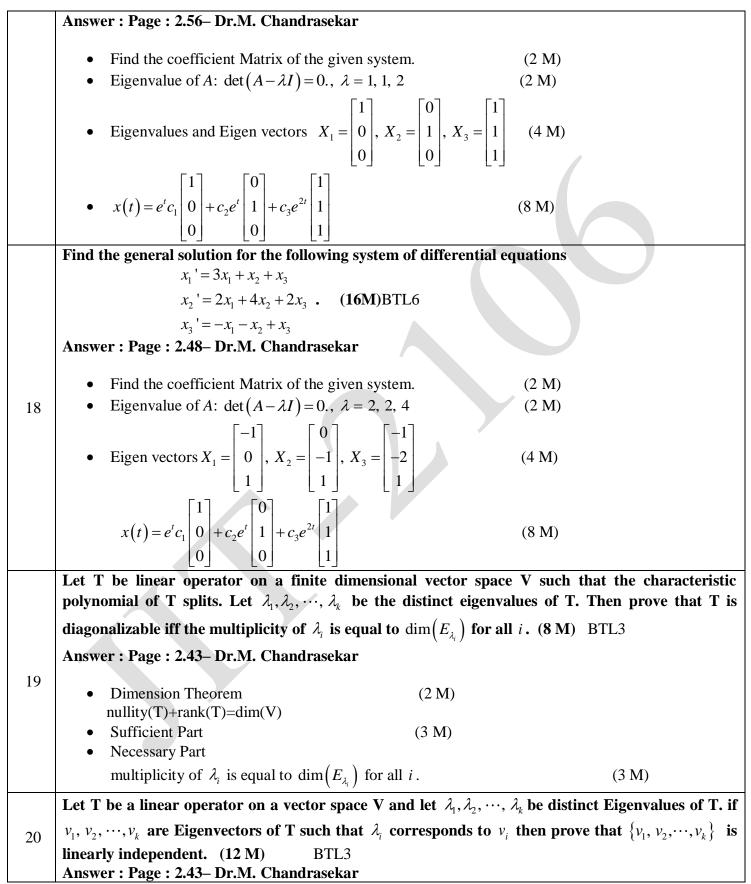
	$W = \left(\left(0, x, y \right) / x, y \in \mathbf{P} \right)$		
	• $W_1 = \{(0, x, y) / x, y \in R\}$ $W_2 = \{(x, 0, y) / x, y \in R\}$ subspaces of V		
	$W_2 = \{(x, 0, y) / x, y \in R\}$		
	• $W_1 \cup W_2 = \{(x, y, z) / either \ x = 0 \ or \ y = 0\}$ - not a subspace of V (6 M)		
	Let W_1 and W_2 be subspaces of V. Prove that $W_1 \cup W_2$ is a subspaces of V if and only if $W_1 \subseteq W_2$		
	(or) $W_2 \subseteq W_1$. (8 M) BTL4		
	Answer : Page : 1.21 – Dr.M. Chandrasekar		
9			
	• Definition of vector space (2 M)		
	• Definition of subspace (2 M)		
	• Proof of the theorem (4 M)		
	Show that F^n is the direct sum of the subspaces $W_1 = \{(a_1, a_2, \dots, a_n) \in F^n, a_n = 0\}$ and		
	$W_2 = \{(a_1, a_2, \dots, a_n) \in F^n, a_1 = a_2 = \dots = a_{n-1} = 0\}$. (8 M) BTL5		
	Answer : Page : 1.22 – Dr.M. Chandrasekar		
10	• Definition of subspace (2 M)		
10	• $\alpha p + \beta q = \alpha (a_1, a_2, \dots, 0) + b (b_1, b_2, \dots, 0)$		
	$= (\alpha a_1 + \beta b_1, \alpha a_2 + \beta b_2, \cdots, 0) \in W_1$		
	W_1 - subspace of $V = F^n$		
	• Definition of direct sum (2 M)		
	• Proof of the problem (4 M)		
	Let $V = R^2$, $S = \{(1, 2), (2, 1)\}, v = (2, 2) \in V$ and $a, b \in F$. Check whether V is a linear		
	combination. (8 M) BTL3		
	Answer : Page : 1.26 – Dr.M. Chandrasekar		
11	• Definition of linear combination (2 M)		
11	• $v = \alpha v_1 + \beta v_2 \implies (2, 2) = (\alpha + 2\beta, 2\alpha + \beta)$		
	• $\alpha = \frac{2}{3}, \beta = \frac{2}{3}$ (2 M)		
	$\alpha = \frac{1}{3}, \beta = \frac{1}{3}$ (2 W)		
	• v - a linear combination of $v_1 \& v_2$ (4 M)		
	Write the vector $v = (1, -2, 5)$ as a linear combination of the vectors $e_1 = (1, 1, 1)$; $e_2 = (1, 2, 3)$;		
	$e_3 = (2, -1, 1)$. (8 M) BTL5		
	Answer : Page : 1.29 – Dr.M. Chandrasekar		
12	(i). Definition of linear combination (2 M)		
	(ii). $v = -6e_1 + 3e_2 + 2e_3$		
	(iii). Solved the problems based on (i). (6 M)		
	Note: use the Cramer's rule for solving the equations.		

	Write the matrix $E = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}$ as a linear combination of the matrices $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$; $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$
	$\begin{vmatrix} \mathbf{c} &= \begin{bmatrix} 0 & 2\\ 0 & -1 \end{bmatrix}. (8 \mathbf{M}) \text{ BTL5}$
	Answer : Page : 1.30 – Dr.M. Chandrasekar
13	• Definition of linear combination (2 M)
	• $E = \alpha A + \beta B + \gamma C$
	$ \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} \alpha & \alpha + 2\gamma \\ \alpha + \beta & \beta - \gamma \end{pmatrix} $
	$\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} \alpha + \beta & \beta - \gamma \end{pmatrix}$
	$\alpha = 3, \beta = -2, \gamma = -1 \tag{2 M}$
	• $E = 3A - 2B - C$ (4 M)
	State and prove direct sum theorem. (8 M) BTL5
	Answer : Page : 1.30 – Dr.M. Chandrasekar
14	(i). Definition of direct sum (2 M)
14	(i). Definition of direct sum (2 M) (ii). Statement (2 M)
	(ii). Statement (2 M) (iii). Proof of the theorem (4 M)
	Verify whether the given set in $M_{2X3}(R)$ is linearly dependent or not. Where
	$\begin{bmatrix} 1 & -3 & 2 \end{bmatrix} \begin{bmatrix} -3 & 7 & 4 \end{bmatrix} \begin{bmatrix} -2 & 3 & 11 \end{bmatrix}$
1.5	$S = \left\{ \begin{bmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{bmatrix}, \begin{bmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{bmatrix}, \begin{bmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{bmatrix} \right\} \cdot (8 \mathbf{M}) \mathbf{BTL2}$
15	
	Answer : Page : 1.45 – Dr.M. Chandrasekar
	(i). Definition of linear independent and dependent (2 M)
	(ii). Solution of problem based on (i) (6 M)
	Prove that the set $S = \{(1,0,0,-1), (0,1,0,-1), (0,0,1,-1), (0,0,0,1)\}$ is linearly independent. (8)
	M) BTL3
16	Answer : Page : 1.46 – Dr.M. Chandrasekar
	(i). Definition of linear independent and dependent (2 M)
	(ii). Solution of problem based on (i) (6 M)
	Let $S = \{v_1, v_2, v_3\}$ where $v_1 = (2, 1, 0)$, $v_2 = (-3, -3, 1)$ and $v_3 = (-2, 1, -1)$. Show that S is a basis
	of R^3 . (8 M) (
17	Answer : Page : 1.52 – Dr.M. Chandrasekar
	(i). Definition of linearly independent (2 M)
	(ii). Definition of basis (2 M)
	(iii). $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$ & Conclusion (4 M)
	Let V be a vector space having a finite basis, then prove that every basis for V contains the
	same number of vectors. (8 M) BTL4
10	Answer : Page : 1.58 – Dr.M. Chandrasekar
18	(i). Definition of linearly independent (2 M)
	(ii). Definition of finite basis (2 M)
	(iii). Proof of the theorem (4 M)
	Let W be a subspace of a finite dimensional vector space V. Then prove that W is finite
19	dimensional and $\dim(W) \le \dim(V)$. Moreover if $\dim(W) = \dim(V)$ then V=W. (8 M) BTL5
17	
1	Answer : Page : 1.59 – Dr.M. Chandrasekar

	(i). Definition of linear independent (2 M)	
	(ii). Definition of finite basis (2 M)	
	(iii). Proof of the theorem (4 M)	
	 Let V be a vector space with dimension n. Then prove the following: (a). Any finite generating set for V contains atleast <i>n</i> vectors, and a generating set for V that contains exactly n vectors is a basis for V. (b). any linearly independent subset of V that contains exactly n vectors is a basis for V. (8 M) 	
20	BTL4 Answer : Page : 1.63 – Dr.M. Chandrasekar (i). Definition of linear independent (2 M)	
	(ii). Definition of finite basis (2 M)	
	(iii). Proof of the theorem (a) (2 M)	
	(iv). Proof of the theorem (b) (2 M)	
	Let V be a finite dimensional vector space over a field F and A & B are subspaces V then	
	prove that $\dim(A+B) = \dim(A) + \dim(B) - \dim(A \cap B)$. (16 M) BTL4	
	Answer : Page :1.44 – Mr. Friedberg	
	(i). Definition of linear independent (2 M)	
21	(ii). $\dim(A+B) \le \dim(V)$ (2 M)	
	(iii). Definition of span. (2 M)	
	$A + B = span(\alpha) \tag{4 M}$	
	(iv). Definition of finite basis (2 M)	
	(v). Prove of $\dim(A+B) = \dim(A) + \dim(B) - \dim(A \cap B)$ (4 M)	
	$(1). 110 (0 \text{ or } \dim(11 + D)) = \dim(11) + \dim(D) \dim(11 + D) (110)$	
	Is $\{(1,4,-6), (1,5,8), (2,1,1), (0,1,0)\}$ a linearly independent subset of R^3 ?	
	Justify your answer. (8M) BTL1	
22	Answer : Page :1.66 – Dr.M. Chandrasekar	
	(i). Definition of linear combination (2 M)	
	(i). Solved the problems based on (i). (6 M)	
	Show that the matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ generate $M_{2X2}(F)$. (8 M)	
	BTL2	
23	Answer : Page : 1.65 – Dr.M. Chandrasekar	
	(i). Definition of linear combination (2 M)	
	(ii). Solution of the problems based on (i). (4 M)	
	(iii). Conclusion: Linearly independent (2 M)	
	Determine the following set is linearly dependent or linearly independent	
	$\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$ in $P_3(R)$. (8 M) (Nov/Dec 2018) BTL3	
• •		
24	Answer : Page :1.65 – Dr.M. Chandrasekar (i) Definition of linear dependent & independent (2 M)	
	 (i). Definition of linear dependent & independent (2 M) (ii). Solution of the problem (4 M) 	
	(iii).Conclusion: Linearly independent (2 M)	
Find the dimension of W where W is given by $W = \{(a,b,c): 2a+3b=c; 7c+9b=c\}$		
25		
43	BTL4	
	Answer : Page : 1.62 – Dr.M. Chandrasekar	

(i). Definition of linear dependent & independent	(2 M)
(ii). $a = k; c = 2k + 3b; b = -(13/30)k$	(4 M)
(iii). Dim(W)=1	(2 M)


	UNIT II – LINEAR TRANSFORMATIONS AND DIAGONALIZATION		
	Linear transformation - Null spaces and ranges - Dimension theorem - Matrix representation of a linear transformations - Eigenvalues and eigenvectors - Diagonalizability.		
	PART * A		
Q.No.	Questions		
1.	Define linear transformation.BTL1Let V and W be vector spaces over F. A function $T: V \to W$ a linear transformation from V to W if forall $x, y \in V$ and $c \in F$, we have(i) $T(x+y) = T(x) + T(y)$ (ii) $T(ax) = aT(x)$		
	Show that T is linear wen $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined $T(x, y) = (2x + y, x)$. BTL4		
2	Let $x = (a_1, b_1)$ & $y = (a_2, b_2)$ To prove: $T(cx + y) = cT(x) + T(y)$		
	LHS= $T(cx + y) = T(ca_1 + a_2, cb_1 + b_2) = (2(ca_1 + a_2) + cb_1 + b_2, ca_1 + a_2)$ RHS= $cT(x) + T(y) = cT(a_1, b_1) + T(a_2, b_2) = c((2a_1 + b_1), a_1) + (2a_2 + b_2, a_2)$ LHS=RHS, this implies T is linear.		
3	Define Null space. Let V and W be the vector spaces and $T:V \rightarrow W$ be linear, the null space or Kernel of T defined by $N(t) = \{x \in V / T(x) = 0\}$		
4	Define range of the transformation. Let V and W be the vector spaces and $T:V \rightarrow W$ be linear, the range of T defined by $R(T) = \{T(x): x \in V\}$.		
5	Define nullity of T. Let V and W be the vector spaces and $T:V \to W$ be linear, the null space or Kernel of T defined by $N(t) = \{x \in V / T(x) = 0\}$. And the nullity of T to be the dimensional of $N(T)$.		
6	Define rank of T. Let V and W be the vector spaces and $T:V \to W$ be linear, the range of T defined by $R(T) = \{T(x): x \in V\}$. And the rank of T to be the dimensional of $R(T)$.		
7	Define matrix representation of linear transformation. BTL1 Let $T: V \to W$ be any linear transformation and $B_1 = \{u_1, u_2, \dots, u_n\}$, $B_2 = \{w_1, w_2, \dots, w_n\}$ be the basis for V and W respectively. $T(u_i) = a_{1i}w_1 + a_{2i}w_2 + \dots + a_{ni}w_n \in W$ $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}$		
	$\begin{bmatrix} T \end{bmatrix}_{B_1}^{B_2} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} .$		


8	Find the algebraic multiplicity of all Eigen values from $\begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{bmatrix}$. BTL2 Let $A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{bmatrix}$ and solve $ A - \lambda I = 0$. $\Rightarrow (3 - \lambda)^2 (4 - \lambda) = 0$ Therefore the Eigen values are $\lambda = 3, 3, 4$. The algebraic multiplicity of 3 is 2 The algebraic multiplicity of 4 is 1.	
9	Test the matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in M_{2\times 2}(R)$ for diagonalizable. BTL3 $ A - tI_n = \begin{vmatrix} 1 - t & 1 \\ 1 & 1 - t \end{vmatrix} = t_2 - 2t = t(t - 2)$ t = 0, 2, the eigenvalues are distinct. They are diagonalizable.	
10	Define Eigen space.BTL1Let T be a linear operator on a vector space V and let λ be an eigenvalue of T.Define $E_{\lambda} = \{x \in V : T(x) = \lambda x\} = N(T - \lambda I_V)$.The set E_{λ} is called the Eigen space of T, corresponding to the Eigenvalue λ .	
11	Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(1, 0, 3) = (1, 1)$ and $T(-2, 0, -6) = (2, 1)$? BTL4 Ans: $T(-2, 0, -6) = T(-2(1, 0, 3)) = -2T(1, 0, 3)$ = -2(1, 1) = (-2, -2) $(2,1) \neq (-2, -2)$ therefore the given transformation is not linear.	
12	Define diagonalizable.BTL1A linear operator T on a finite dimensional vector space V is called diagonalizable if there is an orderedbasis B for V such that $[T]_{R}$ is a diagonal matrix.	
13	Define Eigenvalues and Eigenvectors of the transformation. BTL1 Let T be a linear operator on a vector space V. A non-zero vector $v \in V$ is called an Eigenvector of T if there exists a scalar λ such that $T(v) = \lambda v$. The scalar λ is called the Eigenvalue corresponding to the Eigenvector v .	
14	Define dimension theorem. Let V and W be the vector spaces and $T:V \rightarrow W$ be linear. If V is finite-dimensional then nullity(T)+rank(T)=dim(V).	
15	Define algebraic multiplicity. Let λ be an Eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The algebraic multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of $f(t)$.	

	Part-B
	Define $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(x, y) = (x+2y, 2x-y, x+5y)$ show that T is linear. (8 M) BTL2
	Answer : Page : 2.3 – Dr.M. Chandrasekar
1	• Definition of linear transformation (2 M) Let V and W be vector spaces over F. A function $T: V \to W$ a linear transformation from V to W if for all x, $y \in V$ and $c \in F$, we have $T(x+y)=T(x)+T(y)$ and $T(ax)=aT(x)$
	• $T(cx+y) = cT(x) + T(y)$ (2 M)
	• Proof of the linear (4 M)
	Let V and W be the vector spaces and $T: V \to W$ be linear. then prove that $N(T)$ and $R(T)$ are
2	subspaces of V and W respectively. (8 M)BTL5Answer : Page : 2.5- Dr.M. Chandrasekar• Definition of Null space and Range.(1 M)• $T(cx+y)=cT(x)+T(y)$ (1 M)
	• To prove N(T) is subspace (3 M)
	• To prove R(T) is subspace (3 M)
3	State and prove dimension theorem. (16 M) (Nov/Dec 2018) BTL4Answer : Page : 2.8– Dr.M. Chandrasekar• Statement(2 M)Let V and W be the vector spaces and $T:V \rightarrow W$ be linear. If V is finite-dimensional then nullity(T)+rank(T)=dim(V).• Definition of Null space and Range.(2 M)• $T(cx+y)=cT(x)+T(y)$ (2 M)
	Let V and W be the vector spaces and $T: V \to W$ be linear. Then T is one-t-one iff $N(T) = \{0\}$. (8 M) BTL4
	Answer : Page : 2.8– Dr.M. Chandrasekar
4	• Definition of linear transformation (2 M) T(cx+y) = cT(x) + T(y)
	• Sufficient part (3 M)
	• Necessary part (3 M)
	Let V and W be vector spaces of equal dimension and let $T: V \rightarrow W$ be linear then the following are
	equivalent. (i) T is 1-1 (ii) T is onto (iii) Rank(T)=dim(V) (8 M) BTL3
5	Answer : Page : 2.8– Dr.M. Chandrasekar
	• Dimension Theorem (2 M) nullity(T)+rank(T)=dim(V)
	• Proof of (i) to (ii) (2 M)
	• Proof of (ii) to (iii) $(2 M)$
	Proof of (iii) to (i) (2 M)

	Let $T: R^2 \to R^3$ such that $T(1,1) = (1,0,2)$; $T(2,3) = (1,-1,4)$ find $T(8,11)$. (8 M) BTL2
	Answer : Page : 2.13– Dr.M. Chandrasekar
6	• Definition of linear transformation (2 M)
	T(cx+y) = cT(x) + T(y)
	• Solution of problem $T(8,11) = (5,-3,16)$. (6 M)
	Let V and W be finite dimensional vector spaces with ordered bases B_1 and B_2 respectively and let
	$T, U: V \rightarrow W$ be linear transformations. Then prove that
	(i) $[T+U]_{B_1}^{B_2} = [T]_{B_1}^{B_2} + [U]_{B_1}^{B_2}$
	(ii) $[aT]_{B_1}^{B_2} = a[T]_{B_1}^{B_2}$ for all scalars. (8 M) (Nov/Dec 2018) BTL4
7	Answer : Page : 2.22– Dr.M. Chandrasekar
	• Definition of linear transformation (2 M)
	T(cx+y) = cT(x) + T(y)
	• Solution of problem $[T+U]_{B_1}^{B_2} = [T]_{B_1}^{B_2} + [U]_{B_1}^{B_2}$ (2M)
	• $T(8,11) = (5,-3,16)$. (4 M)
	Let $T: R^2 \to R^3$ and $U: R^2 \to R^3$ be the linear transformations respectively defined by
	$T(a_1, a_2) = (a_1 + 3a_2, 0, 2a_1 - 4a_2)$ and $U(a_1, a_2) = (a_1 - a_2, 2a_1, 3a_1 + 2a_2)$ then prove that
	$[T+U]_{B_1}^{B_2} = [T]_{B_1}^{B_2} + [U]_{B_1}^{B_2}$. (8 M) BTL2
	Answer : Page : 2.22– Dr.M. Chandrasekar
	1 3
8	• Obtain T, $[T]_{B_1}^{B_2} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \\ 2 & -4 \end{bmatrix}$ (3 M)
0	
	• Obtain U, $[U]_{B_1}^{B_2} = \begin{vmatrix} 2 & 0 \\ 3 & 2 \end{vmatrix}$ (3 M)
	• Solution: $[T+U]_{B_1}^{B_2} = [T]_{B_1}^{B_2} + [U]_{B_1}^{B_2} = \begin{vmatrix} 2 & 0 \end{vmatrix}$ (2 M)
	• Solution: $[T+U]_{B_1}^{B_2} = [T]_{B_1}^{B_2} + [U]_{B_1}^{B_2} = \begin{bmatrix} 2 & 2 \\ 2 & 0 \\ 5 & -2 \end{bmatrix}$ (2 M)
	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $T(a_1, a_2) = (a_1 + 3a_2, 0, 2a_1 - 4a_2)$. Let B be
	the standard ordered basis of R^2 and R^3 . Then prove that $\left[aT\right]_{B_1}^{B_2} = a\left[T\right]_{B_1}^{B_2}$ for all scalars a .
	Answer : Page : 2.24– Dr.M. Chandrasekar(8M)BTL2
9	
	$\begin{bmatrix} \mathbf{I} & \mathbf{J} \\ \mathbf{J} & \mathbf{J} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{J} \\ \mathbf{J} & \mathbf{J} \end{bmatrix}$
	• Obtain T, $[T]_{B_1}^{B_2} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \\ 2 & -4 \end{bmatrix}$ (3 M)
	$\lfloor 2 -4 \rfloor$

r			
	• Obtain $\begin{bmatrix} aT \end{bmatrix}$, $\begin{bmatrix} aT \end{bmatrix}_{B_1}^{B_2} = \begin{bmatrix} a & 3a \\ 0 & 0 \\ 2a & -4a \end{bmatrix}$ (3 M)		
	• Solution: $[aT]_{B_1}^{B_2} = a[T]_{B_1}^{B_2}$ (2 M)		
	Let $A \in M_{m \times n}(F)$ then a scalar λ is an eigenvalue of A if and only if $det(A - \lambda I_n) = 0$. (8M)BTL2		
10	Answer : Page : 2.28– Dr.M. Chandrasekar• Obtain $Av = \lambda v$,(2 M)• Definition of Linear Transformation(2 M)• To prove T is not invertible.(4 M) $det(A - \lambda I) = 0.$		
	Find all the Eigenvectors of the matrix $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$. (8 M)BTL2		
	Answer : Page : 2.31– Dr.M. Chandrasekar		
11	 Obtain v from Av = λv. (2 M) Find the λ, from the equation det (A - λI) = 0. (2 M) 		
• Find the Eigen Vectors from the respective Eigen values (4 M) $\lambda_1 = 3 \implies v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \lambda_1 = -1 \implies v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$			
	Determine T is diagonalizable or not. Let T be a linear operator on $P_2(R)$ defined by		
	$T(f(x)) = f'(x)$, the matrix representation of T with respect to the standard basis B for $P_2(R)$.		
	Answer : Page : 2.38- Dr.M. Chandrasekar(8M)BTL2		
12	• Obtain v from $Av = \lambda v$. (2 M) • Find the λ , from the equation det $(A - \lambda I) = 0$. (2 M)		
	• Find the Eigen Vectors from the respective Eigen values		
	$\lambda_1 = 3 \implies v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \lambda_1 = -1 \implies v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$ (4 M)		
	Let T be the linear operator of R^3 defined by $T\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix} = \begin{pmatrix}4a_1+a_3\\2a_1+3a_2+2a_3\\a_1+4a_3\end{pmatrix}$. Determine the Eigen space		
13	of T corresponding to each Eigenvalue. Let B be the standard ordered basis for R^3 .(16M)BTL4		
	• Obtain v from $Av = \lambda v$. (2 M)		
• Find the λ , from the equation det $(A - \lambda I) = 0$. (2 M)			
	• Find the Eigen Vectors from the respective Eigen values		

• Prove by mathematical induction rule. (2 M)
• Definition of linearly independent and dependent. (2 M)
• To prove $a_1(\lambda_1 - \lambda_k) = a_2(\lambda_2 - \lambda_k) = \cdots = a_{k-1}(\lambda_{k-1} - \lambda_k) = 0$ (6 M)
• Conclusion: $\{v_1, v_2, \dots, v_{k-1}, v_k\}$ is linearly independent. (2 M)

	UNIT III – INNER PRODUCT SPACES		
Inner	Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations - Least square		
approx	approximation.		
	PART * A		
Q.No.	Questions		
1.	Define inner product space.(Nov/Dec 2018)BTL1A vector space V over F, an inner product on V is a function that assigns to every ordered pair of vectors $x, y \in V$ and a scalar in F, denoted by $\langle x, y \rangle$ such that the following conditions hold.		
	(i) $\langle x, x \rangle > 0 \text{ iff } x \neq 0$ (ii) $\langle x+z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$ (iii) $\langle cx, y \rangle = c \langle x, y \rangle$ (iv) $\overline{\langle x, y \rangle} = \langle y, x \rangle$		
	Define Dot product. BTL1		
2	Let $U = (u_1, u_2, \dots, u_n)$ and $V = (v_1, v_2, \dots, v_n)$ then the dot product of U, V is defined as $U \cdot V$, $U \cdot V = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$.		
3	For any non-zero vector, $x \in V$ prove that $y = \frac{x}{\ x\ }$ is a vector such that $\ y\ = 1$. BTL2 Consider $\langle y, y \rangle = \left\langle \frac{x}{\ x\ }, \frac{x}{\ x\ } \right\rangle = \frac{1}{\ x\ } \frac{1}{\ x\ } \langle x, x \rangle$		
	$= \frac{1}{\ x\ ^2} \ x\ ^2 = 1$.		
4	Define orthonormal. BTL1 Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal.		
5	Show that in \mathbb{R}^3 , the vectors $(1, 1, 0)$, $(1, -1, 1)$, $(-1, 1, 2)$ are orthogonal. Are they orthonormal? Justify. BTL2 Clearly $\langle x, y \rangle = \langle x, z \rangle = \langle y, z \rangle = 0$ therefore x, y, z are orthogonal vectors. $ x = \sqrt{2}$, $ y = \sqrt{3}$, $ z = \sqrt{6}$, therefore x, y, z are not orthonormal.		
	Let $V = R^2$ and $S = \{(1,0), (0,1)\}$. Check whether S is orthonormal basis or not. BTL4		
6	$\langle x, y \rangle = 0$, $ x = 1$ and $ y = 1$ Therefore S is an orthonormal basis.		
	Define conjugate transpose. BTL2		
7	Let $A \in M_{m \times n}(F)$, the conjugate transpose of A to be the $(n \times m)$ matrix defined by $(A^*)_{ij} = \overline{A_{ji}}$.		
8	Let $A = \begin{pmatrix} i & 1+2i \\ 2 & 3+4i \end{pmatrix}$. Find the conjugate transpose. BTL4 $\overline{A} = \begin{pmatrix} -i & 1-2i \\ 2 & 3-4i \end{pmatrix}$		

	$A^* = \begin{pmatrix} -i & 2\\ 1-2i & 3-4i \end{pmatrix} \cdot$		
	State Gram Schmidt orthogonalization.(Nov/Dec 2018) BTL1		
	Let V be an inner product space and $S = \{w_1, w_2, \dots, w_n\}$ be a linear independent subset of V'. Define		
9	$S' = \{v_1, v_2, \dots, v_n\}.$ Where $v_1 = w_1$ and $v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\ v_j\ ^2} v_j$ for $2 \le k \le n$. Then S' is an orthogonal		
	set of non-zero vectors such that span(S')=span(S).		
	Define orthogonal complement. BTL2		
10	Let S be a non-empty subset of an inner product space V. We define S^{\perp} to be the set of all vectors in V that are orthogonal to every vector in S.		
	State and prove projection theorem.BTL4		
	Let W be a finite dimensional subspace of an inner product space V and let $y \in V$. Then there exists		
11	unique vectors $u \in W$ and $z \in W^{\perp}$ such that $y = u + z$. Furthermore, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal		
	basis for W, then $u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$.		
	Define adjoint of linear operator.BTL1		
12	Let V be a finite dimensional inner product space and let T be a linear operator on V. Then there exist a		
14	unique function $T^*: V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$. The linear operator T^* is		
	called adjoint of operator T.		
	If A be an $n \times n$ matrix. Then prove $L_{A^*} = (L_A)^*$. BTL2		
13	If B is the standard ordered basis for F^n , then $[L_A]_B = A$.		
	Hence $\left[\left(L_A \right)_B^* \right] = \left[L_A \right]_B^* = A^* = \left[L_A^* \right]_B^*$ and so $L_{A^*} = \left(L_A \right)^*$.		
	Verify the Cauchy-Schwartz inequality for $x = (1, -1, 3)$ and $y = (2, 0, -1)$. BTL3		
14	By Cauchy-Schwartz inequality is $ \langle x, y \rangle \le x y $		
14	Here $ \langle x, y \rangle = -1 = 1$, $ x = \sqrt{11}$, $ y = \sqrt{5}$		
	Cauchy-Schwartz inequality is satisfied.		
	Define least squares approximation.BTL1		
15	Error value $E = \sum_{i=1}^{m} (y_i - ct_i - d)^2$, the line $y = ct + d$ is called the least square line.		
	If T is a linear operator on V , then prove that $[T^*]_B = [T]_B^*$. BTL2		
16	$\begin{bmatrix} T^* \end{bmatrix}_B = \langle T^*(v_i), v_j \rangle = \overline{\langle v_i, T^*(v_j) \rangle}$		
	$=\overline{\left\langle T\left(v_{i} ight),v_{j} ight angle }=\left[T ight]_{B}^{st}$.		
	Let V be an inner product space and let S be an orthogonal subset of V consisting of non-zero vectors		
17	then S is linearly independent. BTL4		
1	$\sum_{i=1}^{k}a_{i}v_{i}=0$		
	<u>i=1</u>		

$a_{j} = \frac{\langle y, v_{j} \rangle}{\ v_{j}\ ^{2}} = \frac{\langle 0, v_{j} \rangle}{\ v_{j}\ ^{2}} = 0 \text{ for all j.}$	Therefore S is linearly independent.		
State Cauchy's and Triangle ineq	State Cauchy's and Triangle inequality. BTL1		
18 (i) Cauchy's inequality	(i) Cauchy's inequality $ \langle x, y \rangle \le x y $		
(ii) Triangle Inequality x	$ x + y \le x + y $		
If $S = \left\{ \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right), \left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right) \right\}$. V	Verify S is orthonormal basis. BTL3		
19 $\begin{vmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{vmatrix} = -1 \neq 0$, therefore Sis	linearly independent.		
$\langle x, y \rangle = 0, x = 1, y = 1$, therefore	ore S is an orthonormal basis.		
	,0), $y_2 = (2,0,1)$, $y_3 = (2,2,1)$. Check $\{y_1, y_2, y_3\}$ is linearly		
independent or not.	BTL2		
20 $ \Delta = \begin{vmatrix} 1 & 2 & 2 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{vmatrix} = -2 \neq 0.$			
Therefore $\{y_1, y_2, y_3\}$ is linearly ind	lependent.		
	Part-B		
	then for $x, y, z \in V$ and $c \in F$ then prove the following statements		
are true: (i) $(r, y + z) = (r, y) + (r, z)$	-\		
(i) $\langle x, y+z \rangle = \langle x, y \rangle + \langle x, y \rangle$	2)		
(ii) $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$			
(iii) $\langle x, x \rangle = 0$ iff $x = 0$			
	$x \in V$ then $x = z$. (8 M) BTL3		
Answer : Page : 3.4 – Dr.M. Char	пагазекаг		
• To prove (i) use $\overline{\langle x, y \rangle} = \langle y, \rangle$	$x\rangle$ (2 M)		
• To prove (ii) use $\overline{\langle x, y \rangle} = \langle y \rangle$	y, x and $\langle cx, y \rangle = c \langle x, y \rangle$ (2 M)		
• To prove (iii) use $\langle x, x \rangle > 0$			
• To prove (iv) use $\langle x+z, y \rangle$			
· · · · · · · · · · · · · · · · · · ·	then for $x, y, z \in V$ and $c \in F$ then prove the following statements		
2 are true: (i) $ cx = c x $			

	(ii) $ x = 0$ iff $x = 0$		
	(iii) $ \langle x, y \rangle \le x y $		
	(iv) $ x+y \le x + y $ for all $x \in V$ then $x = z$. (8 M) BTL3		
	Answer : Page : 3.5– Dr.M. Chandrasekar		
	• To prove (i) use $\langle cx, y \rangle = c \langle x, y \rangle$ and $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$ (2 M)		
	• To prove (ii) use $\langle x, x \rangle = 0$ iff $x = 0$ (2 M)		
	• To prove (iii) use $\langle x, y+z \rangle = \langle x, y \rangle + \langle x, z \rangle$ (2 M)		
	• To prove (iv) use the Cauchy-Schwartz inequality (iii) (2 M)		
	Prove that		
	(i) $\left \sum_{i=1}^{n} a_i \overline{b_i}\right \leq \left[\sum_{i=1}^{n} a_i ^2\right]^{\frac{1}{2}} \left[\sum_{i=1}^{n} b_i ^2\right]^{\frac{1}{2}}$		
3	(ii) $\left[\sum_{i=1}^{n} a_i + b_i ^2\right]^{\frac{1}{2}} \le \left[\sum_{i=1}^{n} a_i ^2\right]^{\frac{1}{2}} + \left[\sum_{i=1}^{n} b_i ^2\right]^{\frac{1}{2}}$. (8 M) BTL3		
	Answer : Page : 3.7– Dr.M. Chandrasekar		
	• Prove (i) by Cauchy-Schwartz inequality $ \langle x, y \rangle \le x y $ (4 M)		
	• Prove (ii) by Triangle inequality $ x + y \le x + y $ (4 M)		
	Let $V = C^3$ with inner product $\langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + x_3 \overline{y_3}$. Let $x = (2, 1+i, i)$ and $y = (2-i, 2, 1+2i)$		
	compute		
	(i) $\langle x, y \rangle$		
	(ii) $ x \ll y $		
	(iii) $ x+y $		
4	(iv) Verify Cauchy's inequality & Triangle inequality. (8M)BTL4		
4	Answer : Page : 3.9– Dr.M. Chandrasekar		
	• $\langle x, y \rangle = 8 + 5i$ (2 M)		
	• $\langle x, y \rangle = 8 + 5i$ (2 M) • $ x = \sqrt{7}$ & $ y = \sqrt{14}$ (2 M)		
	$ \ \mathbf{x} - \mathbf{y} \ = \sqrt{27} $ (2 M)		
	• $ x + y = \sqrt{37}$ (2 M) • $ \langle x, y \rangle = \sqrt{98}$ (2 M)		
	• $ \langle x, y \rangle = \sqrt{98}$ (2 M)		
	Let V be the vector space of polynomial with inner product given by $\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$.		
	$f(t) = t+2, g(t) = t^2 - 2t - 3$. Find $\langle f, g \rangle \& f $. (8 M) BTL4		
5	Answer : Page : 3.12– Dr.M. Chandrasekar		
	• $\langle f, g \rangle = \int_{-\infty}^{1} f(t)g(t)dt = \frac{-37}{4}$ (4 M)		

	• $ f = \sqrt{\langle f, f \rangle} = \sqrt{\int_{0}^{1} f(t)^{2} dt} = \sqrt{\frac{19}{3}}$	(4 M)
	Consider the set of all continuous complex v	alued function in $[0,1]$ and denoted it as V
	1	
	Let $f(t) \& g(t) \in V$. Define $\langle f, g \rangle = \int_{0}^{1} f(t)$	g(t)dt.
6	Verify the conditions of inner product space Answer : Page : 3.13– Dr.M. Chandrasekar	. (8 M) BTL5
	• $\langle f+g,h\rangle = \langle f,g\rangle + \langle f,h\rangle$	(2 M)
	• $\langle cf, g \rangle = c \langle f, g \rangle$	(2 M)
	• $\langle f, g \rangle = \overline{\langle g, f \rangle}$	(2 M)
	• $\langle f, f \rangle = 0 \Leftrightarrow f = 0$	(2 M)
		$x_2 \overline{y_2} + x_3 \overline{y_3}$. Verify the inner product space. (8M) BTL5
	Answer : Page : 3.13– Dr.M. Chandrasekar.	
7	(i) $\langle x, x \rangle > 0 iff x \neq 0$	(2 M)
,	(ii) $\langle x+z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$	(2 M)
	(iii) $\langle cx, y \rangle = c \langle x, y \rangle$	(2 M)
	(iv) $\overline{\langle x, y \rangle} = \langle y, x \rangle$	(2 M)
		[*] A) for A, $B \in V$. Verify whether V is an inner product
	space or not. (8 M) BTL3 Answer : Page : 3.16– Dr.M. Chandrasekar	*
8	• $\langle A, A \rangle > 0 \text{ iff } A \neq 0$	(2 M)
0		(2 M) (2 M)
	• $\langle cA, B \rangle = c \langle A, B \rangle$	(2 M)
	• $\langle A+B, C \rangle = \langle A, C \rangle + \langle B, C \rangle$ • $\langle cA, B \rangle = c \langle A, B \rangle$ • $\overline{\langle A, B \rangle} = \langle B, A \rangle$	(2 M)
		, v_2, \dots, v_k be an orthogonal subset of V consisting of
		that $y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\ v_i\ ^2} v_i$. (8 M) (Nov/Dec 2018) BTL2
9		
	• Definition of span	(2 M)
	• Definition of span • $\langle y, v_j \rangle = a_j v_j ^2$ and $\langle y, v_j \rangle = \sum_{i=1}^k$	$a_i \langle v_i, v_j \rangle$ (4 M)

	• $y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\ v_i\ ^2} v_i$ (2 M)
	State and prove Gram Schmidt orthogonalization theorem.Answer : Page : 3.19- Dr.M. Chandrasekar(16 M) (Nov/Dec 2018) BTL2
	• Statement: Let V be an inner product space and $S = \{w_1, w_2, \dots, w_n\}$ be a linear independent subset
10	of V'. Define $S' = \{v_1, v_2, \dots, v_n\}$. Where $v_1 = w_1$ and $v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\ v_j\ ^2} v_j$
	for $2 \le k \le n$. (8 M) • Then S' is an orthogonal set of non-zero vectors such that span(S')=span(S). (8 M)
Consider $V = R^3$. Let $y_1 = (1,1,0)$, $y_2 = (2,0,1)$, $y_3 = (2,2,1)$. Check $\{y_1, y_2, y_3\}$ independent, using Gram Schmidt process.	
	Compute orthogonal vectors from $\{y_1, y_2, y_3\}$. (8 M)BTL2 Answer : Page : 3.22– Dr.M. Chandrasekar
	• $ \Delta = \begin{vmatrix} 1 & 2 & 2 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{vmatrix} = -2 \neq 0.$ (2 M)
11	• $x_1 = y_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$,
	• $x_2 = y_2 - \frac{\langle y_2, x_1 \rangle}{\ x_1\ ^2} x_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, (2 M)
	• $x_3 = y_3 - \frac{\langle y_3, x_1 \rangle}{\ x_1\ ^2} x_1 - \frac{\langle y_3, x_2 \rangle}{\ x_2\ ^2} x_2 = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ (2 M)
	• $\{x_1, x_2, x_3\}$ is an orthogonal set. (2 M)
	State and prove projection theorem.(8 M) BTL4Answer : Page : 3.29- Dr.M. Chandrasekar
12	• Let W be a finite dimensional subspace of an inner product space V and let $y \in V$. Then there exists unique vectors $u \in W$ and $z \in W^{\perp}$ such that $y = u + z$. Furthermore, if $\{v_1, v_2, \dots, v_k\}$ is an
	orthonormal basis for W, then $u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$. (2 M)

	• $\langle z, v_j \rangle = \left\langle \left(y - \sum_{i=1}^k \langle y, v_i \rangle v_i \right), v_j \right\rangle = 0 \implies z \in W^{\perp}$ (4 M)		
	Uniqueness of <i>u</i> and <i>z</i> . (2 M) Let V be an inner product space and let T and U be a linear operator on V then prove that		
	(i) $(T+U)^* = T^* + U^*$		
	(i) $(cT)^* = cT^*$		
	(ii) $(TU)^* = U^*T^*$		
13	(iv) $(T^*)^{} = T$. (8 M) BTL4		
15	Answer : Page : 3.34– Dr.M. Chandrasekar (i) $\langle x, (T+U)^*(y) \rangle = \langle (T+U)(x), y \rangle = \langle x, (T^*+U^*)y \rangle$ (2 M)		
	(ii) $\langle x, (cT)^*(y) \rangle = \langle cT(x), y \rangle = \langle x, \overline{cT}^* y \rangle = \overline{c} \langle x, T^* y \rangle$ (2 M)		
	(iii) $\langle x, (TU)^*(y) \rangle = \langle (TU)(x), y \rangle = \langle T(x), y \rangle \langle U(x), y \rangle = \langle x, U^*(y)T^*(y) \rangle$ (2 M)		
	(iv) $\langle x, T(y) \rangle = \langle T^*(x), y \rangle = \langle x, T^{**}(y) \rangle$ (2 M)		
	Let V be a finite dimensional inner product space, and let T be a linear operator on V.		
	Then prove that there exists a unique function $T^*: V \to V$ such that $\langle x, T^*(y) \rangle = \langle T(x), y \rangle$ and T^*		
	is linear. (8 M) BTL5 Answer : Page : 3.36– Dr.M. Chandrasekar		
14	• Define $g: V \to F$ by $g(x) = \langle T(x), y \rangle$		
	• To Show g is linear.		
	$g(cx_1 + x_2) = \langle T(cx_1 + x_2), y \rangle = c \langle T(x_1), y \rangle + \langle T(x_2), y \rangle = cg(x_1) + g(x_2) $ (4 M)		
	• To show T^* is linear		
	$\langle x, T^*(cy_1 + y_2) \rangle = \langle T(x), cy_1 + y_2 \rangle = \langle x, cT^*(y_1) + T^*(y_2) \rangle$ (4 M)		
	Find the least squares line and error for the following data $(1, 2), (2, 3), (3, 5), (4, 7)$. (8 M)BTL3		
	Answer : Page : 3.41– Dr.M. Chandrasekar		
	(1 1) (2)		
15	• $A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix}$, $x_0 = \begin{pmatrix} c \\ d \end{pmatrix}$, $y = \begin{pmatrix} 2 \\ 3 \\ 5 \\ 7 \end{pmatrix}$ and $A^* = \begin{bmatrix} \overline{A} \end{bmatrix}^T = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ (2 M) • $(A^*A)^{-1} = \frac{1}{ A^*A } adj(A^*A) = \frac{1}{10} \begin{pmatrix} 2 & -5 \\ -5 & 15 \end{pmatrix}$ (2 M)		
	$\begin{pmatrix} 4 & 1 \end{pmatrix} \qquad \begin{pmatrix} 7 \end{pmatrix}$		
	• $(A^*A)^{-1} = \frac{1}{ A^*A } adj (A^*A) = \frac{1}{10} \begin{pmatrix} 2 & -5 \\ -5 & 15 \end{pmatrix}$ (2 M)		

	• $(A^*A)^{-1}A^*y = \frac{1}{10}\begin{pmatrix} 2 & -5\\ -5 & 15 \end{pmatrix} \begin{bmatrix} 1 & 2 & 3 & 4\\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2\\ 3\\ 5\\ 7 \end{pmatrix} = \begin{pmatrix} 1.7\\ 0 \end{pmatrix} = \begin{pmatrix} c\\ d \end{pmatrix}$ • $y = ct + d = 1.7t + 0$ is the least squares line.	(2 M) (2 M)
	Show that the following function defines an inner product on R^2 , w	
	and $\langle u, v \rangle = u_1 v_1 + 2u_2 v_2$. (8 M)BTL2 Answer : Page : 3.46– Dr.M. Chandrasekar	
16	• $\langle u, v \rangle = \langle v, u \rangle$ (2 M)	
	• $\langle u, v+w \rangle = \langle u, v \rangle + \langle u, w \rangle$ (2 M)	
	• $c\langle u, v \rangle = \langle cu, v \rangle$ (2 M)	
	• $\langle v, v \rangle = v_1^2 + 2v_2^2 \ge 0$ this expression is equal to zero iff $v = 0$.	(2 M)

	UNIT IV – PARTIAL DIFFERENTIAL EQUATIONS		
Singu of par	Formation – Solutions of first order equations – Standard types and equations reducible to standard types – Singular solutions – Lagrange"s linear equation – Integral surface passing through a given curve – Classification of partial differential equations - Solution of linear equations of higher order with constant coefficients – Linear non-homogeneous partial differential equations.		
	PART * A		
1.	Form a PDE by eliminating the arbitrary constants <i>a</i> and <i>b</i> from $z = ax + by$. BTL2 Given $z = ax + by$ (1) Differentiate (1) partially w.r.to <i>x</i> and <i>y</i> , we get $p = \frac{\partial z}{\partial x} = a$ and $q = \frac{\partial z}{\partial y} = b$ Substituting in (1) we get the required p.d.e $z = px + qy$.		
	Form a PDE by eliminating the constants a and b from $z = (x+a)^2 + (y+b)^2$. BTL2		
2	Given $z = (x+a)^2 + (y+b)^2$ (1) Differentiate (1) partially w.r.to x and y, we get $y = \frac{\partial z}{\partial x} = 2(x+a) \Rightarrow (x+a) = P$		
	$p = \frac{\partial z}{\partial x} = 2(x+a) \implies (x+a) = \frac{p}{2}$ $q = \frac{\partial z}{\partial y} = 2(y+b) \implies (y+a) = \frac{q}{2}$ Substituting in (1) respect the maximum line line $A = -\frac{q^2}{2} + -\frac{q^2}{2}$		
	Substituting in (1) we get the required p.d.e $4z = p^2 + q^2$.		
3	Eliminate the arbitrary function f from $z = f\left(\frac{y}{x}\right)$ and form a p.d.e. BTL2 Given $z = f\left(\frac{y}{x}\right)$ (1) Differentiate (1) partially w.r.to x and y , we get $p = \frac{\partial z}{\partial x} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{-y}{x^2}\right) \dots \dots (2)$ $q = \frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right) \cdot \left(\frac{1}{x}\right) \dots \dots (3)$ (2)/(3), we get the required p.d.e $\frac{p}{q} = \frac{-y}{x}$.		
	Obtain the complete solution of the equation $z = px + qy - 2\sqrt{pq}$. BTL1		
	Given: $z = px + qy - 2\sqrt{pq}$		
4	This is of the form $z = px + qy + f(p, q)$ [Clairaut's form]		
	Hence the complete integral is $z = ax + by - 2\sqrt{ab}$.		
	Solve $(D^2 - 2DD' + D'^2)z = 0$. BTL2		
5	The A.E. is $m^2 - 2m + 1 = 0$ Therefore, the roots are $m = 1, 1$		

	Hence $z = f_1(y+x) + xf_2(y+x)$.
6	Solve $(D^4 - D'^4)z = 0$. BTL2
	The A.E. is $m^4 - 1 = 0$ Therefore, the roots are $m = 1, -1, i, -i$ Hence $z = f_1(y+x) + f_2(y-x) + f_3(y+ix) + f_4(y-ix)$.
	Find the P.I. of $(D^2 + 4DD')z = e^x$. BTL3
7	P.I. = $\frac{e^x}{D^2 + 4DD'}$ $\downarrow put D = 1, D' = 0$ $= e^x$.
	Solve $(D+D'-2)z=0$. BTL2
	Given $(D+D'-2)z=0$
8	$\left[D - (-1)D' - 2\right]z = 0$
	If $[D-mD'-c]z=0$ then $z=e^{cx}f(y+mx)$.
	Therefore, $z = e^{2x} f(y-x)$.
	Form the partial differential equation by eliminating <i>a</i> and <i>b</i> from $z = a^2 x + a y^2 + b$. BTL3
	Given $z = a^2 x + a y^2 + b$ Differentiating (1) partially with respect to x , we have
	Differentiating (1) partially with respect to x, we have $\frac{\partial z}{\partial x} = a^2 \implies p = a^2 \dots \dots$
	CX
9	Differentiating (1) partially with respect to y , we have
	$\frac{\partial z}{\partial y} = 2a \ y \implies q = 2a \ y \implies a = \frac{q}{2y} \dots \dots \dots (3)$
	Using (3) in (2), we have $p = \left(\frac{q}{2y}\right)^2 \Rightarrow p = \frac{q^2}{4y^2} \Rightarrow 4py^2 = q^2$ which is the required partial differential equation.
	Eliminate the arbitrary function f from $z = f\left(\frac{x}{y}\right)$ and form the pde. BTL2
10	Given $z = f\left(\frac{x}{y}\right)$ (1)
	Differentiating (1) partially with respect to y, we have
	$\frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right) \left[-\frac{y}{x^2}\right] \implies q = -\frac{y}{x^2} f'\left(\frac{y}{x}\right) \qquad (2)$
	Differentiating (1) partially with respect to y , we have

$$\frac{\partial z}{\partial x} = f'\left(\frac{y}{x}\right) \left[\frac{1}{x}\right] \implies p = \frac{1}{x} f'\left(\frac{y}{x}\right) \qquad (3)$$
Equations $\frac{(2)}{(3)}$ implies $\frac{q}{p} = \frac{-\frac{y}{x^2} f'\left(\frac{y}{x}\right)}{\frac{1}{x} f'\left(\frac{y}{x}\right)}$

$$=\Rightarrow xq = -yp$$
 $xq + yp = 0$, which is the required partial differential equation.
Form the pde by eliminating the arbitrary function from $\phi(x^2 - y^2, z) = 0$, BTL4
The given relation is of the form $\phi(u, v) = 0$ where $u = x^2 - y^2$ and $y = z$
Hence the required pde is of the form $p_P + Qq = R$
Where $P = \frac{\partial u}{\partial z} \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial y}$
 $P = (-2y)(1) - (0)(0) \implies P = -2y$
 $Q = \frac{\partial u}{\partial z} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial z}$
 $Q = (0)(0) - (2x)(1) \implies Q = -2x$
 $R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} \frac{\partial u}{\partial x}$
 $R = (2x)(0) - (-2y)(0) \implies R = 0$
Therefore, the required equation is
 $-2yP - 2xq = 0$
 $yP + xq = 0$, which is the required partial differential equation.
Find the complete integral of $p + q = 1$. BTL3
Given $p + q = 1$
12 This is of the form $f(p,q) = 0$
Hence, the complete integral of $p + q = 1$. BTL4
Given $\sqrt{p} + \sqrt{q} = 1$
13 This is of the form $F(p,q) = 0$
Hence, the complete integral of $\sqrt{p} + \sqrt{q} = 1$. BTL4
Given $\sqrt{p} + \sqrt{q} = 1$
14 Find the complete solution is $z = ax + by + c$ where $\sqrt{a} + \sqrt{b} = 1$ (ie) $\sqrt{b} = 1 - \sqrt{a} \Rightarrow b - (1 - \sqrt{a})^2$
Therefore, the complete solution is $z = ax + (1 - \sqrt{a})^2 y + c$.
Find the complete solution is $z = ax + (1 - \sqrt{a})^2 y + c$.
Find the complete solution is $z = ax + (1 - \sqrt{a})^2 y + c$.

	This is of the form $F(p,q)=0$		
	Hence, the complete integral is $z = ax + by + c$ where $a^3 - b^3 = 0$ (ie) $b = a$		
	Find the complete integral of $p+q=pq$. BTL1		
	Given $p+q=pq$ This is of the form $F(p,q)=0$. Hence the complete integral is $z = ax+by+c$		
15	$b = \frac{-a}{1-a}$ $b = \frac{a}{a-1}$		
	Therefore, the complete solution is $z = ax + \frac{a}{a-1}y + c$.		
	Find the complete integral of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$. BTL3		
16	Solution: Given $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$ (1)		
	$(1) \times pq \Longrightarrow z = px + qy + pq\sqrt{pq}$		
	This is of the form $z = p x + q y + f(p,q)$		
	Hence, the complete solution is $z = ax+by+ab\sqrt{ab}$		
	Solve $p x^2 + q y^2 = z^2$. BTL4 Given $p x^2 + q y^2 = z^2$		
	Given $p x + q y = z$ This is of Lagrange's type. Here $P = x^2$ $Q = y^2$ $R = z^2$		
	The subsidiary equations are $\frac{d x}{P} = \frac{d y}{Q} = \frac{d z}{R}$		
17	$\frac{d x}{x^2} = \frac{d y}{y^2} = \frac{d z}{z^2}$		
	$\frac{d x}{x^2} = \frac{d y}{y^2} \qquad \qquad \frac{d y}{y^2} = \frac{d z}{z^2}$		
	Integrating, we have		
	$\frac{1}{x} - \frac{1}{y} = a \qquad \qquad \frac{1}{y} - \frac{1}{z} = b$		
	Hence the solution is $\varphi\left(\frac{1}{x} - \frac{1}{y}, \frac{1}{y} - \frac{1}{z}\right) = 0$.		
	Find the general solution of $(4D^2 - 12DD' + 9D'^2)z = 0$. BTL2		
18	Auxiliary equation is $4m^2 - 12m + 9 = 0$		
	(2m-3)(2m-3) = 0		

	$m = \frac{3}{2} , m = \frac{3}{2}$
	Hence the solution is $z = \phi_1 \left(y + \frac{3}{2} x \right) + x \phi_2 \left(y + \frac{3}{2} x \right)$.
	Solve $(D^3 - 2D^2 D')z = 0$. BTL5
	The auxiliary equation is $m^3 - 2m^2 = 0$
19	$m^2(m-2)=0$
	m = 0, 0, 2
	Hence the solution is $z = \phi_1(y) + x\phi_2(y) + \phi_3(y+2x)$.
	Solve $(D^4 - D'^4)z = 0$. BTL5
	The auxiliary equation is $m^4 - 1 = 0$
20	$(m^2+1)(m^2-1)=0$
-	m = 1, -1, i, -i
	Hence the solution is $z = \phi_1(y+x) + \phi_2(y-x) + \phi_3(y+ix) + \phi_4(y-ix)$.
	Part-B
	Form the partial differential equation by eliminating the arbitrary functions f and φ from
	$z = f(x+t) + \varphi(x-t). $ (8 M) BTL2
1	Answer: Page 4.30 – Dr.M. Chandrasekar
	• Find p, q (2 M)
	 Find the second derivatives r, s and t Obtain the PDE: r = t (2 M) (2 M)
	Find the partial differential equation of all planes which are at a constant distance 'a' from the
	origin. (8 M) BTL2
	Answer: Page 4.10 – Dr.M. Chandrasekar
2	• $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (1 M)
2	• Find p, q (1 M)
	• Find the second derivatives r , s and t (2 M)
	• Obtain the PDE $z = px + qy - \frac{pq}{p+q-pq}$ (4 M)
	EXAMPLE Form the partial differential equation by eliminating the arbitrary function ϕ from
	$\varphi(x^2 + y^2 + z^2, ax + by + cz) = 0.$ (8 M) BTL2
3	Answer: Page 4.26 – Dr.M. Chandrasekar
	• Find p, q . (4 M)
	• Obtain the PDE $(cy-bz)p+(az-cx)q=(bx-ay)$ (4 M)
4	Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$. (8 M) BTL4
т	Answer: Page 4.56 – Dr.M. Chandrasekar

	• Complete Integral : $z = ax + by + \sqrt{1 + a^2 + b^2}$. (2 M)	
	• Singular integral : $x^2 + y^2 + z^2 = 1$ (4 M)	
	• General solution (2 M)	
	Find the singular integral of $z = px + qy + p^2 + pq + q^2$. (8 M) (Nov/Dec 2017)BTL2	
	Answer : Page : 4.59 – Dr.M. Chandrasekar	
5	• Find Complete Integral $z = ax + by + a^2 + ab + b^2$. (4 M)	
	• Find singular integral $3z = xy - x^2 - y^2$ (4 M)	
	Solve $z = px + qy + p^2 - q^2$. (8 M) BTL4	
	Answer : Page : 4.58 – Dr.M. Chandrasekar	
6	• Find Complete Integral $z = ax + by + a^2 - b^2$. (2 M)	
	• Find singular integral $4z - y^2 + x^2 = 0$ (2 M)	
	• Obtain the general solution (4 M)	
	Solve $z = px + qy + p^2 q^2$. (8 M) BTL4	
	Answer : Page : 4.60 – Dr.M. Chandrasekar	
7	• Find Complete Integral $z = ax + py + a^2b^2$ (2 M)	
	• Find singular integral (4 M)	
	Obtain the general solution (2 M)	
	Solve $p^2 + q^2 = x^2 + y^2$. (8 M) BTL2	
	Answer : Page :4.77 – Dr.M. Chandrasekar	
8	• Find Complete Integral. (2 M)	
	• Find singular integral (4 M)	
	• Obtain the general solution (2 M) Solve $(mz-ny)p+(nx-lz)q=ly-mx$. (8 M) BTL4	
	Answer : Page : 4.106 – Dr.M. Chandrasekar	
9	• Apply the Lagrange's multipliers method (4 M)	
	• Obtain the solutions	
	$\varphi(x^2 + y^2 + z^2, lx + my + nz) = 0 $ (4 M)	
Solve $x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$ (8 M) (June 2016)BTL2		
10	Answer : Page : 4.116 – Dr. A. Singaravelu	
10	• Apply the Lagrange's multipliers method (4 M)	
	• Obtain the solutions $\varphi(x^2 + y^2 + z^2, xyz) = 0$ (4 M)	
	Solve $x(y-z)p + y(z-x)q = z(x-y)$ (8 M) BTL5	
	Answer : Page : 4.113 – Dr.A. Singaravelu	
11	• Apply the Lagrange's multipliers method (4 M)	
	• Obtain the solution (4 M)	
	$\varphi(x+y+z, xyz) = 0 \tag{4 M}$	
Find the general solution $(3z-4y)p+(4x-2z)q=2y-3x$. (8 M) BTL6		
12	Answer: Page: 4. 105 – Dr.M. Chandrasekar	
	Apply the Lagrange's multipliers method (4 M)	

	• Obtain the solutions $\varphi(x^2 + y^2 + z^2, 2x + 3y + 4z) = 0$ (4 M)
	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$. (8 M) BTL2
13	Answer : Page : 4.103 – Dr.M. Chandrasekar• Apply the Lagrange's multipliers method(4 M)
15	• Obtain the solutions $\varphi\left(xyz, \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = 0$ (4 M)
	Solve $x(y^2 + z^2)p + y(z^2 + x^2)q = z(y^2 - x^2)$. (8 M) BTL5
14	Answer : Page : 4.108 – Dr.M. Chandrasekar• Apply the Lagrange's multipliers method(4 M)
	• Obtain the solutions $\varphi\left(x-y+z,\frac{xz}{y}\right) = 0$ (4 M)
	Find the general solution of $z(x-y) = px^2 - qy^2$. (8 M) BTL2
1.5	Answer : Page : 4.112 – Dr.M. Chandrasekar
15	• Apply the Lagrange's multipliers method (4 M) $\begin{pmatrix} 1 & 1 & r+y \end{pmatrix}$
	• Obtain the solutions $\varphi\left(\frac{1}{x} + \frac{1}{y}, \frac{x+y}{z}\right)$ (4 M)
	Find the general solution of $(y-z)p+(z-x)q = x-y$. (8 M) BTL2
16	Answer : Page : 4.112 – Dr.M. Chandrasekar• Apply the Lagrange's multipliers method(4 M)
	• Obtain the solutions $\varphi(x+y+z, x^2+y^2+z^2) = 0$ (4 M)
	Solve $(D^2 - DD' - 20D'^2)z = e^{5x+y} + \sin(4x-y)$. (8 M) (Nov/Dec 2018) BTL2
	Answer: Page: 4.169 – Dr.M. Chandrasekar
17	• Find A.E. and $CF = f_1(y+5x) + f_2(y-4x)$ (3 M)
	• Obtain the $PI = \frac{x}{9}e^{5x+y} - \frac{x}{9}\cos(4x-y)$ (4 M)
	Obtain the general solution (1 M)
	Solve $(D^2 - D'^2)z = e^{x-y}\sin(2x+3y)$. (8 M) BTL2
	Answer : Page : 4.156 – Dr.M. Chandrasekar • Find A.E. and $CF = f_1(y+x) + f_2(y-x)$ (3 M)
18	
	• Obtain the $PI = \frac{e^{x-y}}{25} \left[\sin(2x+3y) - 2\cos(2x+3y) \right]$ (4 M)
	• Obtain the general solution (1 M)
	Solve $(D^2 - 2DD' + D'^2)z = x^2 y e^{x+y}$. (8 M) BTL2
	Answer : Page : 4.155 – Dr.M. Chandrasekar • Find A.E. and $CF = f_1(y+x) + xf_2(y+x)$ (3 M)
19	• Obtain the $PI = e^{x+y} \left[\frac{x^4 y^2}{12} + \frac{x^5 y}{15} + \frac{x^6}{60} \right]$ (4 M)
	• Obtain the general solution (1 M)

	Solve $\frac{\partial^2 z}{\partial x^2} - 7 \frac{\partial^2 z}{\partial x \partial y} + 6 \frac{\partial^2 z}{\partial y^2} = \sinh(x+y) + xy.$ (8 M) BTL2
	Answer : Page :4.149 – Dr.M. Chandrasekar
20	• A.E. and $CF = f_1(y+6x) + f_2(y+x)$ (3 M)
	• Obtain the $PI = \frac{x^3}{24} [4y + 7x]$. (4 M)
	• Obtain the general solution (1 M)
	Solve $(D^2 + DD' - 2D'^2)z = y \sin x$. (8 M) BTL2
	Answer : Page : 4.160 – Dr.M. Chandrasekar
	• Find A.E. and C.F
21	$CF = f_1(y - 2x) + f_2(y + x) $ (3 M)
	• Obtain the P.I.
	$PI = -y\sin x - \cos x \tag{4 M}$
	• Obtain the general solution (1 M)
	Solve $(D^2 + D'^2 + 2DD' + 2D + 2D' + 1)z = e^{2x+y}$. (8 M) BTL2
	Answer : Page : 4.188 – Dr.M. Chandrasekar
	• Find A.E. and C.F
22	$CF = e^{-x} f_1(y - x) + x e^{-x} f_2(y - x) $ (3 M)
	• Obtain the P.I.
	e^{2x+y}
	$PI = \frac{e^{2x+y}}{16} \tag{4 M}$
	• Obtain the general solution (1 M)
	Solve $(D^2 - D'^2 - 3D + 3D')z = xy + 7$. (8 M) BTL2
	Answer : Page :4.189 – Dr.M. Chandrasekar
	• Find A.E. and C.F.
	$CF = f_1(x+y) + e^{3x} f_2(y-x)$ (3 M)
23	• Obtain the P.I.
	$\frac{-1}{3} \left(\frac{x^2 y}{2} + \frac{xy}{3} + \frac{x^3}{6} + \frac{x^2}{3} + \frac{65x}{9} \right) $ (4 M)
	$\frac{1}{3} \left(\frac{xy}{2} + \frac{xy}{3} + \frac{x}{6} + \frac{x}{3} + \frac{30x}{9} \right) $ (4 M)
	• Obtain the general solution (1 M)
	Solve $(D^2 - DD')z = \sin x \cdot \sin 2y$. (8 M) BTL2
	Answer : Page : 4.145 – Dr.M. Chandrasekar
	• Find A.E. and C.F.
	$CF = f_1(y) + f_2(x+y)$ (3 M)
24	• Obtain the P.I.
24	$PI = \frac{-\cos(x-2y)}{6} - \frac{\cos(x+2y)}{2} $ (4 M)
	Obtain the general solution
	$y = f_1(y) + f_2(x+y) \frac{-\cos(x-2y)}{6} - \frac{\cos(x+2y)}{2} (1 \text{ M})$
L	

	Solve $(D^3 + D^2D' - 4DD'^2 - 4D'^3)z = e^{2x+y} + \cos(2t)$	(x + y) (8 M) BTL	2
	Answer : Page :4.170 – Dr.M. Chandrasekar		
	• Find A.E. and C.F,		
25	$CF = f_1(y+x) + f_2(y-x) + xf_3(y-x)$	(3 M)	
23	• Obtain the P.I.		
	$PI = \frac{e^{2x+y}}{9} - \frac{x\cos(x+y)}{4}$	(4 M)	
	Obtain the general solution	(1 M)	

	UNIT V – FOURIER SERIES SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS
variab	let's conditions – General Fourier series – Half range sine and cosine series - Method of separation of les – Solutions of one dimensional wave equation and one-dimensional heat equation – Steady state solution - dimensional heat equation – Fourier series solutions in Cartesian coordinates.
Q.No.	Part-A
	Write down all possible solutions of one dimensional wave equation. BTL2
	(i) $y(x,t) = (c_1 e^{px} + c_2 e^{-px})(c_3 e^{pat} + c_4 e^{-pat})$
1.	(ii) $y(x, t) = (c_5 \cos px + c_6 \sin px)(c_7 \cos pat + c8 \sin pat)$
	(iii) $y(x,t) = (c_9x + c_{10})(c_{11}t + c_{12})$
	Classify the PDE $4u_{xx} = u_t$. BTL4
2	Given $4u_{xx} - u_t = 0$.
2	Here $A = 4$, $B = 0$, $C = 0$ then $B^2 - 4AC = 0$
	Therefore the given PDE is <i>parabolic</i> .
	Classify the PDE $x^2 u_{xx} + 2xy u_{xy} + (1+y^2)u_{yy} - 2u_x = 0$. BTL3
3	Given $x^2 u_{xx} + 2xy u_{xy} + (1+y^2)u_{yy} - 2u_x = 0$
	Here $A = x^2$, $B = 2xy$, $C = 1 + y^2$ then $B^2 - 4AC = -4x^2 < 0$
	Therefore the given PDE is <i>Elliptic</i> .
	A rod 20cm long with insulated sides has its ends A and B kept at 30°C and 90°C respectively. Find the steady state temperature distribution of the rod. BTL4
	When steady state condition exists the heat flow equation is $u_{xx} = 0$.
	<i>i.e.</i> , $u(x) = ax + b$ (1)
4	The boundary conditions are
	(i) $u(0) = 30$
	(ii) $u(20) = 90$
	Applying (i) and (ii) in (1), we get $a = 3$, $b = 30$
	Therefore the required steady state equation is $u = 3x + 30$.
	What is the basic difference between the solutions of one dimensional wave equation and one
5	dimensional heat equation? BTL2 Solution of the one dimensional wave equation is of periodic in nature. But Solution of the one dimensional
	heat equation is not of periodic in nature.
	Classify the PDE $u_{xx} + 2u_{xy} + u_{yy} = e^{(2x+3y)}$. (Nov/Dec 2018) BTL3
6	Here $A = 1, B = 2, C = 1$
	$B^2 - 4AC = 0$ Then the given PDE is <i>parabolic</i> .
	In the wave equation $u_{tt} = c^2 u_{xx}$, what does c^2 stand for? BTL2
7	$c^{2} = \frac{T}{m} = \frac{Tension}{mass \ per \ unit \ length}$

called two dimensional. State any two laws which are assumed to derive one dimensional heat equation. BTL3	Г	ACADEMIC YEAK : 2019-2020		
State any two laws which are assumed to derive one dimensional heat equation. BTL3(i)The sides of the bar are insulated so that the loss or gain of heat from the sides by conduction or radiation is negligible.(ii)The same amount of heat is applied at all points of the face.Classify the DPE $u_m + xu_m = 0$. BTL1Here $A = 1, B = 0, C = x$ therefore $B^2 - 4AC = -4x$ (i)If $x = 0$ then the given PDE is Parabolic(ii)If $x = 0$ then the given PDE is Plarabolic(iii)If $x > 0$ then the given PDE is Hyperbolic11Define steady state temperature distribution. BTL211If the temperature will not change when time varies is called steady state temperature distribution.12 a^2 = thermal diffusivity.13State Dirichle's conditions for a given function to expand in Fourier series. BTL4 A function $f(x)$ defined in $c \le x \le c + 2t$ can be expanded as an infinite trigonometric series of the form14 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$ provided15(i) $f(x)$ is single-valued and finite in $(c, c+2l)$ 16(ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in $(c, c+2l)$.14 $a_0 = \frac{1}{l} \int_{-c}^{c+2l} f(x) dx$ 14 $a_0 = \frac{1}{l} \int_{-c}^{c+2l} f(x) dx$ 15 $a_1 = \frac{1}{l} \int_{-c}^{c+2l} f(x) dx$ 16 $a_1 = \frac{1}{l} \int_{-c}^{c+2l} f(x) dx$ 17 $a_1 = \frac{1}{l} \int_{-c}^{c+2l} f(x) dx$ 18 $a_1 = \frac{1}{l} \int_{-c}^{c+2l} f(x) dx$ 19 $a_1 = \frac{1}{l} \int_{-c}^{c+2l} f(x) dx$ 10 $a_1 =$	8	When the heat flow is along curves instead of straight lines, the curves lying in parallel planes the flow is		
Here $A = 1, B = 0, C = x$ therefore $B^2 - 4AC = -4x$ (i) If $x = 0$ then the given PDE is <i>Parabolic</i> (ii) If $x < 0$ then the given PDE is <i>Elliptic</i> (iii) If $x > 0$ then the given PDE is <i>Hyperbolic</i> Define steady state temperature distribution . BTL2 If the temperature will not change when time varies is called steady state temperature distribution. IDENTIFY State temperature distribution . BTL2 If the temperature will not change when time varies is called steady state temperature distribution. IDENTIFY State Dirichlet's conditions for a given function to expand in Fourier series . BTL4 A function $f(x)$ defined in $c \le x \le c + 2t$ can be expanded as an infinite trigonometric series of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$ provided (i) $f(x)$ is single-valued and finite in $(c, c + 2l)$ (ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in (c, c + 2l). f(x) has no or finite number of maxima or minima in $(c, c + 2l)$. BTL2 If a function $f(x)$ defined in $(c, c + 2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x) dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	9	State any two laws which are assumed to derive one dimensional heat equation. BTL3(i)The sides of the bar are insulated so that the loss or gain of heat from the sides by conduction or radiation is negligible.		
$\begin{array}{rcl} 10 & (i) & \text{If } x=0 \text{ then the given PDE is Parabolic} \\ (ii) & \text{If } x<0 \text{ then the given PDE is Elliptic} \\ (iii) & \text{If } x<0 \text{ then the given PDE is Elliptic} \\ (iii) & \text{If } x>0 \text{ then the given PDE is Hyperbolic} \\ \hline \\ 11 & \begin{array}{r} \begin{array}{r} \textbf{Define steady state temperature distribution. BTL2 \\ \text{If the temperature will not change when time varies is called steady state temperature distribution.} \\ \hline 12 & \begin{array}{r} \textbf{n one dimensional heat equation } u_t = a^2 u_{xx} \text{ . What does } a^2 \text{ stands for? BTL1} \\ a^2 = \text{thermal diffusivity.} \\ \hline \\ \textbf{State Dirichlet's conditions for a given function to expand in Fourier series. BTL4 \\ A function f(x) defined in c \le x \le c+2t can be expanded as an infinite trigonometric series of the form \frac{a_0}{2} + \sum\limits_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum\limits_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x provided \\ \hline (i) f(x) \text{ is single-valued and finite in } (c, c+2l) \\ (ii) f(x) is continuous or piecewise continuous with finite number of finite discontinuities in (c, c+2l).f(x) has no or finite number of maxima or minima in (c, c+2l). BTL2 If a function f(x) defined in (c, c+2l) can be expanded as the infinite trigonometric series \frac{a_0}{2} + \sum\limits_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum\limits_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x, then a_0 = \frac{1}{l} \int\limits_{c} \frac{c+2l}{f} f(x) dx \\ a_n = \frac{1}{l} \int\limits_{c} \frac{c+2l}{c} f(x) \cos\left(\frac{n\pi}{l}\right) x dx \\ b_n = \frac{1}{l} \int\limits_{c} \frac{c+2l}{c} f(x) \sin\left(\frac{n\pi}{l}\right) x dx \\ b_n = \frac{1}{l} \int\limits_{c} \frac{c+2l}{c} f(x) \sin\left(\frac{n\pi}{l}\right) x dx \end{aligned}$				
11 If the temperature will not change when time varies is called steady state temperature distribution. 12 In one dimensional heat equation $u_i = a^2 u_{xi}$. What does a^2 stands for? BTL1 a^2 = thermal diffusivity. State Dirichlet's conditions for a given function to expand in Fourier series. BTL4 A function $f(x)$ defined in $c \le x \le c + 2l$ can be expanded as an infinite trigonometric series of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$ provided 13 (i) $f(x)$ is single-valued and finite in $(c, c+2l)$ (ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in $(c, c+2l)$. $f(x)$ has no or finite number of maxima or minima in $(c, c+2l)$. State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then 14 $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	10	(i) If $x=0$ then the given PDE is <i>Parabolic</i> (ii) If $x < 0$ then the given PDE is <i>Elliptic</i>		
$\frac{12}{a^2} = \text{thermal diffusivity.}$ State Dirichlet's conditions for a given function to expand in Fourier series. BTL4 A function $f(x)$ defined in $c \le x \le c + 2l$ can be expanded as an infinite trigonometric series of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x \text{ provided}$ 13 (i) $f(x)$ is single-valued and finite in $(c, c+2l)$ (ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in (c, c+2l). f(x) has no or finite number of maxima or minima in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then 14 $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x) dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	11			
$\frac{a^{2} = \text{thermal diffusivity.}}{\text{State Dirichlet's conditions for a given function to expand in Fourier series.} BTL4 A function f(x) defined in c \le x \le c + 2l can be expanded as an infinite trigonometric series of the form\frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_{n} \sin\left(\frac{n\pi}{l}\right)x \text{ provided} (i) f(x) is single-valued and finite in (c, c+2l)(ii) f(x) is continuous or piecewise continuous with finite number of finite discontinuities in(c, c+2l)$. f(x) has no or finite number of maxima or minima in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_{n} \sin\left(\frac{n\pi}{l}\right)x$, then 14 14 14 14 14 14 14 14 14 14	12			
A function $f(x)$ defined in $c \le x \le c + 2i$ can be expanded as an infinite trigonometric series of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x \text{ provided}$ (i) $f(x)$ is single-valued and finite in $(c, c+2l)$ (ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in (c, c+2l). f(x) has no or finite number of maxima or minima in $(c, c+2l)$. State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x) dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	12			
$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x \text{ provided}$ (i) $f(x)$ is single-valued and finite in $(c, c+2l)$ (ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in $(c, c+2l)$. f(x) has no or finite number of maxima or minima in $(c, c+2l)$. State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x) dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$				
(i) $f(x)$ is single-valued and finite in $(c, c+2i)$ (ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in (c, c+2i). f(x) has no or finite number of maxima or minima in $(c, c+2i)$. State Euler's formula for Fourier coefficients of a function defined in $(c, c+2i)$. BTL2 If a function $f(x)$ defined in $(c, c+2i)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then $a_0 = \frac{1}{l} \int_{-c}^{c+2i} f(x) dx$ $a_n = \frac{1}{l} \int_{-c}^{c+2i} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{-c}^{c+2i} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$		$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x \text{ provided}$		
(c, c+2l). $f(x) has no or finite number of maxima or minima in (c, c+2l).$ State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x)dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right)xdx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right)xdx$	13			
f(x) has no or finite number of maxima or minima in (c, c+2l). State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x)dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x)\cos\left(\frac{n\pi}{l}\right)xdx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x)\sin\left(\frac{n\pi}{l}\right)xdx$		(ii) $f(x)$ is continuous or piecewise continuous with finite number of finite discontinuities in		
State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x)dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x)\cos\left(\frac{n\pi}{l}\right)xdx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x)\sin\left(\frac{n\pi}{l}\right)xdx$		(c, c+2l).		
State Euler's formula for Fourier coefficients of a function defined in $(c, c+2l)$. BTL2 If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right)x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right)x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x)dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x)\cos\left(\frac{n\pi}{l}\right)xdx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x)\sin\left(\frac{n\pi}{l}\right)xdx$		f(x) has no or finite number of maxima or minima in $(c, c+2l)$.		
14 trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{l}\right) x + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{l}\right) x$, then $a_0 = \frac{1}{l} \int_{c}^{c+2l} f(x) dx$ $a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$				
14 $a_{0} = \frac{1}{l} \int_{c}^{c+2l} f(x) dx$ $a_{n} = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_{n} = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$		If a function $f(x)$ defined in $(c, c+2l)$ can be expanded as the infinite		
$a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$				
$a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$ $b_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	14	$a_0 = \frac{1}{l} \int_{-\infty}^{-\infty} f(x) dx$		
C		$a_n = \frac{1}{l} \int_{c}^{c+2l} f(x) \cos\left(\frac{n\pi}{l}\right) x dx$		
15 Does $f(x) = \tan x$ possess a Fourier series expansion? BTL5		C		
	15	Does $f(x) = \tan x$ possess a Fourier series expansion? BTL5		

No, $f(x) = \tan x$ does not possess a Fourier expansion. Because $f(x) = \tan x$ has an infinite discontinuity. (ie) Dirichlet's condition is not satisfied. If $x^2 = \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos nx}{n^2}$ in $-\pi < x < \pi$, then find $\sum_{n=1}^{\infty} \frac{1}{n^2}$. BTL5 Given $x^2 = \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$ $x^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{1}{1^{2}} \cos x - \frac{1}{2^{2}} \cos 2x + \frac{1}{3^{2}} \cos 3x + \dots \right]$ The point $x = \pi$ is the point of discontinuity (right extreme point) 16 $\pi^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{1}{1^{2}} \cos \pi - \frac{1}{2^{2}} \cos 2\pi + \frac{1}{3^{2}} \cos 3\pi + \dots \right]$ $\frac{2\pi^2}{3} = 4 \left| \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2} + \dots \right|$ $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ Therefore, $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$ Find the constant term in the Fourier series corresponding to $f(x) = \cos^2 x$ expressed in $(-\pi, \pi)$. BTL6 Given $f(x) = \cos^2 x$ $f(x) = (\cos x)^2$ $f(x) = (\cos(-x))^2 = \cos^2 x = f(x)$ Therefore, f(x) is an even function. The constant term in the Fourier series is $\frac{a_0}{2}$ where 17 $a_0 = \frac{2}{\pi} \int \cos^2 x \, dx$ $=\frac{2}{\pi}\int_{-\infty}^{\pi}\frac{1+\cos 2x}{2}\,dx$ $=\frac{1}{\pi}\left[(x)_{0}^{\pi}+\left(\frac{\sin 2x}{2}\right)_{0}^{\pi}\right]=\frac{1}{\pi}\left[(\pi-0)+\frac{1}{2}(0-0)\right]=\frac{1}{\pi}(\pi)=1$ Therefore, the constant term $\frac{a_0}{2}$ is $\frac{1}{2}$. If $f(x) = x^2 + x$ is expressed as a Fourier series in the interval (-2, 2), to which value this series converges at x = 2? BTL4 18 Fourier series of f(x) converges at x = 2 is $= \frac{f(-2) + f(2)}{2}$

Obtain the Fourier Series to represent the function f(x) = |x|, $-\pi < x < \pi$ and deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2}$ $+\ldots=\frac{\pi^2}{8}.$ (8 M) BTL4 Answer : Page :5.52 – Dr.M. Chandrasekar • Find $a_0 = \pi$, $a_n = \frac{2\lfloor (-1)^n - 1 \rfloor}{n^2 \pi}$ & $b_n = 0$ 3 (6 M) • Obtain f(x). (1 M)• Deduction Part (1 M) Obtain the Fourier Series of $f(x) = x \sin x$ in $(-\pi,\pi)$. Deduce $\frac{1}{1,3} - \frac{1}{3,5} + \frac{1}{5,7} - \dots$ (8 M) BTL2 Answer : Page :5.58 – Dr.M. Chandrasekar • Find $a_0 = 2$, $a_n = \frac{2(-1)^{n+1}}{(n+1)(n-1)}$, $a_1 = -1/2$ & $b_n = 0$ (6 M) 4 • Obtain f(x). (1 M) Deduction Part $(1 \, M)$ Obtain the Fourier Series of $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ and hence deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ (8 M) BTL5 Answer : Page :5.72 – Dr.M. Chandrasekar 5 • Find $a_0 = 0$, $a_n = \frac{8}{n^2 \pi^2} (n \text{ is odd}) \& b_n = 0$ (6 M) • Obtain f(x). (1 M)• Deduction Part (1 M) If $f(x) = \begin{cases} 0, -\pi \le x \le 0 \\ sinx, & 0 \le x \le \pi \end{cases}$, Prove that $f(x) = \frac{1}{\pi} + \frac{1}{2} - \frac{1}{\pi} + \frac{1}{2} - \frac{1}{\pi} - \frac{1}{2\pi} \sum_{n=1}^{\infty} \frac{\cos nx}{4n^2 - 1}$ Hence show that (i) $\frac{1}{1,3} + \frac{1}{3,5} + \frac{1}{5,7} - \dots = \frac{1}{2}$ (ii) $\frac{1}{1,3} - \frac{1}{3,5} + \frac{1}{5,7} - \dots = \frac{\pi - 2}{4}$. (8M)BTL4 Answer : Page :5.64 – Dr.M. Chandrasekar • Find $a_0 = \frac{2}{\pi}$, $a_n = \frac{-\lfloor (-1)^n + 1 \rfloor}{\pi (n^2 - 1)}$, $a_1 = 0$, $b_n = 0$ & $b_1 = \frac{1}{2}$ (6 M) 6 • Obtain f(x). (1 M)• Deduction Part (1 M) Find half range sine series for $f(x) = x(\pi - x)$ in $(0,\pi)$. Deduce $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \dots$ (8M)BTL3 Answer : Page :5.143 – Dr.M. Chandrasekar • Find $b_n = \frac{4\left[1 - (-1)^n\right]}{n^3 - 1}$ 7 (6 M) Obtain f(x). (1 M)

	• Deduction Part : $x = \frac{\pi}{2}$ (1 M)		
	EXAMPLE Find the Fourier series for $f(x) = x + x^2$ in $-\pi < x < \pi$ and find the R.M.S value. (8M)BTL3		
	Answer : Page :5.41 – Dr.M. Chandrasekar		
8	• Find $a_0 = \frac{2\pi^2}{3}$, $a_n = \frac{4(-1)^n}{n^2}$ & $b_n = \frac{2(-1)^{n+1}}{n}$ (6 M)		
	• Obtain $f(x)$. (1 M)		
	• RMS Part (1 M)		
	• RMS Part (1 M) Obtain the Fourier Series of $f(x) = \begin{cases} l-x, & 0 < x \le l \\ 0, & l \le x \le 2l \end{cases}$ and hence deduce $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ (8M)BTL3		
	Answer : Page : 5.85 – Dr.M. Chandrasekar		
9	• Find $a_0 = \frac{l}{2}$, $a_n = \frac{l \left[1 - (-1)^n\right]}{n^2 \pi}$ & $b_n = \frac{l}{n \pi}$ (6 M)		
	• Obtain $f(x)$. (1 M)		
	• Deduction Part: $x = l$ $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$ (1 M)		
	• Deduction 1 at: $x - t$ $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \frac{1}{8}$ (1 M)		
	Obtain the half range sine series of the function $f(x) = \begin{cases} x, & 0 < x \le \frac{l}{2} \\ l - x, & \frac{l}{2} \le x \le l \end{cases}$ (8M) BTL4		
10	Answer : Page :5.153 – Dr.M. Chandrasekar		
	• Find $b_n = \frac{4l}{n^2 \pi^2} \sin\left(\frac{n\pi}{2}\right)$ (7 M)		
	• Obtain $f(x)$ (1 M)		
	Obtain the half range sine series of the function $f(x) = kx(x - l)$ in $0 \le x \le l$. (8M)BTL2 Answer : Page :5.133 – Dr.M. Chandrasekar		
11	• Find $b_n = \frac{4kl^2}{n^3 \pi^3} \Big[1 - (-1)^n \Big]$ (7 M)		
	• Obtain $f(x)$ (1 M)		
	A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = k (lx - x^2)$ from which it is released at time $t = 0$. Find the displacement of any point of the string at a distance x from one end at any time t. (16M)BTL3		
	Answer : Page :5.191 – Dr.M. Chandrasekar		
	General solution (2 M) Find houndary conditions (2 M)		
12	 Find boundary conditions (2 M) Determine the values of unknowns 		
	$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{2}\right) x$		
	where $b_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi}{l}\right) x dx$ (12 M)		

	-3	nts $x = 0$ and $x = l$ is initially in a position given by $y =$	
	$y_0 \sin(\pi x/l)$. If it is released from rest from this position, find the displacement y(x, t). (16M)BTL2		
	Answer : Page :5.196 – Dr.M. Chandrasekar		
	General solution	(2 M)	
10	 Find boundary conditions 	(2 M)	
13	• Determine the values of unknowns		
	$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{2}\right) x$		
	where $b_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	(12 M)	
	e	at both ends. The midpoint of the string is displaced by	
		eleased from rest in this position. Find the displacement	
	of any point of the string at any subsequent t Answer : Page :5.197 – Dr.M. Chandrasekar		
	General solution	(2 M)	
	Find boundary conditions	$(2 \mathrm{M})$ $(2 \mathrm{M})$	
14	Determine the values of unknowns		
	$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{2}\right) x$		
	where $b_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi}{l}\right) x dx$	(12 M)	
	A taut string of length l has its ends $x = 0$,	$x = l$ fixed. The point where $x = \frac{l}{3}$ is drawn aside a	
	small distance <i>h</i> , the displacement $y(x, t)$ satisfies $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$. Determine $y(x, t)$ at any time		
		addition $\frac{\partial t^2}{\partial t^2} = \frac{\partial t^2}{\partial x^2}$. Determine $y(x,t)$ at any time	
15	<i>t.</i> (16M)BTL4 Answer : Page :5.200 – Dr.M. Chandrasekar		
	• General solution	(2 M)	
	Find boundary conditions		
	 Determine the values of unknowns 	(12 M)	
		Ints $x = 0$ and $x = l$ is initially at rest in its equilibrium	
	position. It is set vibrating by giving each point a velocity $\lambda x(l-x)$, find the displacement $y(x,t)$		
	at any distance x and at any time t. (16M)		
16	Answer : Page : 5.123 - Dr.M. Chandrasekan		
	• General solution	(2 M)	
	• Find boundary conditions	(2 M)	
	• Determine the values of unknowns	(12 M)	
	If a string of length <i>l</i> is initially at rest in its	equilibrium position and each of its points is given the	
17	velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = v_0 \sin^3 \frac{\pi x}{l}, 0 < x < l$. Determine the displacement function y(x,t). (16M)BTL5		
17	Answer : Page :5.217 – Dr.M. Chandrasekar		
	General solution	(2 M)	
	Find boundary conditions	(2 M)	

	• Determine the values of unknowns (12 M)			
	• Determine the values of unknowns (12 M)			
	A string is stretched between two fixed points at a distance 2 <i>l</i> apart and the points of the string	are		
10	given initial velocities $v = \begin{cases} \frac{cx}{l} & in \ 0 < x < l \\ \frac{c}{l} (2l-x) & in \ l < x < 2l \end{cases}$, where x being the distance from an end point. F	ind		
18	the displacement of the string at any time. (16M)BTL5			
	Answer : Page :5.224 – Dr.M. Chandrasekar			
	• General solution (2 M)			
	 Find boundary conditions (2 M) 			
	 Determine the values of unknowns (12 M) 			
	A rod of length l has its ends A and B kept at 0°C and 100°C until steady state condition prevai	1. If		
	the temperature at B is suddenly reduced to 0° C and kept so while that of A is maintained, find			
	temperature $u(x,t)$ at a distance x from A at time t. (16M)BTL5	une		
19	Answer : Page :5.255 – Dr.M. Chandrasekar			
	• General solution (2 M)			
	• Find boundary conditions (2 M)			
	• Determine the values of unknowns (12 M)			
	A rod, 30 cm long has its ends A and B kept at 20°C and 80°C respectively, until steady s	tate		
	conditions prevail. The temperature at each end is then suddenly reduced to 0C and kept so. F	ïnd		
	the resulting temperature function $u(x, t)$ taking $x = 0$ at A. (16M)BTL3			
20	Answer : Page :5.239 – Dr.M. Chandrasekar			
	• General solution (2 M)			
	• Find boundary conditions (2 M)			
	• Determine the values of unknowns (12 M)			
	A metal bar 10 cm long with insulated sides, has its ends A and B kept at 20°C and 40°C respectively			
	until steady state conditions prevail. The temperature at A is then suddenly raised to 50°C and			
	the same instant B is lowered to 10° C. Find the subsequent temperature at any point at the ba	r at		
21	any time. (16M)BTL4 Answer : Page : 5.250 – Dr.M. Chandrasekar			
	5			
	 General solution (2 M) Find boundary conditions (2 M) 			
	 Determine the values of unknowns (2 M) 			
	The ends A and B of a rod <i>l cm</i> long have their temperatures kept at 30°C and 80°C, until ste	adv		
	state conditions prevail. The temperature of the end B is suddenly reduced to 60° C and that of f			
	increased to 40°C. Find the temperature distribution in the rod after time t. (16M)BTL4	. 13		
22	Answer : Page : 5.250 – Dr.M. Chandrasekar			
	• General solution (2 M)			
	 Find boundary conditions (2 M) 			
	 Determine the values of unknowns (12 M) 			
	An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and	1		
	one short edge are kept at zero temperature while the other short edge $x = 0$ is kept at temperat			
23	given by C			
	$\begin{array}{c c} U(x,t) = \\ 0 \\ 20 \\ 20 \\ (10-y) for \\ 5 \\ 5 \\ 10. \end{array}$			
	$20 \ (10 - y) for \ 5 \le y \le 10.$			

	Error! Digit expected Find the steady state te	nerature distribution in the plate	(16M)BTI 5
	Error! Digit expected. Find the steady state temperature distribution in the plate. (16M)BTL5 Answer : Page : 5.277 – Dr.M. Chandrasekar		
	General solution	(2 M)	
	 Find boundary conditions 	$(2 \mathrm{M})$	
	 Determine the values of unknowns 	(12 M)	
			long adges and
	An infinitely long rectangular plate with insu		8 8
	one short edge are kept at zero temperature	The the other short edge $y = 0$ is k	ept at
	temperature given by $u = 20x \text{ for } 0 \le x \le 5$		
	$=20(10-x) \text{ for } 5 \le x \le$	10	
24	Find the steady state temperature distributio	n in the plate. (16M) (Nov/Dec 201	8)BTL4
	Answer : Page : 5.271 – Dr.M. Chandrasekar	• • • • • •	
	General solution	(2 M)	
	Find boundary conditions	(2 M)	
	• Determine the values of unknowns	(12 M)	
	A long rectangular plate with insulated surfa	ce <i>l</i> cm wide. If the temperature al	ong one short edge
	is $u(x,0)=k(lx-x^2)$ degrees for $0 < x < l$, while the other two long edges as well as the other short edge		
	are kept at 0°C, find the steady state tempera	ture u(x,y). (16M)BTL4	-
25 Answer : Page : 5.269 – Dr.M. Chandrasekar			
	General solution	(2 M)	
	Find boundary conditions	(2 M)	
	Determine the values of unknowns	(12 M)	

EC8393 FUNDAMENTALS OF DATA STRUCTURES IN C L T P C

3003

OBJECTIVES:

- To learn the features of C
- To learn the linear and non-linear data structures
- To explore the applications of linear and non-linear data structures
- To learn to represent data using graph data structure
- To learn the basic sorting and searching algorithms

UNIT I C PROGRAMMING BASICS

Structure of a C program – compilation and linking processes – Constants, Variables – Data Types– Expressions using operators in C – Managing Input and Output operations – Decision Making and Branching – Looping statements. Arrays – Initialization – Declaration – One dimensional and Two-dimensional arrays. Strings- String operations – String Arrays. Simple programs-sorting-searching – matrix operations.

UNIT II FUNCTIONS, POINTERS, STRUCTURES AND UNIONS

Functions – Pass by value – Pass by reference – Recursion – Pointers - Definition – Initialization –Pointers arithmetic. Structures and unions - definition – Structure within a structure - Union -Programs using structures and Unions – Storage classes, Pre-processor directives.

UNIT III LINEAR DATA STRUCTURES

Arrays and its representations – Stacks and Queues – Linked lists – Linked list-based implementation of Stacks and Queues – Evaluation of Expressions – Linked list based polynomial addition.

UNIT IV NON-LINEAR DATA STRUCTURES

Trees – Binary Trees – Binary tree representation and traversals –Binary Search Trees – Applications of trees. Set representations - Union-Find operations. Graph and its representations – Graph Traversals.

UNIT V SEARCHING AND SORTING ALGORITHMS

Linear Search - Binary Search. Bubble Sort, Insertion sort - Merge sort - Quick sort - Hash tables- Overflow handling.

TEXTBOOKS:

- 1. Pradip Dey and Manas Ghosh, -Programming in C, Second Edition, Oxford University Press, 2011.
- 2. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, —Fundamentals of Data Structures in C, Second Edition, University Press, 2008.

REFERENCES:

- 1. Mark Allen Weiss, —Data Structures and Algorithm Analysis in C, Second Edition, Pearson Education, 1996
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, —Data Structures and Algorithms, Pearson Education, 1983.
- 3. Robert Kruse, C.L.Tondo, Bruce Leung, Shashi Mogalla, Data Structures and Program Design in C, Second Edition, Pearson Education, 2007
- 4. Jean-Paul Tremblay and Paul G. Sorenson, —An Introduction to Data Structures with Applications, Second Edition, Tata McGraw-Hill, 1991.

9

9

9

9

Subject Code: EC8393 Subject Name : FUNDAMENTALS OF DATA STRUCTURE IN C

Year/Semester: II /03 Subject Handler: /Ms.Sonia Jenifer Rayen

UNIT I - C PROGRAMMING BASICS

Structure of a C program – compilation and linking processes – Constants, Variables – Data Types– Expressions using operators in C – Managing Input and Output operations – Decision Making and Branching – Looping statements. Arrays – Initialization – Declaration – One dimensional and Twodimensional arrays. Strings- String operations – String Arrays. Simple programs- sorting-searching – matrix operations.

	PART * A			
1	What are the different data types available in "C"? BTL1(NOV/DEC 2018) There are four basic data types available in "C".			
	Int, float, char , double What are Keywords? BTL1			
2	Keywords are certain reserved words that have standard and pre-defined meaning in "C". These keywords can be used only for their intended purpose.			
3	 What is meant by Enumerated data type. BTL1 Enumerated data is a user defined data type in C language. Enumerated data type variables can only assume values which have been previously declared. Example : enum month { jan = 1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec }; 			
4	Difference between Local and Global variable in C. BTL1 Local These variables only exist inside the specific function that creates them. They are unknown to other functions and to the main program. As such, they are normally implemented using a stack. Local variables cease to exist once the function that created them is completed. They are recreated each time a function is executed or called. Global These variables can be accessed (ie known) by any function comprising the program. They are implemented by associating memory locations with variable names. They do not get recreated if the function is recalled.			
5	 What are Operators? Mention their types in C. BTL1 An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. C language is rich in built-in operators and provides following type of operators: Arithmetic Operators, Relational Operators, Logical Operators, Bitwise Operator, Assignment Operators, Misc Operators 			
6	What is the difference between "=" and "==" operator? Where = is an assignment operator and == is a relational operator.			

	Example:
	• while (i=5) is an infinite loop because it is a non zero value and while (i==5) is true only when i=5.
	When 1=5. What is the difference between ++a and a++?
	++a means do the increment before the operation (pre increment) a++ means do the increment after
	the operation (post increment)
7	Example:
	a=5;
	x=a++; /* assign x=5*/ y=a; /*now y assigns y=6*/ x=++a; /*assigns x=7*/
	What is an Abstract Data Type? (Nov 2014) BTL1
8	An abstract data type (ADT) is a set of operations and mathematical abstractions, which can be
	viewed as how the set of operations is implemented. Objects like lists, sets and graphs, along with
	their operation, can be viewed as abstract data types, just as integers, real numbers and Booleans.
	Mention the advantages of ADT. (May 2014) BTL1
9	Modularity
	Code Reuse
	Easy to change the implementation
	What is the difference between while loop and dowhile loop?
10	In the while loop the condition is first executed. If the condition is true then it executes the body of
10	the loop. When the condition is false it comes of the loop. In the dowhile loop first the statement
	is executed and then the condition is checked. The dowhile loop will execute at least one time
	even though the condition is false at the very first time.
11	List out the operations of the list ADT. (May 2006) BTL1
11	The operations of the list ADT are Insert, Delete, Find, Next, Previous, Make_empty, and Print_list.
12	List out the operations of set ADT? (May 2012) BTL1
12	Union and Find are the two operations on set ADT.
	Give the syntax for the "for" loop statement
	for (Initialize counter; Test condition; Increment / Decrement)
13	
15	
	statements;
	3
	How to initialize an array?
14	
	You can initialize array in C either one by one or using a single statement as follows: double balance[5] =
	{1000.0, 2.0, 3.4, 17.0, 50.0};

	Give the applications of linked list. (May 2012) BTL	.2	
15	 It is used in Polynomial manipulations such as add It is used to implement stack, queue, trees and grap Implement the symbol table in compiler construction 	bhs.	
16	 What are the merits and demerits in array implementation Merits Fast, random access of elements Memory efficient – very less amount of memory in Demerits Insertion and deletion operations are very slow sim Redundant memory space – difficult to estimate the destination of the destin	s required ace the elements should be moved.	
	State the difference between array and linked list. (Nov 2011) BTL4	
	Array	Linked List	
	Size of an array is fixed	Size of a list is dynamic	
	Memory is allocated from stack	Memory is allocated from heap	
17	It is necessary to specify the number of elements during declaration (i.e., during compile time).	It is not necessary to specify the number of elements during declaration (i.e., memory is allocated during run time).	
	It occupies less memory than a linked list for the same number of elements.	It occupies more memory.	
	Inserting new elements at the front is potentially expensive because existing elements need to be shifted over to make room.	Inserting a new element at any position can be carried out easily.	
	List out the advantages and disadvantages of linked list over arrays. (Nov 2011) BTL4 Advantages		
18	 a) It is not necessary to specify the number of elements in a linked list during its declaration b) Linked list can grow and shrink in size depending upon the insertion and deletion that occurs in the list. c) Insertions and deletions at any place in a list can be handled easily and efficiently d) A linked list does not waste any memory space 		
	Disadvantages a) Searching a particular element in a list is difficult and time consuming		
	b) A linked list will use more storage space than an array to store the same number of elements		
	PART *]	В	
1.	Explain the array implementation of a list and per- operations. (13M) BTL3 Answer : Page : 9 to 11 - Sartaj Sahni	form create, insert, delete, find and displa	
	• Definition of array and its operations (3 M) An Array is a data structure which can store a fixed-size sequential collection of elements of the		

	same type.		
	• Create, Insert, Delete, Find And Display algorithm/Routines (2*5=10M)		
	The basic operations supported by an array:		
	• Create – To create a list in the array.		
	• Insertion – Adds an element at the given index.		
	• Deletion – Deletes an element at the given index.		
	• Display – Print all the array elements one by one.		
	• Find – Searches an element using the given index or by the value.		
	Illustrate the algorithms to create the singly linked list and perform all the operations on the		
	created list. (13M) (Dec 2016) BTL2		
	Answer : Page : 11 to 13 - Sartaj Sahni		
	• Definition of Singly Linked List and its operations (3 M)		
	A singly linked list is a list structure in which each node contains a single pointer field that points to		
	the next node in the list, along with a data field.		
2			
2	• Create, Insert, Delete And Display Algorithm /Routines (2.5*4=10M)		
	The basis exercises convised out in a singly linked list include:		
	The basic operations carried out in a singly linked list include:		
	• Create – to create a new list.		
	• Insert – to add new element in the list		
	• Delete – to delete a element in the list		
	• display – to print the elements in the list		
	Write C code for circular linked list with create, insert, delete and display operations using		
	structure pointer. (13M) (May 2015) BTL2		
	Answer : Page : 15 to 17 - Sartaj Sahni		
	• Definitions (3 M)		
	Circular linked list is a linked list where all nodes are connected to form a circle. There is no NULL		
3	at the end. A circular linked list can be a singly circular linked list or doubly circular linked list.		
5	Program		
	The basic operations carried out in a singly linked list include(10 M)		
	• Create – to create a new list.		
	• Insert – to add new element in the list		
	• Delete – to delete a element in the list		
	• display – to print the elements in the list		
	Illustrate the neargony algorithms to implement double light of light and modern 11 (1)		
	Illustrate the necessary algorithms to implement doubly linked list and perform all the appreciate on the appreciated list (12M) (Dec 2016) BTI 2		
	operations on the created list. (13M) (Dec 2016) BTL2		
	Answer : Page : 21 to 26 - Sartaj Sahni		
4	• Definition of doubly Linked List and its operations (3 M)		
-	a doubly linked list is a linked data structure that consists of a set of sequentially linked		
	records called nodes. Each node contains two fields, called links, That are references to the		
	previous and to the next node in the sequence of nodes.		
	• Create, Insert, Delete And Display Algorithm / Routines (2.5*4=10M)		
	A doubly linked list is a list structure in which each node contains two pointer fields along with a		

	data field namely,		
	BLINK – Points to the previous node in the	aliot	
	FLINK – Points to the successive node in t	he list	
	The basic operations carried out in a doubly	v linked list include:	
	• Create – to create a new list.		
	 Insert – to add new element in the Delete – to delete a element in the 		
	• display – to print the elements in the		
		and multiplication operations on Polynomial usin	
5	Answer : Page : 31 to 34 - Sartaj Sahni Definition of Polynomial (3 M) Each node of the list holds the coefficient and exponent for one term. The terms are kept in order from smallest to largest exponent. Each polynomial also maintains a pointer to the most recently		
	accessed node.	phonnar also maintains a pointer to the most recently	
	Addition Operation Program(5M)		
	Multiplication Operation Program(5 M)		
		Part – C	
	Compare the following with suitable example	mple. BTL4	
	• Linked list and array.	(7M)	
	• Singly linked list and doubly linke	ed list. (8M)	
	Answer : Page : 9,35 to 37 - Sartaj Sahni Definitions of Array & Linked List (3M) Array is a data type which is widely implemented as a default type, in almost all the mode		
	programming languages, and is used to stor	V1	
		where we don't know the quantity of data to be stored, for	
	which advanced data structures are required	l, and one such data structure is linked list .	
Linked List vs. Array Comparison (4M)			
1	ARRAY	LINKED LIST	
	Array is a collection of elements of similar data type.	Linked List is an ordered collection of elements of same type, which are connected to each other using pointers.	
	Singly linked list Vs doubly linked list Definition of Singly & Doubly linked list (3M) A singly linked list is a linked list where the node contains some data and a pointer to the next n in the list.		
	A doubly linked list is complex type of linked list where the node contains some data and a point to the next as well as the previous node in the list		
	to the next us wen us the previous houe in th		

Explain about Bubble sort implementation in detail with example. (15M) BTL2
Answer : Page : 37 to 39 - Sartaj Sahni Bubble sort Definition(5 M) Bubble sort is based on the idea of repeatedly comparing pairs of adjacent elements and then swapping their positions if they exist in the wrong order. Algorithm & Example(5+5M) voidbubble_sort(int A[],int n)
{ int temp; for(int k =0; k< n-1; k++) { for(int i =0; i < n-k-1; i++) {
<pre>if(A[i]> A[i+1]) { // here swapping of positions is being done. temp = A[i]; A[i]= A[i+1]; A[i+1]= temp; }</pre>
<pre>} } }</pre>
BINARY SEARCH #include <stdio.h> void binary_search();</stdio.h>
int a[50], n, item, loc, beg, mid, end, i; void main()
{ printf("\nEnter size of an array: "); scanf("%d", &n);
printf("\nEnter elements of an array in sorted form:\n"); for(i=0; i <n; i++)<="" td=""></n;>
scanf("%d", &a[i]); . printf("\nEnter ITEM to be searched: ");
scanf("%d", &item); binary_search(); getch();

```
}
void binary_search()
{
  beg = 0; end
  = n-1;
  mid = (beg + end) / 2;
  while ((beg<=end) && (a[mid]!=item))
  {
     if (item < a[mid])
       end = mid - 1;
     else
        beg = mid + 1;
     mid = (beg + end) / 2;
  }
  if (a[mid] == item)
     printf("\n\nITEM found at location %d", mid+1);
  else
     printf("\n\nITEM doesn't exist");
}
```

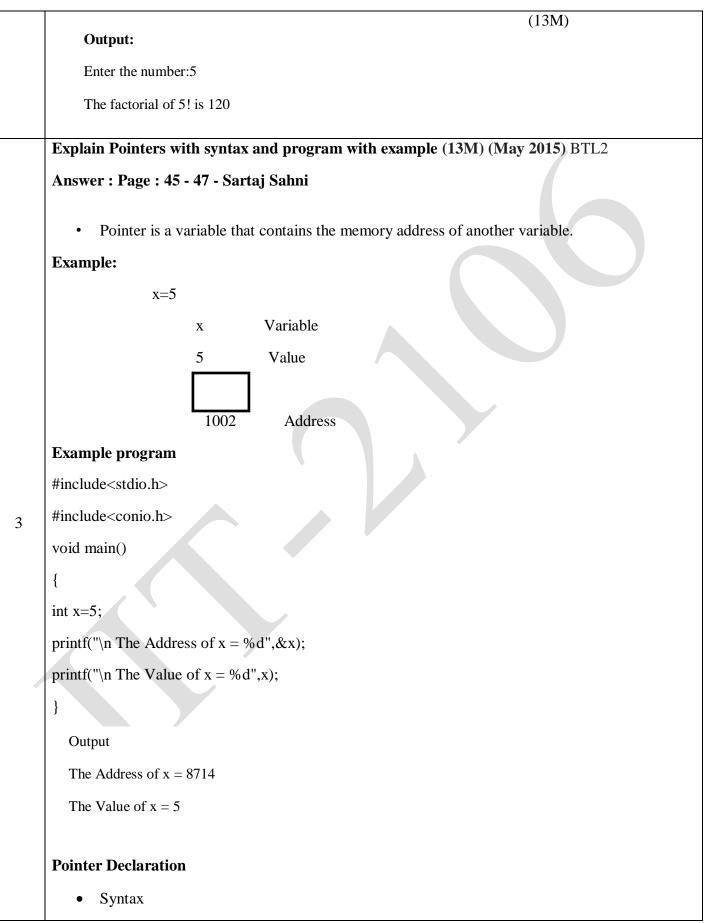
UNIT II - FUNCTIONS, POINTERS, STRUCTURES AND UNIONS Functions - Pass by value - Pass by reference - Recursion - Pointers - Definition - Initialization -Pointers arithmetic. Structures and unions - definition - Structure within a structure - Union -Programs using structures and Unions - Storage classes, Pre-processor directives. PART * A Define Recursion (MAY-2014) BTL1 A function that calls itself is known as recursive function and the process of calling function itself is known as recursion in C programming. Example: void rec() 1 { rec(); void main() rec(); What is a Pointer? How a variable is declared to the pointer? BTL1 Pointer is a variable which holds the address of another variable. С **Pointer declaration:** 2 datatype *variable-name; 2000 5 **Example:** Addr: 1000 2000 int *x, c=5; x=&c; How can you return more than one value from a function? BTL 2 3 A function returns only one value. By using pointer we can return more than one value. If we want the function to return multiple values of same data types, we could return the pointer to array of that data types What is the difference between an array and pointer? BTL4 Arrav Pointer It's a variable that stores address of another It's a data structure that stores elements of same data type in contiguous memory variable locations Array declaration: int a[6]; Pointer declaration: int *a; 4 Memory allocation is static Memory allocation can be dynamic Array can be initialized at definition. Pointers can't be initialized at definition Example int num[] = $\{2, 4, 5\}$ Array elements are accessed using Pointers variables can be accessed using indirection operator(*) subscripts What is the need for function?(JAN-2014) BTL1 5 Modularization: Divide complex problems to simple sub problems Reusability of Code: reuse code rather than developing it from scratch.

JIT-JEPPIAAR/IT/Mrs.Sonia Jenifer Rayen /IIYr/SEM 03/EC8393/FUNDAMENTALS OF DATA STRUCTURE IN C/ UNIT 1-5/QB+Keys/Ver2.0

	Remove Redundancy: reduce usage of same set	of code repeatedly
	What is the necessity of a function prototype?	BTL2
6	A function prototype tells the compiler what kin what kind of return value a function is going to g	nd of arguments a function is looking to receive and give back.
	erroneous type conversions are taking place.	calls to a function are made correctly and that no
How do you use a pointer to a function? BTL3		
	The format of a function pointer goes like this: n #include <stdio.h> int func (int a)</stdio.h>	return_type (*pointer_name)(parameter_list);
7	<pre>printf("\n a = % d\n",a); return 0; }</pre>	
	int main(void) {	
	<pre>int(*fptr)(int); // Function pointer fptr = func; // Assign address to function point func(2);</pre>	er
	return 0;	
	What is the difference between call by value a	and call by reference? (MAY-2014) BTL2
	Call by Value	Call by Reference
8	The value of variables are passed as parameters in the function call	The address of the variables are passed as parameters in the function call
	Changes made in the formal parameters (in called function) will not affect the actual arguments in the calling function	Changes made in the formal parameters (in called function) will affect the actual arguments in the calling function
	What is return statement? BTL2	
9	A return statement returns result of computations performed in called function and tran the program control back to the calling function, assigns returned value to the variable in the side of the calling function. If a function does not return a value, the return type in the fun definition and declaration is specified as void.	
	Two forms:	
	return;	
	return expression;	
10	 What is a structure? BTL2 It's a User defined data type Can hold many data objects of different elements, float elements and character elements 	data types (heterogeneous) may contain the integer

	Collection of variables under single name
	Can conveniently used to represent a record
	Give syntax for structure definition BTL4
	Syntax:
	[storage class specifier][data type] struct [structure name]
	Data _type memeber_name[, member name 2,];
	Data _type memeber_name[, member name 2,];
	}[variable name];
11	Example:
	struct Books
	{
	char title[50];
	char author[50];
	char subject[100];
	int book_id;
	} book;
	Define structure declaration. BTL2
12	 Variables/constants for structure types can be declared at definition or after definition [storage class specifier] struct named_Structure-type identifier name [=initialization list]; Struct key word mandatory
	• A structure must end with a semicolon
	Example: Declare variables Book1,Book2 of type Books
	struct Books Book1;
	struct Books Book2;
	Write the rules for declaring a structure. BTL3
	• A structure must end with a semicolon
	 Struct key word mandatory
	• Each structure member must be terminated.
13	• The structure variable must be accessed with dot(.) operator.
	• Structure decaration list (structure members):
	• Can have char, float, double, int, array[], pointer* other structure types
	• Cannot have void, function type, same structure instance
	• Can have pointer to an instance of itself which is called as self referential structures.
14	Differentiate between array and structure. BTL4

	Array	Structure	
	An array is a collection of variables of same data type	A structure is a collection of variables of different data types	
	An array is a derived data type	It is a user defined data type.	
	The individual data members of an array can be initialized.	The individual data members of the structure cannot be initialized.	
		Structure members can be accessed using dot operator / arrow operator	
	Give rules for initializing structure. BTI	_3	
15	 The individual data members of the The structure variables can be initian The order of data members in a brackets 		
	• We can initialize only some of the		
	• The uninitialized data members ca 0.0 and '\0' for character and string	n be initialized by default with zero(0) for int and float	
	Define Union. BTL2		
16	 It's a user defined data types Same as a structure in definition, declaration, usage and performing operations <u>Difference:</u> 		
	 Keyword union must be used while definition and declaration In Union all members of an object share same memory In Structures each member is allocated separate memory 		
		l structure. (JAN-2014) BTL3 (NOV/DEC 2018)	
	Structure	Union	
	1.The keyword struct is used to define structure	e a 1. The keyword union is used to define a union.	
17	2. Each member within a structure is separate storage area of location.	is assigned 2. Memory allocated is shared by individua members of union.	
	3. The address of each member will b	e different 3. The address is same for all the members	
	4 Altering the value of a member wil other members of the structure.	l not affect 4. Altering the value of any of the member wil alter other member values.	
	5. Individual member can be accessed	at a time 5. Only one member can be accessed at a time.	
	6. Several members of a structure ca at once.	n initialize 6. Only the first member of a union can be initialized.	


	Declare the Structure with an example. BTL2
	struct Books
	{
	char title[50];
18	char author[50];
	char subject[100];
	int book_id;
	} b1,b2;
	Declare the Union with an example. BTL2
	union Books
	{
10	char title[50];
19	char author[50];
	char subject[100];
	int book_id;
	} b1,b2;
	Write any two preprocessor directives in C.(JAN-2014) BTL4
20	Macro Replacement Directive (#define,#undef)
	 Source File Inclusion Directive (#include) Line Directive (#line)
	Error Directive (#error) Cive the rules for defining proprocessor. PTL 2
	 Give the rules for defining preprocessor. BTL2 # pound symbol used before preprocessor directive
21	 # must be first character in source file or first non white space character in a line New line character ends preprocessor directive
	Only single space/tab space allowed between preprocessing tokens
	 Can appear anywhere in program but generally paced in beginning of program The preprocessor cannot have termination with semicolon.
22	What are self referential structures? BTL2 A structure consisting of at least a pointer member pointing to the same structure is known
	as self-referential structure.
	Example:
	struct Books

	{	
	int book_id;	
	struct Books* ptr; //ptr is a pointer pointing to structure type Books	
	};	
	What is meant by Preprocessor Direct	ives? BTL2
23	 Preprocessor is controlled by directives (commands) known as Preprocessor Directives Preprocessor directives are not part of C language It consists of various preprocessing tokens Begins with pound symbol(#) 	
	Difference between Storage class and	data type. BTL3
	Data type	Storage class
24	It refers to the type of information	It refers to the scope and lifetime of the
	represented by a variable	variable within the program
	Example: int, char, float	Example: register, static, extern
	What is the purpose of Unions in C? (I	MAY-2014) BTL2
25	The purpose of union is to save memory by using the same memory region for storing different objects at different times. Unions provide an efficient way of using the same memory location for multi-purpose.	
	What is the use of pre-processor directives? (MAY-2014) BTL2	
26	 It makes programs easier to develop, easier to read, easier to modify C code more transportable between different machine architectures. 	
	What is the use of #define processor? (
27	#define directive is used to define Macros –which are tokens that can be replaced for user defined sequence of characters	
	Syntax:	
	#define macro-name replacement-list	
	PART * B	
Explain function. Write program on pass by value and pass by refere BTL3		bass by value and pass by reference with example(13M)
1.	Answer : Page : 34 - 37 - Sartaj Sahni A function is a sub-program that contain is called.	s one or more statements and it performs some task when it

```
Types of Functions
       Pre defined or Library functions
    •
       User Defined Functions
    •
Parameter Passing Methods in functions
       Call by value
    •
       Call by reference
Call by value
       Actual argument passed to the formal argument.
    •
       Any changes to the formal argument do not affect the actual argument.
#include <stdio.h>
#include<conio.h>
Void swap(int a, int b);
void main()
{
       intx,y;
       printf("\nEnter value of x and y:");
       scanf("%d%d",&x,&y);
       swap(x,y);
       printf("\n\nValues in the Main()-->x=%d,y=%d",x,y);
}
int swap(inta, int b)
{
int c;
c=a;
a=b;
                                                         Output
b=c:
                                                         Enter value of x:5
printf("\nValues in the Fuction -->x=%d,y=%d",a,b);
                                                         Enter value of y:6
}
                                                         Values in the Function -->x=6,y=5
                                                         Values in the Main()-->x=5,y=6
Call by Reference
```

```
When, argument is passed using pointer, address of the memory location is passed instead of value.
     #include <stdio.h>
     void swap(int *a,int *b);
     void main()
     {
            int num1=5,num2=10;
            swap(&num1,&num2); /* address of num1 and num2 is passed to swap function */
            printf("Number1 = %d n",num1);
            printf("Number2 = %d",num2);
     }
     void swap(int *a,int *b) /* pointer a and b points to address of num1 and num2 respectively */
     {
     int temp;
     temp=*a;
       *a=*b:
       *b=temp;
     }
     Output
                                                                 (13M)
          Number1 = 10
          Number 2 = 5
     Explain Recursive Function with program and example (13M) (Dec 2016) BTL2
     Answer : Page : 41 - 43 - Sartaj Sahni
            It is a process of calling the same function itself again and again until some condition is
            satisfied.
2
            Syntax:
                    func1()
                    ł
                           . . . . . . . . . . .
```

```
func1();
                  }
/* Program for recursive function */
#include<stdio.h>
#include<conio.h>
void main()
{
int a;
int rec(int);
printf("\nEnter the number:");
scanf("%d",&a);
printf("The factorial of %d! is %d",a,rec(a));
}
int rec(int x)
{
int f;
if(x==1)
        return(1);
else
        f=x*rec(x-1);
return(f);
   main()
                 <u>rec(3)</u>
                                   rec(2)
                                                     rec(1)
   {
   ... ... ...
                                   f=2*rec(2-1)
   a=3;
                  f=3*rec(3-1);
   <u>rec(3);</u>
                                                     . . . . . . . . . . . .
   ... ... ...
                  . . . . . . . . . . . . . . .
                                                     return(1);
                  return(6);
                                   return(2);
                                                     }
                 }
                                   }
   }
```


data-type *pointer-name; data-type- Type of the data to which the pointer points. pointer-name - Name of the pointer Example: int *a; • **Accessing Variable through Pointer** If a pointer is declared and assigned to a variable, then the variable can be accessed through the pointer. Example: int *a; x=5; a = &x:#include<stdio.h> #include<conio.h> void main() { int x=5; int *a; a=&x; printf("\n The Value of x = % d",x); printf("\n The Address of x = %u",&x); printf("\n The Value of a = % d",a); printf("\n The Value of x = % d",*a); } The Value of x = 5The Address of x = 8758The Value of a = 8758The Value of x = 5Null Pointer A pointer is said to be null pointer if zero is assigned to the pointer. •

	• Example
	int *a,*b;
	a=b=0; (13M)
	Write a C program to find the factorial of a given number (Recursive function) (13M) BTL2
	Answer : Page : 52 - Sartaj Sahni
4	<pre>#include<stdio.h> #include<conio.h> int rec(int); void main() {</conio.h></stdio.h></pre>
	$\begin{cases} f=x^* \operatorname{rec}(x-1); \\ \operatorname{return}(f); \end{cases}$ Output: Enter the number:5 The factorial of 5! is 120
	Part * C
	Write a C program for Matrix multiplication(Two dimensional array) (14M) BTL3
	Answer : Page : 62 - Sartaj Sahni
	<pre>#include <stdio.h></stdio.h></pre>
	#include <conio.h></conio.h>
1	void main()
	{
	int m, n, p, q,i,j,k;
	int first[10][10], second[10][10], multiply[10][10];
	printf("Enter the no of rows and columns of first matrix\n");

```
scanf("%d%d", &m, &n);
 printf("Enter the elements of first matrix\n");
 for (i = 0; i < m; i + +)
  for (j = 0; j < n; j + +)
   scanf("%d", &first[i][j]);
printf("Enter the no of rows and columns of second matrix\n");
scanf("%d%d", &p, &q);
if (n != p)
  printf("Multiplication not possible\n");
 else
 {
  printf("Enter the elements of second matrix\n");
  for (i = 0; i < p; i + +)
   for (j = 0; j < q; j++)
       scanf("%d", &second[i][j]);
  for (i = 0; i < m; i++)
  {
   for (j=0; j < q; j++)
    {
       for (k = 0; k < p; k++)
       {
        multiply[i][j] = multiply[i][j]+ first[i][k]*second[k][j];
    }
  printf("Product of entered matrices:-\n");
  for (i=0; i < m; i++)
   for (j = 0; j < q; j++)
       printf("%d\t", multiply[i][j]);
```

	<pre>printf("\n");</pre>
	}
	getch();
	} (14M)
	Output:
	Enter the no of rows and columns of first matrix
	3 3
	Enter the elements of first matrix
	11111111
	Enter the no of rows and columns of second matrix
	3 3
	Enter the elements of second matrix
	11111111
	Product of entered matrices:
	3 3 3
	3 3 3
	3 3 3
	Write a program for String handling functions in C. (May 2016) (14M) BTL3
	Answer : Page : 80 - Sartaj Sahni
	(a)Program to concatenate two strings [strcat()]
2	#include <stdio.h></stdio.h>
	#include <conio.h></conio.h>
	#include <string.h></string.h>
	void main()
	{
	char str1[10],str2[10];

printf("enter the str1"); gets(str1); printf("enter the str2"); gets(str2); strcat(str1,str2); printf("concatenated string is %s",str1); getch(); } Output: Enter the str1 hai Enter the str2 hello Concatenated string is haihello (b)program to compare two strings [strcmp()] #include<stdio.h> #include<conio.h> #include<string.h> void main() { char str1[10], str2[10]; printf("enter the str1"); gets(str1); printf("enter the str2"); gets(str2); if(strcmp(str1,str2)==0) printf("Strings are equal"); else printf("strings are not equal");

getch(); } Output: Enter the str1 good Enter the str2 good Strings are equal (c) Program to copy two strings [strcpy()] #include<stdio.h> #include<conio.h> #include<string.h> void main() { char str1[10], str2[10]; clrscr(); printf("enter the str1"); gets(str1); printf("enter the str2"); gets(str2); strcpy(str2,str1); printf("copied string str2 is %s",str2); getch(); } Output: Enter the str1 hai Enter the str2 hello Copied string str2 hai

(d)Program to find the length of the string [strlen()]

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

char str1[10];

int len=0;

clrscr();

printf("enter the str1");

gets(str1);

len=strlen(str1);

printf("Length of the string is %d",len);

getch();

}

Output:

Enter the str1hello

Length of the string is 5

(e)Program to reverse a given string. [strrev()]

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

```
{
char a[10];
```

clrscr();

printf("enter the string");

scanf("%s",&a);

strrev(a);

printf("\nThe string is %s\n",a);

getch();	
}	
Output:	
Enter the string : computer	
The reversed string is	
retupmoc	(14M)

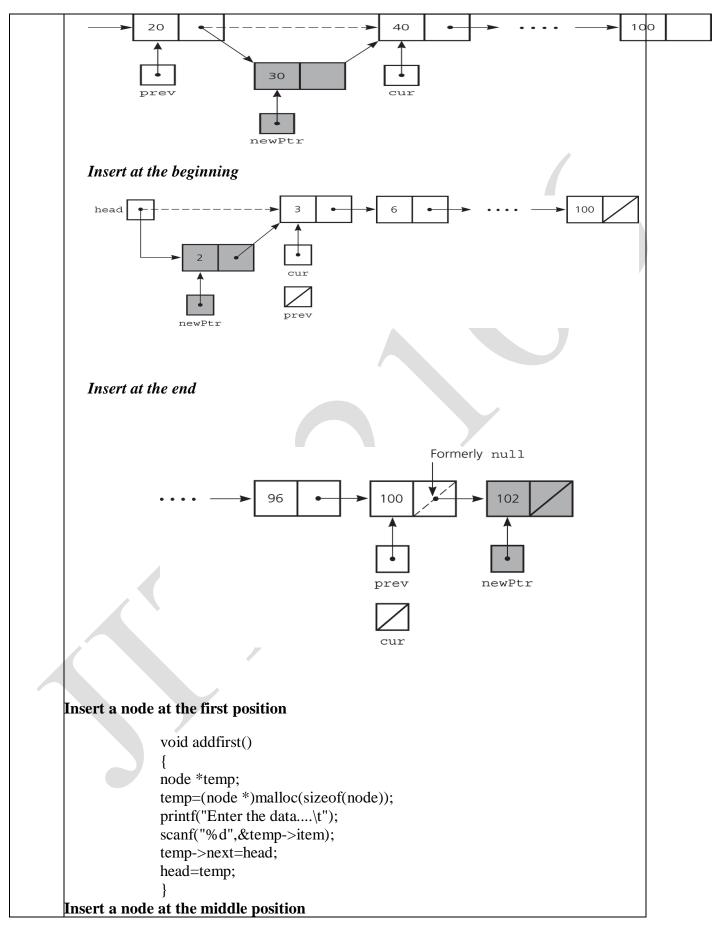
UNIT III LINEAR DATA STRUCTURES

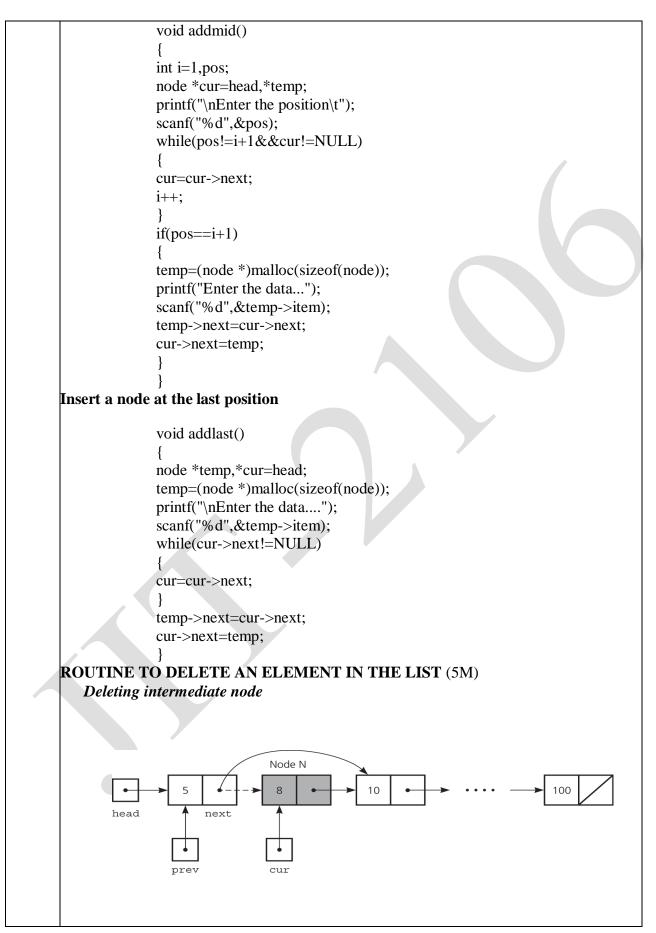
Arrays and its representations – Stacks and Queues – Linked lists – Linked list-based implementation of Stacks and Queues – Evaluation of Expressions – Linked list based polynomial addition.

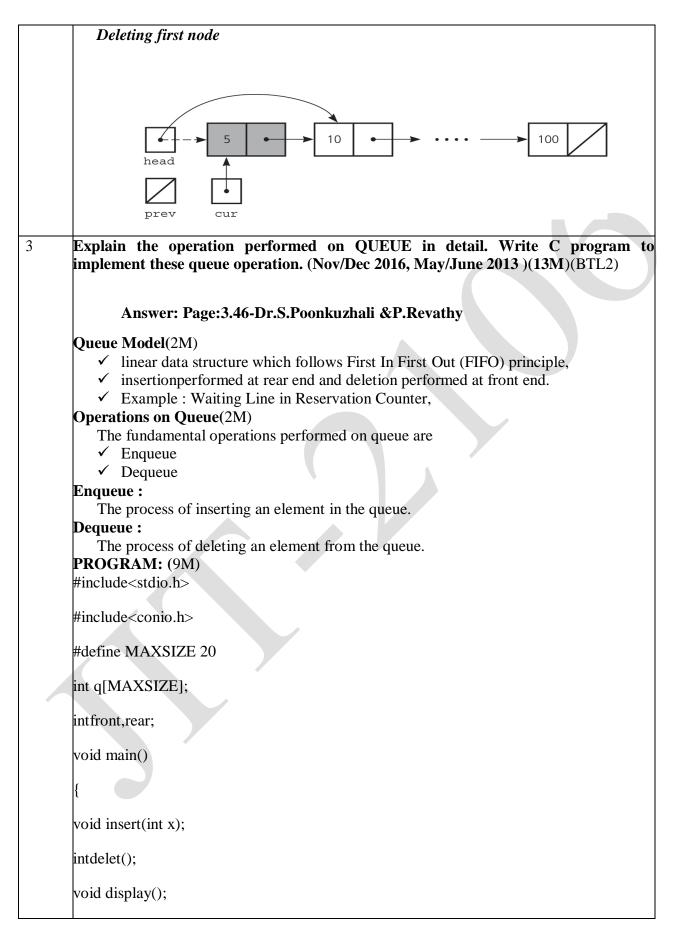
The oprogram of the oprogram of the oprogram of the optical sector	QUESTIONS ne data structure. (Nov/dec-2016) (BTL 1) organization, representation and storage of data is called the data structure. Since all rams operate on data, a data structure plays an important role in deciding the final tion for the problem. ne ADT (Abstract Data Type). What are operations of ADT? What are all not terned in an ADT? (Nov/Dec 2017)(BTL 1) T may be defined as a "class of objects whose logical behavior is defined by a set of es and a set of operations. Abstract data types or ADTs are a mathematical ification of a set of data and the set of operations that can be performed on the data.
The oprogram of the oprogram of the oprogram of the optical sector	organization, representation and storage of data is called the data structure. Since all rams operate on data, a data structure plays an important role in deciding the final tion for the problem. ne ADT (Abstract Data Type). What are operations of ADT? What are all not cerned in an ADT? (Nov/Dec 2017) (BTL 1) T may be defined as a "class of objects whose logical behavior is defined by a set of es and a set of operations. Abstract data types or ADTs are a mathematical
2. Defin conc ADT value speci Unio defin even using	rams operate on data, a data structure plays an important role in deciding the final tion for the problem. ne ADT (Abstract Data Type). What are operations of ADT? What are all not cerned in an ADT? (Nov/Dec 2017) (BTL 1) T may be defined as a "class of objects whose logical behavior is defined by a set of es and a set of operations. Abstract data types or ADTs are a mathematical
conc ADT value speci Unio defin even using	The may be defined as a "class of objects whose logical behavior is defined by a set of es and a set of operations. Abstract data types or ADTs are a mathematical
conc ADT value speci Unio defin even using	The may be defined as a "class of objects whose logical behavior is defined by a set of es and a set of operations. Abstract data types or ADTs are a mathematical
value speci Unio defin even using	es and a set of operations. Abstract data types or ADTs are a mathematical
speci Unio defin even using	
Unio defin even using	ification of a set of data and the set of operations that can be performed on the data.
defin even using	
even using	on, Intersection, size, complement and find are the various operations of ADT. The
using	nition of an ADT is not concerned with the implementation details at all. It may not
	be possible to implement a particular ADT on a particular piece of hardware or
3. Writ	g a particular software system.
	te any two data structures used in Operating System (May/June 2013) (BTL 1)
•	Linear list
•	Tree data structure.
4. Defi	ne linear data structure. (BTL 1)
Line	ear data structures are data structures having a linear relationship between its
	acent elements. A linear data structure traverses the data elements sequentially, in
	ich only one data element can directly be reached. Ex: Arrays, Linked Lists
5. Wha	at is meant by list ADT? (BTL 1)
List o	or sequence is an abstract data type that represents a sequence of values, where the
same	e value may occur more than once. List ADT is a sequential storage structure.
Gene	eral list of the form a_1 , a_2 , a_3 a_n and the size of the list is 'n'. Any element in the list
at the	e position i is defined to be a_i , a_{i+1} the successor of a_i and a_{i-1} is the predecessor of a_i
6. Defi	ne non-linear data structure. (BTL1)
Data	structure which is capable of expressing more complex relationship than that of
physi	ical adjacency is called non-linear data structure. The elements of data structure do
not fe	form a sequence or a linear list Example: Trees, BST (Binary Search Trees) etc.
7. Expl	orm a sequence of a mean not Example. Trees, DST (Dillary Seatern Trees) etc.

	recursive call is		used to store the return address when values of all the parameters essential t
8.	What is the diff	erence between array and linke	ed list?(BTL 1)
	Features	Array	Linked list
	Access	elements can be randomly accessed	Elements are accessed Sequentially
	Memory Structure	Elements are stored in contiguous Memory Locations	Element is stored at any available Location, but the Pointer to that memory location is stored in Previous Node.
	Memory Allocation	Memory Should be allocated at Compile-Time	Linked list memory can be allocated at Run-Time
10.	the list What are the ac	lvantages and disadvantages of	esent in the address field of last node i a singly linked list?(BTL 1)
	 ✓ It does not ✓ Its space ✓ Its size is ✓ It can be ✓ Elements ✓ We can st ✓ It is less of DISADVANTA ✓ It require ✓ Different ✓ If we had elements 	s and Deletions can be done easil of need movement of elements for is not wasted as we can get space not fixed. extended or reduced according to a may or may not be stored in co fore the data in computer. expensive. <u>GE :-</u> s more space as pointers are also amount of time is required to according to the data in computer.	r insertion and deletion. e according to our requirements. o requirements. onsecutive memory available, even the stored with information. cess each element.
11.		sort the elements stored in the line Nov/Dec 2012)(BTL 1)	ear linked list.
•		(Last In First Out) data structu	

	alements in which incertions and deletions are restricted to one and The and from which
	elements in which insertions and deletions are restricted to one end. The end from which
	elements are added and/or removed is referred to as top of the stack. Two operations
	supported are:
	\checkmark Push ()
10	\checkmark Pop()
12.	What is a double linked list? (BTL 1)
	Doubly linked list is an advanced form of a singly linked list, in which traversal can be
	done both forward and backward direction. In this each node contains three fields
	namely,
	namery,
	✓ Previous address field.
	✓ Data field.
	✓ Next address field.
	The previous address field of a node contains address of its previous node. The data field
	stores the information part of the node. The next address field contains the address of the
	next node in the list.
	Give some applications of stack. (Nov/Dec 2011)(BTL 1)
13	
	 ✓ Conversion of infix to postfix
	✓ Expression evaluation
	✓ Backtracking problem
	✓ Towers of Hanoi
	✓ Function calls
	 Evaluation of postfix expression
	✓ Balancing symbols
	✓ Recursion
14	What is a DEQUEUE? (May/June 2013)(BTL 1)
	DeQueue or double ended Queue is a data structure in which elements may be added to
	or deleted from the front or the rear. Like an ordinary queue, a double-ended queue is a
	data structure it supports the following operations: enq_front, enq_back, deq_front,
	deq_back, and empty. Dequeue can be behave like a queue by using only enq_front and
	deq_front, and behaves like a stack by using only enq_front and deq_rear.
	What is the advantages and disadvantages of doubly linked list? (BTL 1)
	ADVANTAGE:-
15	\checkmark We can traverse in both direction i.e from starting to end as well as from end to
	starting.
	\checkmark It is easy to reverse the linked list.
	\checkmark If we are at a node, then we can go at any node. But in linked list, it is not
	possible to reach the previous node.
	DISADVANTACE
	DISADVANTAGE:- ✓ It requires more space per node because extra field is required for pointer to
	The Tequiles more space per node because extra field is required for pointer to AP/IT/Mrs Sonia Janifas Paulas /IIVr/SEM 02/EC9202/EUNDAMENTALS OF DATA STRUCTURE IN C/ UNIT 1.5/OP / Kous/Mar2 0

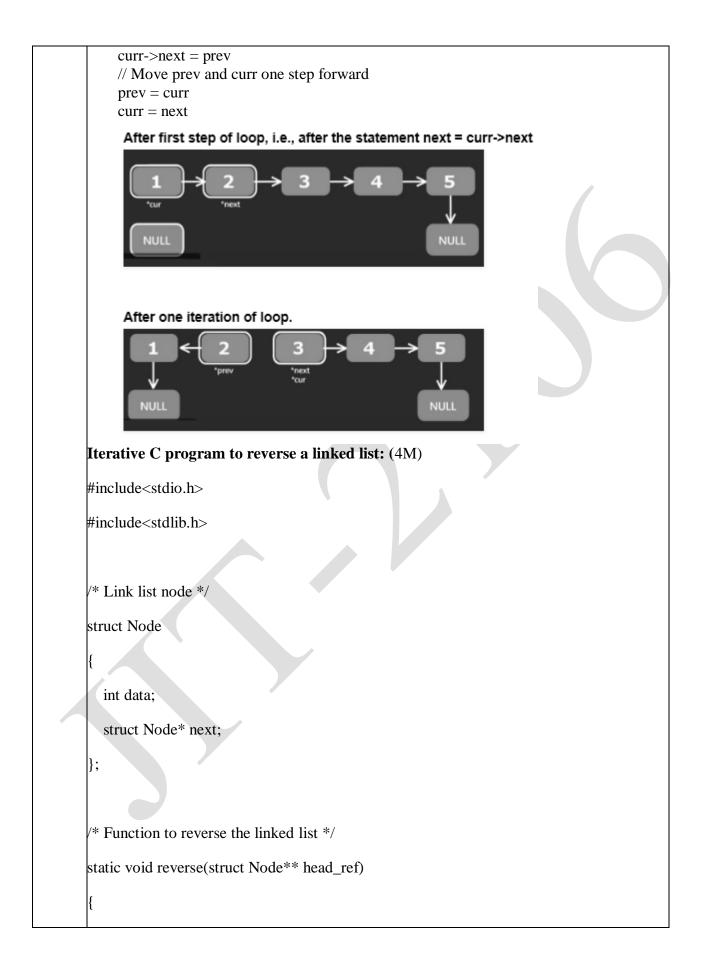

	 previous node. ✓ Insertion and Deletion take more the operations are required than linear 1 	me than linear linked list because more pointer inked list.
	 What is a circular queue?(BTL 1) Circular queue is a linear data structure. It for ✓ In circular queue the last node is con ✓ Circular linked list fallows the First 1 	ollows FIFO principle. mected back to the first node to make a circle. In First Out principle and the elements are deleted at front end of the Both to the beginning of the array.
18.	Output: ((a+b)*c) - d Stack	Queue
10.	Stack Stack Stack is a LIFO (Last In First Out) data structure.	Queue is a FIFO (First In First Out)data structure
	A stack is an ordered collection of elements in which insertions and deletions are restricted to one end. The end from which elements are added and/or removed is referred to as top of the stack.	A Queue is an ordered collection of elements in which insertions are made at one end and deletions are made at the other end.
	Two operations:	Two operations:


	✓ push()	✓ enqueue()
	✓ pop()	✓ dequeue().
	Applications:	When a resource is shared among
		multiple consumers. Examples include
	✓ Conversion of infix to postfix	CPU scheduling, Disk Scheduling.
	✓ Expression evaluation	
	✓ Backtracking problem	When data is transferred asynchronously
	✓ Towers of Hanoi.	(data not necessarily received at same
		rate as sent) between two processes.
		Examples include IO Buffers, pipes, file
		IO, etc.
		10, с.с.
	In stack only one pointer is used: top	In queue two pointers are used: front and
	J J J J J J J J J J J J J J J J J J J	rear
19.	What are the postfix and prefix forms of	the expression A+B*(C-D)/(P-R) ?(Nov/Dec
	2011)(BTL 1)	
	Postfix form: ABCD-*PR-/+	
	Prefix form: +A/*B-CD-PR	
	FIERX IOTHI. +A/ B-CD-FK	
	Give some applications of queue. (Nov/De	ec 2011)(BTL 1)
20.		
	Queues have many applications in compute	er systems. Most computers have only a singly
	processor, so only one user may be served a	at a time. Entries from other users are placed in
	a queue. Each entry gradually advances to	the front of the queue as users receive their
	service. Queues are also used to support pri-	nt spooling.
21	Define Queue. How the data are stored in	1 queue. (Nov/Dec 2014)(B1L 1)
21	Queue is a FIFO (First In First Out) data	structure. A Queue is an ordered collection of
		e end and deletions are made at the other end.
	cientents in when insertions are made at on	te end and deletions are made at the other end.
	The end at which insertions are made is	referred to as the rear end, and the end from
	which deletions are made is referred to as the	
	In queue, the data are inserted only at the	front end of the queue and it is pointed using
	rear pointer. The data's can be accessed sec	quentially. The elements are to be deleted from
	the back end of the queue.	
	List the applications of linked list. (Nov/d	lec-2016)(BTL 1)
22	Linkad lists are used to implement a	tacks quoues graphs ato
	✓ Linked lists are used to implement s	
	✓ Linked lists let you insert elements a In Linked Lists we don't need to know the s	
	What are the advantages of using doubly	linked list over singly linked list?(BTL 1)


23	The advantage of using doubly linked list is, it uses the double set of pointers. One
	pointing to the next item and other pointing to the preceding item. This allows us to traverse the list in either direction.
	Define a heap. How can it be used to represent a priority queue? (Nov/Dec
24	2017)(BTL 1)
	 Heap data structure is a specialized binary tree based data structure. Here, the nodes are arranged based on their value. A heap data structure, sometimes called as Binary Heap. Heap is generally preferred for priority queue implementation because heaps provide better performance compared to arrays or linked list. When a priority queue is implemented using a heap, the worst-case times for both insert and remove Max are logarithmic in the number of values in the priority queue.
25	List the advantages in the linked list implementation of stack. (April / May
23	2017)(BTL 1)
	 ✓ Stack using linked list is a dynamic data structure so it can grow and shrink at runtime by allocating and de-allocating memory. ✓ Insertion and deletion of nodes in stack are really easier. ✓ Size of linked list can increase or decrease at run time so there is no memory wastage. ✓ Data structures such as stack and queues can be easily implemented using linked list. Implementing a stack using a linked list is particularly easy because all accesses to a stack are at the top.
	PART B
1	What are circular queue? Write an ADT for a circular queue to perform insertion and deletion operations. (Nov/Dec 2012)(13M)(BTL 1)
	Answer: Page:3.14-Dr.S.Poonkuzhali &P.Revathy
	Definition: (1M)
	 In circular queue, once the Queue is full the "First" element of the Queue becomes the "Rear" most element, if and only if the "Front" has moved forward. otherwise it will again be a "Queue overflow" state.
	$\begin{bmatrix} 6 \\ 23 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \\ 13$

```
Figure: Circular Queue having
                                      Rear = 5 and Front = 0
ROUTINE TO INSERT AN ELEMENT IN CIRCULAR QUEUE(3M)
   For Insert Operation
       ✓ Insert-Circular-Q(CQueue, Rear, Front, N, Item)
       ✓ Here, CQueue is a circular queue where to store data. Rear represents the
          location in which the data element is to be inserted and Front represents the
          location from which the data element is to be removed.
       \checkmark Here N is the maximum size of CQueue and finally. Item is the new item to be
          added. Initially Rear = 0 and Front = 0.
ALGORITHM
       ✓ If Front = 0 and Rear = 0 then Set Front := 1 and go to step 4.
       ✓ If Front =1 and Rear = N or Front = Rear + 1
       ✓ then Print: "Circular Queue Overflow" and Return.
       ✓ If Rear = N then Set Rear := 1 and go to step 5.
       ✓ Set Rear := Rear + 1
       ✓ Set COueue [Rear] := Item.
       ✓ Return
ROUTINE:(3M)
   CEnqueue (int X)
   {
   if (Front = = (rear + 1) % Maxsize)
   printf("Queue is overflow");
   else
   if (front = = -1)
   front = rear = 0;
   else
   rear = (rear + 1)% Maxsize;
   CQueue [rear] = X;
   }
   ł
To perform the deletion, the position of the Front printer is calculated by the relation
       \checkmark Value = CQueue [Front]
```

Delete-Circular-Q(CQueue, Front, Rear, Item) Here, CQueue is the place where data are stored. Rear represents the location in which the data element is to be inserted and Front represents the location from which the data element is to be removed. Front element is assigned to Item. Initially, Front = 1. If Front = 0 then Print: "Circular Queue Underflow" and Return. /*Delete without Insertio Set Item := CQueue [Front] If Front = N then Set Front = 1 and Return. If Front = Rear then Set Front = 0 and Rear = 0 and Return. Set Front := Front + 1 Return. ROUTINE:(3M) CDequeue () (f front = = -1) printf("Queue is underflow"); else (f front = = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; return (X); return (X); Implement insertion, deletion and search operations in singly linked list. (Nov 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition: (1M) Linked List consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List: Doubly Linked List. Singly Linked List. Moubly Linked List. Yes of Linked List. Yes of Linked List. <th>DOL</th><th>✓ Front = (Front + 1) % maxsize. FINE TO DELETE AN ELEMENT FROM CIRCULAR QUEUE(3M)</th>	DOL	✓ Front = (Front + 1) % maxsize. FINE TO DELETE AN ELEMENT FROM CIRCULAR QUEUE (3M)		
<pre>Here, CQueue is the place where data are stored. Rear represents the location in which data element is to be inserted and Front represents the location from which the data element is to be removed. Front element is assigned to Item. Initially, Front = 1.</pre>				
<pre>data element is to be inserted and Front represents the location from which the data element is to be removed. Front element is assigned to Item. Initially, Front = 1.</pre>		Here, CQueue is the place where data are stored. Rear represents the location in which th		
<pre>element is to be removed. Front element is assigned to Item. Initially, Front = 1.</pre>				
 If Front = 0 then Print: "Circular Queue Underflow" and Return. /*Delete without Insertio Set Item := CQueue [Front] If Front = N then Set Front = 1 and Return. If Front = Rear then Set Front = 0 and Rear = 0 and Return. Set Front := Front + 1 Return. ROUTINE:(3M) CDequeue () f if (front = = -1) printf("Queue is underflow"); else Teront = Rear Front = Rear - 1; else Front = (Front + 1)% maxsize; return (X); return (X); Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insection and deletion operations are easily performed using linked list. Types of Linked List Doubly Linked List Circular Linked List. Singly Linked List is a linked list in which each node contains only one link for pointing to the next node in the list.		•		
<pre></pre>	cicilic			
<pre></pre>				
<pre>✓ Return. ROUTINE:(3M) CDequeue() { if (front = = -1) printf("Queue is underflow"); else { X = CQueue [Front]; if (Front = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked List is a linked list in which each node contains only one link fit pointing to the next node in the list.</pre>				
<pre>ROUTINE:(3M) CDequeue () { if (front == -1) printf("Queue is underflow"); else { X = CQueue [Front]; if (Front == Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) </pre> <pre> Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. </pre> <pre> Implement List Cuinked List(2M) Singly Linked List Circular Linked List. Singly Linked List A singly linked List is a linked list in which each node contains only one link fin pointing to the next node in the list. </pre>				
CDequeue () { if (front = = -1) printf("Queue is underflow"); else { X = CQueue [Front]; if (Front = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List Doubly Linked List Circular Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link flap	POU			
<pre>{ if (front = = -1) printf("Queue is underflow"); else { X = CQueue [Front]; if (Front = = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List ✓ Singly Linked List ✓ Circular Linked List. Singly Linked List ✓ Circular Linked List is a linked list in which each node contains only one link further pointing to the next node in the list. ✓ A singly linked list is a linked list in which each node contains only one link further pointing to the next node in the list.</pre>				
<pre>printf("Queue is underflow"); else { X = CQueue [Front]; if (Front == Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list.</pre>		Jequeue ()		
<pre>printf("Queue is underflow"); else { X = CQueue [Front]; if (Front == Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List. Singly Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list.</pre>	۱ if	(front 1)		
<pre>else { X = CQueue [Front]; if (Front = = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. </pre>				
<pre>{ X = CQueue [Front]; if (Front = = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Oubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. </pre>	-			
<pre>if (Front = = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list.</pre>	er	le la		
<pre>if (Front = = Rear) Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list.</pre>		- COnone [Erect]		
<pre>Front = Rear = -1; else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) </pre> <pre> Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL.</pre> <pre> // Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) // Singly Linked List // Doubly Linked List. Singly Linked List // A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list.</pre>				
<pre>else Front = (Front + 1)% maxsize; } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) </pre> <pre> Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. </pre> Linked List consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Linked List(2M) Singly Linked List Circular Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 		· · · · · · · · · · · · · · · · · · ·		
Front = (Front + 1)% maxsize; return (X); Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Oubly Linked List. Singly Linked List. ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list.				
 } return (X); } Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) Singly Linked List Circular Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 				
 Jimplement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) Singly Linked List Circular Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 		Sint = (Front + 1)% maxsize;		
} Implement insertion, deletion and search operations in singly linked list. (Nov. 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Oubly Linked List. Singly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 	}			
 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) Singly Linked List Oubly Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 	re			
 2016, (Nov/Dec 2015)(13M)(BTL 6) Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) Singly Linked List Oubly Linked List. Singly Linked List. Singly Linked List. ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 	}			
 Answer: Page:3.4-Dr.S.Poonkuzhali &P.Revathy Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 				
 Definition:(1M) ✓ Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 	2010,			
 Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) Singly Linked List Doubly Linked List Circular Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 		Answer: rage: 5.4-Dr.5.roonkuznan &r.Kevatny		
 Linked list consists of series of nodes. Each node contains the element and a pointer to its successor node. The pointer of the last node points to NULL. Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) Singly Linked List Doubly Linked List Circular Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 	Defin	tion:(1M)		
 ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 				
 ✓ Insertion and deletion operations are easily performed using linked list. Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link for pointing to the next node in the list. 		pointer to its successor node. The pointer of the last node points to NULL.		
 Types of Linked List(2M) ✓ Singly Linked List ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link fier pointing to the next node in the list. 	 ✓ 			
 Singly Linked List Doubly Linked List Circular Linked List. Singly Linked List A singly linked list is a linked list in which each node contains only one link fit pointing to the next node in the list. 	Type			
 ✓ Doubly Linked List ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link fier pointing to the next node in the list. 	• -			
 ✓ Circular Linked List. Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link fix pointing to the next node in the list. 				
 Singly Linked List ✓ A singly linked list is a linked list in which each node contains only one link fid pointing to the next node in the list. 	✓			
 ✓ A singly linked list is a linked list in which each node contains only one link fie pointing to the next node in the list. 	Singl			
pointing to the next node in the list.	~~~ <u>~</u>			
	- ✓			
	✓	pointing to the next house in the list.		
Insert at intermediate position		FINE TO INSERT AN ELEMENT IN THE LIST(5M)		



intopt,x;
front=rear=-1;
clrscr();
do
{
printf("\n1.insert\n2.delete\n3.display\n4.exit");
<pre>printf("\nenter the option:");</pre>
scanf("%d",&opt);
switch(opt)
{
case 1:
{
printf("\ninsert the value in queue:");
scanf("%d",&x);
insert(x);
}
break;
case 2:
Ę
x=delet();
printf("\ndeleted element in queue=%d",x);
}
break;
case 3:
{
<pre>printf("\nthe element in queue are=");</pre>

display();
}
break;
case 4:
break;
default:
printf("\nenter the correct option=");
break;
}
}
while(opt!=4);
getch();
}
void insert(int x)
{
if(rear==MAXSIZE-1)
printf("\nqueue is full");
else
{
rear++;
q[rear]=x;
if(front==-1)
front=0;
}
}
intdelet(int x)

{
x=q[front];
if(front==rear)
front=rear=-1;
else
front++;
return(x);
}
void display()
{
int i;
if(front==-1)
<pre>printf("\nqueue is empty");</pre>
else
{
for(i=front;i<=rear;i++)
{
printf("%d\n",q[i]);
Design an algorithm to reverse the linked list. Trace it with an example. (Nov/Dec 2017)(7M)(BTL6) Answer: Page:3.3-Dr.S.Poonkuzhali &P.Revathy
To Reverse The Linked List (1M)
 Initialize three pointers prev as NULL, curr as head and next as NULL. Iterate trough the linked list. In loop, do following.
ROUTINE:(2M)
<pre>// Before changing next of current, // store next node</pre>
next = curr->next // This is where actual reversing happens


```
struct Node* prev = NULL;
  struct Node* current = *head ref;
  struct Node* next = NULL:
  while (current != NULL)
  {
    next = current->next;
    current->next = prev;
    prev = current;
    current = next;
  }
  *head_ref = prev;
ii. Define an efficient representation of two stacks in a given area of memory and
explain. (Nov/Dec 2017)(6M)(BTL 2)
                                                     #include <stdio.h>
 #define SIZE 10
 intar[SIZE];
 int top1 = -1;
 int top2 = SIZE;
 //Functions to push data(1M)
 void push stack1 (int data)
 {
  if (top1 < top2 - 1)
  ł
 ar[++top1] = data;
  }
  else
   {
 printf ("Stack Full! Cannot Push\n");
  }
 }
 void push_stack2 (int data)
 {
  if (top1 < top2 - 1)
   {
 ar[--top2] = data;
   }
  else
```

JIT-JEPPIAAR/IT/Mrs.Sonia Jenifer Rayen /IIYr/SEM 03/EC8393/FUNDAMENTALS OF DATA STRUCTURE IN C/ UNIT 1-5/QB+Keys/Ver2.0

```
printf ("Stack Full! Cannot Push\n");
 }
}
//Functions to pop data (3M)
void pop_stack1 ()
{
 if (top1 \ge 0)
 ł
intpopped_value = ar[top1--];
printf ("%d is being popped from Stack 1\n",popped_value);
 }
 else
printf ("Stack Empty! Cannot Pop\n");
 }
}
void pop_stack2 ()
ł
 if (top2 < SIZE)
 {
intpopped_value = ar[top2++];
printf ("%d is being popped from Stack 2\n",popped_value);
 }
 else
 {
printf ("Stack Empty! Cannot Pop\n");
 }
}
//Functions to Print Stack 1 and Stack 2(3M)
void print_stack1 ()
{
int i;
 for (i = top1; i \ge 0; --i)
printf ("%d ", ar[i]);
 }
printf ("n");
ł
void print_stack2 ()
{
int i;
 for (i = top2; i < SIZE; ++i)
 {
printf ("%d ", ar[i]);
 }
printf ("\n");
```

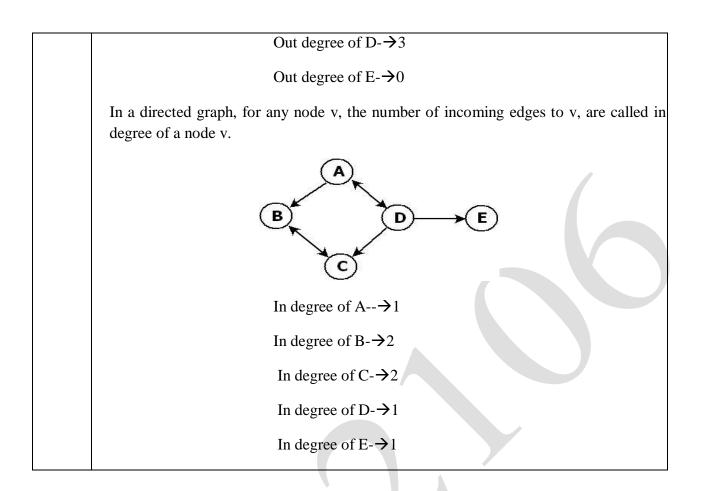
JIT-JEPPIAAR/IT/Mrs.Sonia Jenifer Rayen /IIYr/SEM 03/EC8393/FUNDAMENTALS OF DATA STRUCTURE IN C/ UNIT 1-5/QB+Keys/Ver2.0 2-43

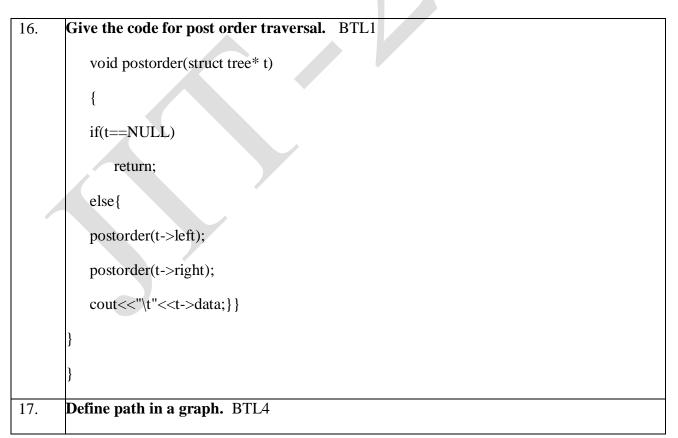
int main()
intar[SIZE];
int i;
intnum_of_ele;
printf ("We can push a total of 10 values\n");
//Number of elements pushed in stack 1 is 6 //Number of elements pushed in stack 2 is 4
for $(i = 1; i \le 6; ++i)$
push_stack1 (i);
printf ("Value Pushed in Stack 1 is %d\n", i);
for $(i = 1; i \le 4; ++i)$
{
push_stack2 (i);
<pre>printf ("Value Pushed in Stack 2 is %d\n", i); }</pre>
//Print Both Stacks
<pre>print_stack1 ();</pre>
print_stack2 ();
//Pushing on Stack Full
printf ("Pushing Value in Stack 1 is %d\n", 11);
push_stack1 (11);
//Popping All Elements From Stack 1
$num_of_ele = top1 + 1;$
while (num_of_ele)
{ pop_stack1 ();
num_of_ele;
}
//Trying to Pop From Empty Stack
pop_stack1 ();
return 0;
}
Explain linear linked implementation of stack and is applications. (Nov/Dec 2017, April/May 2015)(13M) (PTL 3)
April/May 2015)(13M) (BTL 3) Answer: Page:3.10-Dr.S.Poonkuzhali &P.Revathy

Stack Model (3M) A stack is a linear data structure which follows Last In First Out (LIFO) principle, in which both insertion and deletion occur at only one end of the list called the Top. Example : - Pile of coins., a stack of trays in cafeteria. **Operations On Stack** The fundamental operations performed on a stack are ✓ Push ✓ Pop PUSH: \checkmark The process of inserting a new element to the top of the stack. For every push operation the top is incremented by 1. POP: \checkmark The process of deleting an element from the top of stack is called pop operation. After every pop operation the top pointer is decremented by 1. EXCEPTIONAL CONDITIONS ✓ OverFlow Attempt to insert an element when the stack is full is said to be overflow. ✓ UnderFlow Attempt to delete an element, when the stack is empty is said to be underflow. **Implementation of Stack** Stack can be implemented using arrays and pointers. LINKED LIST IMPLEMENTATION OF STACK(5M) \checkmark Push operation is performed by inserting an element at the front of the list. \checkmark Pop operation is performed by deleting at the front of the list. \checkmark Top operation returns the element at the front of the list. #include<stdio.h> #include<stdlib.h> typedefstruct node int data: struct node*link: }node; node *top; Void push(int x) node*t; t=(node*)malloc(sizeof(node)); t->data=x; t->link=NULL: if(top==NULL) top=t; else t->link=top; top=t; printf("\n");

```
printf("\n the element is pushed n");
int pop()
node*t;
int x;
if (top==NULL)
printf("\n");
printf("stack empty \n");
return(-1);
else
x=top->data;
t=top;
top=top->link;
free(t);
return(x);
} }
void display()
node*curr;
curr=top;
while(curr->link!=NULL)
printf("\n\%d",curr->data);
curr=curr->link;
printf("\n %d",curr->data);
APPLICATIONS OF STACK(5M)
   Some of the applications of stack are :
   ✓ Evaluating arithmetic expression
   \checkmark Balancing the symbols
   ✓ Towers of Hannoi
   ✓ Function Calls.
   ✓ 8 Queen Problem.
```

UNIT IV NON- LINEAR DATA STRUCTURES


Trees – Binary Trees – Binary tree representation and traversals –Binary Search Trees – Applications of trees. Set representations - Union-Find operations. Graph and its representations – Graph Traversals


	PART*A
Q.NO	QUESTIONS
1.	Define tree. BTL1 A tree is an abstract data type (ADT) or data structure which represents hierarchical relationship between individual data items, with a root value and sub trees of children, represented as a set of linked nodes. Tree is a non-linear data structure.
2.	Define height or depth of a tree. BTL1
	The depth of a node is the number of edges from the node to the tree's root node. A root node will have a depth of 0. The height of a node is the number of edges on the <i>longest path</i> from the node to a leaf. A leaf node will have a height of 0.
3.	Define Binary tree. What are the two ways of representing binary tree?(Nov/Dec-2016) BTL1
	Binary tree is a tree data structure in which each node has at most two children, which are referred to as the left child and the right child. A binary tree is a finite set of nodes which is either empty or consists of a root and two disjoint binary trees called the left sub tree and the right sub tree. The two representations are,
	 ✓ Sequential representation ✓ Linked representation
4.	Define a full binary tree. State some properties of a binary tree. BTL4(NOV/DEC 2018)
	A full binary tree is a binary tree in which all the leaves are on the same level and every non-leaf node has exactly two children. A full binary tree of a given height h has $2h - 1$ nodes. The properties of a binary tree are as follows
	 A binary tree of n elements has n-1 edges Binary tree of height h has at least h and at most 2h - 1 elements. The maximum number of nodes on level n of a binary tree is 2n-1, where n>=1.
5.	Define Traversal. Give the types of traversal. BTL4
	One of the most important operations performed on a binary tree is its traversal. Traversing a binary tree means moving through all the nodes in the binary tree, visiting each node in the tree exactly once.
	There are three different traversal of binary tree.

	✓ In order traversal
	✓ Post order traversal
	✓ Pre order traversal
6.	Give the code for pre order traversal.(Nov/Dec 2011) BTL5 void preorder(struct tree* t){
	if (t==NULL)
	return;
	else{
	cout<<"\t"< <t->data;</t->
	preorder(t->left);
	preorder(t->right);
	}
7.	How to perform union operation? (Nov/Dec 2014) BTL1
	If a & b are in two different equivalence sets, then Union (a b) should merge those two sets into one Union (a,b) should merge those two sets into one Otherwise, no change.
	Union by height: Making the shallow tree a sub tree of the deeper tree.
	Union by size: Making the smaller tree a sub tree of the larger.
8.	What are the applications of binary tree? (Nov/Dec 2012) BTL2
	Binary tree is used in data processing.
	✓ File index schemes
	 ✓ Hierarchical database management system
9.	Define equivalence relation. (Nov/Dec 2012) BTL4
	Equivalence relation is the relation that holds between two elements if and only if they are members of the same cell within a set that has been partitioned into cells such that every element of the set is a member of one and only one cell of the partition. The intersection of any two different cells is empty; the union of all the cells equals the original set. These cells are formally called equivalence classes.
	Equivalence relation R is a relation that satisfies the following properties
	Reflexive- a R a for all a belongs to S
	Symmetric-a R b implies b R a

Tran	sitive- a R b & b R c implies a	R c		
10.What is a graph? List the two ways to represent a graph. What are the ways to represent graph? (NOV/DEC 2014)(APRIL/MAY 2016) (APR 2017) BTL2				
-		-	s less relationship between its adjacent ween the adjacent elements in case of	
-	. The set E is set of pair of v		here V is a set of vertices and E is a set each is a pair (v,w) where v,w is an	
Two	ways of representing a graph a	ire:		
✓ A	djacency matrix djacency list r the graph below: Adjace	ency matrix	c representation is	
		0 1 1 0 1 1	1 1	
Adjacer	G1 cy list representation is $3 \rightarrow 1 \rightarrow 2$ $2 \rightarrow 3 \rightarrow 0$ $1 \rightarrow 3 \rightarrow 0$ $1 \rightarrow 3 \rightarrow 0$ $1 \rightarrow 2$			
		-	e binary tree if d is the depth? How	
The r	ees are possible with 3 nodes? naximum number of nodes in a	binary tree	of depth k is $2k-1$, $k \ge 1$.	
If there are n nodes, there exist 2n-n different trees. (2*3)-3=3 trees12.Differentiate between trees and graphs? (Nov/Dec 2014) BTL3				
Featu	res Trees		Graph	

	I		
	Path	Tree is special form of graph	In graph there can be more than
		i.e. minimally connected	one path i.e. graph can have uni-
		graph and having only one path	directional or bi-directional paths
		between any two vertices.	(edges) between nodes.
	Model	Tree is a hierarchical model.	Graph is a network model.
	Applicatio	Tree applications: sorting and	Graph applications : Coloring of
	ns	searching like Tree Traversal &	maps, in OR (PERT & CPM),
		Binary Search.	algorithms, Graph coloring, job
			scheduling, etc.
	Write short r	notes on connected components? (N	Nov/Dec 2014) BTL1
13			
-	A connected of	component of an undirected graph is	a maximal connected sub graph of the
	graph. Every	vertex of the graph lies in a connect	cted component that consists of all the
	vertices that c	an be reached from that vertex, tog	ether with all the edges that join those
	vertices. If an	undirected graph is connected, there	is only one connected component.
		4	
	Define e weie	htad graph DTI 4	
	Denne a weig	hted graph. BTL4	
14	A graph is sai	d to be weighted graph if every edg	e in the graph is assigned some weight
11	01		e that may be representing the distance
		ertices or the weights of the edges al	
	Define out de	gree and outdegree of a Graph.(N	Joy/Dec 2012) DTL 4
			f outgoing edges from v, are called out
	degree of a no		i ourgoing ougos nom v, are caned out
15			
		A	
		B D	
			\rightarrow (E)
		(c)	
		0	
		Out degree of A $\rightarrow 2$	
		Out degree of $B \rightarrow 1$	
		Out degree of C- \rightarrow 1	

	The path in a graph is the route taken to reach terminal node from a starting node. A path in a graph is a sequence of vertices such that from each of its vertices there is an edge to the next vertex in the sequence. A path in a diagram in which the edges are distinct is called a simple path.
18.	What is an acyclic graph? BTL2
	A path which originates and ends in the same node is called a cycle or circuit. A simple diagram which does not have any cycles is called an acyclic graph. An acyclic graph does not contain any cycles. Trees are connected acyclic undirected graphs. Directed acyclic graphs are called DAGs.
19.	What is a strongly connected graph and weakly connected graph? BTL2 A directed graph is said to be a strongly connected graph if for every pair of distinct vertices there exists a directed path from every vertex to every other vertex. It is also called so Complete Graph. A directed graph is said to be a weakly connected graph if any vertex doesn't have a directed path to any other vertices. The nodes in a weakly connected digraph therefore must all have either out degree or in degreeof at least 1.
20.	List out the applications of depth first search. (APRIL/MAY 2016) (Nov/Dec 2017) BTL4
	 ✓ Detecting cycle in a graph ✓ Path Finding ✓ Topological Sorting ✓ To test if a graph is bipartite
21	What is a spanning tree? Name two algorithms to find minimum spanning tree. BTL2
21	A spanning tree of a graph is just a sub graph that contains all the vertices and is a tree. A graph may have many spanning trees. Spanning tree of the graph is a connected sub graph in which there are no cycles. The two algorithms are Kruskal's algorithm, Prim's algorithm
	Define articulation point in a graph. (Nov/Dec 2012) BTL4
22	The articulation point is the point at which the removal of the vertex will split the graph. Articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components.
	Articulation points are 0 and 3
23	Give the code for in order traversal. BTL1
T-IFPP	IAAR/IT/Mrs.Sonia Jenifer Rayen /IIYr/SEM 03/EC8393/FUNDAMENTALS OF DATA STRUCTURE IN C/ UNIT 1-5/QB+Keys/Ver2.0

	void inorder(tree* t)
	{
	if(t!=NULL)
	{
	inorder(t->left);
	cout<<"\t"< <t->data;</t->
	inorder(t->right);
	}}
	List the applications of Depth First Traversal. BTL1
24	
	 ✓ Detecting cycle in a graph ✓ For an unweighted graph, DFS traversal of the graph produces the minimum
	spanning tree and all pair shortest path tree.
	\checkmark For finding path in a graph
	✓ For topological sorting
	✓ For bi-partite graph
	✓ For finding strongly connected component of graph
25	Draw the binary search tree for the following inputs: 70,15,29,33,44,12,79 (Nov/Dec
23	2017) BTL1
	PART B
1	Explain the various tree traversal methods with algorithm and predict a binary tree with Preorder: ABCDEFGHI and Inorder: BCAEDGHF.(13M)(April/May 2015)(BTL
	2) Answer: Page:3.10-Dr.S.Poonkuzhali &P.Revathy
	Routine and Algorithm :
	pre order traversal:(3M)
	Pretrav (p)

NODEPTR P;

```
if (P!=NULL)
```

Printf ("%d\n",P->info);

Pretrav (P->left);

Pretrav (P->right);

```
}
```

}

{

{

post order traversal:(3M)

posttrav(p)

NODEPTR P;

```
{
```

if(P!=NULL)

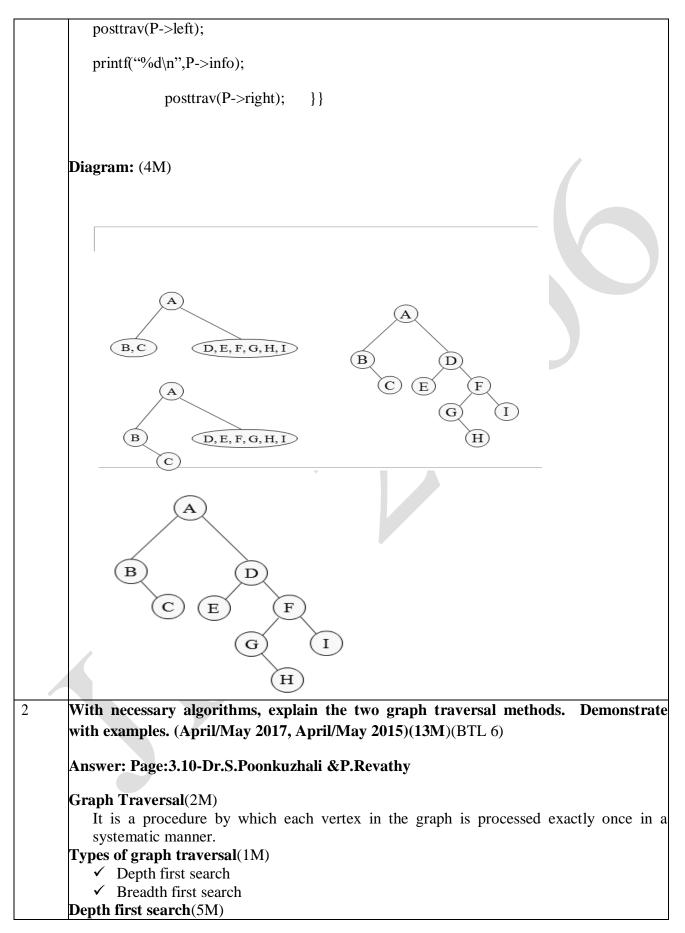
```
{
```

posttrav(P->left);

posttrav(P->right);

printf("%d\n",P->info);

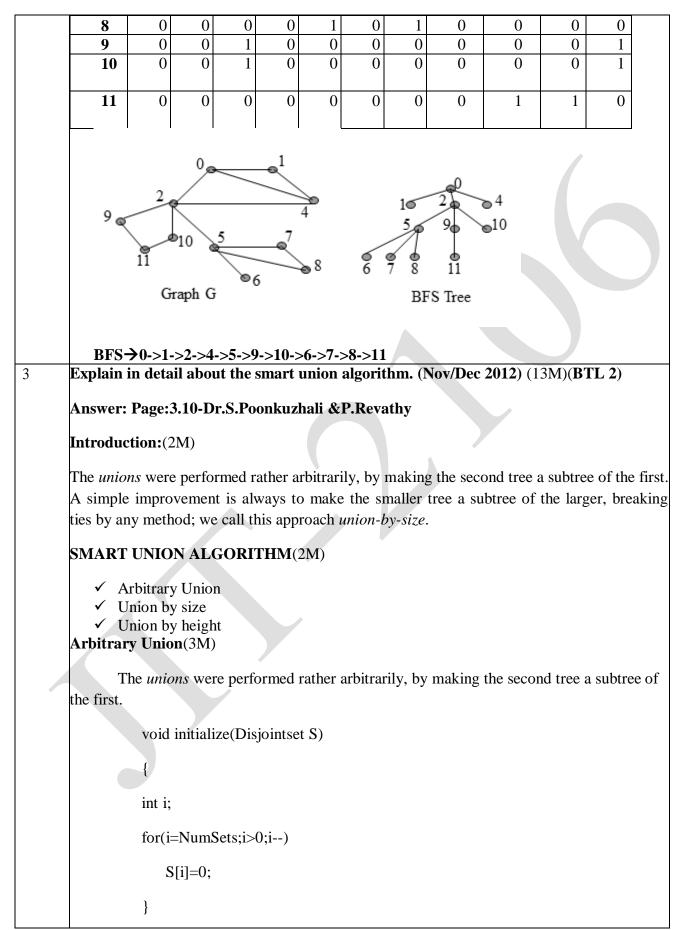
In order traversal:(3M)

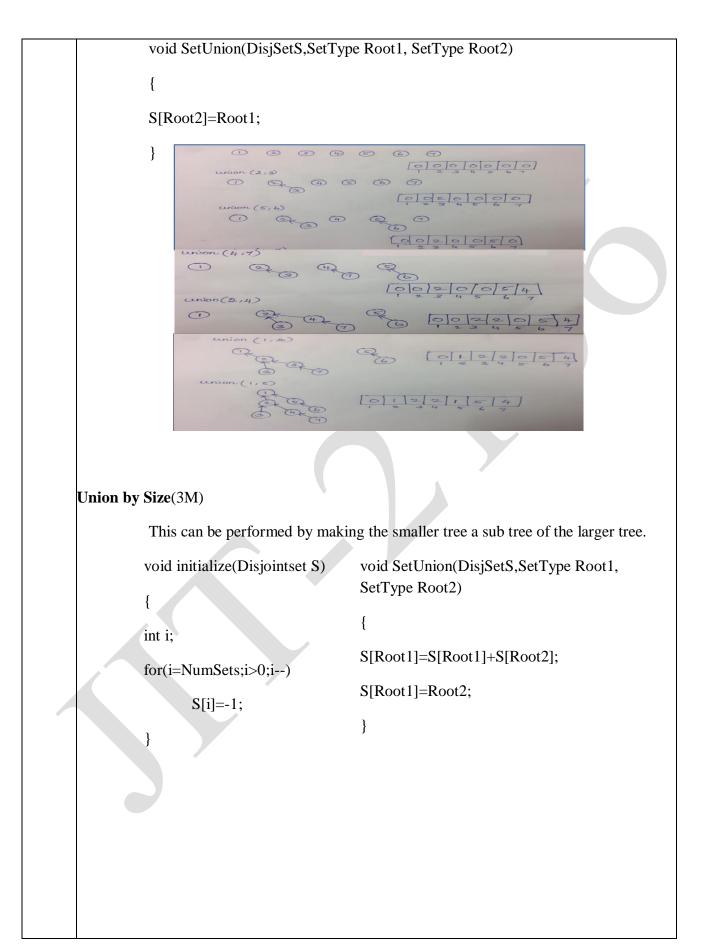

intrav(p)

{

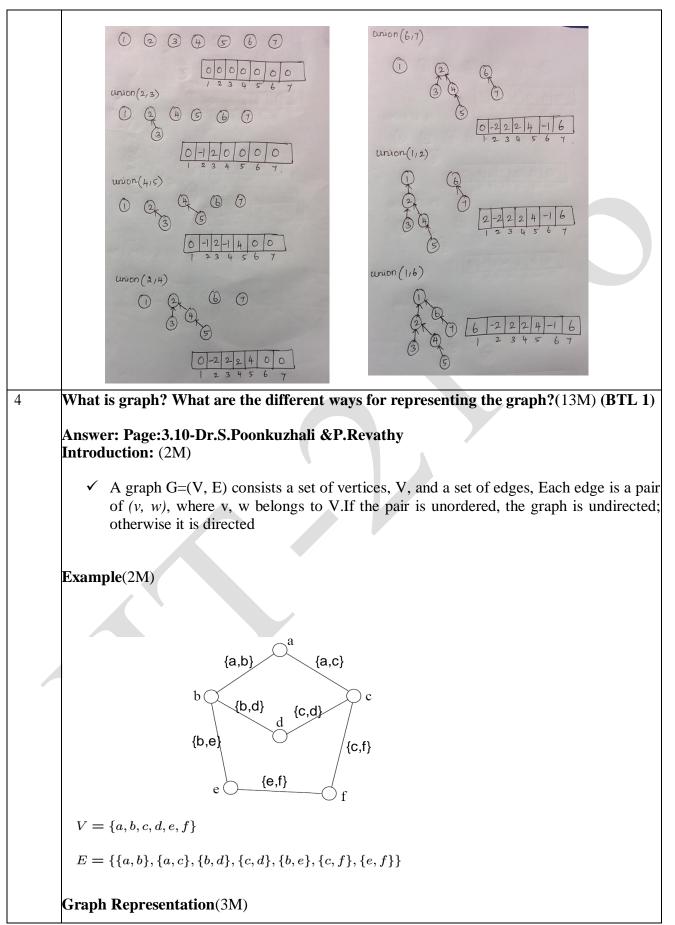
{

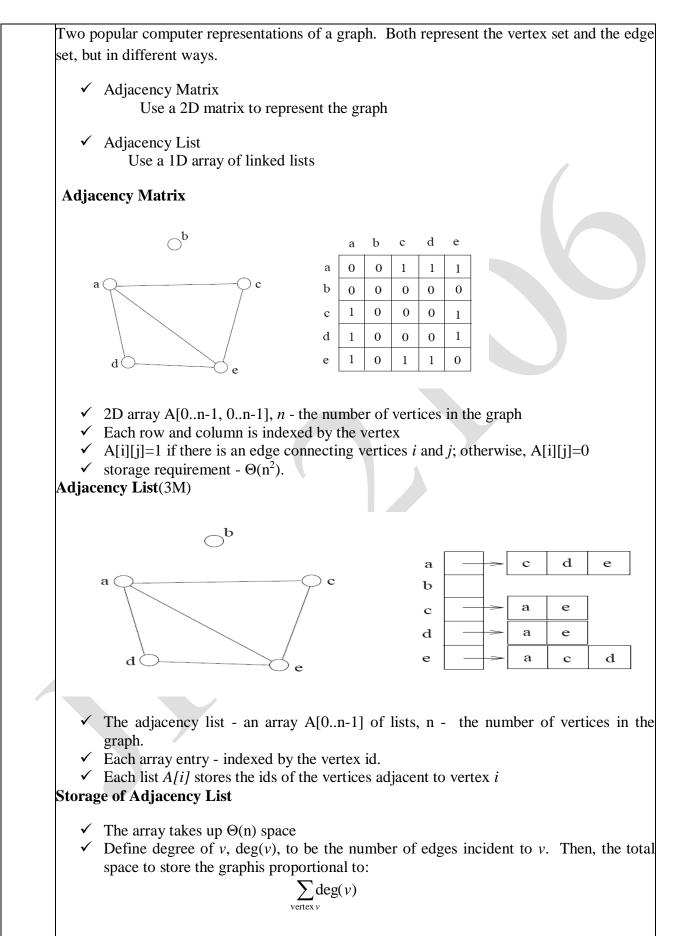
NODEPTR P;


if(P!=NULL)



To implement the Depth first Search perform the following Steps : \checkmark Step 1: Choose any node in the graph. Designate it as the search node and mark it as visited. \checkmark Step 2: Using the adjacency matrix of the graph, find a node adjacent to the search node that has not been visited yet. Designate this as the new search node and mark it as visited. \checkmark Step 3: Repeat step 2 using the new search node. If no nodes satisfying (2) can be found, return to the previous search node and continue from there. \checkmark Step 4:When a return to the previous search node in (3) is impossible, the search from the originally chosen search node is complete. \checkmark Step 5: If the graph still contains unvisited nodes, choose any node that has not been visited and repeat step (1) through (4). **ROUTINE FOR DEPTH FIRST SEARCH** void DFS (Vertex V) visited [V] = True; for each W adjacent to V if (! visited [W]) DFS (W); Example : Ь10 Graph G DFS Tree DFS→0->1->4->2->5->6->7->8->9->11->10 **Adjacency Matrix**


Applications of Depth First Search \checkmark To check whether the undirected graph is connected or not. \checkmark To check whether the connected undirected graph is Bioconnected or not. \checkmark To check the a Acyclicity of the directed graph. **Breadth First Traversal**(5M) Breadth first search of a Graph G starts from an unvisited vertex v. Then all unvisited vertices w adjacent to v are visited and so on. The traversal terminates when there are no more nodes to visit. Breadth first search uses a queue data structure to keep track of the order of nodes. ✓ Step 1: Choose any node in the graph, designate it as the search node and mark it as visited. ✓ Step 2: Find all the unvisited adjacent nodes to the search node and enqueue them in to the queue O. ✓ Step 3: Then the node is dequeued from the queue. Mark that node as visited and designate it as the new search node. ✓ **Step 4**: Repeat 2 and 3 using the new search node. Step 5: Repeat until the queue becomes empty. \checkmark **Routine for Breadth first Search** void BFS(vertex v) { InitializeOueue(O): visited[v]=1; Enqueue(v,Q); while(!I sEmpty(Q)) { v=Dequeue(Q); for all w adjacent to v Enqueue(w,Q); visited[w]=1; Example: **Adjacency Matrix**


JIT-JEPPIAAR/IT/Mrs.Sonia Jenifer Rayen /IIYr/SEM 03/EC8393/FUNDAMENTALS OF DATA STRUCTURE IN C/ UNIT 1-5/QB+Keys/Ver2.0 2-57



Union by height(3M)	$ \begin{array}{c} \hline \\ \hline $
<pre>void initialize(Disjointset S) { int i; for(i=NumSets;i>0;i) S[i]=0; }</pre>	<pre>void SetUnion(DisjSetS,SetType Root1, SetT Root2)</pre>

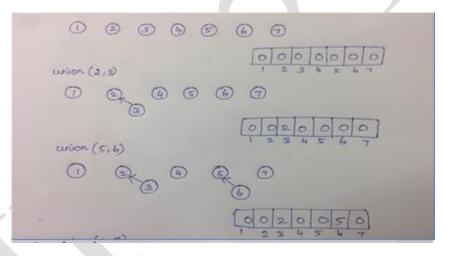
	✓ In all, the adjacency list takes up $\Theta(n+m)$ space Adjacency List vs. Matrix(3M)
	 ✓ Adjacency List More compact than adjacency matrices if graph has few edges
	Requires more time to find if an edge exists
	 ✓ Adjacency Matrix Always require n² space
	Can quickly find if an edge exist
5	(i)How can you construct an expression tree? Describe your answer with an example.(7M) (Nov/Dec 2015)(BTL 3)
	Answer: Page:3.10-Dr.S.Poonkuzhali &P.Revathy Introduction:(2M)
	An expression tree is a tree whose leaves contain the operands of the expression, and the other nodes contain the operators.
	Example:
	Consider the expression:
	$(a + b^*c) * (d + e)$
	It can be represented as a binary tree:
	In-order traversal - (left subtree_root right)
	reconstructs the expression: $(a + b^*c) * (d + e)$
	Post-order traversal - results in the corresponding postfix expression:
	a b c * + d e + *
	Algorithm: (3M)
	Read a symbol sym.
	If $(sym = operand)$ print it
	If $(sym = '(') push(S, sym))$
	If (sym = operation)
	If (stack is empty) push(S, sym)

Answer: Page:3.10-Dr.S.Poonkuzhali & P.Revathy Introduction:(2M)

A relation R is defined on a set S for every pair of elements (a,b),a,b \in S,the relation aRb is either true or false.

If aRb is true, then a is related to b.

An equivalence relation is a relation R that satisfies three properties:


```
\checkmark (Reflexive) a R a, for all a belongs to S.
```

```
(Symmetric) a R b if and only if b R a.
(Transitive) a R b and b R c implies that a R
```

c. Basic data structure:(2M)

Tree data structure is used to implement the set. The name of a set is given by the node at the root. The array implementation of tree represents that P[i] is the parent of **i**thelement. If i is a root, then P[i] = 0.

Representation of sets:

Union Find Operations(2M)

✓ **Find**(**X**) – Returns the root of the tree containing X.

 ✓ Union(X,Y) – Merges the two trees by making the root pointer of one node point to the root node of the other tree.

Disjoint set initialization routine

void initialize(Disjset S)

{

	int i;
	for(i = numsets; i>0; i)
	S[i] = 0;
	}
	, Routine for Find
	SetType Find(Element Type X, DisjSet S)
.No	PART* C
1	Explatifi[Xin <detail (may="" 2)<br="" 2012)(13m)(btl="" and="" bimarlensearch="" implementation="" its="" june="" of="" operations.="" perform="" sthe]="" tree="">Answer: Page: 3.10-Dr.S.Poonkuzhali & P.Revathy</detail>
	 Introduction: (2M) Binary search tree is a binary tree in which for every node X in the tree, the values of all the return Find(S[X],S); keys in its left sub tree are smaller than the key value in X, and the values of all the keys in its right sub tree are larger than the key value in X.
	Example of Whion
	Void SetUnion(DisjSet S, SetType R ₁ ,SetType R ₂)
	Q
	Implementation of Binary Search Tree: (8M)
	Binary Search Tree can be implemented as a linked data structure in which each node with three fields.
	 ✓ Element ✓ pointer to the left child ✓ pointer to the right child.
	Binary Search Tree Declaration
	typedefstructTreeNode * SearchTree;
	StructTreeNode

{

int Element;

SearchTree Left;

SearchTree Right;

};

{

{

{

ROUTINE TO INSERT

SearchTree Insert (int X, searchTree T)

if (T = = NULL)

T = malloc (size of (StructTreeNode));

if (T! = NULL) // First element is placed in the root.

T->Element = X;

 $T \rightarrow left = NULL;$

T ->Right = NULL;

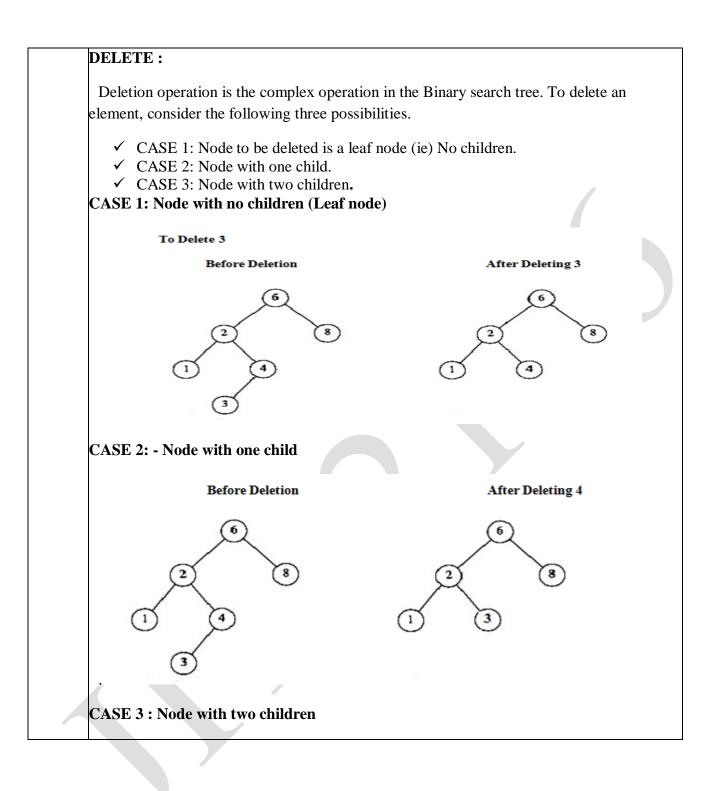
}

else if (X < T ->Element)

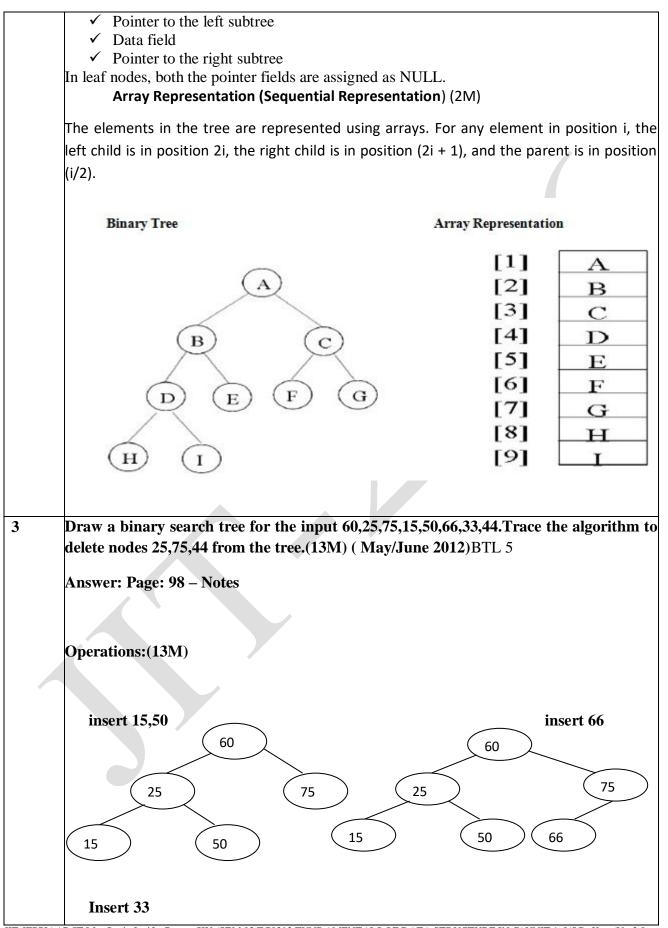
T ->left = Insert (X, T->left);

else if (X > T \rightarrow Element)

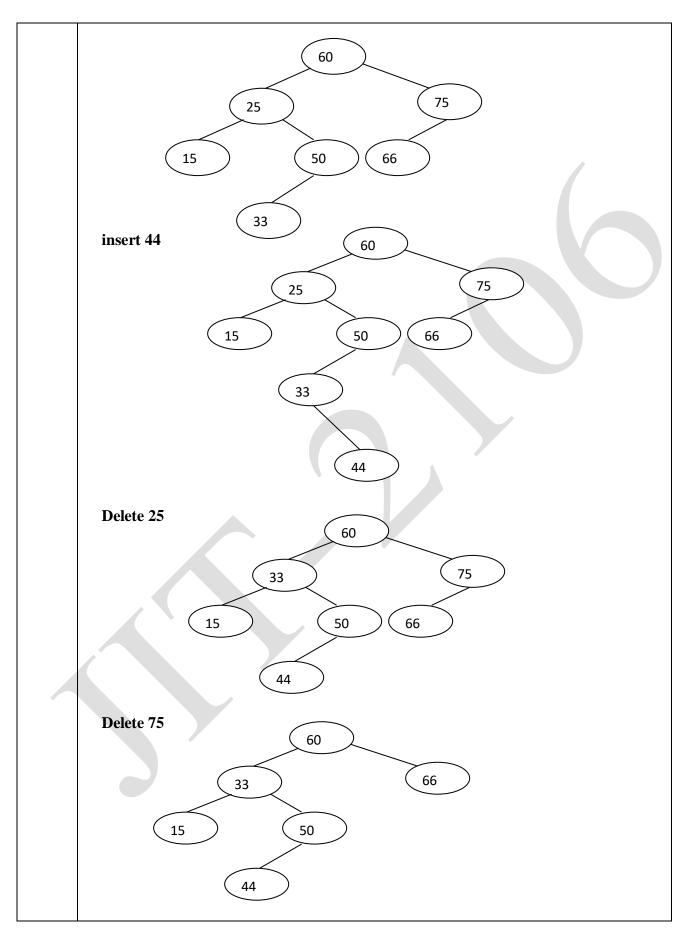
T ->Right = Insert (X, T \rightarrow right);

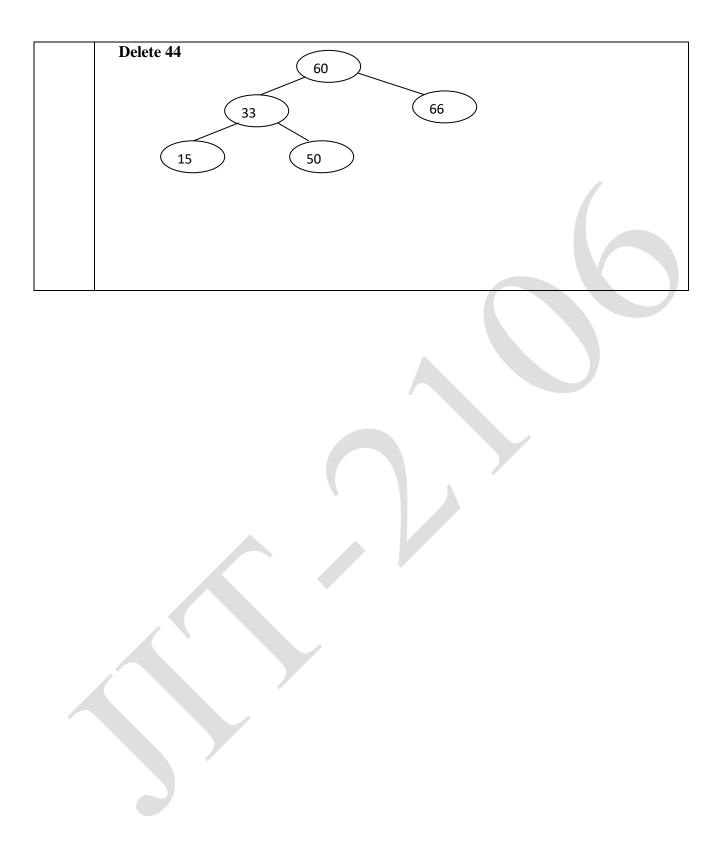

return T;

}


ROUTINE FOR FIND OPERATION

int Find (int X, SearchTree T)


```
{
if (T = = NULL)
Return NULL;
if (X < T \rightarrow Element)
return Find (X, T ->left);
else if (X > T ->Element)
return Find (X, T ->Right);
else
return T; // returns the position of the search element.
}
NON - RECURSIVE ROUTINE FOR FINDMIN
intFindMin (SearchTree T)
{
if (T! = NULL)
while (T->Left ! = NULL)
T = T -> Left;
return T;
}
NON - RECURSIVE ROUTINE FOR FINDMAX
intFindMax (SearchTree T)
{
if (T! = NULL)
while (T->Right ! = NULL)
T = T -> Right;
return T;
}
```



	Before Deletion After De	leting 2 (two children
	node)	0
		3
2	Formulate an algorithm to insert an element in a bir	hary tree. (Nov/Dec 2011)(BTL
	5)(13M)	
	Answer: Page:3.10-Dr.S.Poonkuzhali &P.Revathy	
	Definition :- (2M)	
	Binary Tree is a tree in which no node can have more than	two children. Maximum number
	of nodes at level i of a binary tree is 2 ⁱ⁻¹ .	
	A binary tree is a tree which is either empty, or one in whi	ich every node:
	✓ has no children; or	*
	✓ has just a left child; or	
	✓ has just a right child; or	
	 has both a left and a right child. 	
	BINARY TREE NODE DECLARATIONS (4M)	
	StructTreeNode	
	{	
	int Element; StructTreeNode *Left ;	
	StructTreeNode *Right;	
	};	
	FULL BINARY TREE :-	
	A full binary tree of height h has 2^{h+1} - 1 nodes.	
	COMPLETE BINARY TREE :	
	A complete binary tree of height h has between 2^{h} and 2^{h+1}	- 1 nodes. In the bottom level the
	elements should be filled from left to right.	
	REPRESENTATION OF A BINARY TREE (5M)	
	There are two ways for representing binary tree, they are	
	 ✓ Linear Representation ✓ Linked Representation 	
	Linear Representation	
	For any element in position i, the left child is in position 2	i, the right child is in position (2)
	+ 1), and the parent is in position (i/2).	,
	Linked Representation	
	The elements are represented using pointers. Each node i	n linked representation has three
	fields, namely,	

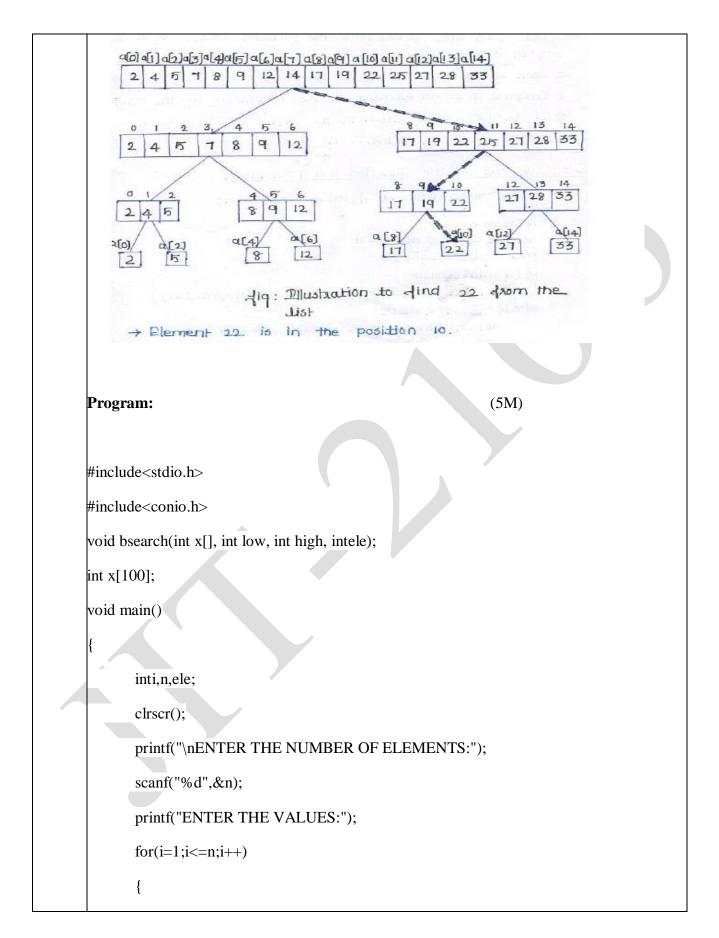
JIT-JEPPIAAR/IT/Mrs.Sonia Jenifer Rayen /IIYr/SEM 03/EC8393/FUNDAMENTALS OF DATA STRUCTURE IN C/ UNIT 1-5/QB+Keys/Ver2.0

UNIT V SEARCHING AND SORTING ALGORITHMS

Linear Search – Binary Search. Bubble Sort, Insertion sort – Merge sort – Quick sort - Hash tables – Overflow handling.

	PART*A
Q.NO	QUESTIONS
1.	What is meant by sorting and what are its classifications?(April/May 2015) BTL 1
	Ordering the data in an increasing or decreasing order according to some relationship among the data item is called sorting.
	 ✓ Internal sorting ✓ External sorting
2.	What is meant by external sorting?BTL 1 (NOV/DEC 2018)
	External sorting is a process of sorting in which large blocks of data stored devices are moved to the main memory and then sorted. Example: Merge sort.
3.	What is meant by internal sorting?BTL 1(NOV/DEC 2018)
	This method uses only primary memory during sorting process if all data to be sorted can be accommodated at the time in memory is called as internal sorting. Example: Heap sort, shell sort, quick sort.
4.	What are the various factors to be considered in deciding a sorting algorithm? BTL
	 ✓ Programming time ✓ Execution time of the program ✓ Memory needed for program environment
5.	What is the main idea in Bubble sort? BTL 1
	The basic idea underlying the bubble sort is to pass through the file sequentially several times. Each pass consists of comparing each element in the file with its successor $(x[i] and x [i+1] and interchanging the two elements if they are not in proper order.$
6.	What is the basic idea of quick sort? BTL 1
	Pick one element in the array, which will be the pivot. Make one pass through the array, called a partition step, re-arranging the entries so that: The pivot is in its proper place. Entries smaller than the pivot are to the left of the pivot. Entries larger than the pivot are to its right. Recursively apply quick sort to the part of the array that is to the left of the pivot, and to the right part of the array.
7.	What is the advantage of quick sort? BTL 1
	Quick sort reduces unnecessary swaps and moves an item to a greater distance, in one

	move. One of the fastest algorithms on average. Does not need additional memory		
8.	What is complexity analysis? BTL1		
	It is the analysis of the amount of memory and time an algorithm requires to completion. There are two types of Complexity		
	✓ Space Complexity: Space complexity of an algorithm is the amount of memory needs to run to completion.		
	✓ Time Complexity: Time complexity is the amount of computer time an algorithm requires to run to completion.		
9.	What does asymptotic notation mean? BTL 1		
	Asymptotic notations are terminology that is introduced to enable us to make meaningful statements about the time and. The different notations are		
	 ✓ Big – Oh notation ✓ Omega notation ✓ Theta notation. 		
10.	What are the techniques used to choose the pivot element for quick sort? BTL 1		
	The various techniques are		
	 ✓ First element ✓ Random pick ✓ Modion of three portioning 		
11.	 ✓ Median of three portioning What is binary search? BTL 1 		
	Binary search is also a method used to locate a specified item in a sorted list. This method starts by comparing the searched element to the elements in the middle of the list. If the comparison determines that the two elements are equal the method stops and returns the position of the element. If the searched element is greater than the middle element, it starts the method again using only the bottom half of the sorted list. If the searched element is less than the middle element, it starts the method again using only the bottom half of the sorted list.		
12.	What is linear search? BTL 1		
	Linear search is the simplest searching method, which checks each element in a list sequentially until it finds a specified element. The input to the linear search method is a sequence and the item that needs to be searched. The output is true if the specified item is within the provided sequence or false if it is not in the sequence. The complexity of linear search is O (n).		
10	What is divide and conquer technique?BTL 1		
13	Divide and Conquer algorithm is based on dividing the problem to be solved into several, smaller sub instances, solving them independently and then combining the sub instances		

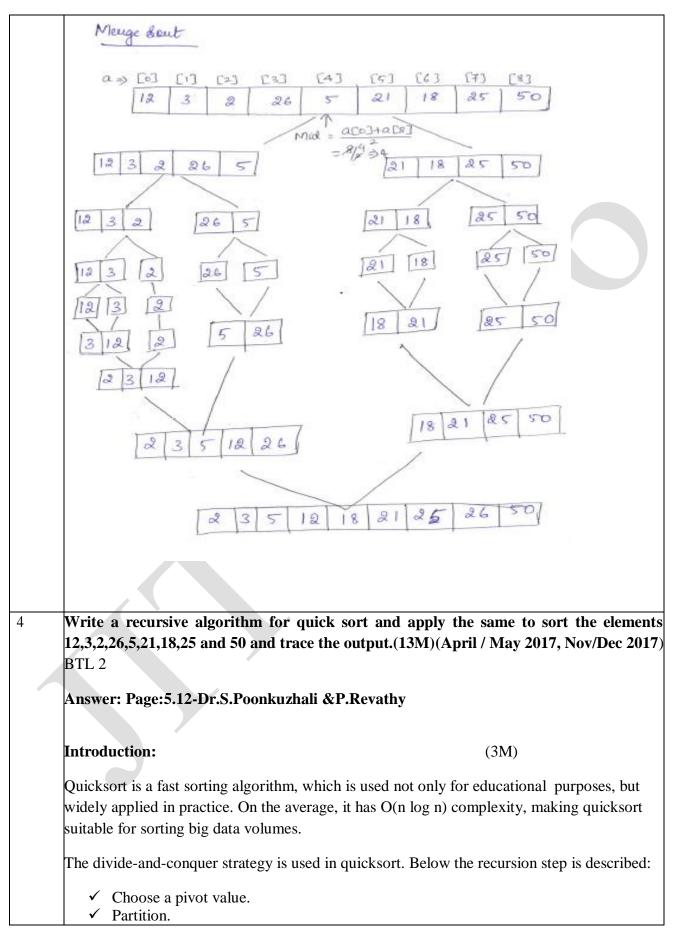

	solutions so as to yield a solution for the original instance.			
	What is dynamic program	ning?BTL 1		
14	Dynamic programming algorithm is a general class of algorithms which solve problem by solving smaller versions of the problem, saving the solutions to the small problem and then combining them to solve the larger problems.			-
	What is the time complexit	y of Quick sort and Bi	inary search?(Nov/	Dec 2014)BTL 1
15	Time con	nplexity Quick sort	Binary Search	
	Best case	O(n log n)	O(log n)	\mathcal{P}
	Average	n)		
	Worst cas	se O(n2)	O(log n)	
16.	Define merge sort. How a 2015)BTL 1 Merge sort is a divide and co sub arrays which are merged A merge sort works as follow	onquer algorithm. Merg to form a single sorted a	ge sort is the technic	-
	 Divide the unsorted list into n sub lists, each containing 1 element Repeatedly merge sub lists to produce new sorted sub lists until there is only 1 s list remaining. This will be the sorted list. 			
17.	 What are the advantages of merge sort? BTL 1 ✓ It can be applied to files of any size. ✓ Reading of the input during the run-creation step is sequential ==>Not much seekint ✓ Reading through each run during merging and writing the sorted record is a sequential. 			
18.	 What are the advantages an ✓ Efficient for medium s ✓ The number of compa 	size list.		ence.

	\checkmark Elements at odd and even places are compared only in the last step.		
19.	Set the drawbacks of insertion sort. (April / May 2017)BTL 1		
20.	 ✓ It is less efficient on list containing more number of elements. ✓ As the number of elements increases the performance of the program would be slow. ✓ Insertion sort needs a large number of element shifts. Differentiate linear search and binary search.BTL 1		
	Linear search Binary search		
	Linear search is easy but takes more time to search an element as it compare all element sequentiallyBinary search it start searching from middle, if the searching element is not found in middle then it goes to left or right and vice versa. and hence take less time than linear search		
	Linear search requires O(n)times Binary search is very best in time and efficiency. It requires O(log n)times		
21	What is insertion sort?BTL 1 Insertion sort iterates, consuming one input element each repetition, and growing a sorted output list. Each iteration, insertion sort removes one element from the input data, finds the location it belongs within the sorted list, and inserts it there. It repeats until no input element remain.		
	Define best case of an algorithm. (April/May 2010)BTL 1		
22	It is the shortest time that an algorithm will use over all instances of size n for a given problem to produce the result.		
26	State why quick sort is more efficient than merge sort. (Nov/Dec 2013)BTL 1		
23	Theoretically, both quick sort and merger sort take O (n log n) time and hence time taken to sort the elements remains same. However, quick sort is superior to merge sort in terms of space. Quick sort is in-place sorting algorithm whereas merge sort is not in-place. In-place sorting means, it does not use additional storage space to perform sorting. In merge sort, to merge the sorted arrays it requires a temporary array and hence it is not in-place. However time efficiency of the quick sort depends on the choice of the pivot element.		
24	What is performance analysis of an algorithm?BTL 1		

	The analysis of the performance of an algorithm based on specification is called performance
	analysis. It is loosely divided into
	 ✓ Priori estimates ✓ Posterior Testing
	What is time complexity?(April/May 2015)BTL 1
25	Time complexity of an algorithm computes the amount of time taken by an algorithm to ru to its completion. Commonly it is represented using big O notation. Generally it is categorized as best case time complexity, worst case time complexity and average case time complexity. It is commonly estimated by counting the number of elementary operation performed by the algorithm.
	PART * B
1	Define Heap Sort. Write the algorithm for heap sort procedures.(13M) BTL 2
	Answer: Page:5.11-Dr.S.Poonkuzhali &P.Revathy Introduction: (3M)
	 ✓ Heap sort operates by first converting the list in to a heap tree. ✓ Heap tree -binary tree in which each node has a value greater than both its children.
	Program:(10M)
	#include <stdio.h></stdio.h>
	void main()
	{
	int heap[10], no, i, j, c, root, temp;
	<pre>printf("\n Enter no of elements :");</pre>
	scanf("%d", &no);
	printf("\ n Enter the nos : ");
	for (i = 0; i < no; i++)
	scanf("%d", &heap[i]);
	for (i = 1; i < no; i++)
	{
	c = i;

```
do
root = (c - 1) / 2;
if (heap[root] < heap[c]) /* to create MAX heap array */
temp = heap[root];
heap[root] = heap[c];
heap[c] = temp;
c = root;
\} while (c != 0);
printf("Heap array : ");
for (i = 0; i < no; i++)
printf("%d\t ", heap[i]);
for (j = no - 1; j \ge 0; j--)
temp = heap[0];
heap[0] = heap[j /* swap max element with rightmost leaf element */
heap[j] = temp;
root = 0;
do
c = 2 * root + 1; /* left node of root element */
if ((heap[c] < heap[c + 1]) \&\& c < j-1)
c++;
```

```
if (heap[root]<heap[c] && c<j) /* again rearrange to max heap array */
       temp = heap[root];
       heap[root] = heap[c];
       heap[c] = temp;
       root = c;
       } while (c < j);
       printf("\n The sorted array is : ");
       for (i = 0; i < no; i++)
       printf("\t %d", heap[i]);
       printf("\n Complexity : \n Best case = Avg case = Worst case = O(n \log n) |n'';
        }
       Write a C program to implement binary search and explain it with an example.
2
       Compute its complexity. (13M) (Nov/Dec2017, April / May 2017)BTL 2
       Answer: Page: 5.3-Dr.S.Poonkuzhali & P.Revathy
       Introduction:(3M)
           \checkmark Binary search - method used to locate a specified item in a sorted list.
           \checkmark This method starts by comparing the searched element to the elements in the middle
               of the list.
           \checkmark If the searched element is greater than the middle element, it starts the method again
               using only the bottom half of the sorted list.
           \checkmark If the searched element is less than the middle element, it starts the method again
               using only the top half of the sorted list.
           \checkmark If the searched element is not within the list, the method will return a unique value
               indicating that.
       Problem:
                                                                      (5M)
```

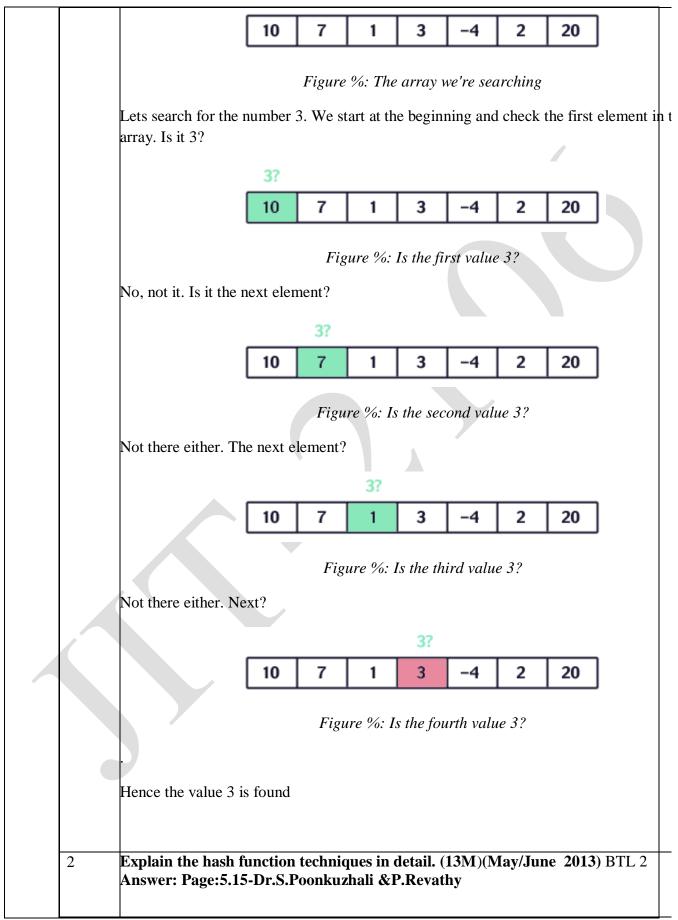


```
scanf("%d",&x[i]);
       }
       printf("ENTER THE ELEMENT TO BE SEARCHED:");
       scanf("%d",&ele);
       bsearch(x,1,n,ele);
       getch();
void bsearch(int x[],int low, int high, intele)
       int mid;
      mid=(low+high)/2;
      if(ele==x[mid])
       {
              printf("ELEMENT FOUND\n");
              printf("POSITION:%d",mid);
       }
       else if(ele<x[mid])</pre>
              bsearch(x,1,mid-1,ele);
       }
      else if(ele>x[mid])
              bsearch(x,mid+1,high,ele);
       }
       else
       {
```

	printf("ELEMENT NOT FOUND");
	}
	}
	The average case efficiency is O(log n)
3	Describe the merge sort using divide and conquer technique with suitable example. Sort the elements 12,3,2,26,5,21,18,25 and 50 using merge sort and trace the output. (13M) (Nov/Dec 2017, April / May 2017)BTL 2
	Answer: Page:5.16 -Dr.S.Poonkuzhali&P.Revathy
	Introduction: (3M) Top down merge sort algorithm that recursively splits the list into sublists until sublist size is 1, then merges those sublists to produce a sorted list. The copy back step is avoided with alternating the direction of the merge with each level of recursion.
	Program:(5M)
	//Program for implementing merge sort
	#include <stdio.h></stdio.h>
	void mergesort(int ilist[],int,int);
	void merge(intilist[],int,int,int);
	void main()
	{
	int a[20];
	inti,n;
	clrscr();
	<pre>printf("\tMERGE SORT");</pre>
	printf("\n\nEnter the number of elements:");
	scanf("%d",&n);
	printf("Enter the array elements:");
	for(i=0;i <n;i++)< td=""></n;i++)<>
	scanf("%d",&a[i]);

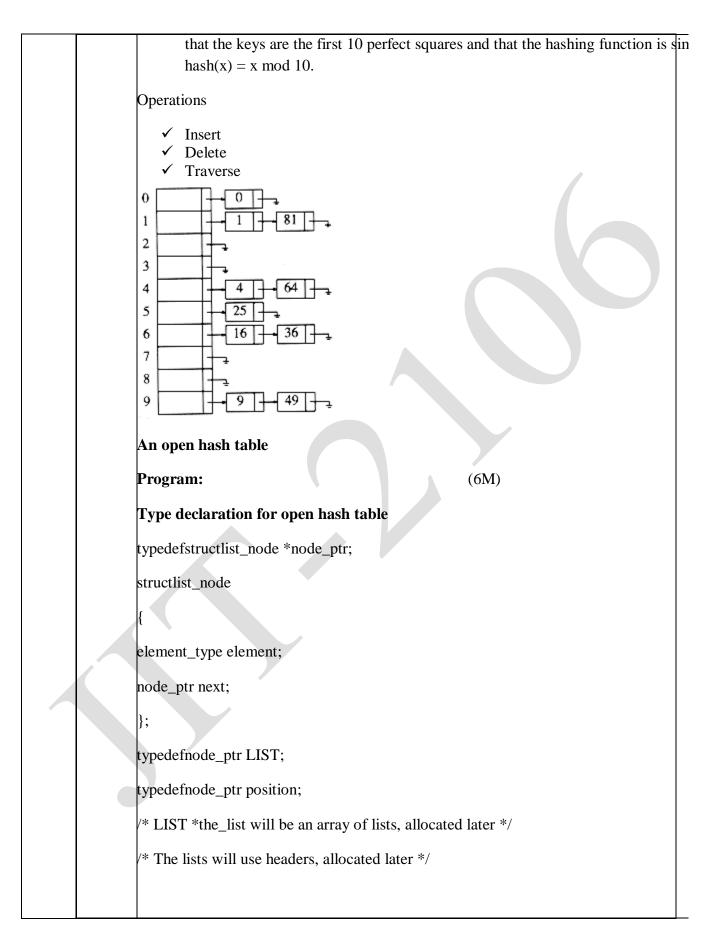
```
printf("\nThe elements of the array are:");
 for(i=0;i<n;i++)
printf(" %d",a[i]);
mergesort(a,0,n-1);
printf("\nThe sorted array is:");
 for(i=0;i<n;i++)
printf(" %d",a[i]);
//mergesort function
void mergesort(intilist[20],intlow,int high)
int mid;
 if(low<high)
 {
  mid=(low+high)/2;
mergesort(ilist,low,mid);
mergesort(ilist,mid+1,high);
  merge(ilist,low,mid,high);
//merge function
void merge(intilist[20],intlow,intmid,int high)
int i1,i2,iresult,i;
intmlist[20];
 il=low;
```

```
i2=mid+1;
iresult=low;
 while((i1<=mid)&&(i2<=high))
 {
  if(ilist[i1]<=ilist[i2])</pre>
  {
mlist[iresult]=ilist[i1];
   i1++;
  }
  else
  {
mlist[iresult]=ilist[i2];
   i2++;
  }
iresult++;
 }
 if(i1<=mid)
 {
  while(i1<=mid)
   ł
mlist[iresult]=ilist[i1];
    i1++;
iresult++;
  }
 }
 else
```

```
{
    while(i2<=high)
    {
    mlist[iresult]=ilist[i2];
    i2++;
    iresult++;
    }
    for (i=low;i<=high;i++)
    ilist[i]=mlist[i];
    Problem:(5M)
</pre>
```




```
\checkmark Sort both parts.
On the average quicksort has O(n log n) complexity
Program:(10 M)
     #include<stdio.h>
     #include<conio.h>
     void quicksort(int x[], int left, int right);
     void swap(int x[], int ele1, int ele2);
     int x[100];
     void main()
     {
       inti,n;
      printf("\nENTER THE NUMBER OF ELEMENTS:");
       scanf("%d",&n);
       printf("ENTER THE VALUES:");
       for(i=1;i \le n;i++)
       {
              scanf("%d",&x[i]);
       }
       printf("\nELEMENTS BEFORE SORTING:");
       for(i=1;i \le n;i++)
              printf("%d\t",x[i]);
       quicksort(x,1,n);
       printf("\nELEMENTS AFTER SORTING:");
       for(i=1;i<=n;i++)
```


```
{
          printf("%d\t",x[i]);
  }
}
void quicksort(int x[],int left, int right)
{
 inti,j,pivot;
 if(left<right)
  {
          i=left;
          j=right+1;
          pivot=x[left];
          do
           {
                   do
                    i++;
                  while(x[i]<pivot);</pre>
                   do
                    j--;
                  while(x[j]>pivot);
                  if(i<j)
                     swap(x,i,j);
          }while(i<j);</pre>
          swap(x,left,j);
          quicksort(x,left,j-1);
          quicksort(x,j+1,right);
          getch();
```

}			
}			
VO	id swap(int x[], int ele1, i	int ele2)	
{			
	nt temp;		
t	emp=x[ele1];		
	x[ele1]=x[ele2];		
	x[ele2]=temp;		
		ues and explain the wo 3M)(Nov/Dec 2017)BTI	rst and best case time co L 1
Answer	: Page:5.6-Dr.S.Poonku	zhali &P.Revathy	
	Algorithm	Time Complexity	
	Sorting Type	Best	Worst
	Selection Sort	Ω(n^2)	O(n^2)
	Bubble Sort	$\Omega(n)$	O(n^2)
	Insertion Sort	Ω(n)	O(n^2)
	Heap Sort	$\Omega(n \log(n))$	O(n l g(n))
	Quick Sort	$\Omega(n \log(n))$	O(n^2)
			O(1)
	Merge Sort	$\Omega(n \log(n))$	$O(n \log(n))$
	Merge Sort Bucket Sort	$\Omega(n \log(n))$ $\Omega(n+k)$	O(n log(n)) O(n2)

Q.No	PART* C
1	Explain in detail about the implementation of Linear Search and perform its op (13M)(May/June 2012) BTL 2 Answer: Page:5.15-Dr.S.Poonkuzhali &P.Revathy
	Linear search – Introduction:(2M)
	 linear search (Searching algorithm) which is used to find whether a given numpresent in an array and if it is present then at what location it occurs. Also known as sequential search. Very simple and works as follows: We keep on comparing each element with element to search until the desired element is found or list ends. Linear search language for multiple occurrences and using function.
	Program:(7M)
	<pre>#include <stdio.h></stdio.h></pre>
	int main()
	int array[100], search, c, n; printf("Enter the number of elements \n"); scanf("%d",&n); printf("/nEnter the elements"); for (a = 0 a s (map) (b)
	<pre>for (c = 0; c < n; c++) scanf("%d", &array[c]); printf("Enter the number to search\n");</pre>
	<pre>scanf("%d", &search); for (c = 0; c < n; c++) {</pre>
	<pre>if (array[c] == search) {</pre>
	<pre>printf("%d is present at location %d.\n", search, c+1); break; } if (c == n)</pre>
	printf("%d is not present in array.\n", search); return 0; }
	Operations: (4M)

Intr	oduction: (2M)
The	implementation of hash tables is frequently called hashing. Hashing is a
tech	nique used for performing insertions, deletions and finds in constant average
time	
t	 data structure is merely an array of some fixed size, containing the keys. key is a string with an associated value .We will refer to the table size as H_S with he understanding that this is part of a hash data structure . The common convention is to have the table run from 0 to H_SIZE-1; Each key is mapped into some number in the range 0 to H_SIZE - 1 and plac appropriate cell. The mapping is called a hash function, which ideally should simple to compute and should ensure that any two distinct keys get differented.
Exa	mple: (1M)
In th	his example, john hashes to 3, phil hashes to 4, dave hashes to 6,
0 1 2	nary hashes to 7.
3	john 25000
4	phil 31250
5	dave 27500
6 7	mary 28200
8	
9	
Ope	n Hashing (Separate Chaining)(4M)
	The first strategy, commonly known as either open hashing, or separate chain keep a list of all elements that hash to the same value.

structhash_tbl
{
unsigned inttable_size;
LIST *the_lists;
};
Initialization routine for open hash table
HASH_TABLE
initialize_table(unsigned inttable_size)
{
HASH_TABLE H;
int i;
if(table size < MIN_TABLE_SIZE)
{
error("Table size too small");
return NULL;
}
/* Allocate table */
H = (HASH_TABLE) malloc (sizeof (structhash_tbl));
if(H == NULL)
fatal_error("Out of space!!!");
H->table_size = next_prime(table_size);
/* Allocate list pointers */
H->the_lists = (position *)
malloc(sizeof (LIST) * H->table_size);
if(H->the_lists == NULL)

	fatal_error("Out of space!!!");
	/* Allocate list headers */
	for(i=0; i <h->table_size; i++)</h->
	{
	H->the_lists[i] = (LIST) malloc
	(sizeof (structlist_node));
	if(H->the_lists[i] == NULL)
	fatal_error("Out of space!!!");
	else
	H->the_lists[i]->next = NULL;
	}
	return H;
3	Explain about shell sort techniques in detail with example. (13M)BTL 2 Answer: Page:5.15-Dr.S.Poonkuzhali &P.Revathy
	Shell Sort: (2M)
	 Founded by Donald Shell and named the sorting algorithm after himself in 195 Shell sort works by comparing elements that are distant rather than adjacent (in an array or list where adjacent elements are compared. Shell sort makes multiple passes through a list and sorts a number of equally si using the insertion sort. It is 5 times faster than the bubble sort and a little over twice as fast as the i sort, its closest competitor. Shellsort uses a sequence h1,h2,ht called the increment sequence. The in
	sequence is given by $ht=[N/2]$. The incrementing sequence is calculated until 1
	Steps: (1M)
	 ✓ Calculate the incrementing sequence or gap by using the formula ht=[N/2]. ✓ Sort the elements present in the spacing of the incrementing sequence. ✓ Until ht=1 repeat the phases. ✓ The last phase will be basically a Insertion sort. Algorithm for Shell sort(2M)
	void Shellsort(Elementtype A[],int N)

	{
	int i, j, increment;
	elementtypetmp;
	for(elementtype=N / 2;increment > 0;increment / = 2)
	{
	for(i= increment ; i =increment; j - =increment)
	if(tmp< A[]=A[j - increment];
	A[j]=A[j-increment];
	Else Break;
	A[j]=tmp;
	}
	}
	Problem Example:(5M)
	Orginal sequence: 18 32 12 5 38 33 16 2 h _t =[N/2]=[8/2]=4
	Phase1: 18 32 12 5 38 33 16 2 compare the numbers (5 and 2 are swapped)
	Result of 18 32 12 2 38 33 16 5 h=[4/2]=2
	Phase1: (sort the 2 sub arrays)
	Result of 12 16 18 38 h_t=[2/2]=1 indicates Phase 2: last phase
	2 5 32 33
	Phase 3: 2 5 12 16 18 32 33 38
	Efficiency of Shell Sort: (3M)
	✓ The worst case running time of shell sort is $O(N2)$.
	✓ The average case running time for shell sort using Hibbard's increments is $O(1)$

Advantages:
 ✓ Efficient for medium size list. ✓ The number of comparisons is less. ✓ The running time of shell sort depends on the incrementing sequence. Disadvantages:
\checkmark Elements at odd and even places are compared only in the last step.

REGULATION: 2017

EC8351

ELECTRONIC CIRCUITS I

LTPC 3003

OBJECTIVES:

- To understand the methods of biasing transistors
- To design and analyze single stage and multistage amplifier circuits
- To analyze the frequency response of small signal amplifiers
- To design and analyze the regulated DC power supplies.
- To troubleshoot and fault analysis of power supplies.

UNIT I BIASING OF DISCRETE BJT, JFET AND MOSFET

BJT- Need for biasing - DC Load Line and Bias Point - DC analysis of Transistor circuits - Various biasing methods of BJT - Bias Circuit Design - Thermal stability - Stability factors - Bias compensation techniques using Diode, thermistor and Sensistor - Biasing BJT Switching Circuits. JFET - DC Load Line and Bias Point - Various biasing methods of JFET - JFET Bias Circuit Design - MOSFET Biasing - Biasing FET Switching Circuits.

UNIT II BJT AMPLIFIERS

Small Signal Hybrid π equivalent circuit of BJT – Early effect - Analysis of CE, CC and CB amplifiers using Hybrid π equivalent circuits - AC Load Line Analysis- Darlington Amplifier - Bootstrap technique - Cascade, Cascode configurations - Differential amplifier, Basic BJT differential pair - Small signal analysis and CMRR.

UNIT III SINGLE STAGE FET, MOSFET AMPLIFIERS

Small Signal Hybrid π equivalent circuit of FET and MOSFET - Analysis of CS, CD and CG amplifiers using Hybrid π equivalent circuits - Basic FET differential pair- BiCMOS circuits.

UNIT IV FREQUENCY RESPONSE OF AMPLIFIERS

Amplifier frequency response – Frequency response of transistor amplifiers with circuit capacitors – BJT frequency response – short circuit current gain - cut off frequency – $f\alpha$, $f\beta$ and unity gain bandwidth – Miller effect - frequency response of FET - High frequency analysis of CE and MOSFET CS amplifier - Transistor Switching Times.

UNIT V POWER SUPPLIES AND ELECTRONIC DEVICE TESTING

Linear mode power supply - Rectifiers - Filters - Half-Wave Rectifier Power Supply - Full-Wave Rectifier Power Supply - Voltage regulators: Voltage regulation - Linear series, shunt and switching Voltage Regulators - Over voltage protection - BJT and MOSFET - Switched mode power supply (SMPS) - Power Supply Performance and Testing - Troubleshooting and Fault Analysis, Design of Regulated DC Power Supply.

TOTAL: 45 PERIODS

OUTCOMES:

After studying this course, the student should be able to:

- Acquire knowledge of Working principles, characteristics and applications of BJT and FET Frequency response characteristics of BJT and FET amplifiers
- Analyze the performance of small signal BJT and FET amplifiers single stage and multi stage amplifiers
- Apply the knowledge gained in the design of Electronic circuits

TEXT BOOKS:

1. Donald. A. Neamen, Electronic Circuits Analysis and Design, 3rd Edition, Mc Graw Hill Education (India) Private Ltd., 2010. (Unit I-IV)

2. Robert L. Boylestad and Louis Nasheresky, -Electronic Devices and Circuit Theory, 11th Edition, Pearson Education, 2013. (Unit V)

9

9

9

9

9

REFERENCES

1. Millman J, Halkias.C and Sathyabrada, Electronic Devices and Circuits, 4th Edition, Mc Graw Hill Education (India) Private Ltd., 2015.

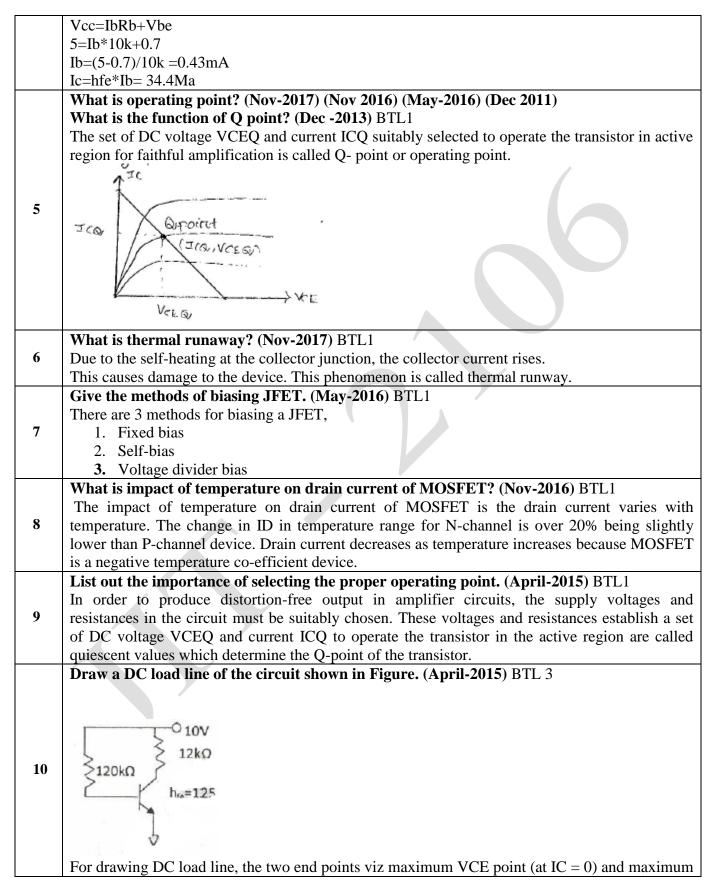
2. Salivahanan and N. Suresh Kumar, Electronic Devices and Circuits, 4th Edition, Mc Graw Hill Education (India) Private Ltd., 2017.

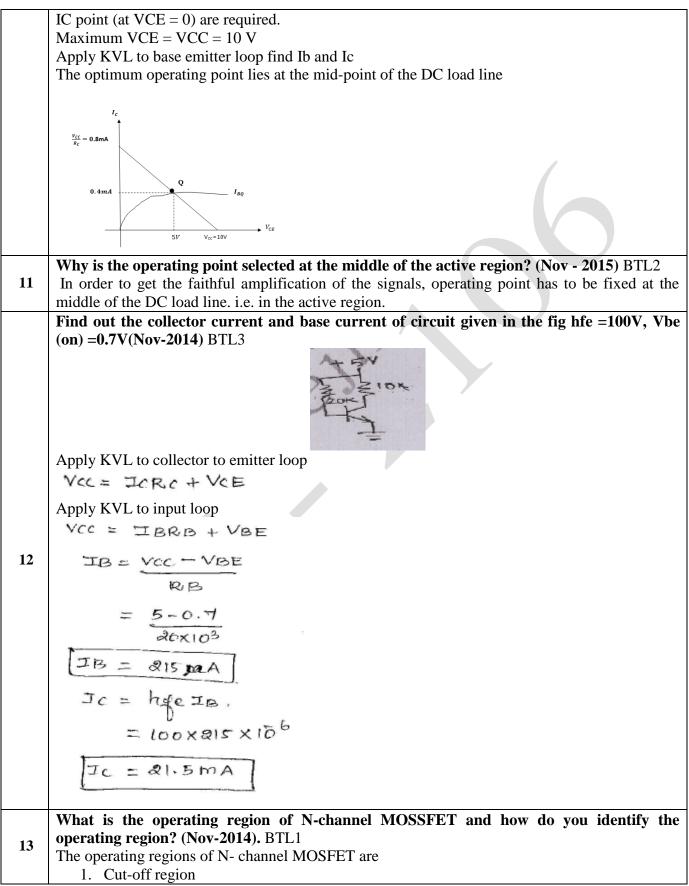
3. Floyd, Electronic Devices, Ninth Edition, Pearson Education, 2012.

4. David A. Bell, Electronic Devices & Circuits, 5th Edition, Oxford University Press, 2008.

5. Anwar A. Khan and Kanchan K. Dey, A First Course on Electronics, PHI, 2006. 6. Rashid M, Microelectronics Circuits, Thomson Learning, 2007.

Subject Code: EC8351 Subject Name: ELECTRONIC CIRCUITS I

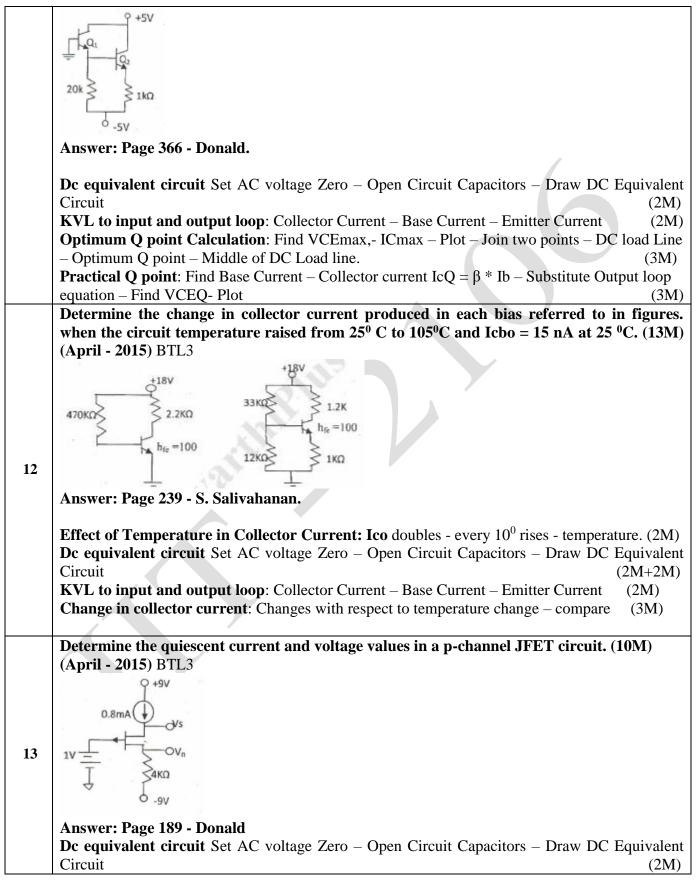

ACADEMIC YEAR: 2019-2020


Year/Semester: II /03 Subject Handler: Mr.R.Thandaiah Prabu

UNIT I -BIASING OF DISCRETE BJT, JFET AND MOSFET

BJT- Need for biasing - DC Load Line and Bias Point - DC analysis of Transistor circuits - Various biasing methods of BJT - Bias Circuit Design - Thermal stability - Stability factors - Bias compensation techniques using Diode, thermistor and Sensistor - Biasing BJT Switching Circuits- JFET - DC Load Line and Bias Point - Various biasing methods of JFET - JFET Bias Circuit Design - MOSFET Biasing - Biasing FET Switching Circuits.

	PART * A
Q.No.	Questions
1.	What is Diode Compensation? (April 2018) BTL1
-•	In diode compensation, a temperature sensitive device called diode is used to compensate the variation in Variant and Variant
	variation in V _{BE} or I _{CO.} Sketch the fixed biasing circuit of JFET. (April 2018) BTL1
2	$I_{D} + V_{DD}$ $R_{D} + V_{DD}$ $V_{D} + V_{D} + V_{D}$ $V_{D} + V_{D} + V_{D}$ $V_{D} + V_{D} + V_{D}$
3	List out the three-stability factor. (April 2017) Define stability factor. (Nov - 2015) BTL1 Stability factor is defined as the rate of change of collector current IC, with respect to collector base leakage current ICO, base current IB and current gain β respectively, when other 2 values are constant. $S=\partial IC/\partial ICO=dIC/dICO=\Delta IC/\Delta ICO$ $S'=\partial IC/\partial VBE=\Delta IC/\Delta VBE$ $S''=\partial IC/\partial \beta=\Delta IC/\Delta \beta$
4	Find out the collector current and base current of the circuit given in the following figure hfe =80, Vbe(on) = 0.7 V. (April 2017) BTL3 $\boxed{10k} = 5k$ Apply KVL to input loop


	2. Ohmic region
	3. Active region
	4. Saturation region
	What is thermal stability? (Dec -2013) BTL1
14	The steady state temperature rise in the collector junction is proportional to the power dissipated at the junction. Condition for thermal stability is the rate at which heat is released at the collector should not exceed the rate at which the heat can be dissipated under steady state conditions. $\frac{\partial Pc}{\partial Tj} = 1/\emptyset$
	Determine the value of R _s and R _c for a collector to base bias circuit for the specified
15	condition Vcc = 15 V, V= 5V, Ic =5mA and beta = 100 (Dec- 2014) BTL3 Apply KVL to input loop Vcc=IbRb+Vbe Ic=hfe*Ib Apply KVL to output loop Vcc=Ic*Rc+Vce
	What are the factors against which an amplifier needs to be stabilized? (Dec- 2014) BTL1
16	 The q point must be stabilized at the Centre of the active region of the output Characteristics. 1. Stabilize the collector current against the temperature variations. 2. Make the q point independent of the transistor parameters. 3. When the transistor is replaced, it must be of same type. 4. Stabilize the Collector current against the variation in V_{BE}
	What is the need for biasing in transistor amplifier. (May 2011) BTL1
17	To use the transistor in any application it is necessary to provide sufficient Voltage and current
	to operate the transistor. This is called biasing.
10	Give the stability factor S for the fixed bias circuit. (May 2007) BTL1
18	The stability factor for the fixed bias circuit is, S=1+0
	$S=1+\beta$
19	How does the thermistor compensation work? BTL1 The thermistor has a negative temperature coefficient i.e., its resistance decreases with the increase in temperature. So, any excess collector current is decreased because of the reduction in the active current through the device.
	Write a major difference between JFET and E-MOSFET biasing. BTL1
20	Biasing circuits for E-MOSFET are similar to the circuit used for JFET biasing. The primary difference between the two is the fact that E-MOSFET only permits operating points with positive value of VGS for n channel and negative value of VGS for p channel.
	What do you understand by DC & AC load line? (Dec 2016) BTL2
21	DC Load Line: It is the line on the output characteristics of a transistor circuit which gives the values of Ic & Vce corresponding to zero signal (or) DC Conditions. AC Load Line:
	This is the line on the output characteristics of a transistor circuit which gives the values of Ic & Vce when signal is applied.
22	When does a transistor act as a switch? BTL1
	The transistor acts as a switch when it is operated at either cut off region or Saturation region.
	What do you mean by punch through? (June 2014) BTL1
23	On increasing the Reverse bias voltage then at a time instant the width of the base becomes zero and this effect is called punch through effect and that reverse bias voltage is called punch

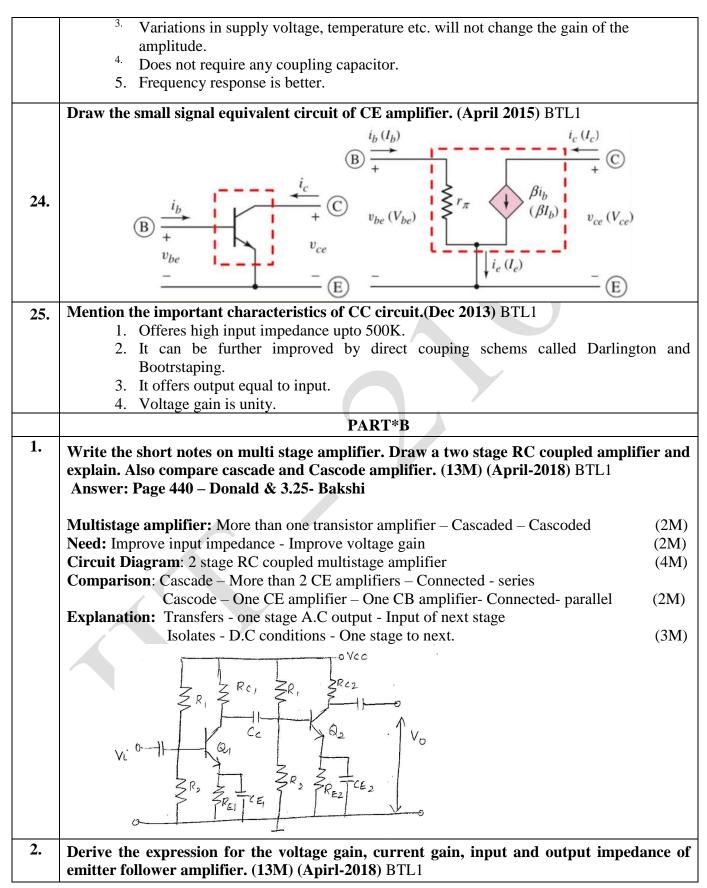
	through voltage.
24	State the two techniques used in the stability of the Q point. BTL 1 Stabilization technique: This refers to the use of resistive biasing circuit which allows IB to vary so as to keep IC relatively constant with variations in Ico and VBE. Compensation techniques: This refers to the use of temperature sensitive devices such as thermistors diodes. They provide compensating voltages and currents to maintain operating point constant.
25	Why transistor is called as current controlled device? BTL1 The output characteristics of the transistor depend on the input current. So, the transistor is called a current controlled device.
	PART * B
1	Explain voltage Divider bias method of BJT and derive an expression for Stability Factors.(13M) (April 2018) BTL1Answer: Page 200 - S. Salivahanan & 1.25- BakshiVoltage Divider Bias: voltage divided - two parallel resistors – Self Biased –Biased by itself- Best biasing method(2M)Circuit diagram: DC voltage source – Biasing Resistors – CE Configuration – Emitter ground (2M)Dc equivalent circuit: Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit(2M)Stability factor definition: Rate of Change of Ic with respect to Ib - Rate of Change of Ic with respect to Vbe - Rate of Change of Ic with respect to β .(1M)Stability Factor S': S'= $\beta/(Rb+(1+\beta)Re)$ (2M)Stability Factor S': S'' = SIc/ β (1+ β) (2M)
2	With neat diagram explain the working of self-bias and voltage divider bias for common source amplifier. (13M) (April 2018) BTL1 Answer: Page 239 - S. Salivahanan & 2.6- BakshiSelf-Bias: Voltage divided - two parallel resistors – Self Biased –Biased by itself- Best biasing method–good stability factorCircuit diagram: DC voltage source – Biasing Resistors – CS Configuration – Source ground (3M)Dc equivalent circuit Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent CircuitCircuit(3M)Derivation and Explanation : KVL to Input loop – Output Loop – Find Vgs - ID (3M)With neat diagram explain the source and drain resistance biasing of MOSFET. (13M) (Nov- 2017) BTL1Answer: Page 239 - S. Salivahanan & 2.25- Bakshi

	Source and drain resistance Bias: Bias- Source and drain resistance – good stability than fixed (4M) Circuit diagram: DC voltage source – Biasing Resistors –drain to source resistance- CS Configuration – Source ground (3M) Dc equivalent circuit: Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit (3M) Derivation and Explanation: KVL to Input loop – Output Loop – Find Vgs - ID (3M) Derive the stability factors for voltage divider bias circuit and give reason why it is advantageous then fixed bias circuit. (13M) (April-2017) BTL3
4	Answer: Page 200 - S. Salivahanan & 1.25- BakshiVoltage Divider Bias: voltage divided - two parallel resistors – Self Biased –Biased by itself- Best biasing method (2M)Circuit diagram: DC voltage source – Biasing Resistors – CE Configuration – Emitter ground (2M)Dc equivalent circuit: Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit (2M)Stability factor definition: Rate of Change of Ic with respect to Ib - Rate of Change of Ic with respect to Vb - Rate of Change of Ic with respect to β .Stability Factor S: S=1S'=- $\beta/(Rb+(1+\beta)Re)$ Stability Factor S": S'' = SIc/ β (1+ β)(1M)Advantages: Better stability - Simple circuit.
5	Draw a circuit which uses a diode to compensate for changes in Ico. Explain how stabilization is achieved in the circuit. (6M) (April-2017) BTL3 Answer: Page 217 - S. Salivahanan & 1.49- Bakshi Bias Compensation: Compensating - change in Q point - temperature effects - using temperature sensitive devices - diodes, thermistor, Sensistor. (1M) Circuit Diagram: Diode compensation - Diode - emitter - compensate ICO - Base - Compensate Ib (1M) Base Current Compensation: Ib=I-I ₀ (2M) Explanation: Temperature Increases- VBE decreases- Ib increases - Ic Increases- diode current increases - Base current decreases - collector current decreases - compensation done (2M)
6	Briefly explain the reason for keeping the operating point of a transistor as fixed. (4M) (April-2017) BTL1 Answer: Page 184 - S. Salivahanan & 1.6- Bakshi Need for Biasing: Faithful amplification – Transistor as Amplifier – Distortion less amplification (1M)

	Compensation: Compensating - change in Q point - temperature effects - temperature sem	sitiva
	devices - diodes, thermistor, sensistors.	(1M)
	Stabilization : stabilizing - Q point - proper supply voltage - resistors	(1M)
	Optimum Q point : Middle of DC load line.	(1M)
	Compare the methods of biasing using BJT in terms of their stability factors. (13M) 2016) BTL2 Answer: Page 1.106 – T.Joel	(May-
7	Collector to emitter feedback bias with Re- Collector to emitter Resistance – EmitterResistance - better stability than fixed biasVoltage divider bias- voltage divided - two parallel resistors – Self Biased –Biased by itse	(2M) (2M)
	 With neat diagrams, explain the bias compensation techniques and state is advantage disadvantages. (10M) (May-2016) BTL1 Answer: Page 214 - S. Salivahanan & 1.49- Bakshi Compensation: Compensating - change in Q point - temperature effects - temperature sen devices - diodes, thermistor, sensistors. 	
8	(1M)	esistors (2M)
	Thermistor compensation: Thermistor at base- Negative temperature Coefficient – Resis decreases as Temperature Increases- compensate Ic	tance (2M)
	Sensistor compensation: Sensistor at base- Positive temperature Coefficient - Resistance increases as Temperature decreases-Compensate Ic	(2M)
	Advantages: Compensate Variation in Ic – bias stabilization Disadvantage: Complex Circuit	(1M) (1M)
9	Analyze a BJT with a voltage divider bias circuit and determine the change in the Q with a variation in β when the circuit contains an emitter resister. Let the biasing reber $R_{B1} = 56 \text{ K}\Omega$, $R_{B2} = 12.2 \text{ K}\Omega$, $R_C = 2 \text{ K}\Omega$, $R_E = 0.4 \text{ K}\Omega$, $Vcc = 10 \text{ V}$, Vbe (on) = 0.7	esistors

	β=100. (13M) (Nov-2016) BTL4
	Answer: Page 338 - Donald.
	Voltage Divider Bias: voltage divided - two parallel resistors – Self Biased –Biased by itself- Best biasing method (1M)Circuit diagram: DC voltage source – Biasing Resistors – CE Configuration – Emitter ground (1M)Dc equivalent circuit: Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit(1M)Dc equivalent circuit: Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit(1M)Thevenin's Resistance: Rth=R1R2/(R1+R2) =10k(1M)KVL: Input loop and solve, IBQ=21.6 μ A(2M)Collector Current: Ic= β Ib will give, IcQ =2.16mA(2M)KVL: Output Loop – Collector to emitter voltage-V _{CEQ} =4.81V(2M)
I	Circuit Diagram: Voltage Divider Bias Circuit – With calculated Values (2M)
10	= 0.008 V-1. Determine the small- signal voltage gain Av = Vo/Vi. (13M) (Nov-2016) BTL3 V_{DD} =20 V R_{D} =2.7 kΩ R_{1} =420kΩ R_{1} =420kΩ R_{1} =420kΩ R_{2} =180 kΩ R_{2} =180 kΩ R_{3} =2.7 kΩ R_{3} =
	Answer: Page 205 - Donald.
	Self-Bias: Voltage divided - two parallel resistors – Self Biased –Biased by itself- Best biasing method-good stability factor(2M)Circuit diagram: DC voltage source – Biasing Resistors – CS Configuration – Source ground (2M)Dc equivalent circuit Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit
	Circuit (1M) Derivation and Explanation : KVL to Input loop – Output Loop – Find Vgs - I _D (1M)
	Calculation: V_{gsQ} =-2V - I_{DQ} =3mA - g_m =3mA/V- r_0 =41.7k, Av= -4.66 (7M)
11	The parameters for each transistor in the circuit in Figure. Are hfe = 100 and Vbe = 0.7 V. determine the Q- point values of base, collector and emitter currents in Q1 and Q2. (10M) (April - 2015) BTL3

	KVL to input and output loop: Collector Current – Base Current – Emitter Current(1M)Calculation: Gate source Voltage-Vgs=1.086V – Drain Source voltage - Vsd=5.71V (4M+4M)
	The circuit in Figure let hfe = 100. Find Vth and Rth for the base circuit. Determine Ic_Q and Vce_Q . Draw the DC load line. (13M) (April - 2015) BTL3
14	500 KO $500 KO$ 500
	Dc equivalent circuit Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit (2M) KVL to input and output loop: KVL – Input - output loop (2M) DC Load Line: Input - output loop (2M)
	DC Load Line: Ic=0 - find Vce - Vce=0 - Find Ic - Plot two points - join - line - DC load line. (6M) Optimum Q point Calculation : DC load Line - Optimum Q point - Middle of DC Load line. (1M) Practical Q point : Find Base Current - Collector current IcQ = β * Ib - Substitute Output loop equation - Find VCEQ- Plot (2M)
	Why the biasing is necessary in BJT amplifier? Explain the concept of DC & AC load line with neat diagram. How will you select the operating point, explain it using CE amplifier characteristics? (13M) (Nov – 2015) BTL2 Answer: Page 184 - S. Salivahanan & 1.9- Bakshi
15	Need for Biasing: Faithful amplification – Transistor as Amplifier – Distortion less amplification (1M) Dc equivalent circuit Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equivalent Circuit (2M)
	KVL to input and output loop: KVL – Input - output loop(2M)DC Load Line: Ic=0 - find Vce - Vce=0 - Find Ic - Plot two points - join - line - DC load line.(6M)
	Optimum Q point Calculation : DC load Line – Optimum Q point – Middle of DC Load line. (1M)
	Practical Q point : Find Base Current – Collector current $IcQ = \beta * Ib$ – Substitute Output loop equation – Find VCEQ- Plot (2M) AC Load Line: AC equivalent Resistance – Update VCE, Ic- Plot – Join two points – AC load
	line (2M)
	PART * C
1	Design the circuit given below such that $I_{DQ} = 100\mu A$, $V_{SDQ}=3V$, and $V_{RS}=0.8V$. Note that V_{RS} is the voltage across the source resistor Rs. The value of the larger bias resister R1, R2 is to be 200K Ω . Transistor parameters are Kp=100 μ A/V2, and $V_{TP}=-0.4V$, the conduction


	parameter varies by ±5 percent. (15M) (Nov 2016) BTL3	
	$V^{+} = 2.5 V$	
	9	
	+ + +	
	$R_1 \ge V_{RS} \ge R_S$	
	V _G	
	$R_2 \leq \leq R_p$	
	1 5	
	V = -2.5 V	
	v = -2.5 v	
	Answer: Page 147 - Donald.	
	Dc equivalent circuit Set AC voltage Zero - Open Circuit Capacitors - Draw DC Equ	uivalent
	Circuit	(2M)
	KVL to input and output loop : KVL – Input - output loop	(2M)
	Calculation : Gate source voltage - Vsg=1.4V, Gate voltage - Vg=0.3V, Bias current -	(==:=)
	Ibias=0.014mA,	(6M)
		. ,
	Resistance values: R1=157 K-Rs=8k- Rd=12K-Vg=0.278V	(5M)
	Derive the stability factor of self-biasing circuit of BJT. (15M) (Nov- 2014) BTL1	
	Answer: Page 239 - S. Salivahanan & 1.25- Bakshi	
		10
	Voltage Divider Bias: voltage divided - two parallel resistors – Self Biased –Biased by its	
	Voltage Divider Bias : voltage divided - two parallel resistors – Self Biased –Biased by its Best biasing method	self- (2M)
		(2M)
	Best biasing method	(2M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M)	(2M) ground
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ	(2M) ground
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit	(2M) ground uivalent (2M)
2	 Best biasing method Circuit diagram: DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit: Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equination Stability factor definition: Rate of Change of Ic with respect to Ib - Rate of Change of Ic 	(2M) ground uvalent (2M) with
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β .	(2M) ground nivalent (2M) with (2M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1	(2M) ground uivalent (2M) with (2M) (1M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- $\beta/(Rb+(1+\beta)Re)$	(2M) ground ivalent (2M) with (2M) (1M) (1M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- $\beta/(Rb+(1+\beta)Re)$ Stability Factor S': S'' = SIc/ β (1+ β)	(2M) ground ivalent (2M) with (2M) (1M) (1M) (1M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- β /(Rb+(1+ β)Re) Stability Factor S': S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit.	(2M) ground uvalent (2M) with (2M) (1M) (1M) (1M) (1M) (2M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- $\beta/(Rb+(1+\beta)Re)$ Stability Factor S': S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit. Design the emitter bias of BJT with Ie = 2mA, Vdc = 18 V, Vce = 10 V and β =150	(2M) ground uvalent (2M) with (2M) (1M) (1M) (1M) (1M) (2M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- β /(Rb+(1+ β)Re) Stability Factor S': S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit.	(2M) ground uvalent (2M) with (2M) (1M) (1M) (1M) (1M) (2M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- $\beta/(Rb+(1+\beta)Re)$ Stability Factor S': S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit. Design the emitter bias of BJT with Ie = 2mA, Vdc = 18 V, Vce = 10 V and β =150	(2M) ground uvalent (2M) with (2M) (1M) (1M) (1M) (1M) (2M)
	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- β /(Rb+(1+ β)Re) Stability Factor S': S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit. Design the emitter bias of BJT with Ie = 2mA, Vdc = 18 V, Vce = 10 V and β =150 (Nov 2014) BTL1	(2M) ground uvalent (2M) with (2M) (1M) (1M) (1M) (1M) (2M)
2	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- β /(Rb+(1+ β)Re) Stability Factor S': S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit. Design the emitter bias of BJT with Ie = 2mA, Vdc = 18 V, Vce = 10 V and β =150 (Nov 2014) BTL1	(2M) ground ivalent (2M) with (2M) (1M) (1M) (1M) (1M) (2M) (15M)
	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S : S=1 Stability Factor S : S'=- β /(Rb+(1+ β)Re) Stability Factor S ": S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit. Design the emitter bias of BJT with Ie = 2mA, Vdc = 18 V, Vce = 10 V and β =150 (Nov 2014) BTL1 Answer: Page 1.71 - T. Joel. Dc equivalent circuit Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ	(2M) ground (2M) (2M) (1M) (1M) (1M) (1M) (2M) (15M)
	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S: S=1 Stability Factor S': S'=- β /(Rb+(1+ β)Re) Stability Factor S': S''=-SIc/ β (1+ β) Advantages: Better stability - Simple circuit. Design the emitter bias of BJT with Ie = 2mA, Vdc = 18 V, Vce = 10 V and β =150 (Nov 2014) BTL1 Answer: Page 1.71 - T.Joel. Dc equivalent circuit Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit	(2M) ground (2M) (2M) (2M) (1M) (1M) (1M) (1M) (2M) (15M) (15M)
	Best biasing method Circuit diagram : DC voltage source – Biasing Resistors – CE Configuration – Emitter (2M) Dc equivalent circuit : Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ Circuit Stability factor definition : Rate of Change of Ic with respect to Ib - Rate of Change of Ic respect to Vbe - Rate of Change of Ic with respect to β . Stability Factor S : S=1 Stability Factor S : S'=- β /(Rb+(1+ β)Re) Stability Factor S ": S''=SIc/ β (1+ β) Advantages: Better stability - Simple circuit. Design the emitter bias of BJT with Ie = 2mA, Vdc = 18 V, Vce = 10 V and β =150 (Nov 2014) BTL1 Answer: Page 1.71 - T. Joel. Dc equivalent circuit Set AC voltage Zero – Open Circuit Capacitors – Draw DC Equ	(2M) ground (2M) (2M) (1M) (1M) (1M) (1M) (2M) (15M)

UNIT II – BJT AMPLIFIERS Small Signal Hybrid π equivalent circuit of BJT – Early effect - Analysis of CE, CC and CB amplifiers using Hybrid π equivalent circuits - AC Load Line Analysis- Darlington Amplifier - Bootstrap technique - Cascade, Cascode configurations - Differential amplifier, Basic BJT differential pair - Small signal analysis and CMRR. PART * A Q.No. **Ouestions** Draw the circuit of cascade amplifier. (April 2018) BTL1 1. The RC Coupled cascade amplifier is ovec Cc Why CE configuration is preferred for amplification? (April 2018) BTL1 2. CE configuration offers, 1. High input impedance 2. Low output impedance 3. High voltage gain and 4. Moderate current gain. Hence it is preferred. What is bypass and coupling capacitor? (Nov-2017) BTL1 3. 1. An emitter bypass capacitor CE is connected in parallel with the emitter resistance RE to provide a low reactance path to the amplified ac signal. 2. Input and output coupling capacitors are connected after the source and before the load to couple only the ac components and to block dc components. What is the need for boost strapping? (Nov-2017) BTL1 4. In Darlington transistor pair circuits, the input impedance is reduced because of the biasing resistors in the circuit. To overcome this, decrease in the input resistance due to the biasing network, a small capacitor and resistance R3 are added in the circuit. This improves the input impedance of the Darlington pair circuit. Thus, the effect of increasing input impedance when voltage gain Av approaches unity is called Bootstrapping. State Millers' theorem. (April 2017) BTL1 5. Millers theorem states that, any impedance(z) connected between two nodes can be resolved into two components from each node to ground. The two impedances are Z1 = Z/1-K, Z2 = ZK/K-1; where K = voltage gain. List the values of input and output impedance of BJT small signal model. BTL 1 6. Input Impedance: $r_{\pi} = \frac{\beta V_T}{I_{CQ}}$

	Output Impedance:
	$r_o = \frac{v_A}{r}$
	$r_{O} = rac{V_{A}}{I_{CQ}}$
_	Define CMRR of BJT differential amplifier. How will you improve it? (April-2015)
7.	BTL1
	The ability of differential amplifier to reject a common mode signal is expressed by a ratio called as common mode rejection ratio [CMRR]. It is defined as the ratio of differential
	voltage gain A_d to common mode voltage gain A_c . BTL1
	$CMRR = \rho = \left \frac{Ad}{Ac}\right $
	Methods of improving CMRR:
	^{1.} Constant current bias method.
	^{2.} Use of current mirror circuit.
	3. Use of active load.
8.	A small signal source Vi(t) = 20cos 20t+30sin10^6t is applied to a transistor amplifier as
	shown in figure. The transistor has hfe = 150, ro = ∞ and r π = 3 K Ω . Determine V0(t).
	(April-2015) BTL3
	t ₂
	$100k \ge \frac{3k\Omega}{2} V_0(t)$
	20kg \$ 900g \$
	Av=-hfe*Rc/hie
	hie= $r\pi$
	Av=-150
	$Vo(t)=Av^* Vi(t)$
	$Vo(t) = -\{3000\cos 20t + 4500\sin 10^{6}t\}$
	How the amplifiers are classified according to the transistor configuration? (Nov 2015)
0	BTL1
9.	BJT AMPLIFIERS:
	1. Common Emitter (CE)
	2. Common Base (CB)
	3. Common Collector (CC)
	FET AMPLIFIERS:
	1. Common Source (CS)
	2. Common Drain (CD)
	3. Common Gate (CG)
10.	Draw Darlington amplifier. BTL1

	$R_1 \neq R_2 \neq 0$
	$v_i \circ - Q_1$
11.	Find out CMRR of differential amplifier with differential gain of 300 and common mode gain of 0.2. (Nov-2014) BTL1
	$CMRR = \rho = \left \frac{Ad}{Ac}\right $ Answ CMRR = 62.524R
10	Ans: CMRR = 63.52dB. What are the advantages of Darlington circuit? (Nov 2011) BTL1
12.	^{1.} Very high current gain
	2. Very high input impedance
	3. Convenient and easy circuit configuration to use
	^{4.} Darlington pairs are widely available in a single package or they can be made
	from two separate transistors
13.	What is common mode signal? BTL1
	The average of two input signals or voltages is called a common-mode signal. The gain
	with which it amplifies the common mode signal to produce the output is called common mode
	gain of the differential amplifier denoted as Ac.
	Common mode voltage Vc = $\frac{V_1 - V_2}{2}$
	$V_0 \propto V_c$
	$V_0 \approx V_c$ Vo =Ac. Vc
	$Gain Ac = \frac{Vo}{Vc}$
	The common mode gain is expressed in decibel (dB) value as $Ac = 20 \log 10^{(Ac)}$ in dB.
	What are the coupling schemes used in multistage amplifiers (April-2010) BTL1
	When amplifiers are cascaded it is necessary to use a coupling network
	between the output of one amplifier and the input of the following amplifier. This type of coupling is called as inter stage coupling. They serve the following purposes,
14.	It transfers the A.C output of one stage to the input of next stage
	It isolates the D.C conditions of one stage to next.
	The commonly used coupling schemes are,
	1. Resistance, capacitance (RC) coupling
	2. Transformer coupling
	3. Direct coupling
15.	What is differential mode signal? BTL1
	The difference between the two input signals is generally called as differential signal or
	difference signal.

	Differential voltage $Vd = V1-V2$						
	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$						
	Vo = Ad. Vd						
	Gain $\operatorname{Ad}=\frac{Vo}{V1-V2}$						
	The differential gain is expressed in decibel (dB) value as						
	Ad = $20 \log 10^{(Ad)}$ in dB.						
	Define transconductance. (Nov 2008] BTL1						
16.	Transconductance, also known as mutual conductance is the ratio of the current change at						
	the output port to the voltage change at the input port. It is written as gm. For direct current,						
	transconductance is defined as follows: $g_m = \frac{\Delta Iout}{\Delta Vin}$						
	For small signal alternating current, the definition is simpler						
	I_{co}						
	$g_m = \frac{I_{CQ}}{V_T}$						
	ν _T						
17.	State Miller effect in terms of capacitance. (Dec-2006) BTL1						
	For any inverting amplifier, the input capacitance will be increased by a miller effect						
	capacitance, sensitive to the gain of the amplifier and the inter electrode capacitance connected						
	between the input and output terminals of the active device.						
10	CMi = (1 - AV) Cf; CM0 = Cf						
18.	What is meant by bootstrapping? (Dec-2003) BTL1						
	The effect of increasing input impedance when voltage gain Av approaches unity is called						
	Bootstrapping.						
	Reff - Effective input resistance. And $Reff = R/1$ -Av						
19.	What is the need of differential amplifier? (April-2011) BTL1						
	The need for differential amplifier arises in many physical measurements, in medical						
	electronics and in direct coupled amplifier applications. In this amplifier, there will be no output voltage resulting from thermal drifts or any other changes provided, change in both halves of the						
	circuits are equal.						
20.	Why emitter bypass capacitor CE is used in CE amplifier circuit. (April 2004) BTL1						
20.	An emitter bypass capacitor CE is connected in parallel with the emitter resistance RE to provide						
	a low reactance path to the amplified ac signal. If it is not inserted, the amplified ac signal						
	passing through RE will cause a voltage drop across it. This will reduce the output voltage,						
	reducing the gain of the amplifier.						
21.	State early effect in BJT. BTL1						
	The Early effect is the variation in the width of the base in a BJT due to a variation in the applied						
	base-to-collector voltage. A greater reverse bias across the collector-base junction, for example,						
	increases the collector-base depletion width, decreasing the width of the charge neutral portion						
	of the base. What are the applications of a differential amplifier? PTL 1						
22.	What are the applications of a differential amplifier? BTL1 1. To measure many physical quantities.						
	 Can be used as a direct coupled amplifier. 						
	 Can be used as a direct coupled amplifier. Used in operational amplifier. 						
	What are the advantages of differential amplifier? BTL1						
23.	^{1.} Very stable.						
	^{2.} Low noise, low drift.						
	EDDIA AD /// CC/Mr. D. Thandaich Deabu/IIId Vr/SEM 02/EC9251/ELECTDONIC CIDCUITS 1/ UNIT 1.5/OD / Kaya/Mar2.0						

	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors	
	voltage to zero.	(2M)
	Small signal equivalent circuit: Replace transistor - equivalent small signal model. Small signal parameters: (1M)	(2M)
	Input Impedance: Total Input resistances- Ri=R1//R2//Rib	(2M)
	Output Impedance: Total Output Resistances $-Ro=r\pi/(1+\beta)//Re//ro.$ (2M)	(2111)
	Voltage Gain: Ratio - Output to input voltage. $Av = \frac{(1+\beta)(ro//Re)}{r\pi + (1+\beta)(ro//Re)} (\frac{Ri}{Ri+Rs})$	(2M)
	Current Gain: Ratio - Output to input Current. $Ai = (1 + \beta)$	(2M)
3.	Draw the AC equivalent circuit of a CE amplifier with voltage divider bias and d	
5.	expression for current gain, voltage gain, input impedance, output admittance an	d overal
	current gain. (13M) (April-2017) BTL1 Answer Bage 400 Denedd & 3.4 Bakshi	
	Answer: Page 400 – Donald & 3.4- Bakshi	
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors	- Set DO
	voltage to zero.	(2M
	Small signal equivalent circuit : Replace transistor - equivalent small signal model.	(2M
	Small signal parameters:	
	(1M)	
	Input Impedance: Total Input resistances: Ri=R1//R2//Rπ	(2M)
	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*rπ	(2M)
	Output Impedance: Total Output Resistances: Ro=Rc//ro.	(2M)
	Voltage Gain: Ratio - Output to input voltage: $Av = -gm(\frac{(R1//R2//r\pi)}{(R1//R2//r\pi+Rs)})(Rc//ro)$	(2M)
4.	Explain the operation of cascade amplifier and derive and derive voltage gain, over	rall gain
	Resistance overall current gain and output impedance. (13M) (April-2017) BTL1 Answer: Page 440 – Donald & 3.25- Bakshi	
	Answer ruge ++v Donard et 5125 Daksin	
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors	- Set DO
	voltage to zero.	(2M)
	Small signal equivalent circuit: Replace transistor - equivalent small signal model.	(2M
	Small signal parameters:	
	(1M)	
	Input Impedance: Total Input resistances: Ri=R1//R2//rn1	(2M)
	Output Impedance: Total Output Resistances: Ro=Rc2	(2M)
	Voltage Gain: Ratio - Output to input voltage:	
	Av= gm1*gm2(Rc1//r π 2) (Rc2//R _L) (Ri/(Ri+Rs))	(2M)
_	Current Gain: Ratio - Output to input Current: Ai = Ai1*Ai2With a neat diagram explain the operation of differential amplifier and definition	(2M)
5.	necessary equations to calculate the CMRR. (13M) (Nov 2017) BTL1	erive in
	Answer: Page 789 – Donald & 3.35- Bakshi	

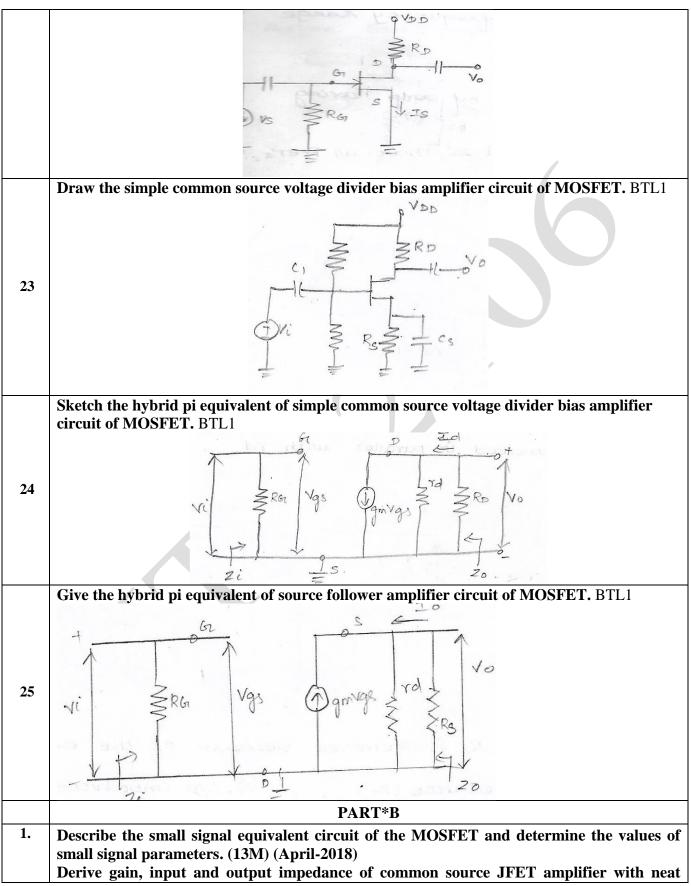
	voltage to zero.	(2M)			
	Small signal equivalent circuit : Replace transistor - equivalent small signal model. Small signal parameters :	(2M)			
	Common mode analysis : Common input – both transistors- $Acm = (V1+V2)/2$	(3M)			
	Differential Mode Analysis: Difference Mode – Different Input – Adm	(3M)			
	Small signal Gain: Common Mode Gain AC- Difference mode Gain A.	(1M)			
	Common Mode Rejection Ratio: CMRR = $ Ad/Ac = \frac{1}{2}(1+(1+\beta)IqRo/V_{T\beta})$	(2M)			
	Consider the circuit shown in figure with the parameters are hfe =120 and VA = ∞ .				
6.	(1) determine the current gain, voltage gain, input impedance and output impedance				
	(2) Find the maximum undistorted output voltage swing. (13M) (April-2015) BTL3				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Answer: Page 440 - Donald.				
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors - voltage to zero. Small signal equivalent circuit: Replace transistor - equivalent small signal model. Small signal parameters:	- Set DC (2M) (2M)			
	 (1M) Input Impedance: Total Input resistances: Ri=R1//R2//rπ1=10.23K Output Impedance: Total Output Resistances: Ro=(RC1+ rπ2)/(1+β)//Re2=83.35k (2M) Voltage Gain: Ratio - Output to input voltage: 	(2M)			
	Av= gm1*gm2(Rc1//r\pi2) (Rc2//R _L)(Ri/(Ri+Rs))=-3.41	(2M)			
	Maximum Voltage swing: Maximum variation – Acceptable	$(21\mathbf{V}\mathbf{I})$			
	$\Delta Ic=9.72 \text{mA}, \Delta Vce = 2.10Vc$	(2M)			
7.	The parameter for each transistor in the circuit are hfe = 100, $V_A = \infty$ and V_{BE} (on)				
	Determine the input and output impedance. (8M) (April-2015) BTL3 Real for the input and output impedance. (8M) (April-2015) BTL3 Real for the input and output impedance. (8M) (April-2015) BTL3 Answer: Page 444 - Donald. AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors -				
	voltage to zero.	(2M)			

	Small signal equivalent circuit : Replace transistor - equivalent small signal model.	(2M)			
	Small signal parameters: Input Impadance: Total Input resistance: $\mathbf{P} = \mathbf{P} + (1 + \beta + 1) \mathbf{r} = 2 - 2 \beta + 1 \mathbf{r} = 2 - 122 + 2 \mathbf{r}$				
	Input Impedance: Total Input resistances Ri= $r\pi 1$ +(1+ $\beta 1$) $r\pi 2$ =2 $\beta 1$ * $r\pi 2$ =122.2 k				
1	(2M) Output Impedance: Total Output Resistances: Ro=Re2=1k	(2M)			
8.	Draw the circuit diagram of bootstrapped emitter follower with its equivalent	()			
0.	derive for its input and output impedance. (10M) (April-2015) BTL1	circuit,			
	Answer: Page 411 – S.Salivahanan & 3.24- Bakshi				
	miswer: ruge +11 Siburivananan ee 5.2+ Daksin				
	Circuit Diagram for Bootstrapped amplifier.	(4M)			
	Concept of Bootstrapping : Input impedance - infinite - voltage gain approaches unity.	(2M)			
	Condition for Bootstrapping: To achieve high input impedance	(4M)			
	Reff=R3/(1-Av)				
	For the circuit shown in figure the transistor parameters are hfe = 125, VA = ∞ , V	'CC =18			
	V, RL = 4 K Ω , RE = 3K Ω , RC = 4K Ω , RL =25.6K Ω and R2 = 10.4K Ω . The input signal				
9.	current source. Determine its small signal voltage gain, current gain, maximum				
	gain and input impedance. (13M) (April-2015) BTL3	0			
	Co. Co				
	<u> </u>				
	$R_{c} = 100 k\Omega$				
	$\sum_{k=1}^{R_{E}} \sum_{k=1}^{R_{2}} \overline{\mp}_{V_{C}}^{*}$				
	Answer: Page 400 - Donald.				
	Answer. 1 age 400 - Donaiu.				
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors -	Set DC			
	voltage to zero.	(2M)			
	Small signal equivalent circuit: Replace transistor - equivalent small signal model.	(2M)			
	Small signal parameters:				
	(1M)				
	Input Impedance: Total Input resistances Rie= $r\pi/(1+\beta)$				
	(2M)				
	Output Impedance: Total Output Resistances: Ro=Rc = 4Ω	(2M)			
	Current Gain: Ratio - Output to input Current: Ai= $\beta / (1 + \beta) = 987$				
	(2M)				
	Voltage Gain: Ratio - Output to input voltage:				
	$Av=gm (Rc//R_L)=39$	(2M)			
	Calculate the small signal voltage gain of an emitter follower circuit. Given $\beta = 100$,				
	VBE(on) = 0.7V,VA = 80V,ICQ = 0.793mA,VCEQ = 3.4V. (8M) (May16) BTL1				
	Answer: Page 424 – Donald.				
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors -	Set DC			
10.	voltage to zero.	(2M)			
	Small signal equivalent circuit: Replace transistor - equivalent small signal model.	(2M)			
	Small signal parameters:	(1M)			
	Voltage Gain: Ratio - Output to input voltage:				
	$Av = \frac{(1+\beta)(ro//Re)}{r\pi + (1+\beta)(ro//Re)} \left(\frac{Ri}{Ri + Rs}\right)$	(2M)			
	$r\pi + (1+\beta)(ro//Re) Ri + Rs'$ Ans =0.96				
	AIIS-0.70	(2M)			

	With neat diagrams, explain the operation and advantages of Darlington pair circuit.						
11.	(13M) (Nov-2016) BTL1						
	Answer: Page 444 – Donald & 3.22- Bakshi						
	AC aminglant singuit. Short singuit input and output humans sounding associtors. Set DC						
AC equivalent circuit : Short circuit - input and output, bypass coupling capace voltage to zero.							
	voltage to zero.(2M)Small signal equivalent circuit: Replace transistor - equivalent small signal model.(2M)						
	Small signal equivalent circuit. Replace transistor - equivalent small signal model. (1M)						
	Input Impedance: Total Input resistances -Ri= $r\pi 1$ +(1+ $\beta 1$) $r\pi 2 = 2 \beta 1$ * $r\pi 2$						
	(2M)						
	Output Impedance: Total Output Resistances: Ro=Re2(2M)Current Gain: Ratio - Output to input Current: A1, A2						
	Overall Current Gain: Ai= β 1* β 2						
	(2M) $(2M)$						
	Advantages: (1M)						
	1. Large overall gain.						
	2. Higher input impedance						
	Disadvantages: (1M)						
	1. The input resistance of the amplifier -decreased - shunting effect - biasing resistors.						
	2. High leakage current.						
	PART * C						
	Draw the circuit of cascade amplifier (15M) (April 2018) BTL1						
	Answer: Page 440 – Donald & 3.25- Bakshi						
1.	Answer i age 440 Donald & 3.25 Darshi						
	Circuit diagram of cascade amplifier						
	(2M)						
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors - Set DC						
	voltage to zero. (2M)						
	Small signal equivalent circuit : Replace transistor - equivalent small signal model. (2M)						
	Small signal parameters:						
	(2M)						
	Input Impedance: Total Input resistances $-Ri=R1//R2//r\pi 1$ (2M)						
	Output Impedance: Total Output Resistances: Ro=Rc2						
	(2M)						
	Voltage Gain: Ratio - Output to input voltage:						
	$Av = gm1*gm2(Rc1//r\pi2)(Rc2//R_L)(Ri/(Ri+Rs)) $ (3M)						
	Analyze a basic common-base amplifier circuit and derive the expressions for its small-						
	signals voltage gain, current gain, input impedance and output impedance. (15M) (Nov-						
2.	2016] BTL1						
	Answer: Page 435 – Donald & 3.18- Bakshi						
	Circuit diagram- CB Amplifier						
	(2M)						
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors - Set DC						
	voltage to zero. (2M) Small signal aquivalent signal model (2M)						
117	Small signal equivalent circuit : Replace transistor - equivalent small signal model. (2M)						
JL	Γ-JEPPIAAR/ECE/Mr.R.Thandaiah Prabu/II nd Yr/SEM 03/EC8351/ELECTRONIC CIRCUITS I/UNIT 1-5/QB+Keys/Ver2.0						

	Small signal parameters:						
	$\begin{pmatrix} (1M) \\ M \end{pmatrix} = \begin{pmatrix} (1+0) \\ M \end{pmatrix}$						
	Input Impedance: Total Input resistances -Rie= $r\pi/(1+\beta)$						
	(2M)						
	Output Impedance: Total Output Resistances: Ro=Rc						
	(2M)						
	Current Gain: Ratio - Output to input Current: Ai= $\beta/(1+\beta)$						
	(2M)						
	Voltage Gain: Ratio - Output to input voltage: Av=gm (Rc//R _L)	(2M)					
3.	What are the changes in the AC characteristics of a common emitter amplifier when an emitter resistor and an emitter bypass capacitor are incorporated in the design? Explain with necessary equations. (15M) (May-2016) BTL1 Answer: Page 400 – Donald & 3.14- Bakshi						
	Circuit diagram : CE Amplifier with emitter resistor Re	(2M)					
	AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors						
	voltage to zero.	(2M)					
	Small signal equivalent circuit : Replace transistor - equivalent small signal model.	(2M)					
	Small signal parameters:	(1M)					
	Input Impedance: Total Input resistances -Ri=R1//R2//Rib						
	(2M)						
		$(\mathbf{N}\mathbf{I})$					
	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*rπ Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M)	(2M)					
	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*rπ Output Impedance: Total Output Resistances: Ro=Rc//ro.	(2M) (2M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*rπ Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M)	(2M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*r π Output Impedance: Total Output Resistances: Ro=Rc//ro.(2M)Voltage Gain: Ratio - Output to input voltage: $Av = (-\frac{Rc}{Re})$ Design the cascode circuit shown below to meet the following specientVce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (Note: Note:	(2M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*r π Output Impedance: Total Output Resistances: Ro=Rc/ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = \left(-\frac{Rc}{Re}\right)$ Design the cascode circuit shown below to meet the following speci Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 $V_{r=+9V}$	(2M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*r π Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = \left(-\frac{Rc}{Re}\right)$ Design the cascode circuit shown below to meet the following specient Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 $i = \frac{v + v}{v}$ Answer: Page 351 - Donald. Circuit diagram	(2M) fications. ov 2016) (1M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*r π Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = (-\frac{Rc}{Re})$ Design the cascode circuit shown below to meet the following specie Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 Answer: Page 351 - Donald. Circuit diagram AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors	(2M) fications. ov 2016) (1M) - Set DC					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*r π Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = \left(-\frac{Rc}{Re}\right)$ Design the cascode circuit shown below to meet the following speci Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 Answer: Page 351 - Donald. Circuit diagram AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors voltage to zero.	(2M) fications. ov 2016) (1M) - Set DC (2M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*r π Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = \left(-\frac{Rc}{Re}\right)$ Design the cascode circuit shown below to meet the following speci Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 Answer: Page 351 - Donald. Circuit diagram AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors voltage to zero. Small signal equivalent circuit: Replace transistor - equivalent small signal model.	(2M) fications. ov 2016) (1M) - Set DC (2M) (2M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=+gm*rπ Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = (-\frac{Rc}{Re})$ Design the cascode circuit shown below to meet the following specie Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 Answer: Page 351 - Donald. Circuit diagram AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors voltage to zero. Small signal equivalent circuit: Replace transistor - equivalent small signal model. Determination of Unknown parameters: Apply KVL to input loop- Output loop	(2M) fications. ov 2016) (1M) - Set DC (2M) (2M) (2M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=-gm*rπ Output Impedance: Total Output Resistances: Ro=Rc/ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = \left(-\frac{Rc}{Re}\right)$ Design the cascode circuit shown below to meet the following speci Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 Answer: Page 351 - Donald. Circuit diagram AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors voltage to zero. Small signal equivalent circuit: Replace transistor - equivalent small signal model. Determination of Unknown parameters: Apply KVL to input loop- Output loop Input Resistances: R3=14K, R2=25K, R1=51K	(2M) fications. ov 2016) (1M) - Set DC (2M) (2M) (2M) ((4M)					
4.	Current Gain: Ratio - Output to input Current: Ai=-hfe=+gm*rπ Output Impedance: Total Output Resistances: Ro=Rc//ro. (2M) Voltage Gain: Ratio - Output to input voltage: $Av = (-\frac{Rc}{Re})$ Design the cascode circuit shown below to meet the following specie Vce1=Vce2=2.5V, Vre=0.7, Ic1=Ic2=1mA, and Ir1=Ir2=Ir3=0.10mA. (15M) (N BTL3 Answer: Page 351 - Donald. Circuit diagram AC equivalent circuit: Short circuit - input and output, bypass coupling capacitors voltage to zero. Small signal equivalent circuit: Replace transistor - equivalent small signal model. Determination of Unknown parameters: Apply KVL to input loop- Output loop	(2M) fications. ov 2016) (1M) - Set DC (2M) (2M) (2M)					

UNIT III – SINGLE STAGE FET, MOSFET AMPLIFIERS

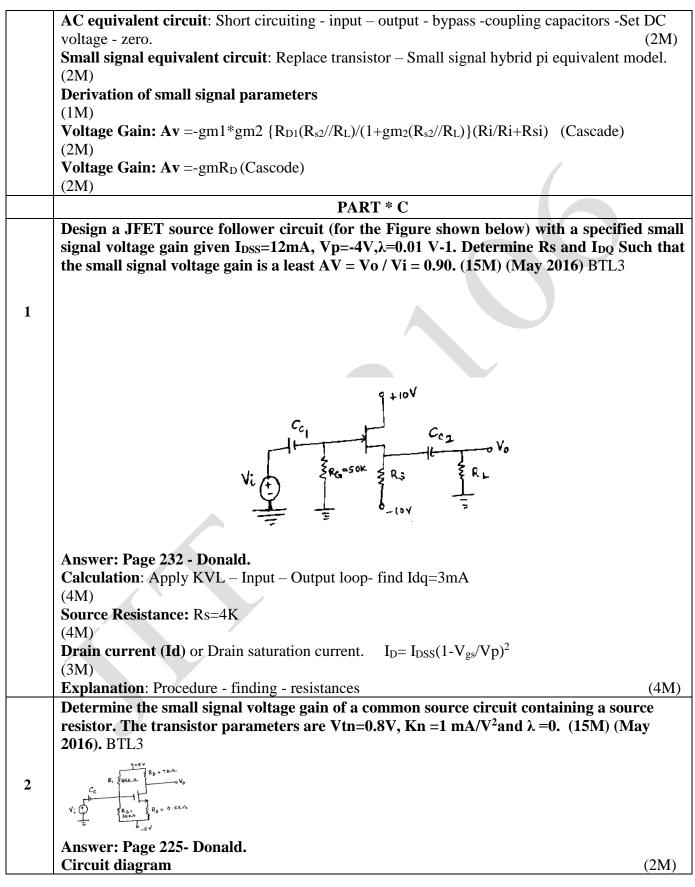

Small Signal Hybrid π equivalent circuit of FET and MOSFET - Analysis of CS, CD and CG amplifiers using Hybrid π equivalent circuits - Basic FET differential pair- BiCMOS circuits.

	PART * A						
Q.No.	. Questions						
1.	What is I _{DSS} in JFET? (April 2018) BTL1 I _{DSS} is the reverse saturation current when Vgs=0. It is used for fixing Q point of JFET. It is related with Drain current by the formula, I _D = I _{DSS} (1-V _{gs} /Vp) ²						
2	 Why MOSFET are used? (April 2018) BTL1 MOSFET are used because, MOSFETs offers greater input impedance. MOSFETs typically offers about 10¹⁴ Ω of impedance, sometimes greater. Low transconductance (gain) Voltage controlled. MOSFETs can be operated in depletion type or enhancement type. 						
3	What is BIMOS? (Nov-2017) BTL1 Bipolar Transistors are having larger trans conductance. MOS transistors are having larger input impedance. Both this advantage can be exploited together to get high trans conductance and input impedance and is called BIMOS technology and the circuit is called BIMOS.						
4	A self-biased P-Channel JFET has a pinch off voltage of 5V and I _{DSS} =12mA. The sup voltage is 12 V. Determine the values of resistors R _D and R _S , so that I _D = 5 mA and V _{DS} = (Nov-2017) BTL 1						
5	 List the features of BIMOS cascade amplifier. (April 2017) (Nov-2014) BTL1 1. Bipolar transistors have larger trans conductance 2. MOSFET have Infinite input impedance 3. These advantages are exploited together as BIMOS amplifier technology with high trans conductance, high input, output impedance and wider frequency band width. 						
6	What is the use of source bypass capacitor in CS amplifier? (April 2017) BTL1 The signal from the source is coupled to the gate through coupling capacitor Cc, which provide dc isolation between the amplifier and signal source.						
7	Determine the output impedance of a JFET amplifier shown in fig. Let $gm = 2mA/V$ and $\lambda = 0$. (April-2015) BTL3 $V_{0} = \frac{V_{0}}{10kD_{10}}$ Z0= rd//Rs//Rl//(1/gm) = Rs//Rl//(1/gm)						

	= 457.4Ω					
	Compare between JEFT and MOSFET amplifiers. (April-2015) BTL1					
	II	JFETs	MOSFETs			
	How it operates	Voltage controlled	Voltage controlled.			
	Gain (Transconductance)	Low transconductance (gain)	Low transconductance (gain)			
	Input Impedance	JFETs are depletion type transistors only.	MOSFETs can be depletion type or enhancement type.			
8	Input Impedance		ut MOSFETs offers greater input impedance. MOSFETs typically offers about $10^{14} \Omega$ of impedance, sometimes greater.			
	Cost	JFETs are somewhat cheaper to manufacture than MOSFETs. They have a less sophisticated manufacturing process.	MOSEETs is slightly more expensive			
9	Draw small signal model of JFET. (Nov-2014) BTL1 $G \diamond +$ $v_{gs} \rightarrow g_m v_{gs} + r_0$ $- \rightarrow S$					
10	Give the general conditions under which CS amplifier would be used. (MAY 16) BTL1 CS amplifier is used with the following conditions, 1. Medium input, output impedance 2. Medium current and voltage gain 3. Output is 180 ⁰ out of phase with input					
11	What is body effect in MOSFET? How does it change the small signal equivalent circuit of MOSFET? (MAY 16) BTL1It refers to the change in transistor threshold voltage resulting from the voltage difference between transistor source and body(substrate).In small signal equivalent circuit this effect can be seen by adding a current source in parallel width r_o , and its value is $g_{mb}*V_{bs}$.					

		the is biased independently. d as an extra drain current for simplicity, r to make no change on the g _{in} v _{gin} term) (hybrids- including body effect) transfer for the gin transfer for the gin t				
	What are FET amplified					
12	It can be used as linear frequency applications ar	amplifier or a digital of a digital of the amplifier of a digital of the amplication	es high voltage gain and h device in logic circuits it s.	's also used in high		
13	Two amplifiers having gain 20 dB and 40 dB are cascaded. Find overall gain in dB. (NOV 2009) BTL1 Av1 = 20 dB Av2= 40 dB Av=Av1+Av2 So, Av=60 dB					
	Compare BJT and JFE			1		
	Parameter	BJT	JFET	-		
	Device	Bipolar	unipolar			
14	Characteristics	Current Controlled	Voltage Controlled	-		
	Av	Very Large	Limited	-		
	Ai Decion of operation	Very Large	Ai=Infinite since Ig=0			
	Region of operationState the general advant	Active region	Saturation region			
15	1. FETs require less	space than that for BJTs, input impedance than B	, hence they are preferred in a	0		
	List out the applications of MOSFET. BTL1					
	1. Heat sink and cooling within a computer most MOSFETs are located on the					
	microprocessor chip, mounted on the motherboard and conspicuously cooled by its own					
16	heat sink and cooling fan. 2. Microprocessor chip itself is mounted in an electronic package with hundreds of					
	2. Incroprocessor chip fisen is mounted in an electronic package with nundreds of interconnecting pins and connected to the chip by hundreds of tiny bond wires.					
	3. Chip cross-section A cross-section of the chip reveals multiple layers of tiny wires above					
	-	nich are embedde4d in th		2		
	Sketch the simple comm	on gate amplifier circu	it of JFET. BTL1			
17	In Common Gate Amplifier Gate Terminal is grounded, Input is given in Source terminal					
	and output is taken from Drain terminal.					

	What is the impact of including a source resistor in the FET amplifier? (Nov 2016) BTL1					
18	The imp	-	a Rs in the FET amp	-	drop across the internal	
19	Why multi-stage amplifiers are required? (Nov 2016) BTL1 In many applications, a single stage transistor amplifier cannot meet the desired specification of a given amplification factor. i.e. input resistance and output resistance. Hence to increase Input impedance and Gain more than one transistor amplifiers are connected and is called multistage amplifiers.					
	Compar	e the features of	three MOSFET ampli	fier configurations.	(Nov 2015) BTL1	
	Si.No	Parameters	Common Source (CS)	Common Gate (CG)	Common Drain (CD)	
	1	Input resistance	$R_i = R_1 R_2$	$R_i = \frac{1}{g_m}$ $R_o = R_D$	$R_i = R_1 R_2$	
20	2.	Output resistance	$R_0 = r_0 R_D$	$R_O = R_D$	$R_o = r_o \ R_S\ \frac{1}{g_m}$	
	3.	Voltage gain	$A_{V} = -g_{m}(r_{0} R_{D}) \times \frac{R_{i}}{R_{i} + R_{S}}$	$A_{V} = \frac{g_{m}}{1 + g_{m}R_{S}} \times (R_{D} R_{L})$	$A_{V} = \frac{g_{m}(r_{0} R_{S})}{1 + g_{m} R_{S}(r_{0} R_{D})} \times \frac{R_{i}}{R_{i} + R_{S}}$	
21	How does a transistor width-to-length ratio affect the small signal voltage gain of a common source amplifier? (Nov 2015) BTL1 Vo/Vgs=-gm*RL', where gm= $\sqrt{2Kn'}\sqrt{W/L}\sqrt{Id}$ The square root of width to length ratio is directly proportional to voltage gain, width to length ratio changes voltages gain changes and also gm depends on internal capacitance, due to changes in gm, Cgs, the voltage gain gets affected.					
22	Sketch the simple common source amplifier circuit of MOSFET. BTL3					



	1
	diagram and equivalent circuit. (13M) (April-2017) (Nov 2016) BTL1
	Answer: Page 219- Donald & Godse :4.4
	Circuit diagram : Common source JFET - Depletion MOSFET (2M)
	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC
	voltage - zero. (2M)
	Small signal equivalent circuit : Replace transistor – Small signal hybrid pi equivalent model.
	(2M)
	Derivation of small signal parameters
	(1M)
	Voltage Gain: $Av=-gm(ro//Rd)$ (Ri/Ri+Rsi) (2M)
	Input Impedance: Ri=R1//R2 (2M)
	Output Impedance: Ro=Rd//ro (2M)
	Current Gain: Ai=Infinite (2M)
	Enumerate on the voltage swing limitations, general conditions under which a source follower emplifier would be used (12M) (April 2018) DTL 1
	follower amplifier would be used. (13M) (April 2018) BTL1
	Answer: Page 219 – Donald & Godse :4.13
	Circuit diagram: Source Follower Circuit. (2M)
	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC
•	voltage - zero. (2M)
2	Small signal equivalent circuit : Replace transistor – Small signal hybrid pi equivalent model.
	(2M)
	Derivation of small signal parameters (1M)
	Voltage Gain: $Av = -gm(ro//Rd) (Ri/Ri+Rsi)$ (2M)
	Input Impedance: $Ri = R1//R2$ (2M)
	Output Impedance: Ro =Rd//ro (2M)
	Current Gain: Ai =Infinite (2M)
	Draw a common Gate MOSFET amplifier and derive for Av, Ai and Ri using small signal
	equivalent circuit. (13M) (April-2017) BTL3
	Answer: Page 239 - Donald & Godse :4.17
	Circuit diagram: Common Gate MOSFET (2M)
	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC
	voltage - zero. (2M)
3	Small signal equivalent circuit : Replace transistor – Small signal hybrid pi equivalent model.
	(2M)
	Derivation of small signal parameters (1M)
	Voltage Gain: $Av = gm^*(Rl//Rd)/(1+gm^*Rsi)$ (2M)
	Input Impedance: Ri =1/gm (2M)
	Output Impedance: Ro =Rd (2M)
	Current Gain: Ai = $\{gm^*Rsi/(1+gm^*Rsi)\}\{Rd/Rd+Rl\}$ (2M)
	With a neat diagram explain the small signal analysis of common source Amplifier with a
	source resistance for MOSFET. (13M) (Nov 2017) BTL1
	Answer: Page 225 - Donald& Godse :4.25
	Circuit diagram: Common source MOSFET Amplifier (2M)
4	AC equivalent circuit : Short circuiting - input – output - bypass -coupling capacitors -Set DC
	voltage - zero. (2M) Small signal aquivalent circuit: Deplace transistor Small signal hybrid ni aquivalent model
	Small signal equivalent circuit : Replace transistor – Small signal hybrid pi equivalent model.
	(2M)

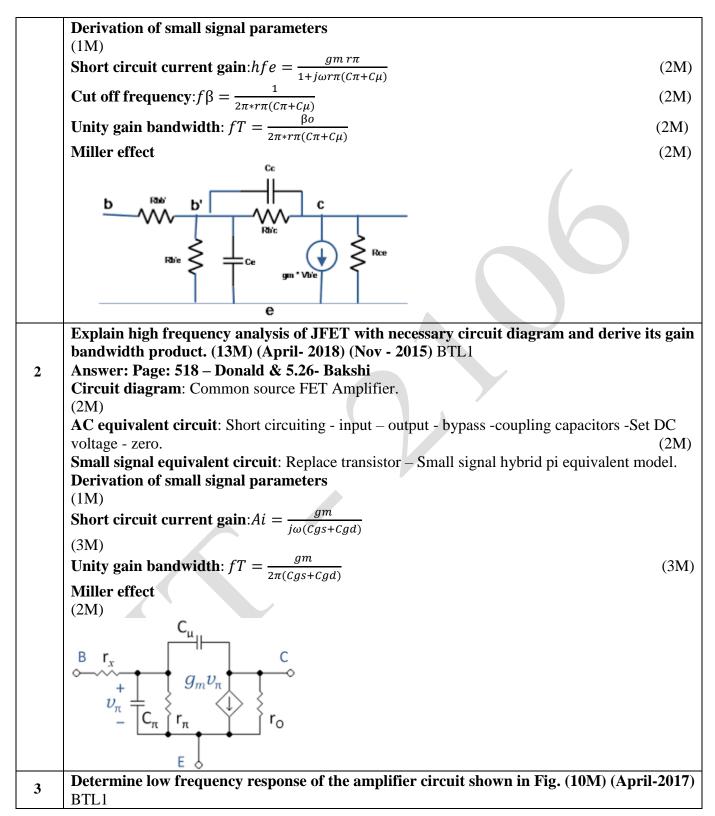
	Derivation of small signal parameters (1M	,
	Voltage Gain: $Av = -gm(ro//Rd) (Ri/Ri+Rsi)$ (2M	,
	Input Impedance: $Ri = R1//R2$ (2M)	/
	Output Impedance: Ro =Rd//ro (2M	,
	Current Gain: Ai =Infinite (2M	/
	With a neat diagram explain the source follower amplifier using MOSFET and deriv	
	necessary equations to calculate the voltage gain, input and output resistance. (13M)) (Nov
	2017) BTL1	
	Answer: Page 231 - Donald& Godse :4.32	
		(2M)
	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set	DC
5	Ŭ	(2M)
	Small signal equivalent circuit: Replace transistor – Small signal hybrid pi equivalent mo	del.
		(2M)
	Derivation of small signal parameters	(1M)
	Voltage Gain: $Av = \{Rs//ro/(1/gm + Rs//ro)\}\{Ri/Ri + Rsi\}$	(2M)
	Input Impedance: Ri =R1//R2	(2M)
	Output Impedance: Ro =Rd//ro	(2M)
	Current Gain: Ai = Infinite	(2M)
	Determine the small signal voltage gain of the multistage Cascode circuit shown below	v. The
	transistor parameters are $K_{n1}=0.5$ mA/V ² , $K_{n2}=0.2$ mA/V ² , $V_{tn1}=V_{tn2}=1.2$ V, $\lambda 1=\lambda 2=0.2$	0 The
	quiescent drain currents are I _{D1} =0.2mA, I _{D2} =0.5mA. (13M) (Nov 2016) BTL3	
	V+=5V	
	E Pau =	
	$R_1 = \begin{cases} R_1 = \\ 383 \text{ k}\Omega \end{cases}$ 16.1 KΩ	
	MI M2 CO RO	
	$\begin{cases} R_2 = \\ 135 \text{ k}\Omega \neq R_{51} = \\ C_1 \neq R_{52} = \\ R_{12} \neq R_{12} = \\ R_{12} \neq R_{1$	
	$= 339k\Omega^{-3} = 8k\Omega = 4k\Omega$	
6		
	V~=_5 V	
	Answer: Page 260 - Donald.	
	Circuit diagram	(2M)
	AC equivalent circuit: Short circuiting - input - output - bypass -coupling capacitors -S	et DC
	voltage - zero.	(2M)
	Small signal equivalent circuit: Replace transistor – Small signal hybrid pi equivalent r	model.
	(2M)	
		(1M)
	e i	(2M)
		(2M)
		(2M)
<u> </u>	Determine voltage gain of the circuit assuming the following parameters, Vdd=	· /
_	Rd=10K, Rg1=140k, Rg2=60K, and Rsi=4k, the transistor parameters are Vtn=	
7	Kn=0.5mA/V ² and λ =0.02V ⁻¹ . (13M) (Nov 2016) BTL3	J. F. Y. 9
	Answer: Page 233 - Donald.	
L	Anower . 1 age 200 - Donaiu.	

	Calculation: Find Vgsq - Idq - DC analysis	(2M)
	Transconductance: gm=2Kn (Vgsq-Vtn) = ?	(3M)
	Output Impedance: $\mathbf{Ro} = [\lambda \mathrm{Idq}]^{-1}$	(2M)
	Input Impedance: Ri =R1//R2	(2M)
	Voltage Gain: $Av = \{gm (Rs//ro)/(1+gm(Rs//ro))\}\{Ri/Ri+Rsi\}$	(4M)
	Derive the voltage gain of BiMOS cascade amplifiers shown in fig. (10	M) (April-2015)
8	Answer: Page 400 – Donald & Godse :4.46 Circuit diagram: BiMOS AC equivalent circuit: Short circuiting - input – output - bypass -coupling voltage - zero. Small signal equivalent circuit: Replace transistor – Small signal hybrid (2M) Derivation of small signal parameters	(2M) g capacitors -Set DC (2M)
	J I	. ,
	Voltage Gain: Stage 1-Av1- Stage 2- Av2	(3M)
	Total Voltage Gain: Av = Av1*Av2.Draw a discrete common gate JFET amplifier and derive volt	(2M)
9	<pre>impedance, Rin and output impedance Rout with small signal equi (April-2015) BTL1 Answer: Page 239 – Donald & Godse :4.17 Circuit diagram: Common gate JFET (2M) AC equivalent circuit: Short circuiting - input – output - bypass -coupling voltage - zero. Small signal equivalent circuit: Replace transistor – Small signal hybrid (2M) Derivation of small signal parameters (1M) Voltage Gain: Av =gm*(Rl//Rd)/(1+gmRsi) (2M) Input Impedance: Ri =1/gm (2M) Output Impedance: Ro =Rd (2M) Current Gain: Ai ={gm*Rsi/(1+gmRsi)}{Rd/Rd+Rl} (2M)</pre>	g capacitors -Set DC (2M)
10	Determine the current gain of JFET source follower amplifier. (13M) Answer: Page 219 - Donald& Godse :4.13 Circuit diagram	(April-2015) BTL1 (2M)
10	AC equivalent circuit: Short circuiting - input – output - bypass -couple voltage - zero.	

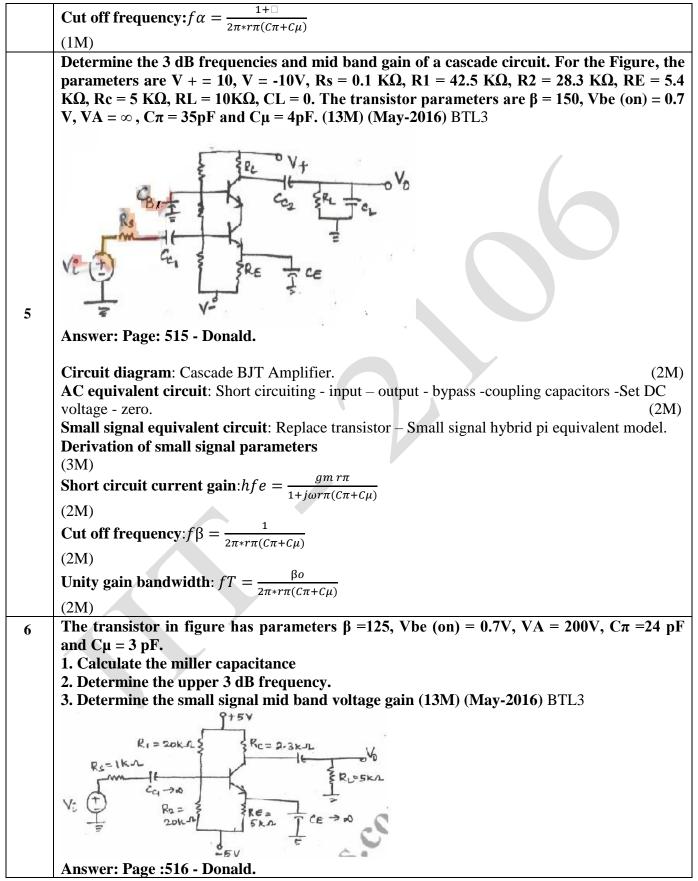
	Small signal equivalent circuit : Replace transistor – Small signal hybrid pi equivalent model.
	(2M)
	Derivation of small signal parameters
	Voltage Gain: Av =-gm(ro//Rd) (Ri/Ri+Rsi)
	(2M)
	Input Impedance: Ri =R1//R2
	(1M)
	Output Impedance: Ro =Rd//ro
	Current Gain: Ai =Infinite
	(2M)
	Consider the PMOS amplifier shown in fig. The transistor parameters are $Vtp = -1V$, $\beta p =$
	$(\mu_p Cox(W/L)) = 1 \text{ mA/V}^2 \text{ and } \lambda = 0.$ Determine R_D and R_S , such that $I_{DQ} = 0.75 \text{ mA}$ and $V_{SDQ} = 6V$. determine input impedance Ri and output impedance Ro voltage gain, current gain and maximum output voltage swing. (13M) (April-2015) BTL3
	$100K\Omega = V_{s}$ V_{s} V_{s} V_{s} V_{s} V_{t} V_{s} V_{t} V_{s} V_{t} V_{s} V_{t} V_{t
	Answer: Page 242 - Donald.
11	Circuit diagram (2M) AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC (2M) voltage - zero. (2M) Small signal equivalent circuit: Replace transistor – Small signal hybrid pi equivalent model.
	(2M)
	Derivation of small signal parameters
	(1M) Voltage Gain: Av =gm* (Rl//Rd)/(1+gmRsi)
	(2M)
	Input Impedance: Ri =1/gm
	(2M)
	Output Impedance: Ro =Rd
	(1M)
	Current Gain: Ai ={gm*Rsi/(1+gmRsi)}{Rd/Rd+R1}
	(2M)
	Derive gain input and output impedance of multistage FET amplifier with neat circuit
	diagram and equivalent circuit. (13M) (Nov-2014) BTL1
12	Answer: Page: Godse :4.38
	Types: Cascade- Cascode
	(2M)
	Circuit diagram (2M)

	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC
	voltage - zero. (2M)
	Small signal equivalent circuit: Replace transistor – Small signal hybrid pi equivalent model.
	(2M)
	Derivation of small signal parameters
	(2M)
	Voltage Gain: $Av =-gm(ro//Rd) (Ri/Ri+Rsi)$ (7M)
	Derive CMRR of basic FET differential amplifier with neat circuit diagram and equivalent
	circuit. (15M) (Nov-2014) BTL1
	Answer: Page: Godse :4.40
	Circuit diagram (2M)
	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC
	voltage - zero. (2M)
	Small signal equivalent circuit: Replace transistor – Small signal hybrid pi equivalent model.
	(2M)
3	Derivation of small signal parameters
	(1M)
	Common mode gain =-gmRd/(1+2 gmRo)
	(2M)
	Differential mode gain: =gmRd/2
	(2M)
	$\mathbf{CMRR:} = \mathbf{Ad}/\mathbf{Ac} \tag{2M}$
	CMRR: =Ad/Ac= $1/2(1+2(2KnIq)^{1/2}Ro)$
	(2M)

UNIT IV-FREQUENCY RESPONSE OF AMPLIFIERS

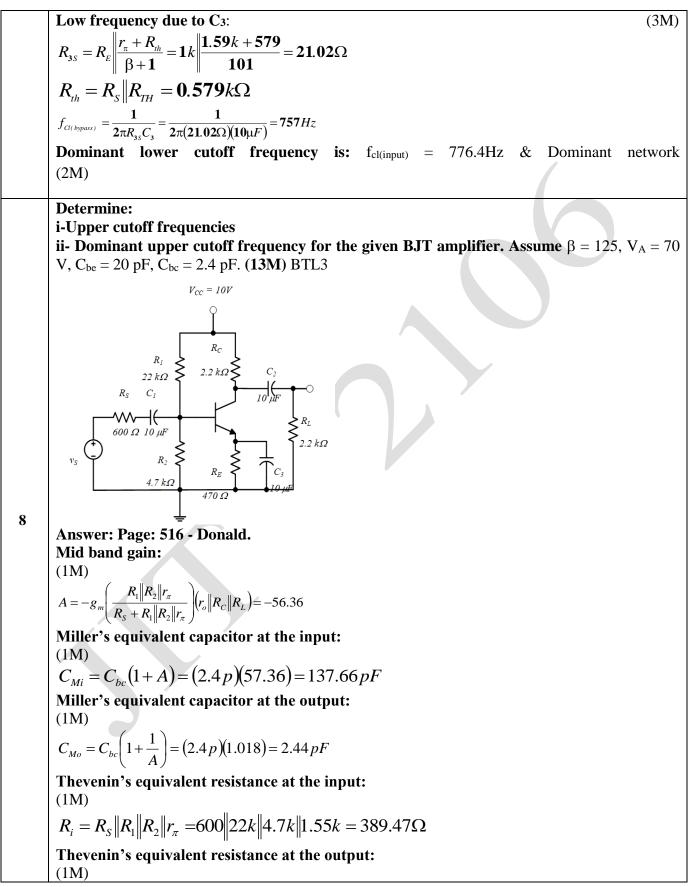

Amplifier frequency response – Frequency response of transistor amplifiers with circuit capacitors – BJT frequency response – short circuit current gain - cut off frequency – f α , f β and unity gain bandwidth – Miller effect - frequency response of FET - High frequency analysis of CE and MOSFET CS amplifier - Transistor Switching Times.

	PART * A
Q.No.	Questions
1	What is 3 _{dB} frequency? (April 2018) BTL1 It is defined as the frequency at which the current gain of the amplifier drops to 0.707 times or 3dB below the maximum gain. It is also called as Upper and Lower cut off frequencies, Corner frequencies.
2	What is beta frequency? (April 2018) BTL1 It is defined as the frequency at which the current gain β of the of the common emitter BJT drops to 0.707 times or 3dB below the maximum gain, and is denotes by f β , it can be defined by, $f_{\beta}=1/(2\pi r_{\pi}(C_{\pi}+C\mu))$
3	How does MOSFET works as an amplifier? (April 2018) BTL2 Metal Oxide Semiconductor Field Effect Transistor, or MOSFET for short, is an excellent choice for small signal linear amplifiers as their input impedance is extremely high making them easy to bias. But for a MOSFET to produce linear amplification, it has to operate in its saturation region, unlike the Bipolar Junction Transistor. But just like the BJT, it too needs to be biased around a centrally fixed Q-point.
4	Define rise time. Give the relationship between bandwidth and rise time. (April 2017) (Nov 2015) BTL1 Rise time is the time required for the signal to change from 10% to 90% of its value. Relation between Bandwidth and Rise time is Bandwidth = $0.35/t_r$; Where t_r = rise time.
5	Sketch hybrid π equivalent model of BJT. (April 2017) (Nov - 2015) Sketch the expanded hybrid π model of the BJT. (May-2016) BTL1 $\stackrel{Ce}{\longrightarrow}$
6	What is Miller effect? (Nov-2017) BTL1 The feedback capacitor connected between input and output of the transistor [(CE-BJT) and (CS- FET)] is called junction capacitance, which causes a multiplication effect, when miller theorem is applied for high frequency analysis. $C_M = C_f (1+gm R)$ $C_M -$ miller capacitance, C_f - junction capacitance This multiplicative effect by (1+gmR) reduces the high frequency gain of amplifier and is called miller effect.

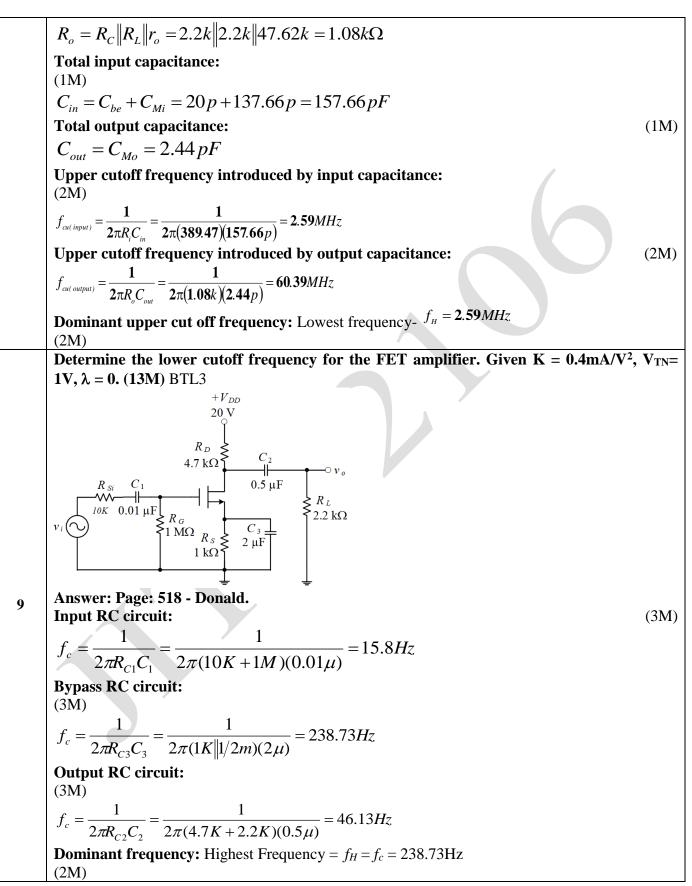

7	What is unity gain amplifier? (Nov-2017) BTL1
8	The amplifier in which the gain is unity is called unity gain amplifier. A bipolar transistor has parameter $\beta_0 = 150$, $C\pi = 2pF$, $C\mu = 0.3 pF$ and is biased at Icq = 0.5 mA. Determine the beta cut off frequency. (May-2016) BTL3 $f_{\beta}=1/(2\pi r_{\pi}(C_{\pi}+C\mu))$ where $r\pi = \beta * V_T/I_{Cq}$
9	What is the reason for reduction in gain at lower and higher frequencies in case of amplifiers? (Nov-2016) BTL3 The lower the frequency, the lesser will be the gain. This reduction in gain is due to the presence of coupling (Input & output) and bypass capacitors. The higher the frequency, the lesser will be the gain. This is due to the internal capacitances like, junction and wiring capacitance. $ A(if) _{dB}$ Low-frequency range $ A_m _{dB}$ Low-frequency $ A_m _{dB}$ $ A_m _{dB}$ $ A_m _{dB}$ $\int_{L} Gain falls of due to the effects of C\pi and C\mu$ $\int_{L} Gain falls of due to the effects of CC and CE$ $\int_{H} f(Hz) (\log scale)$
10	Determine the unity gain bandwidth of a FET with parameter, Cgd = 10 fF, Cgs = 50 fF and gm = 1.2 mA/V. (Nov-2016) BTL 3 $f = \frac{cm}{2\pi} (C + C)$
11	$f_T = gm/2\pi(C_{gs}+C_{gd})$ Find the unity gain bandwidth of MOSFET where gm = 6mA/V, Cgx = 8 pF, Cgd = 4 pF and C ds = 1 pF. (April-2015) BTL 3 $f_T = gm/2\pi(C_{gs}+C_{gd})$
12	The AC schematic of an NMOS common – source stage is shown in the figure where part of the biasing circuits has been omitted for simplicity. For the N- channel MOSFET, the transconductance, gm = 1 mA/V, and body effect and channel length modulation effect are to be neglected. Find the lower cutoff frequency. (April-2015) BTL 3
	Lower Cut off frequency: $f_L=gm/2\pi(Cgs+Cgd)$

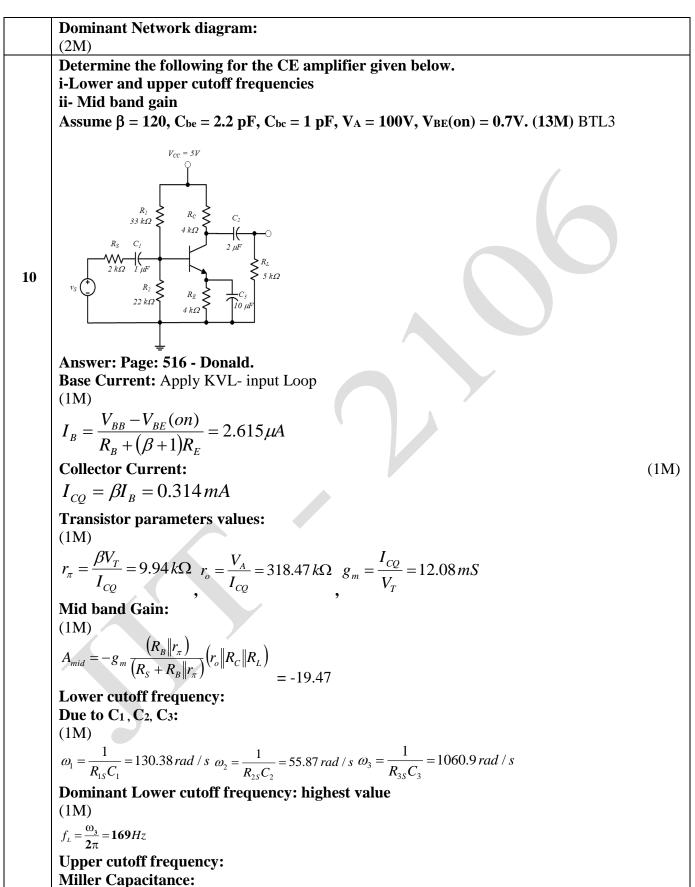
	Relate gain and bandwidth of single and multistage amplifier. (NOV/DEC2014) BTL1
	Gain: Improved in multistage amplifier than single stage.
	Bandwidth: Decreases in Multistage amplifier when compared to Single stage.
13	606B
15	40dB For Cascaded 2 Stages
	2008 B.W. of double stage amplifier
	For Single Stage Amplifier
	$f_{L/10}$ f_{L} f_{L} f_{L} f_{L} f_{H} f
	$f'_{L/10}$ f'_{L} B.W. of single stage amplifier f'_{H} f'_{H} [*] 10 Fig. 6 . Gain Magnitude-Frequency Response of a single stage and double
	stage amplifier
14	What is the effect of miller's capacitance on the frequency response of an amplifier.
14	(NOV/DEC2014) BTL1
	The Miller effect accounts for an increase in the equivalent input capacitance of an inverting
	voltage amplifier due to amplification of capacitance between the input and output terminals.
	Although Miller effect normally refers to capacitance, any impedance connected between the
	input and another node exhibiting high gain can modify the amplifier input impedance via the
	Miller effect.
	This increase in input capacitance is given by $C_M = C(1-Av)$.
	where Av is the gain of the amplifier and C is the feedback capacitance.
	The Miller effect is a special case of Miller's theorem.
15	Define Bandwidth. (Nov 13, May 13) BTL1
15	Bandwidth is defined as a band containing all frequencies between upper cut-off
	and lower cut-off frequencies.
	Bandwidth
	I ₁ I _u
	BW $f_{b} = f_{u} - f_{1}$
	Upper and lower cut-off (or 3dB) frequencies corresponds to the frequencies where the
	magnitude of signal's Fourier Transform is reduced to half (3dB less than) its maximum value.
16	
10	Define the frequency response of an amplifier. (Dec-2006) BTL1
	The frequency response of an amplifier can be defined as the variation of output quantity
	(Output Voltage) with respect to input signal frequency. In other words, it can be defined as a
	graph drawn between the input frequency and the gain of an amplifier.
	Define lower and upper cut-off frequencies of an amplifier. (Dec-2005) BTL1
17	Lower cut – off frequency: -
	The frequency (on lower side) at which the voltage gain of the amplifier is exactly
	70.7% of the maximum gain is known as lower $cut - off$ frequency.
	Upper cut – off frequency: -
	The frequency (on higher side) at which the voltage gain of the amplifier is exactly
	70.7% of the maximum gain is known as upper cut – off frequency.
117	Γ-JEPPIAAR/ECE/Mr.R.Thandaiah Prabu/II nd Yr/SEM 03/EC8351/ELECTRONIC CIRCUITS I/UNIT 1-5/QB+Keys/Ver2.0

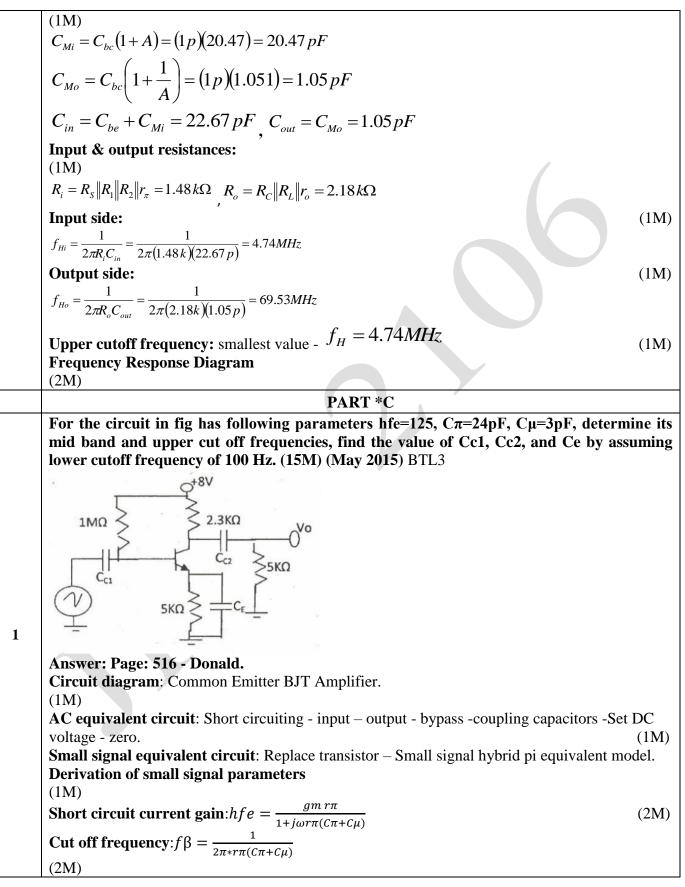
10	
18	What are the high frequency effects in an amplifier? (May-2004) BTL1
	At high frequencies the gain was reduced by the following factors
	1. Internal or junction or Stray Capacitance
	2. Wiring capacitance
	What is the significance of gain bandwidth product? (May-2008) BTL1
19	It is very helpful in the preliminary design of a multistage wide band amplifier. This can be used
	to setup a tentative circuit which is often used for this purpose.
20	Sketch the hybrid π model (high frequency equivalent circuit) of FET. (DEC 2012) BTL1
	C _u ,
	$\mathbf{B} \mathbf{r}_{\mathbf{x}}$ \mathbf{C}
	$+$ $g_m v_n$
	$v_{\pi} \doteq \langle \downarrow \rangle \langle \downarrow \rangle$
	$- \begin{bmatrix} C_{\pi} & r_{\pi} \\ r_{\pi} & r_{\sigma} \end{bmatrix}$
	E
	Define Gain band width product. (NOV 2012) BTL1
21	It is defined as product of amplifier band width and gain at which BW is measured it is denoted
	as GBW, GBP, GBWP. It is also known as transition frequency or unity gain bandwidth.
22	Discuss the effect of bypass capacitor on BW of amplifier. (MAY 15) BTL1
	At medium and high frequencies, it offers a very low reactance hence it can be short circuited so
	it has no effect.
	At low frequencies it offers finite reactance thus it has the effect at low frequency.
	Define unity gain BW of BJT. BTL1
23	It is the frequency at which the gain of the amplifier is dropped to unity and is denoted by fT.
	$fT = \beta o/(2\pi r_{\pi} (C_{\pi} + C_{\mu}))$
	Define unity gain BW of FET. BTL1
24	It is the frequency at which the gain of the amplifier is dropped to unity and is denoted by fT.
	$fT=gm/(2\pi(Cgs+Cgd))$
25	What are the components affect the frequency response of RC coupled amplifier? BTL1
20	Low frequency response is affected by
	1. Input, Output coupling capacitors
	2. Bypass capacitors
	High frequency response is affected by
	1. Junction or internal capacitance
	2. Stray and wiring capacitance
	PART*B
	With a neat sketch, explain hybrid π CE transistor model also derive the expression for
1	various components in terms of 'hybrid pi' parameters. (13M) (April- 2018) (Nov - 2015)
1	BTL1
	Answer: Page: 506 – Donald & 5.11- Bakshi
	Circuit diagram: Common Emitter BJT Amplifier
	(2M)
	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC
	voltage - zero. (2M)
	Small signal equivalent circuit: Replace transistor – Small signal hybrid pi equivalent model.

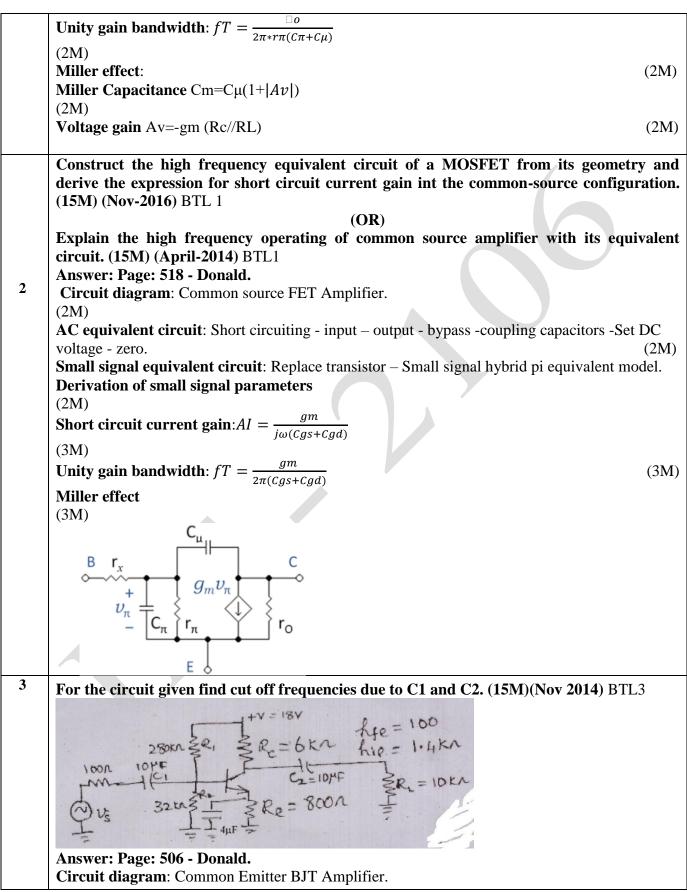


$R_{e} = 680 \ \Omega; \ R_{1} = 68 \ K \Omega; R_{2} = 22 \ K \Omega; \text{ Re} = 1K \ V_{cc} = 10 \ V$	
$C_1 = C_2 = 0.1 \ \mu F; \ C_E = 10 \ \mu F.$	
$R_e = 2.2 \text{ K}\Omega$; $R_L = 10 \text{ K}\Omega$; $\beta = 100$, $hie = r \pi = 1.1 k$	
∫ v∞	
5	
$R_1 = $ $> R_c C_2$	
$R_{z} > R_{z} > R_{z$	
$v, G \geq \sum \sum R_L$	
Answer: Page: 506 - Donald.	
Circuit diagram: Common Emitter BJT Amplifier.	
(2M)	
AC equivalent circuit: Short circuiting - input – output - bypass -coupling ca	-
voltage - zero.	(2M)
Small signal equivalent circuit : Replace transistor – Small signal hybrid pi e	equivalent model.
Derivation of small signal parameters	
(2M)	
Cut off frequency due to C1 = $1/(2\pi RinC_1)$	(2M)
Cut off frequency due to C2 = $1/(2\pi(Rc+R_L))$	(2M)
Define $f\alpha$ and $f\beta$ and $f\tau$. Also derive for $f\alpha$ and $f\beta$ and $f\tau$ with two sourc	e terminal and one
sink terminal and derive for source and sink terminal as a function of	reference current.
(13M) (Nov-2017) BTL 3	
4 Answer: Page: 506 - Donald.	
Circuit diagram: Common Emitter BJT Amplifier.	
(1M)	
AC equivalent circuit: Short circuiting - input - output - bypass -coupling ca	pacitors -Set DC
voltage - zero.	(2M)
Small signal equivalent circuit : Replace transistor – Small signal hybrid pi	equivalent model.
Derivation of small signal parameters	1
(1M)	
Short circuit current gain : $hfe = \frac{gm r\pi}{1+j\omega r\pi(C\pi+C\mu)}$	
(2M)	
Cut off frequency : $f\beta = \frac{1}{2\pi * r\pi(C\pi + C\mu)}$	
(1M)	
Circuit diagram : Common Base BJT Amplifier.	
(1M)	
AC equivalent circuit: Short circuiting - input – output - bypass -coupling ca	province Set DC
	ipacitors -set DC
voltage - zero.	
(2M)	
Small signal equivalent circuit : Replace transistor – Small signal hybrid pi e	equivalent model.
Derivation of small signal parameters (2M)	




JIT-JEPPIAAR/ECE/Mr.R.Thandaiah Prabu/IInd Yr/SEM 03/EC8351/ELECTRONIC CIRCUITS I/UNIT 1-5/QB+Keys/Ver2.0


	Circuit diagram: Common Emitter BJT Amplifier.
	AC equivalent circuit: Short circuiting - input – output - bypass -coupling capacitors -Set DC
	voltage - zero. (1M) Small signal equivalent circuit: Replace transistor – Small signal hybrid pi equivalent model.
	Derivation of small signal parameters
	(1M)
	Short circuit current gain: $hfe = \frac{gm r\pi}{1 + j\omega r\pi(C\pi + C\mu)}$
	(2M)
	Cut off frequency: $f\beta = \frac{1}{2\pi * r\pi (C\pi + C\mu)}$
	(2M)
	Unity gain bandwidth: $fT = \frac{\beta o}{2\pi * r\pi (C\pi + C\mu)}$
	(2M) $2\pi * r\pi(c\pi + c\mu)$
	Miller effect (1M)
	Miller Capacitance $Cm=C\mu(1+ A\nu)$
	(2M)
	Voltage gain $Av=-gm (Rc//R_L)$ (2M)
7	Determine the total low-frequency response of the amplifier shown in figure. Assume β =
	100, $V_A = 70 V (13M) BTL3$
	$V_{CC} = 10V$
	Ĭ
	$R_{l} \neq R_{c} \neq C_{c}$
	$62 k\Omega \begin{cases} K_C \\ 2.2 k\Omega \\ 2.2 k\Omega \end{cases} = \begin{pmatrix} C_2 \\ C_2 $
	$R_s C_l$ $0.1 \mu F$
	$[600\Omega, 0.1 \mu F] $
	$\begin{array}{c c} & & R_2 \\ & & 22 k\Omega \end{array} \xrightarrow{R_2} \begin{array}{c} R_E \\ & & 1 \Omega \end{array} \xrightarrow{L_2} \begin{array}{c} & & 1 \\ & & 1 \Omega \end{array} \xrightarrow{L_2} \begin{array}{c} & & 1 \\ & & 1 \Omega \end{array} \xrightarrow{L_2} \begin{array}{c} & & 1 \\ & & 1 \Omega \end{array}$
	1.0 kΩ
	\pm
	Answer: Page: 516 - Donald.
	Therefore, $r = 1.50 \text{ kO}$, $r = 42.74 \text{ kO}$, $\alpha = 62 \text{ m} \text{ A/M}$
	$r_{\pi} = 1.59 \text{ k}\Omega, r_{o} = 42.74 \text{ k}\Omega, g_{m} = 63 \text{ mA/V}$ (2M)
	Low frequency due to C1: (3M)
	$R_{1S} = R_{S} + (R_{B} \ r_{\pi}) = 600 + (16.24k \ 1.59k) = 2.05k\Omega$
	$R_{TH} = R_1 \ R_2 = 16.24k\Omega$
	$f_{C_1(input)} = \frac{1}{2\pi R_{1S}C_1} = \frac{1}{2\pi (2.05k\Omega)(0.1\mu F)} = 776.37 Hz \cong 776.4 Hz$
	Low frequency due to C ₂ : (3M)
	$R_{2s} = R_L + (R_c \ r_o) = 10k + (2.2k \ 43.74k) = 12.092k\Omega$
	$f_{Cl(output)} = \frac{1}{2\pi R_{2S}C_{2}} = \frac{1}{2\pi (12.092k\Omega)(0.1\mu F)} = 131.62Hz \cong 132Hz$
	$2\pi R_{2s}C_2 = 2\pi (12.092k\Omega)(0.1\mu F)$

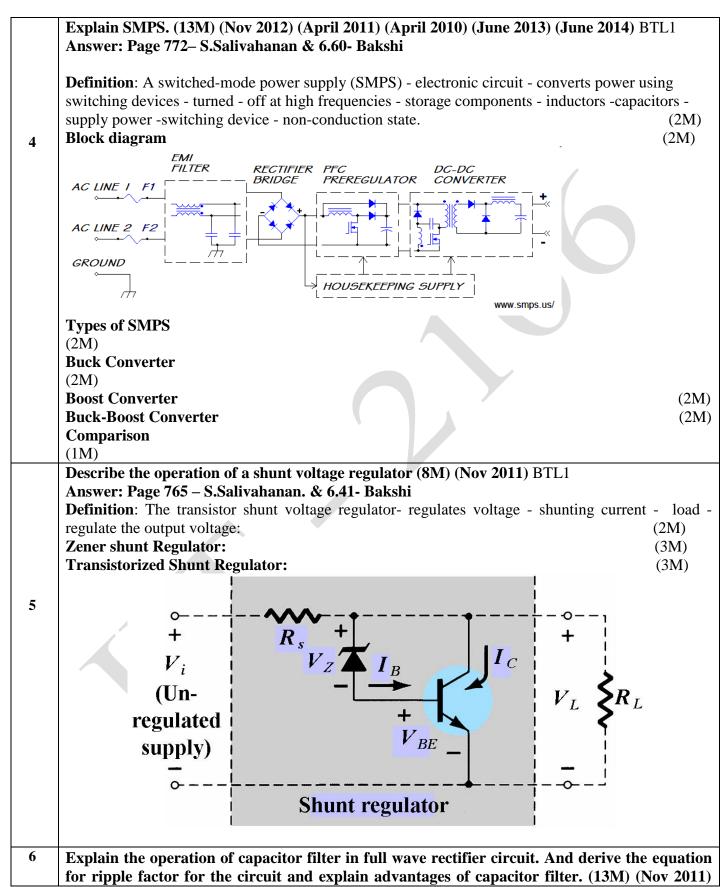


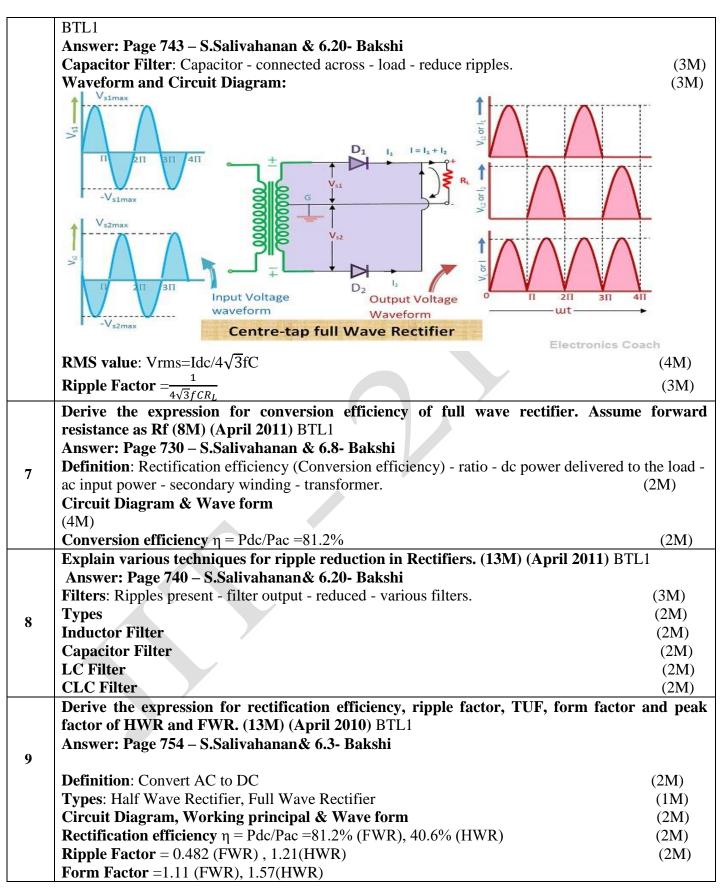
JIT-JEPPIAAR/ECE/Mr.R.Thandaiah Prabu/IInd Yr/SEM 03/EC8351/ELECTRONIC CIRCUITS I/UNIT 1-5/QB+Keys/Ver2.0

JIT-JEPPIAAR/ECE/Mr.R.Thandaiah Prabu/IInd Yr/SEM 03/EC8351/ELECTRONIC CIRCUITS I/UNIT 1-5/QB+Keys/Ver2.0

voltage - zero			_		bling capacitors -Set DC (2M) l pi equivalent model.
Derivation	of	small		signal	parameters
(2M) Cut of (2M)	ff frequency	due	to	C1 =	1/(2πRinC ₁)=11.36Hz
· · /	ency due to C2 =1/(2	$\pi(\text{Rc}+\text{R}_{\text{L}}))=0$.99Hz		(2M)
Cut off fr	requency due to l	bypass Cap	acitor	$=\frac{1}{2\pi[($	$\frac{1}{hie+Rth)/\Box//Re]Ce} = 369 \text{Hz}$
(2M) Frequency R	esponse:				(3M)

UNIT V-POWER SUPPLIES AND ELECTRONIC DEVICE TESTING

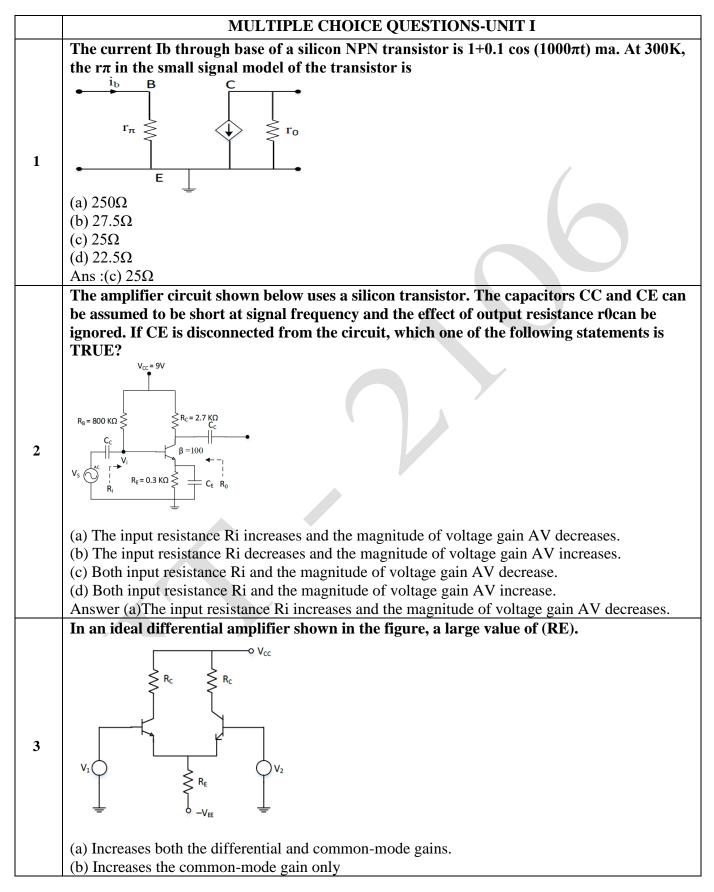

Linear mode power supply - Rectifiers - Filters - Half-Wave Rectifier Power Supply - Full-Wave Rectifier Power Supply - Voltage regulators: Voltage regulation - Linear series, shunt and switching Voltage Regulators - Over voltage protection - BJT and MOSFET – Switched mode power supply (SMPS) - Power Supply Performance and Testing - Troubleshooting and Fault Analysis, Design of Regulated DC Power Supply.


	PART * A
Q.No.	Questions
1.	Write necessity of a dc power supply in electronic circuits. BTL1 The dc power supply provides a unipolar voltage. A number of electronic circuits such as amplifiers, oscillators, etc., and appliances such as TV, VCR, etc., operate fully or partly on dc power supply. Hence it is an important device.
2	What is a rectifier? What are its types? BTL1 A rectifier is a device which converts ac voltage to pulsating dc voltage, using one or more p-n junction diodes. The types are half wave rectifier and full wave rectifier.
3	 What are the important points to be studied while Analyzing the various rectifier circuits? BTL1 Waveform of the load current Regulation of the output voltage Rectifier efficiency Peak value of current in the rectifier circuit Peak inverse voltage of the diode Ripple factor
4	Write the expression for rectification efficiency and the values for the same for the rectifiers. BTL1 Rectification efficiency $\eta = DC$ output power / AC input power = P_{DC} / P_{AC} η of HWR = 40.6% η of FWR = 81.2%
5	 What are the disadvantages of an HWR? BTL1 1. HWR uses only one diode hence the output is obtained for only one-half cycle of the input. Hence the theoretical rectification efficiency is only 40.6%. Practical value will still be less. 2. Also, the circuit suffers from dc saturation. 3. Since the dc current through the load also flows through the secondary winding of the transformer, the core of the transformer experience dc saturation. To minimize the saturation, the transformer size has to be increased accordingly. 4. This increases the cost. The ripple factor is too high. So, the output contains a lot of varying components. The circuit has low transformer utilization factor, showing that the transformer is not fully utilized.
6	What is voltage regulation? BTL1 The voltage regulation is the ratio of change in dc output voltage between no load and full load to dc voltage at full load. % Voltage Regulation = $\frac{V_{dc(NL)} - V_{dc(FL)}}{V_{dc(FL)}} * 100$
7	Compare HWR and FWR. (May 2010) BTL1

				D 11	F 11			
	S.No	Item	Half-wave	Full-wave	Full-wave			
				centre tapped	Bridge			
	1.	No. of diodes	1	2	4			
	2.	Peak Inverse voltage of diode	Vm	2Vm	Vm			
	3.	DC output voltage	0.318Vm	0.636Vm	0.636Vm			
	4.	Ripple factor	1.21	0.482	0.482			
	5.	Ripple frequency	fin	2 fin	2 fin			
	6.	TUF	0.287	0.693	0.81			
8	Write some applications of bridge rectifier. BTL1 This is used as a power rectifier circuit for converting ac power to dc power and a rectifying system in rectifier type ac meters such as ac voltmeter.							
		are centre tapped FWR			ts. (May 20	912) BTL2		
						ls in secondary but in bridge		
9		rectifier two terminals in				,		
	2.	The peak inverse voltage	e of each d	iode in bridge 1	rectifier is V	I'm whereas in centre tapped		
		FWR is 2 Vm.						
		s CLC filter? (MAY JU						
10	CLC filter, the capacitor-input filter, also called pi Filter due to its shape that looks like the Greek							
	letter π is a type of electronic filter. Filter circuits are used to remove unwanted or undesired							
frequencies from a signal.								
11	Define TUF and rectification efficiency. (May 2009) BTL1 TUF may be defined as the ratio of dc power delivered to the load and the ac rating of the transformer secondary. Mathematically, the transformer utilization factor or the TUF is given by TUF = DC power delivered to the load / AC rating of the transformer secondary = Pdc / Pac (rated) Rectification efficiency is defined as the ratio of the dc power delivered to the load to the ac input							
	power from the secondary winding of the transformer. This is given by,							
	$\eta = DC$ power delivered to the load / AC input power from the transformer secondary = Pdc / Pac							
	Which filter is used in high current applications? BTL1							
12	Inductor filter is used in high current applications since its ripple factor reduces with low load							
	resistance.							
	What is the advantage of fold back current limiting? BTL1							
13	This method uses the variation of output voltage and varies the load current accordingly. So, if the							
	load resistance decreases, both current and voltage are brought to minimum, so the power							
	1	consumption by the load is small.						
14	Explain briefly the term critical inductance. BTL1 The value of the inductance of the choice filter that makes the diade to conduct the entire 180° of the							
14	The value of the inductance of the choke filter that makes the diode to conduct the entire 180° of the ac supplies is called critical inductance.							
				nnly is not good	d anough fo	or some applications? BTL1		
15	1.	For electronic circuits, a because any irregular var	nd applianc	es unregulated ltage will preve	power supp nt proper op	ly possess a serious problem peration of devices.		
	2.	A surge current or any su	ch increase	in current may	damage the	low current devices.		

 3. For various load conditions, an unregulated power supply outputs a continuously varoutput which decreases the performance of the circuit. What is the function of a filter? BTL1 A filter smoother out the ripples present in the output of a rectifier and hence produces unregulate output. Why are protection circuits required for dc power supplies? BTL1 In de power supplies short circuiting or overload condition draws a heavy current which damite devices in series. Hence protection circuits are required. List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for 19 1. HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The frequency of C signal? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously for power supply so that the output voltage at no load is reduced and voltage regulatio improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is	ryin
 What is the function of a filter? BTL1 A filter smoother out the ripples present in the output of a rectifier and hence produces unregu dc output. Why are protection circuits required for dc power supplies? BTL1 In dc power supplies short circuiting or overload condition draws a heavy current which dam the devices in series. Hence protection circuits are required. List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for Center tapped FWR, is 2Vm	
 A filter smoother out the ripples present in the output of a rectifier and hence produces unregu dc output. Why are protection circuits required for dc power supplies? BTL1 In dc power supplies short circuiting or overload condition draws a heavy current which dam the devices in series. Hence protection circuits are required. List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percenregulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V 21 What is the frequency of dc signal? BTL1 I. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 22 A the function of a bleeder resistor? BTL1 I. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 23 If acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 dc output. Why are protection circuits required for dc power supplies? BTL1 In dc power supplies short circuiting or overload condition draws a heavy current which dam the devices in series. Hence protection circuits are required. List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 Kegulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6	1.040
 Why are protection circuits required for dc power supplies? BTL1 In dc power supplies short circuiting or overload condition draws a heavy current which dam the devices in series. Hence protection circuits are required. List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for 1. HWR, is Vm 2. Center tapped FWR, is 2Vm 3. Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V What is the frequency of C signal? BTL1 1. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 2. It prevents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 1. The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	nate
 In dc power supplies short circuiting or overload condition draws a heavy current which dam the devices in series. Hence protection circuits are required. List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very they provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The roload voltage = 7.80V What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It revents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere.	
 the devices in series. Hence protection circuits are required. List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V 21 The frequency of DC signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously for power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current ILmax is limited between Izmax and Izmin which is usually of milliampere. 	
 List the merits of IC regulators. BTL1 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm 	lage
 They are compact, easy to use and provide a fixed voltage. The connections necessary are very They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 Regulation = VNL – VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL	
 They provide local regulation in electronics systems that may require several different su voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL (30 x 6) / 100 + 6 The no load voltage = 7.80V What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulatio improved. List the disadvantages of Zener regulator. BTL1 The maximum load current ILmax is limited between IZmax and IZmin which is usually of milliampere. 	
voltages. What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for 19 1. HWR, is Vm 2. Center tapped FWR, is 2Vm 3. Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 20 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The ne load voltage = 7.80V What is the frequency of d signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 1. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 22 It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously for power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 1. The maximum load current ILmax is limited between Izmax and Izmin which is usually of milliampere.	
 What are the values of PIV for HWR and FWR using ideal diode and sinusoidal input? BT The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 Regulation = VNL – VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 1. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 2. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 1. The maximum load current ILmax is limited between Izmax and Izmin which is usually of milliampere. 	rhhr
 The PIV for HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL (30 x 6) / 100 + 6 (30 x 6) / 100 + 6 (30 x 6) / 100 + 6 21 What is the frequency of dc signal? BTL1 The no load voltage = 7.80V 21 What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. 22 What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 22 It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. 23 List the disadvantages of Zener regulator. BTL1 The maximum load current ILmax is limited between Izmax and Izmin which is usually of milliampere. 	 ГТ 1
 19 HWR, is Vm Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6	
 2. Center tapped FWR, is 2Vm Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6	
 3. Bridge rectifier, is Vm. For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 1. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 2. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulatio improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 For a voltage regulator, the output voltage at a load current of 100mA is 6V. The percent regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V 21 What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 1. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 2. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation inproved. List the disadvantages of Zener regulator. BTL1 1. The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 regulation is 30%. Find the no load output voltage. BTL3 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously fror power supply so that the output voltage at no load is reduced and voltage regulatio improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	ntag
 % Regulation = VNL - VFL / VFL x 100 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 1. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 2. It prevents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously fror power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 1. The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	8
 20 VNL = (Regulation x VFL) / 100 + VFL = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V 21 What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. 22 What is the function of a bleeder resistor? BTL1 1. It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. 22 It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 1. The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 = (30 x 6) / 100 + 6 = 7.80 The no load voltage = 7.80V 21 What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. 21 What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1	
 = 7.80 The no load voltage = 7.80V 21 What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. 22 What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 21 What is the frequency of dc signal? BTL1 The frequency of DC signal is 0 Hz. 22 What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. 23 List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 21 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipmen acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 The frequency of DC signal is 0 Hz. What is the function of a bleeder resistor? BTL1 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 It maintains the minimum current necessary for optimum operation of the inductor and h limits the values of critical inductance. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 22 limits the values of critical inductance. 2. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 22 2. It prevents dangerous shocks and provides safety to the persons handling the equipment acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	nenc
 acting as a discharging path for capacitors. 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
 3. It acts as a preload on the supply and draws a fixed amount of current continuously from power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	it, b
 power supply so that the output voltage at no load is reduced and voltage regulation improved. List the disadvantages of Zener regulator. BTL1 The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	
improved. List the disadvantages of Zener regulator. BTL1 1. The maximum load current I _{Lmax} is limited between I _{Zmax} and I _{Zmin} which is usually of milliampere.	
 List the disadvantages of Zener regulator. BTL1 1. The maximum load current I_{Lmax} is limited between I_{Zmax} and I_{Zmin} which is usually of milliampere. 	on 1
1. The maximum load current I _{Lmax} is limited between I _{Zmax} and I _{Zmin} which is usually of milliampere.	
milliampere.	ffar
	1 lev
	at th
power output is decreased.	u Ul
3. The regulation factor and the output resistance are not very low.	
Mention how overload protection is provided in series voltage regulators. BTL1	
Overload protection is provided by current limiting and foldback limiting methods. When the	loa
24 overload protection is provided by current minting and foldback minting methods. When the resistance decreases to a minimum, the current drawn is usually very high. This is limited u	
current limiting circuitry and thus overload protection is provided.	
What is voltage multiplier? (May 2008) BTL1	
25 Voltage multiplier circuits have the capable of delivering a DC voltage two or more times the	n ~ ~
	pea

	Define Line regulation and Load regulation. (May 2012) BTL1
	1. Load regulation
	2. The ability of the power supply to maintain the constant DC output voltage for a wid
26	variation in load current is called load regulation.
	3. Line regulation
	•
	4. The ability of the power supply to maintain the constant output voltage for the input supply
	fluctuations for a constant load is called line regulation.
	Draw the basic building block of linear mode power supply. (MAY JUNE 2014) BTL1
	V _m sinωt▲
27	Trans- Destifier Filter Begulator V
	To Irans- former Rectifier Filter Regulator Vout Load
	Vout Vout
	Components of typical linear power supply
	PART *B
	Explain the circuit of voltage regulator and also discuss the short circuit protection
1	mechanism. (8M) (Nov 2009) BTL1
	Answer: Page 754 – S. Salivahanan & 6.36,6.52- Bakshi
	Answer: I age $734 = 5$. Sanvananan & $0.50, 0.52$ - Daksin
	Definition: Dation, shange in de output voltage between no load and full load, de voltage et ful
	Definition : Ratio - change in dc output voltage between no load and full load - dc voltage at ful
	load.
	Circuit provides- regulated supply - regulators. (2M)
	Types – Series, Shunt (2M)
	IC Voltage regulators (2M)
	Short Circuit Protection. Rsc=0.7/Ilimit (2M)
	Design Zener regulator for following specification. Vin=8V to 12V, Vo=10V, Ri=10KAssum
2	that Zener diode is Ideal. (13M) (Nov 2009) BTL3
_	Answer: Page 756 – S. Salivahanan.
	Load Resistance: $R_{Lmin} = Vo/I_{Lmax}$ (4M)
	$R_{Lmax} = Vo/I_{Lmin}$
	(4M)
	Input Resistance : R=1/2*(R _{max} +R _{min})
	(5M)
3	In a full wave rectifier, a signal of 300 V50Hz is applied at the input, each diode has an
5	internal resistance of 800 Ω . If the load is 2000 Ω , Determine Instant peak value of current in
	the output, Output DC current and efficiency of power transfer. (8M) (Nov 2012) BTL1
1	Answer: Page 733 – S. Salivahanan.
	Maximum Current Im=Vm/(rs+rf+R _L) (4M)



	(2M)			
	Peak Factor = $\sqrt{2}$ (FWR), 2 (HWF	2)		
	$\frac{1}{(2M)}$	()		
10	Explain working of FWR with Cl	LC filter and derive its rip	ple factor. (8M) (Nov	2010) BTL1
10	Answer: Page 750 – S.Salivahana		-	
	Definition : A rectifier circuit - 2 di	odes - CLC filter circuit - c	onverting AC to DC.	(2M
	Circuit Diagram & Wave form			
	$\begin{array}{c} (4M) \\ \textbf{Pinple factor} = 2200/C C L P_{\text{c}} \end{array}$			
	Ripple factor = $3300/C_1C_2L_1R_L$ (2M)			
11	Compare HWR and FWR with r	esnect to output average v	oltage and ripple facto	r (4M). BTI
	Answer: Page 722 – S.Salivahana		onuge und ripple luce	
)
	Parameter	HWR	FWR	
	Output average voltage (2M)	Vdc=Vm/π	Vdc=2*Vm/π	
	Ripple factor (2M)	1.21	0.482	
	Draw and explain FWR with resi		3) (Dec 2014) BTL1	
12	Answer: Page 730 – S.Salivahana			(2) (
14	Introduction: A rectifier circuit - o Circuit Diagram & Wave form	one diode - resistive load is	considered.	(2M (2M
	Rectification efficiency $\eta = Pdc/Pa$	ac =81.2%		(2111)
	(2M)			
	Ripple Factor $= 0.482$			
	(2M)			
	Form Factor =1.11			
	(2M)			
	Peak Factor = $\sqrt{2}$			
	(3M)	···· 6···· •···· •·· ··· ··· ··· ··· ···		A) (D 2012
	Explain the use of C and LC filte BTL1	rs for improving perform	ance of the circuit (15)	M) (Dec 2013
	Answer: Page 743 – S.Salivahanan & 6.20- Bakshi			
	Capacitor Filter: Capacitor - conn		5.	(2M)
13	Waveform and Circuit Diagram			(2M)
15	LC Filter	Capacito	r Filter	
	LCFILLE			
		¥	×	
			+ >	
	Full wave rectified	R. Full wave ⊆	$\frac{1}{2} \geq R_{L}$	
	input		· <	
		+ ¥	•	
	1	G		
	Ripple Factor $=\frac{1}{4\sqrt{3}fCR_L}$			
	(2M)			
	LC Filter: Inductor is connected ac	cross the load to reduce ripp	les.	
	(2M)			

	Waveform and Circuit Diagram
	(2M) Ripple Factor $=\frac{\sqrt{2}}{3\omega^2 C_L}$ (3M)
14	Describe the principle of operation of Zener voltage regulator. (10M) (Nov 2013) BTL1 Answer: Page 755– S.Salivahanan& 5.11- Bakshi Definition and Block Diagram: Basic Zener diode - used - voltage regulator. (4M) Load Resistance: RLmin=Vo/I Lmax R Lmax=Vo/I Lmin (2M)
	Input Resistance: R=1/2*(R _{max} +R _{min}) (2M) Draw a neat diagram of series voltage regulator with foldback protection and explain its
15	working. (6M) (Dec 2014) BTL1 Answer: Page 765 – S. Salivahanan& 6.54- Bakshi Definition : Foldback is a current limiting feature (a type of overload protection) - power supplies - power amplifiers. When - load attempts - draw overcurrent - supply, foldback - reduces - output voltage - current- below - normal operating limits. Under a short circuit, -output voltage - reduced to zero- current - typically limited - small fraction - maximum current. Block Diagram (2M) V_n V_n V_n V_n V_n V_n V_n V_n V_r
16	(3M) Explain working of FWR with π filter and derive its ripple factor. (10M) (June 2013) BTL1 Answer: Page 750 – S. Salivahanan & 6.33- Bakshi Definition: A rectifier circuit - 2 diodes - π filter circuit - considered - converting AC - DC (2M) Block (2M)

Explanation:	
(3M)	
$\mathbf{Ripple factor} = 3300/C_1C_2L_1R_L \tag{3M}$)
PART *C	
Explain the basic operation of FWR and Bride rectifier and derive its ripple factor, efficiency and TUE (15M) (June 2014) BTL 1	y
and TUF. (15M) (June 2014) BTL1 Answer: Page 731 – S.Salivahanan & 6.33- Bakshi	
Definition:	
Maximum Current: Im=Vm/(rs+rf+R _L) (2M))
Output DC current: $Idc=2*Im/\pi$ (2M)	
Efficiency: $\eta = Pdc/Pac$	
(2M)	
Ripple Factor $= \sqrt{((Vrms/Vdc))^2 - 1}$	
(3M)	
TUF = 0.693	
(2M) Form Factor =1.11 (2M)	
Peak Factor = $\sqrt{2}$ (2M)An HWR is supplied from with a step-down ratio of 3:1 to resistive load of 10K. Diod	<u> </u>
forward resistance is 75K, transformer sec resistance is 10K, Find Imax, Iavg, Irms, Ido	
2 Efficiency and ripple factor. (15M) (may 2015) Answer: Page 722– S.Salivahanan. BTL3	,
Output DC current $Idc=Im/\pi$ (2M)	
Efficiency $\eta = Pdc/Pac$ (2M)	
Ripple Factor = $\sqrt{((Vrms/Vdc))^2 - 1}$	
(3M)	
TUF = 0.287	
(3M) Form Factor =1.57	
(3M)	
Peak Factor = 2	
(2M)	
³ With neat diagram explain Buck and Boost switching regulator. (15M) (May 2015) BTL	1
Answer: Page 772 – S.Salivahanan & 6.61- Bakshi	
Definition : Step-down/up switching regulators, - called buck-boost converters.	
Output level - either higher or lower - input voltage.	
Combining buck - boost technology - single DC-DC converter- step-down/up converter - handle -	

wide	range of input voltages - either higher - lower - required by the circuit.	(2M)
Туре	s: Buck and boost regulator.	(4M)
Bloc	k diagram and model graph.	
(4M)		
Expl	anation	(5M)

3.59

	(c) Decreases the differential mode gain only	
	(c) Decreases the differential-mode gain only(d) Decreases the common-mode gain only	
	Answer (d)Decreases the common-mode gain only	
	The cascode amplifier is a multistage configuration of	
	(a) CC-CB	
4	(b) CE-CB	
	(c) CB-CC	
	(d) CE-CC	
	Ans: (b) CE-CB	
	Assuming VCEsat = 0.2 V and β = 50, the minimum base current (IB) required to drive the	
	transistor in the figure to saturation is	
	J J L C	
	≥ 1KΩ	
	I _B	
5		
	÷	
	(a) 56 µA	
	(b) $140 \ \mu A$	
	$(c) 60 \mu A$	
	$(d) 3 \mu A$	
	Ans: (a) 56 μA	
	Generally, the gain of a transistor amplifier falls at high frequency due to the	
	(a) Internal capacitance of the device	
	(b) Coupling capacitor at the input	
6	(c) Skin effect	
	(d) Coupling capacitor at the output	
	Ans:(a) Internal capacitance of the device The current gain of a BJT is	
	(a) gmr0	
	(b) gm/ro	
7		
	(c) $gm^*r\pi$	
	(d) gm/r π	
	Ans: (c) $gm^*r\pi$	
	The current gain of a bipolar transistor drops at high frequencies because of	
	(a) Transistor capacitances (b) High current effects in the base	
8	(b) High current effects in the base	
	(c) Parasitic inductive elements	
	(d) The Early effect	
	Ans: a) Transistor capacitances	
9	In the differential amplifier of the figure, if the source resistance of the current source IEE	
	is infinite, then common-mode gain is	

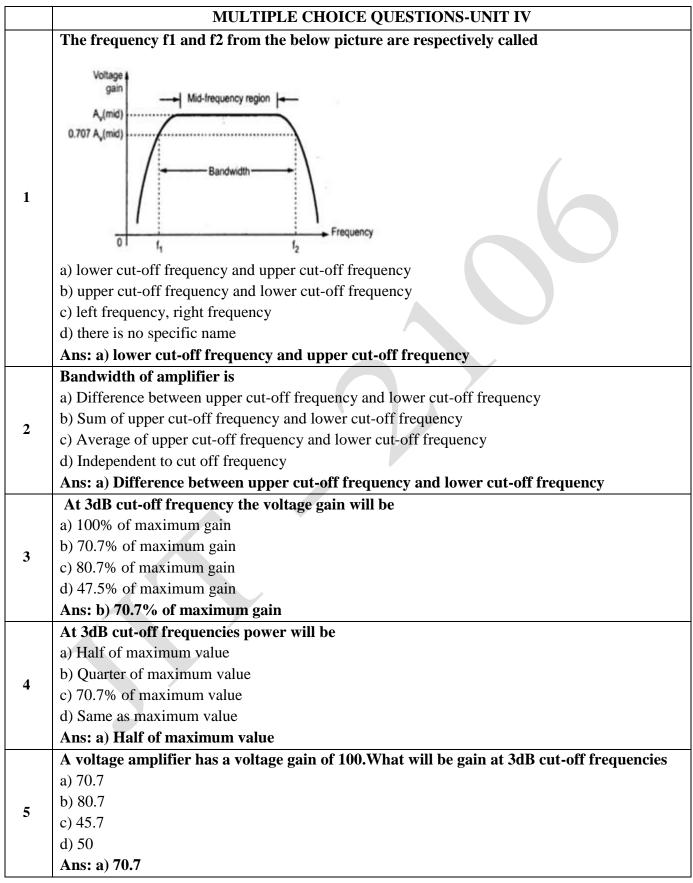
	$\frac{\sqrt{V_{cc}}}{V_{int}}$
	(a) Zero
	(a) Zero (b) Infinite
	(c) Indeterminate
	(d) $(Vin1 + Vin2) + 2VT$
	Ans:(a) Zero
	In the Cascode amplifier shown in the figure, if the common-emitter stage (Q1) has a trans
	conductance gm1 and the common base stage (Q2) has a trans conductance gm2 then the
	overall trans conductance $g(=i0 / Vi)$ of the Cascode amplifier is
	$Q_2 \leftarrow i_0$
	○ V₀
	▼ i _{c1}
10	
10	$V_{i}^{\circ} = \{R_{i}\}$
	(a) gm1
	(b) gm2
	(c) $gm1/2$
	(d) $gm2/2$
-	Ans:(a) gm1
	The unit of q / KT are
	(a) V
11	(b) V-1
	(c) J (d) \mathbf{L}/\mathbf{K}
	(d) J/K
	Ans: (b) V-1 A multistage Amplifier has a law pass Posperse with three real poles at $s = -\infty 1 - \infty^2$ and ∞
	A multistage Amplifier has a low-pass Response with three-real poles at $s = -\omega 1, -\omega 2$ and ω 3 The approximate overall bandwidth B of the Amplifier will be given by
12	(a) $B = \omega 1 + \omega 2 + \omega 3$
	(a) $B = \omega_1 + \omega_2 + \omega_3$ (b) $1/B = 1/\omega_1 + 1/\omega_2 + 1/\omega_3$
	(b) $1/B = 1/61 + 1/62 + 1/63$ (c) $B = (\omega 1 + \omega 2 + \omega 3)1/3$
	(c) $B = (\omega_1 + \omega_2 + \omega_3) 1/3$ (d) $B = \sqrt{\omega_1 + \omega_2 + \omega_3 3}$
	Ans: (b) $1/B=1/\omega 1+1/\omega 2+1/\omega 3$
	From measurement of the rise time of the o/p pulse of an amplifier whose input is a small
	amplitude square wave, one can estimate the following parameter of the amplifier.
	(a) Gain-bandwidth product
13	(a) Gam-bandwhuth product (b) Slew-Rate
	(c) Upper-3-dB frequency
	(d) Lower-3-dB frequency
	(u) Lower-5-ub frequency

Ans: (c) Opper-3-db requercy Cascode amplifier stage is equivalent to (a) A common emitter stage followed by a common base stage (b) A common base stage followed by a common base stage (c) An emitter follower stage followed by a common base stage (d) A common emitter stage following by a common base stage (e) A common emitter stage following by a common base stage Ans: (a) A common emitter stage following by a common base stage In the BJT amplifier shown in the figure is the transistor is biased in the forward active region putting a capacitor across RE will + + + + + + + + + + + + + + + + + + + + + + + - - - (a) Decrease the voltage gain and decrease the i/p impedance (b) Increase the voltage gain and decrease the i/p impedance Ans:(b) Increase the voltage gain and decrease the i/p impedance Ans:(b) Increase the voltage gain and decrease the i/p impedance A transistor having a =0.99 and VBE = 0.7V, is used in the circuit of the figure is the value		Ans: (a) Linner 2 dB frequency
 (a) A common emitter stage following by a common base stage (b) A common base stage followed by an emitter follower (c) An emitter follower stage followed by a common base stage (d) A common base stage followed by a common matter stage An emitter follower stage followed by a common matter stage A common base stage followed by a common matter stage A common base stage followed by a common matter stage A common base stage followed by a common matter stage In the BJT amplifier shown in the figure is the transistor is biased in the forward active region putting a capacitor across RE will to the stage st		Ans: (c) Upper-3-dB frequency
region putting a capacitor across RE will $\downarrow^{\circ} \downarrow^{\circ} \downarrow^{\circ} \downarrow^$	14	 (a) A common emitter stage following by a common base stage (b) A common base stage followed by an emitter follower (c) An emitter follower stage followed by a common base stage (d) A common base stage followed by a common emitter stage
15 15 15 15 16 16 16 16 16 16 16 16 16 16		
 (b) Increase the voltage gain and decrease the i/p impedance (c) Decrease the voltage gain and increase the i/p impedance (d) Increase the voltage gain and decrease the i/p impedance A transistor having α =0.99 and VBE = 0.7V, is used in the circuit of the figure is the value of the collector current will be 16 17 18 18 19 10 <l< th=""><th>15</th><th>$+ \circ$ $+ \circ$ $+ \circ$ $+ \circ$ V_{in} V_{out}</th></l<>	15	$+ \circ$ $+ \circ$ $+ \circ$ $+ \circ$ V_{in} V_{out}
16 of the collector current will be 16 16 16 10 K 10 K 10 K 1 K 2 M 2 M 2 M 3.33 m Answer d) 5.33 m		 (b) Increase the voltage gain and decrease the i/p impedance (c) Decrease the voltage gain and increase the i/p impedance (d) Increase the voltage gain and increase the i/p impedance Ans:(b) Increase the voltage gain and decrease the i/p impedance
	16	of the collector current will be
A BJ I is said to be operating in the saturation Kegion if		
 (a) Both the junction are reverse biased. (b) Base-emitter junction is reverse biased and base-collector junction is forward biased. (c) Base-emitter junction is forward biased and base-collector junction is reverse-biased. (d) Both the junction are forward biased. Ans:(d) Both the junction are forward biased. 	17	 (a) Both the junction are reverse biased. (b) Base-emitter junction is reverse biased and base-collector junction is forward biased. (c) Base-emitter junction is forward biased and base-collector junction is reverse-biased. (d) Both the junction are forward biased.
which of the following statements are correct for basic transistor amplifier configurations	18	

3.62

	(b) CC and life a loss sectored in a damage and high second a sign		
	(b) CC amplifier has low output impedance and high current gain(c) CE amplifier has very poor voltage gain but very high input impedance		
	(d) The current gain of CB amplifier is higher than the current gain of CC		
	Answer (a) & (b)		
	The bandwidth of an n-stage tuned amplifier, with each stage having a bandwidth of B, is		
	given by.		
	(a) B/n		
19	(b) B/\sqrt{n}		
17	(c) $B\sqrt{21/n-1}$		
	(d) $B/\sqrt{21/n-1}$		
	Ans: (c) $B\sqrt{21/n-1}$		
	The quiescent collector current IC of a transistor is increased by changing resistances. As a		
	result.		
	(a) gm will not be affected		
20	(b) gm will decrease		
	(c) gm will increase		
	(d) gm will increase or decrease depending upon bias stability.		
	Ans:(c) gm will increase		
	MULTIPLE CHOICE QUESTIONS-UNIT II		
	Early effect in BJT refers to		
1.	(a) avalanche breakdown		
	(b) thermal breakdown		
	(c) base narrowing		
	(d) Zener breakdown		
	Ans: (c) base narrowing		
2.	The emitter of the transistor is generally doped the heaviest because it		
	(a) has to dissipate maximum power		
	(b) has to supply the charge carriers		
	(c) is the first region of transistor		
	(d) must possess low resistance		
	Ans :(b) has to supply the charge carriers		
3.	In a properly Biased NPN transistor most of the electrons from the emitter		
3.	(a) recombine with holes in the base		
3.	(a) recombine with holes in the base(b) recombine in the emitter its self		
3.	(a) recombine with holes in the base(b) recombine in the emitter its self(c) pass through the base to the collector		
3.	 (a) recombine with holes in the base (b) recombine in the emitter its self (c) pass through the base to the collector (d) are stopped by the junction barrier 		
	 (a) recombine with holes in the base (b) recombine in the emitter its self (c) pass through the base to the collector (d) are stopped by the junction barrier Ans: (c) pass through the base to the collector 		
3.	 (a) recombine with holes in the base (b) recombine in the emitter its self (c) pass through the base to the collector (d) are stopped by the junction barrier 		

	(b) doubles for every 10rise in temperature
	(b) doubles for every 10rise in temperature
	(c) increase linearly with the temperature
	(d) doubles for every 50rise in temperature
	Ans:(a) double for every 100rise in temperature
5.	Which of the following transistor configuration circuit is much less temperature dependent
	(a) common base
	(b) common emitter
	(c) common collector
	(d) none of the above
	Ans: (c) common collector
6.	The CE amplifier circuit are preferred over CB amplifier circuit because they have
	(a) lower amplification factor
	(b) larger amplification factor
	(c) high input resistance and low output resistance
	(d) none of these
	Ans:(b) larger amplification factor
7.	Transistor connected in common base configuration has
	(a) a high input resistance and low output resistance
	(b) a low input resistance and high output resistance
	(c) a low input resistance and low output resistance
	(d) a high input resistance and a high output resistance
	Ans: (b) a low input resistance and high output resistance
	A transistor when connected in CE mode has
	(a) a low input resistance and a low output resistance
8.	(b) a high input resistance and high output resistance
0.	(c) a high input resistance and low output resistance
	(d) a medium input resistance and high output resistance
	Ans:(d) a medium input resistance and high output resistance
9.	The collector characteristics of a common- emitter connected transistor may be used to
	find its
	(a) input resistance
	(b) base current
	(c) output resistance
	(d) voltage gain
	Ans: (c) output resistance
10.	The dc load line of transistor circuit
_ V•	(a) is a graph between IC and VCE
	(b) is a graph between IC and IB
	(c) does not contain the Q Point
	(d) is a curved line
	Ans:(a) is a graph between IC and VCE


11.	The ac load line of a transistor circuit is steeper than its dc line because	
	(a) ac signal sees less load resistance	
	(b) IC is higher	
	(c) input signal varies in magnitude	
	(d) none of the above	
	Ans:(a) ac signal sees less load resistance	
12.	The maximum peak to peak output voltage swing is obtained when Q point of a circuit is	
	located	
	(a) near saturation point	
	(b) near cut off point	
	(c) at the centre of the load line	
	(d) at least on the load line	
	Ans:(c) at the centre of the load line	
13.	The positive part of the output signal in a transistor circuit starts clipping, if Q point of the	
	circuit moves	
	(a) toward the saturation point	
	(b) toward the cut-off point	
	(c) toward the centre of the load line	
	(d) none of the above	
	Ans:(b) toward the cut-off point	
	The biasing circuit that gives best stability to Q point is	
14.	(a) base resistance biasing	
	(b) feedback resistor biasing	
	(c) potential divider biasing	
	(d) emitter resistor biasing	
	Ans:(c) potential divider biasing	
15.	The Q-point in a voltage amplifier is selected in the middle of the active region because	
	(a) it gives better stability	
	(b) the circuit needs a small	
	(c) the biasing circuit then need less number of resistors	
	(d) it gives distortions less output	
	Ans:(d) it gives distortions less output	
16.	The ideal value of stability factor of a biasing circuit is	
	(a) 1	
	(b) 5 (c) 10	
	(c) 10 (d) 100	
	(d) 100	
	Ans:(a) 1	
17.	The universal bias stabilization circuit is the most popular because	
	(a) IC does not depend on transistor characteristic	
	(b) its β sensitivity is low	

	(a) voltage divider is beevily loaded by transister base		
	(c) voltage divider is heavily loaded by transistor base(d) IC equals to IE		
	Ans: (b) its β sensitivity is low		
18.	For a transistor amplifier with self- biasing network, the following components are used:		
	R1 = 4K Ω , R2 = 4K Ω and RE = 1K Ω , the approximate value of stability factor will be		
	(a) 4		
	(b) 3		
	(c) 2		
	(d) 1.5		
	Ans:(b) 3		
19.	Which of the following components are used for bias compensation in transistor circuit		
	(a) resistors		
	(b) rectifier diodes		
	(c) thermistors		
	(d) both (b) and (c) above		
	Ans:(d) both (b) and (c) above		
20.	The voltage divider biasing circuit is used in amplifiers quite often because it		
	(a) limits the ac signal going to base		
	(b) makes the operating point almost independent of β		
	(c) reduces the dc base current		
	(d) reduces the cost of the circuit		
	Ans:(b) makes the operating point almost independent of β		
	MULTIPLE CHOICE QUESTIONS-UNIT III		
	A field effect transistor (FET)		
	a. Uses a forward bias p-n junction		
	b. Uses a high concentration emitter junction		
1	c. Has a very high input resistance		
	d. Depends on flow of minority carrier		
	Ans:c. Has a very high input resistance		
	As compared to transistor amplifier JFET amplifier has		
	a. Higher voltage gain, less input impedance		
•	b. Less voltage gain, less input impedance		
2	c. Less voltage gain, higher input impedance		
	d. Higher voltage gain, higher input impedance		
	Ans:c. Less voltage gain, higher input impedance		
	The best location for setting a Q-point on dc load line of an FET Amplifier is at		
3	a. Saturation point		
3	b. Cutoff point		
	c. Mid- point		

	d. None of these	
	Ans:c. Mid- point	
	The pinch off voltage is the voltage	
	a. At which gate source junction breaks down	
	b. Which causes depletion regions to meet	
4	c. The voltage applied between drain & source	
	d. Neither of these	
	Ans:b. Which causes depletion regions to meet	
	If properly biased JFET acts as	
	a. Current controlled current source	
	b. Voltage controlled voltage source	
5	c. Voltage controlled current source	
	d. Current controlled voltage source	
	Ans:c. Voltage controlled current source	
	The voltage gain of a common source JFET amplifier depends upon its	
	a. Transconductance (gm)	
	b. Amplification factor (μ)	
6	c. External load resistance	
	d. Both (a) and (c)	
	Ans:d. Both (a) and (c)	
	A common gate amplifier has	
	a. High input resistance and high output resistance	
	b. Low input resistance and high output resistance	
7	c. Low input resistance and low output resistance	
	d. High input resistance and low output resistance	
	Ans:b. Low input resistance and high output resistance	
	Transconductance amplifier has	
	a. High input impedance and low output impedance	
8	b. Low input impedance and high output impedance	
ð	c. High input and output impedances	
	d. Low input and output impedances	
	Ans:a. High input impedance and low output impedance	
	A JFET is similar is operation to	
9	a. Diode	
9	b. Pentode	
	c. Triode	

	d Tatua da
	d. Tetrode
	Ans:b. Pentode
	In a common source JFET amplifier the output voltage is
10	a. 1800 out of phase with input
	b. In phase with input
	c. 900 out of phase with input
	d. None of the above
	Ans: a. 1800 out of phase with input
	A common source (CS) amplifier has a voltage gain of
11	a. gm rd
	b. gm rs
	c. gm rs / (1+gm rs)
	d. gm rd / (1+gm rd)
	Ans:a. gm rd
12	A source follower has a voltage gain of
	a. gm rd
	b. gm rs
	c. gm rs / $(1+gm rs)$
	d. gm rd / (1+gm rd)
	Ans :c. gm rs / (1+gm rs)
	A Cascode amplifier has the advantage of
	a. Large voltage gain
	b. Low input capacitance
13	c. Low input impedance
	d. Higher gm
	Angle I any input conscitouss
	Ans:b. Low input capacitance If a JFET has IDSS=8mA and VP=4V, then RDS equals
14	a. 200Ω
	b. 320Ω
	c. 500 Ω
	d. 5K Ω
	Ans :c. 500 Ω
	In Enhancement n-channel MOSFET, an induced n type channel can be produced between
	the source and the drain if
15	a. $VGS = 0$
	a. vGS = 0 b. VGS is positive

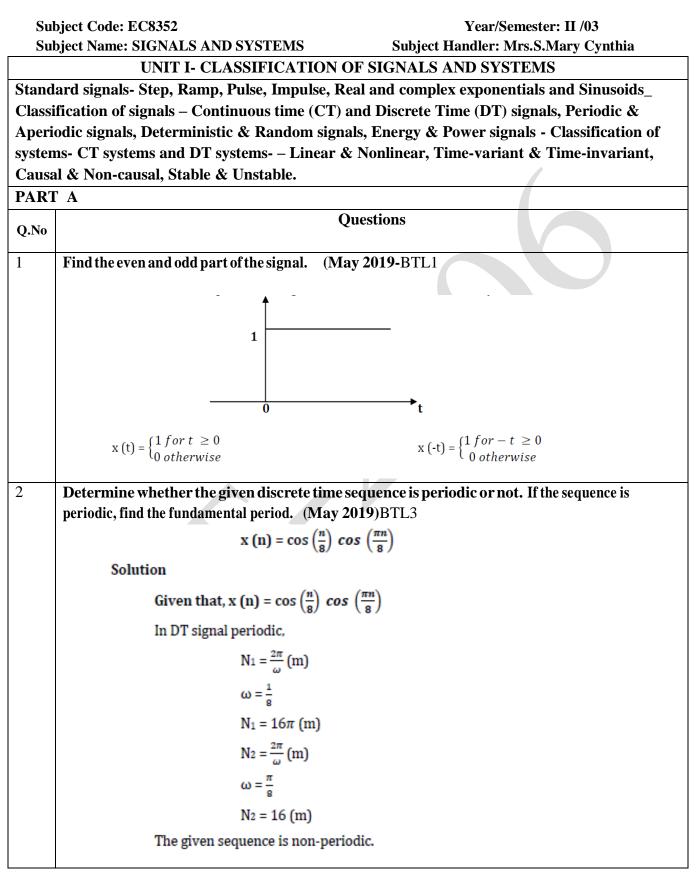
	a VCS is reactive		
	c. VGS is negative		
	d. None of theseAns: b. VGS is positive		
	The threshold voltage of an n-channel enhancement mode MOSFET is 0.5V when the		
	device is biased at gate voltage of 3V, pinch off would occur at the drain voltage of		
	device is biased at gate voltage of 5 v, pinch off would occur at the drain voltage of		
	a. 1.5V		
16	b. 2.5V		
	c. 3.5V		
	d. 4.5V		
	Ans :b. 2.5V		
	The term IDSS is not used in		
	a. D-MOSFET		
17	b. E-MOSFET		
	c. JFET		
	d. BJT		
	Ans:b. E-MOSFET		
	The polarity of VGS for E only MOSFET is		
	The polarity of VGS for E only MOSPET IS		
	a. Positive		
	b. Negative		
18	c. Zero		
	d. Depends on P or N channel		
	Ans:d. Depends on P or N channel		
	When an n-channel D-MOSFET has I _D > I _{DSS} it		
	a. Will be destroyed		
	b. Is operating in depletion mode		
19	c. Is forward biased		
	d. Is operating in the enhancement mode		
	Ans:d. Is operating in the enhancement mode		
	A certain p-channel E-MOSFET has $V_{GS(th)} = -2V$. If $V_{GS} = 0V$, the drain current is		
	a. 0 mA		
	b. I _D (on)		
20	c. Maximum		
	d. I _{DSS}		
	Ans:a. 0 mA		

	What is the wall off rate of single order filter
	What is the roll-off rate of single order filter
	a) 20dB/decade
6	b) 5dB/octave
	c) 40dB/decade
	d) 10dB/octave
	Ans: a) 20dB/decade
	-6dB is equivalent to power gain
	a) 0.5
7	b) 0.25
	c) 0.75
	d) 0.8
	Ans: b) 0.25
	Voltage gain of 1,00,000 is equivalent to
	a) 10dB
8	b) 1000dB
	c) 100dB
	d) 50dB
	Ans: c) 100dB
	If the output power from an audio amplifier is measured at 100W when the signal
	frequency is 1kHz, and 1W when the signal frequency is 10kHz. Calculate the dB change in
	power.
9	a) -10dB
	b) -20dB
	c) -30dB
	d) 15dB
	Ans: b) -20dB
	If an electronic system produces a 48mV output voltage when a 12mV signal is applied,
	calculate the decibel value of the systems output voltage gain.
	a) 6dB
10	b) 10dB
	c) 20dB
	d) 4dB
	Ans: a) 6dB
	The decibel gain of a cascaded system is the of the decibel gains of each stage.
	a) sum
11	b) difference
	c) product
	d)quotient
	Ans: a) Sum
12	The best frequency response is of coupling
	a) RC

	b) Transformer		
	c) Direct		
	d) None of the above		
	Ans: c) Direct		
The lower and upper cut off frequencies are also called frequencies			
	a) Sideband		
13	b) Resonant		
_	c) Half-resonant		
	d) Half-power		
	Ans: d) Half power		
	A gain of 1,000,000 times in power is expressed by		
	a) 30 db		
14	b) 60 db		
14	c) 120 db		
	d) 600 db		
	Ans: b) 60db		
	1 dB corresponds to change in power level		
	a) 50%		
15	b) 35%		
15	c) 26%		
	d) 22%		
	Ans: c) 26%		
	In the input RC circuit of a single-stage BJT or FET amplifier, as the frequency,		
	the capacitive reactance and of the input voltage appears across the		
	output terminals.		
16	output terminals. a) increases, decreases, more		
16	output terminals. a) increases, decreases, more b) increases, decreases, less		
16	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more		
16	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less		
16	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more		
16	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or		
16	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network.		
	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest		
16	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average		
	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest		
	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average		
	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average c) lowest		
	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average c) lowest d) None of the above		
	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average c) lowest d) None of the above Ans: a. highest		
17	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average c) lowest d) None of the above Ans: a. highest The Miller effect is meaningful in the amplifier. a) inverting		
	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average c) lowest d) None of the above Ans: a. highest The Miller effect is meaningful in the amplifier. a) inverting		
17	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average c) lowest d) None of the above Ans: a. highest The Miller effect is meaningful in the amplifier. a) inverting b) noninverting c) inverting/noninverting		
17	output terminals. a) increases, decreases, more b) increases, decreases, less c) increases, increases, more d) decreases, decreases, less Ans: a. increases, decreases, more In the low-frequency region, the low-frequency cutoff determined by CS, CC, or CE will have the greatest impact on the network. a) highest b) average c) lowest d) None of the above Ans: a. highest The Miller effect is meaningful in the amplifier. a) inverting		

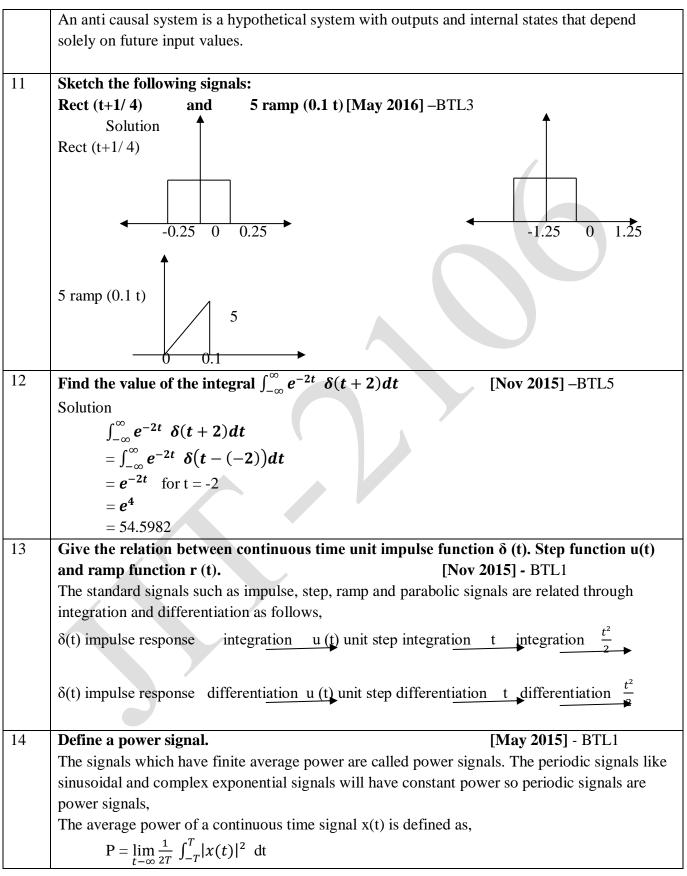
	Which of the following elements is (are) important in determining the gain of the system in
	the high-frequency region?
	a) Interelectrode capacitances
19	b) Wiring capacitances
	c) Miller effect capacitance
	d) All of the above
	Ans: d. All of the above
	What is the range of the capacitor Cds?
	a) 0.01 to 0.1 pF
20	b) 0.1 to 1 pF
	c) 0.1 to 1 nF
	d) 0.1 to 1 F
	Ans: b) 0.1 to 1 pF
	MULTIPLE CHOICE QUESTIONS-UNIT V
	In a half wave rectifier, the load current flows for what part of the cycle.
	a . 00
1	b. 900
	c. 1800
	d. 3600
	Ans:c. 1800
	In a full wave rectifier, if the input frequency is 50 Hz, then output frequency will be
	a. 50 Hz
2	b. 75 Hz
_	c. 100 Hz
	d. 200 Hz
	Ans:c. 100 Hz
	In a center tap full wave rectifier, if Vm is the peak voltage between center tap and one end
	of the secondary, the maximum voltage coming across the reverse bias diode is
	a. Vm
3	b. 2 Vm
	c. Vm/2
	d. Vm/ $\sqrt{2}$
	Ans:b. 2 Vm
	The maximum efficiency of full wave rectification is
	a. 40.6%
4	b. 100%
-	c. 81.2%
	d. 85.6%
	Ans:c. 81.2%
F	The basic purpose of filter is to
5	a. minimizes variations in ac input signal

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	b. suppresses harmonics in rectified output		
	c. removes ripples from the rectified output		
	d. stabilizes dc output voltage		
	Ans:c. removes ripples from the rectified output A half wave rectifier is equivalent to		
	-		
	a. clamper circuit		
6	b. a clipper circuit		
	c. a clamper circuit with negative biasd. a clamper circuit with positive bias		
	Ans:b. a clipper circuit		
	In a LC filter, the ripple factor,		
	a. Increases with the load current		
	b. increases with the load resistance		
7	c. remains constant with the load current		
	d. has the lowest value		
	Ans:c. remains constant with the load current		
	The dc output polarity from a half-wave rectifier can be reversed by reversing		
	a. the diode		
	b. transformer primary		
8	c. transformer secondary		
	d. both (b) and (c)		
	Ans:a. the diode		
	Which of the following is not an essential element of a dc power supply?		
	a. Rectifier		
9	b. Filter		
	c. Voltage regulator		
	d. Voltage amplifier		
	Ans:d. Voltage amplifier		
	A Zener diode		
	a. Is a battery		
10	b. Has a constant voltage in the breakdown region		
	c. Has a barrier potential of 1 V		
	d. Is forward biased		
	Ans:b. Has a constant voltage in the breakdown region		
	In a loaded Zener regulator, which is the largest current? a. Series current		
	b. Zener current		
11	c. Load current		
	d. None of these		
	Ans:c. Load current		
12	If the Zener diode in a Zener regulator is connected with the wrong polarity, the load		
	LEPPIA AR/ECE/Mr R Thandaiab Prabu/II nd Yr/SEM 03/EC8351/ELECTRONIC CIRCUITS I/UNIT 1-5/OB+Keys/Ver2 0		

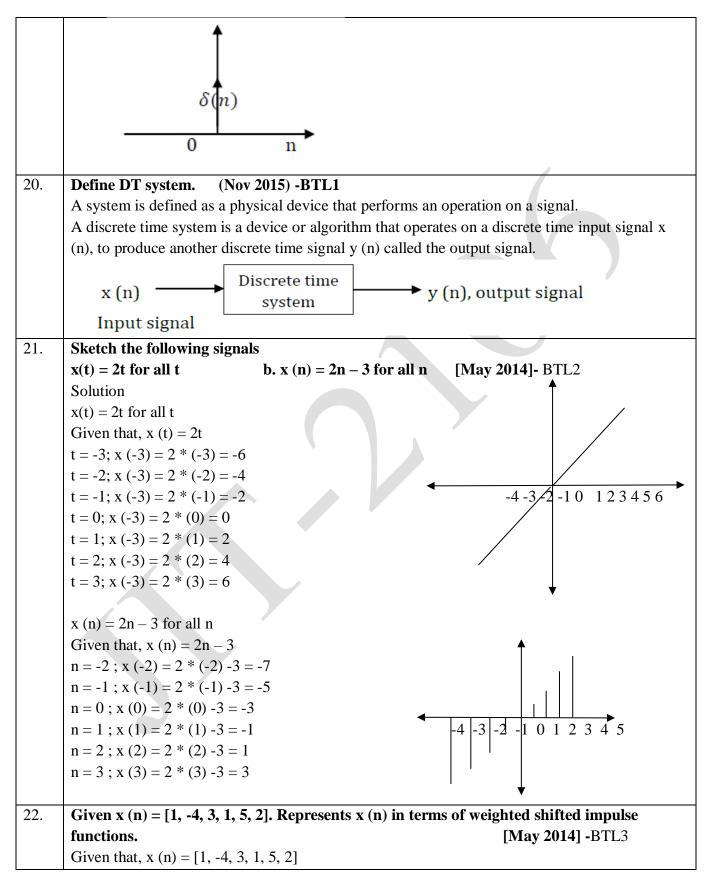

	voltago			
	voltage will be closest to a. 0.7 V b. 10 V c. 14 V			
	c. 14 V d. 18 V			
	Ans:a. 0.7 V The percentage voltage regulation of voltage gupply providing 100V unloaded and 05V at			
	The percentage voltage regulation of voltage supply providing 100V unloaded and 95V at full load is			
	a. 5.3%			
12	a. 5.5% b. 5.0%			
13				
	c. 0.53%			
	d. None of the above			
	Ans:a. 5.3%			
	Which of the following voltage regulator is preferred for providing large values of load			
	Current?			
	a. Zener diode shunt regulator			
14	b. Transistor series regulator			
	c. Transistor shunt regulator			
	d. None of the above			
	Ans:b. Transistor series regulator			
	The main job of a voltage regulator is to provide a nearly output voltage.			
	a. sinusoidal			
15	b. constant			
15	c. smooth			
	d. fluctuating			
	Ans:b. constant			
	A 10-V dc regulator power supply has a regulation of 0.005 per cent. Its output voltage will			
	vary within an envelope ofmillivolt.			
	a. ±2.5			
16	b. ±0.5			
	c. ±5			
	d. ±0.05			
	Ans:a. ±2.5			
	An ideal voltage regulator has a voltage regulation of			
	a . 1			
	b. 100			
17	c. 50			
	d. 0			
	Ans:d. 0			
18	In a Zener diode shunt voltage regulator, the diode regulates so long as it is kept in			
	in a zonor aroue shune votage regulator, the above regulates so tong as it is kept in			

	condition.		
	a. forward		
	b. reverse		
	c. loaded		
	d. unloaded		
	Ans: b. reverse		
	A transistor series voltage regulator is called emitter-follower regulator because the emitter		
	of the pass transistor follows thevoltage.		
	a. output		
19	b. input		
	c. base		
	d. collector		
	Ans: c. base		
	The ripple factor of a bridge rectifier is		
	a. 0.482		
20	b. 0.812		
20	c. 1.11		
	d. 1.21		
	Ans:a. 0.482		

EC8352	SIGNALS AND SYSTEMS	LTPC
OD IECTIVES.		4004
OBJECTIVES:	mention of simula & sustains	
 To understand the basic pro To know the methods of characteristic 		
	aracterization of LTI systems in time domain	
•	signals and system in the Fourier and Laplace domain	
• To analyze discrete time sig	gnals and system in the Fourier and Z transform domain	
- Continuous time (CT) and Discret signals, Energy & Power signals - C	SIGNALS AND SYSTEMS Impulse, Real and complex exponentials and Sinusoids_ te Time (DT) signals, Periodic & Aperiodic signals, D Classification of systems- CT systems and DT systems- sal & Non-causal, Stable & Unstable.	eterministic & Random
UNIT II - ANALYSIS OF CONTI Fourier series for periodic signals - F	NUOUS TIME SIGNALS Fourier Transform – properties- Laplace Transforms and	12 properties
	RIANT CONTINUOUS TIME SYSTEMS grals- Differential Equation- Fourier and Laplace transfo es / parallel.	12 rms in Analysis of CT
UNIT IV ANALYSIS OF DISCRE Baseband signal Sampling – Fourier & Properties	CTE TIME SIGNALS Transform of discrete time signals (DTFT) – Properties	12 of DTFT - Z Transform
Impulse response – Difference equat	ANT-DISCRETE TIME SYSTEMS ions-Convolution sum- Discrete Fourier Transform and ms-DT systems connected in series and parallel.	12 Z Transform Analysis
	ТО	TAL: 60 PERIODS
OUTCOMES:		
After studying this course, the studen		
To be able to determine if a given system		
	y components present in a deterministic signal	
	ns in the time domain and frequency domain	
10 be able to compute the output of a	an LTI system in the time and frequency domains	
TEXT BOOKS:	<i>«</i>	
Allan V.Oppenheim, S.Wilsky and S	S.H.Nawab, —Signals and Systemsl, Pearson, 2015.(Uni	t 1-V)


REFERENCES

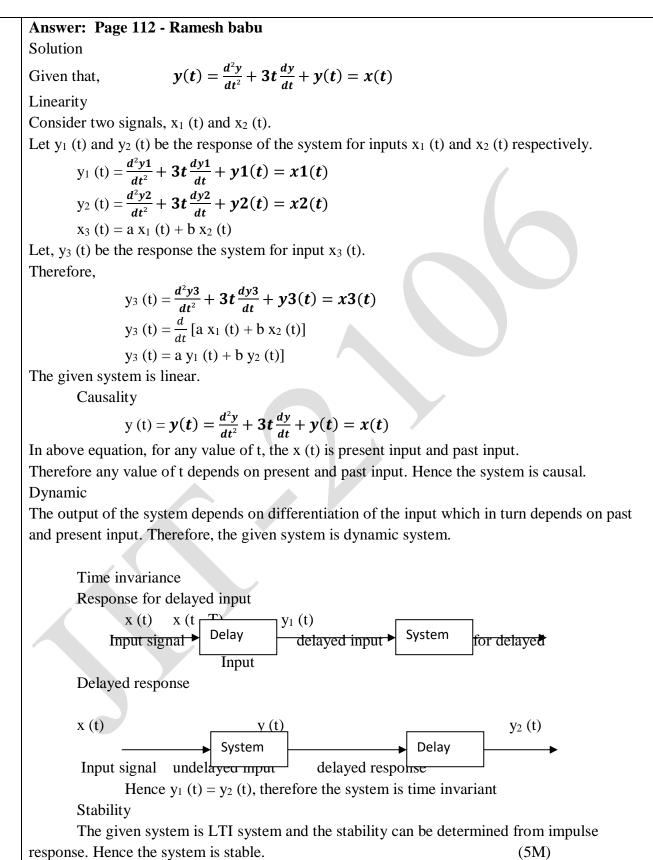
B. P. Lathi, —Principles of Linear Systems and Signals^{II}, Second Edition, Oxford, 2009.
 R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discretel, Pearson, 2007.
 John Alan Stuller, —An Introduction to Signals and Systems^I, Thomson, 2007.


3 Give the mathematical and graphical representations of a discrete time			
Ramp sequence.(Nov 2018)- BTL1			
Solution			
Ramp signal			
$r(n) = n, n \ge 0, n < 0$			
$1(n) - n, n \ge 0, n < 0$			
4 Evaluate the following integral (Nov 2018)- BTL5			
$\int_{-1}^{1} (2t^2 + 3) \delta(t) dt$			
Solution			
$\int_{-1}^{1} (2t^2 + 3) \delta(t) dt$			
$\int_{-1}(2t^2 + 3) \delta(t) dt$			
put			
t = 0			
= 3			
5 Determine if the signal x (n) given below is periodic. If yes give its fundamenta			
Period. If not, state why it is aperiodic. $x(n) = sin [(6\pi n/7)+1]$ (Nov 2017)- B7	TL2		
Solution			
In DT signal periodic,	In DT signal periodic,		
$N = \frac{2\pi}{m}$ (m)			
$N = \frac{2\pi}{\omega} (m)$			
$\omega = \frac{6\pi}{7}$			
7			
$N = \frac{2\pi}{6\pi/7} (m)$			
$6\pi/7$ (III)			
$N = \frac{7}{3}$ samples.			
3 samples.			
m = 3, N = 7			
Therefore, signal is periodic and fundamental time period = 7.			
6 Check whether the following system is time invariant / time variant and			
also causal / non-causal. (Nov 2017)- BTL4			
y(t) = x(t/3)			
Solution			
y(t) = x(t/3)			
Delay the input by T			
y(t) = x[(t/3)-T]1			
Delay the output by $t = t - T$			
y(t) = x[(t-T)/3]2			

	$1 \neq 2$		
	Therefore it is called Time Variant system.		
	Causal or non-causal		
	y(t) = x(t/3)		
	The output of the system depends on present input. Therefore it is called causal system.		
7	Find the summation x (n) = $\sum_{n=-\infty}^{\infty} \delta(n-1) \sin 2n$ (May 2017)- BTL2		
	Solution		
	Given that, $x(n) = \sum_{n=-\infty}^{\infty} \delta(n-1) sin 2n$		
	n = 1		
	$x(n) = \sin 2$		
	x(n) = 0.909		
8	Define linear system. (May 2017)- BTL1		
	A system of equations is a set or collection of equations that you deal with all together at once.		
	Linear equations (ones that graph as straight lines) are simpler than non-linear equations, and		
	the simplest linear system is one with two equations and two variables.		
9	Give the mathematical and graphical representation of continuous time and discrete unit		
,	impulse functions. [Nov 2013, 2016] -BTL1		
	Continuous time unit impulse functions		
	The impulse signal is a signal with infinite magnitude and zero duration, but with an area of A.		
	mathematically, impulse signal is defined as, $\delta(t)$		
	$\delta(t) = \begin{cases} \infty, \ t = 0\\ 0, \ t \neq 0 \end{cases} $ 1		
	Discrete time impulse function $\delta(n)$		
	Impulse signal can be defined as, $m = 0$		
	$\delta(n) = \begin{cases} \infty, \ n = 0\\ 0, \ n \neq 0 \end{cases} $ 1		
	$(0, n \neq 0)$		
10	State the difference between coursel and non-coursel system [New 2012, 2016]		
10	State the difference between causal and non-causal system [Nov 2013, 2016] –		
	BTL2		
	Causal system		
	A system is said to be causal system if its output depends on present and past inputs only and		
	not on future inputs. Examples: The output of casual system depends on present and past inputs,		
	it means y(n) is a function of x(n), x(n-1), x(n-2), x(n-3)etc Non causal		

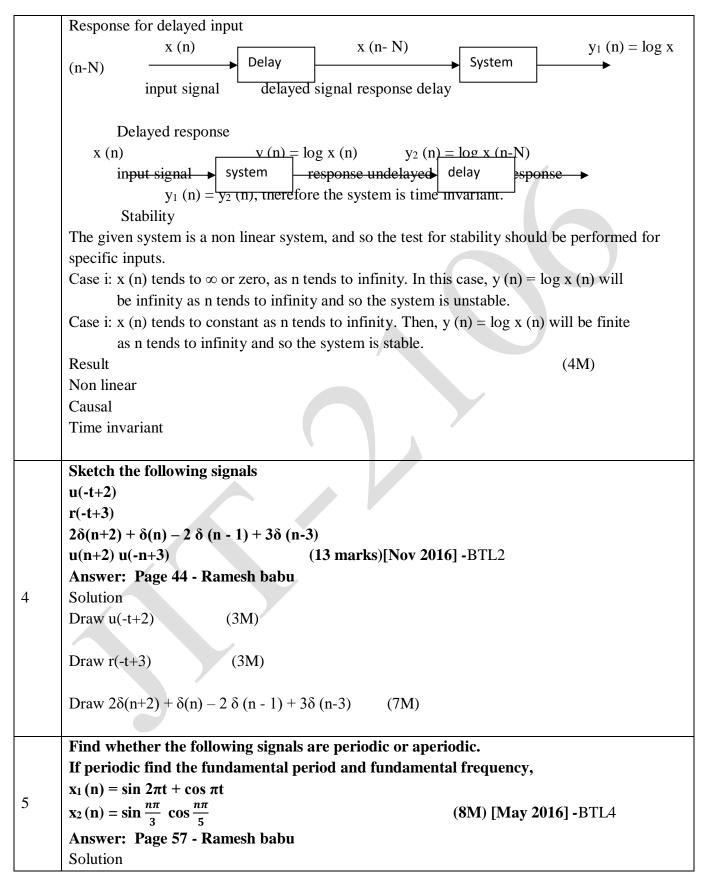
5	How the impulse response of a discrete time system useful in determining its stability and		
	causality?	[May 2015] - BTL4	
	Stability		
	The condition for stability of an LTI system is,		
	$\sum_{-\infty}^{\infty} h(n) < \infty$		
	An LTI system is stable if the impulse response is al	osolutely summable.	
	Causality:		
	A system is said to be causal if the output of	the system at any time n depends only on	
	the present input, past inputs and past outputs but does not depend on the future inputs and outputs.		
	If the system output at any time n depends on	n future or outputs then the system is called	
	non causal system.		
	The causality refers to a system that is realiz	able in real time.	
6	State two properties of unit impulse function	[Nov 2014] –BTL1	
	Property 1		
	$\int_{-\infty}^{\infty} \delta(t) dt = 1$		
	Property 2		
	$\int_{-\infty}^{\infty} x(t)\delta(t) dt = x(0)$		
	Property 3		
	$\int_{-\infty}^{\infty} x(t)\delta(t-to)dt = x(to)$		
7	Draw the following signals:		
	$u(t) - u(t-10)$ b. $(1/2)^n u(n-1)$	[Nov 2014]-BTL2	
	Solution		
	Given that, $u(t) = 1; t \ge 0$		
	$u (t-10) = 1; t \ge 10$		
	u (t)	u (t-10)	
		10	
	Draw $u(t) - u(t-10)$ (1)		
	u(t) - u(t-10)		
		10	

		•
	$(1/2)^n u(n-1) x(n) = (1/2)^n u(n-1)$	
	Solution	
	Given that, $u(n-1) = 1$; $n \ge 0$	0.5
	$=0; n \ge 0$	
	x (n) = $(1/2)^n$ u(n-1) = $(1/2)^n$; n ≥ 1	0.25
	$n=1; (1/2)^n = (1/2)^1 = 0.5$	0.125
	$n=2; (1/2)^n = (1/2)^2 = 0.25$	0.0625
	$n=3; (1/2)^n = (1/2)^3 = 0.125$	0 1 2 3 4 n
	$n=4; (1/2)^n = (1/2)^4 = 0.0625$	
18	Define a signal and system.	[May 2015] -BTL1
	Signal	
	Any physical phenomenon that conveys or	carries some information can be called a
	signal. A signal is defined as any physical quantity	
	variables.	
	System	
	Any process that exhibits cause and effect	relation can be called a system. A system will
	have an input and an output signal.	
19.	What is meant by stability of a system?	[May 2015] –BTL1
	The condition for stability of an LTI system is,	
	$\sum_{-\infty}^{\infty} h(n) < \infty$	
	An LTI system is stable if the impulse response is	absolutely summable.
	↑u (n)	
	01234 n	
	It can be defined as,	
	$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$	
	Impulse signal	
	Impulse signal can be defined as,	
	$\delta(n) = \begin{cases} 1, \ n = 0\\ 0, \ n \neq 0 \end{cases}$	
1	$(0, n \neq 0)$	



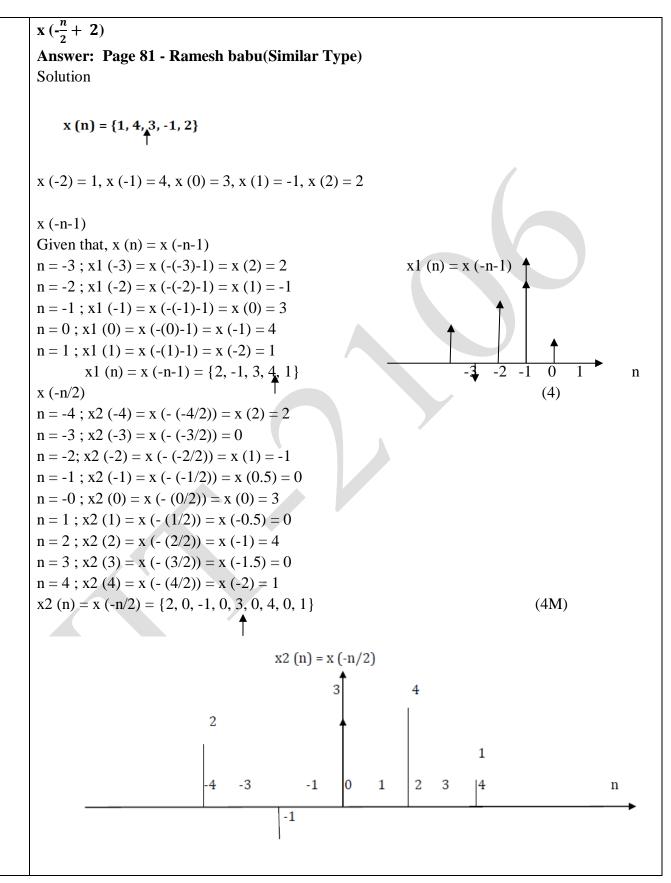
JIT-JEPPIAAR/ECE/Mrs.S.MARY CYNTHIA/IInd Yr/SEM 03/EC8352/ SIGNALS AND SYSTEMS /UNIT 1-5/QB+Keys/Ver2.0

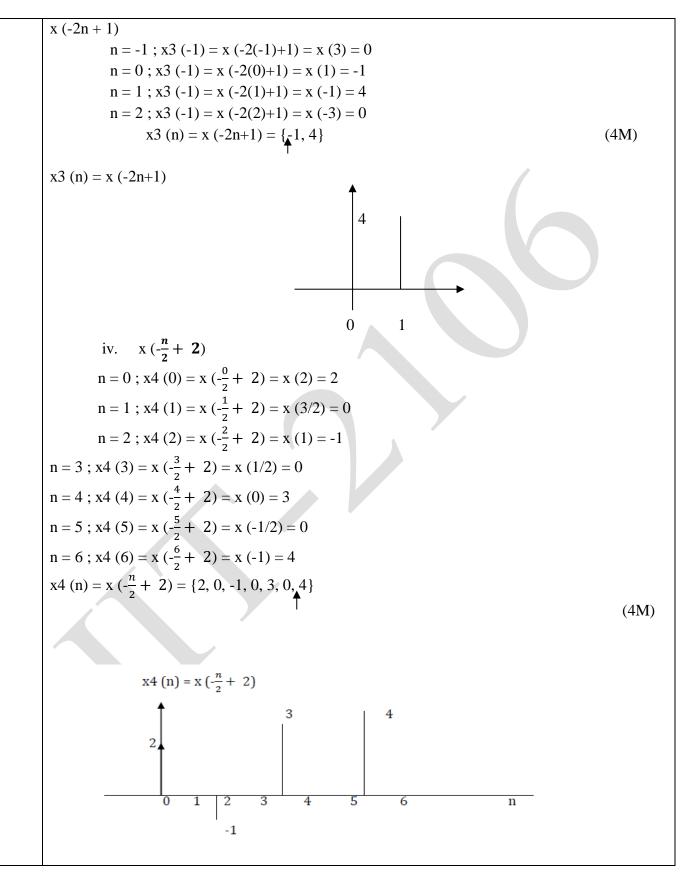
	x(0) = 1 $x(3)$) = 1		
		() = 1 () = 5		
		() = 3 () = 2		
) – 2		
	The shifted impulse, $\delta(n-k) = 1$; for $n = k$ = 0; for $n \neq k$ Therefore, if we multiply x (n) by δ (n-k) then it selects only k th sample of x (n). The weighted shifted impulse function is, x (n) = δ (n) - 4 δ (n-1) + 3 δ (n-2) + δ (n-3) + 5 δ (n-4) + 2 δ (n-5).			
- 22				
23	What is the condition for a system to be LTI system?[Nov 2013] -BTL1			
	x(t) CT system	n y (t)		
	The operation performed by a continuous time sy	stem on input to produce output or response		
	can be expressed as,	stem on input to produce output of response		
	Response, $y(t) = H\{x(t)\}$			
	Where, H denotes the system operation also calle	ed system operator		
	When a continuous time system satisfies the properties of linearity and time invariance then it i called LTI CT system.			
24	Check whether the discrete time signal sin 3n	periodic[May 2013, 2016] -BTL4		
	Given that, $x(n) = \sin 3n$	F		
	$3N = 2\pi M$			
	$=\frac{2\pi M}{2}$			
	3			
	Here N cannot be an integer for any integer value			
25	Determine whether the following signal is ene			
	or power x (t) = $e^{-2t}u(t)$	[Nov 2012] - BTL4		
	Given that, $x(t) = e^{-2t}u(t)$			
	$\mathbf{x}(t) = e^{-2t}u(t)$; for all t			
	x (t) = $e^{-2t}u(t)$; for t ≥ 0 $\int_{-T}^{T} x(t) ^2 dt = \int_{0}^{T} e^{-2t} ^2 dt = \int_{0}^{T} (e^{-2t})^2 dt = \int_{0}^{T} (e^{-4t}) dt$			
	$= \left[\frac{e^{-4t}}{-4}\right] - \frac{e^{0}}{-4} = \left[\frac{1}{4}\right] - \frac{e^{-4T}}{4}$			
	Energy			
	$\mathbf{E} = \lim_{T \to \infty} \int_{-T}^{T} x(t) ^2 dt$			
	$=\lim_{T\to\infty}\left[\frac{1}{4}\right]-\frac{e^{-4T}}{4}$			
	$= \left[\frac{1}{4}\right] - \frac{e^{-4\infty}}{4}$			
	$E = \frac{1}{4}$ joules			
	Power			

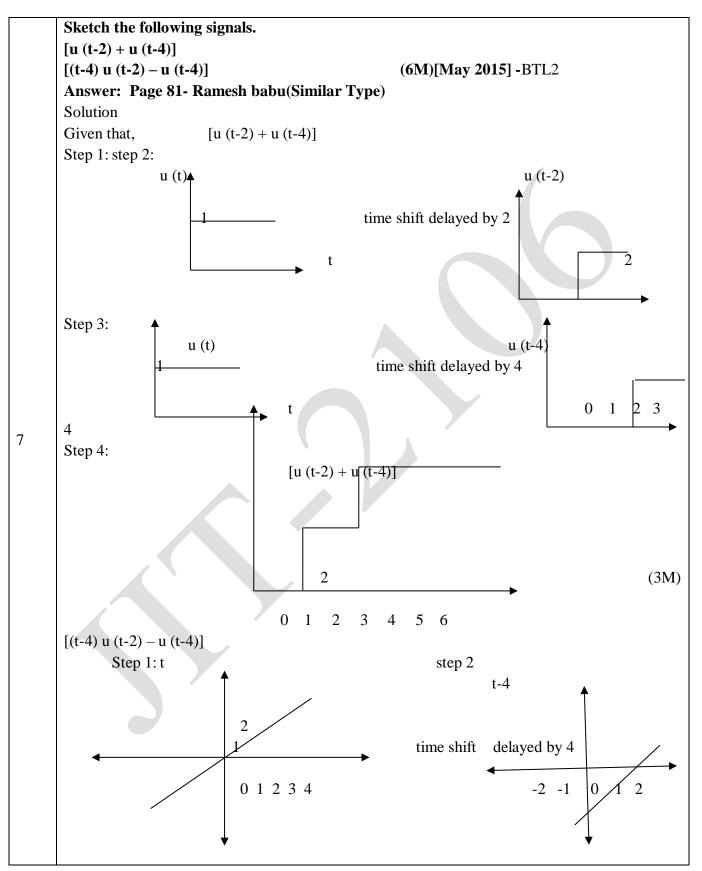

	1 .7			
	$\mathbf{P} = \lim_{t \to \infty} \frac{1}{2T} \int_{-T}^{T} \mathbf{x}(t) ^2 dt$			
	$\mathbf{P} = \lim_{t \to \infty} \frac{1}{2T} \left[\frac{1}{4} \right] - \frac{e^{-4T}}{4}$			
	P = 0. The given signal is an energy signal.			
26	Verify whether the system described by the equation is linear and Time invariant			
	$y(t) = x (t)^2$ [May 2012] -BTL4			
	Solution			
	Linear:			
	The system is linear since an output is direct function of input.			
	Time invariant:			
	The system is time variant since time parameter is squared in the given system function			
	equation.			
27	Find the fundamental period of the given signal $x(n) = sin(\frac{6\pi n}{7} + 1)$ [May 2012] - BTL3			
	In DT signal periodic,			
	$N = \frac{2\pi}{\omega} (m)$			
	$\omega = \frac{6\pi}{7}$			
	$N = \frac{2\pi}{6\pi/7} (m)$			
	$N = \frac{7}{3}$ samples.			
	PART B			
Q.N	Questions			
0	Find out whather the following size of another newinding on not. If newinding find the newind w(4)			
	Find out whether the following signals are periodic or not. If periodic find the period $x(t) = 2 \cos(10t + 1) \sin(4t - 1) $ and $x(n) = \cos(0.1 \text{ m}) = (7M)[May 2017]$ PTL 4			
	$= 2 \cos (10t + 1) - \sin (4t - 1) \text{ and } x (n) = \cos (0.1 \pi n) $ (7M)[May 2017] -BTL4			
	Answer: Page 57 - Ramesh babu			
	Solution Given that $y = (t) - 2 \cos((10t + 1)) - \sin((4t - 1))$			
	Given that, $x(t) = 2\cos(10t + 1) - \sin(4t - 1)$			
	Let T_1 be the periodicity of x_1 (t). on comparing x_1 (t) with standard form,			
1	Find Time period T ₁ $x_1 (t) = 2 \cos (10t + 1)$ $2\pi F_{o1} = 10$			
	$F_{o1} = 5/\pi$ period $T_1 = \frac{1}{Fo1} = \frac{5}{\pi}$			
	Find Time period T_2			
1	$x_2(t) = \sin(4t - 1)$			
	$x_2(t) = \sin(4t - 1)$			

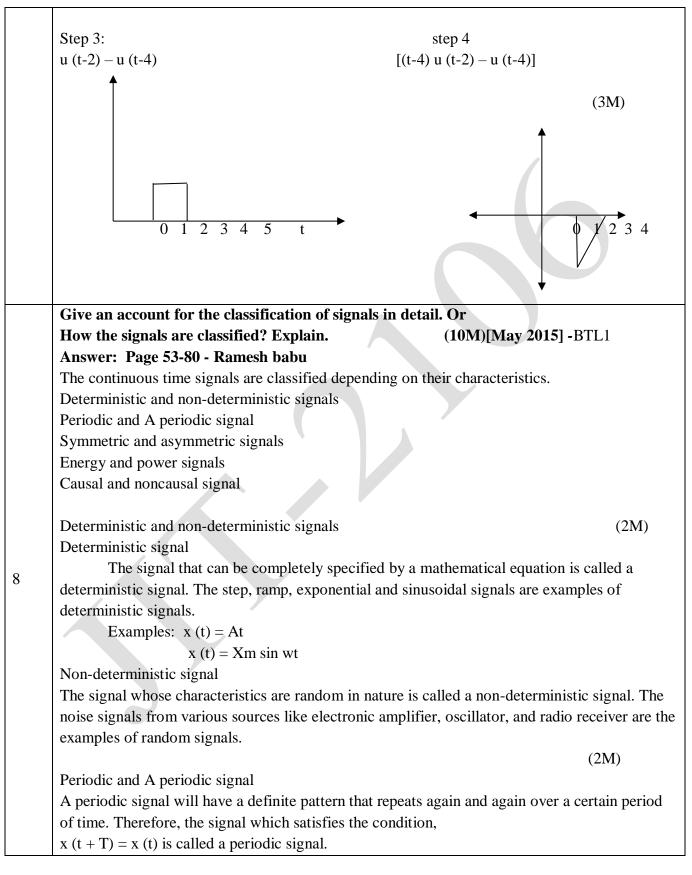
	$F_{o2} = 2/\pi \qquad \text{period } T_2 = \frac{1}{Fo1} =$	<u>_</u> <u>π</u>
	$\frac{T1}{T2} = T_1 * \frac{1}{T2} = \frac{5}{\pi} \frac{2}{\pi}$	(4M)
	Since x_1 (t) and x_1 (t) are periodic, and the ratio of T_1 a	nd T_2 is a irrational number, the
	signal x (t) is Aperiodic.	
	$x(n) = \cos(0.1 \pi n)$	
	In DT signal periodic,	
	$N = \frac{2\pi}{\omega}$ (m)	
	$\omega = 0.1\pi$	
	$N = \frac{2\pi}{0.1\pi} (m)$	
	N = 20 samples.	(3M)
	Hence x (n) is a periodic with fundamental period of 20 samp.	
	Find out whether the following signals are energy or powe	
	energy. Determine power or energy as the case may be for	-
	x (t) = u (t) + 5 u (t - 1) - 2 u (t - 2) (6M)[May 2017] -BTL-	-
	Answer: Page 73 - Ramesh babu(Similar Type)	
	Energy and power signals	
	Energy signal	
	The signals which have finite energy are called energy signal.	The nonperiodic signals defined
	over finite interval will have constant energy and so nonperiod	dic signals defined over finite
	interval are energy signals.	
	The energy E of a continuous time signal x (t) is defined as,	
2	$\mathbf{E} = \lim_{t \to \infty} \int_{-T}^{T} x(t) ^2 dt$	(3M)
<i>,</i>	Power signals	
	The signals which have finite average power are called power	signals. The periodic signals like
	sinusoidal and complex exponential signals will have constant	0 1 0
	power signals,	For the so For to and and and
	The average power of a continuous time signal $x(t)$ is defined	as,
	$P = \lim_{t \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) ^2 dt$	(3M)
	Note: for energy signals, the energy will be finite or constant a	and average power will be
	Zero. For power signals the average power is finite or constant and	anargy will be infinite
	For power signals the average power is finite of constant and	energy will be infinite.
	Determine the properties via linearity, causality, time inva	priance dynamicity of the
	given systems.	induce, dynamicity of the
;	$y(t) = \frac{d^2y}{dt^2} + 3t\frac{dy}{dt} + y(t) =$	x(t)
3	$y(t) = \frac{d^2y}{dt^2} + 3t\frac{dy}{dt} + y(t) =$	x(t)
	$y(t) = \frac{d^2y}{dt^2} + 3t\frac{dy}{dt} + y(t) =$ y ₁ (n) = x(n ²) + x (n)	<i>x(t)</i> 7], [Nov 2014]-BTL3

Result			
Linear			
Causal			
Dynamic			
Time invariant			
Stable			
Given that, $y(n) = x(n^2) + x(n)$			
Causality			
When $n = 0$; $y(0) = x(0^2) + x(0)$; the response at $n = 0$; $y(0)$ depends on the present			
input x (0)			
When $n = 1$; $y(1) = x(1) + x(1)$; the response at $n = 1$; $y(1)$ depends on the present			
input x (1)			
When $n = 2$; $y(2) = x(4) + x$ (2); the response at $n = 0$; $y(0)$ depends on the present			
input x (2) and feature input x (4)			
input X (2) und routero input X (1)			
From above analysis for any value of n, the system output depends on present and feature			
inputs. Hence the system is non-causal.			
inputs. Hence the system is non-eausal.			
Linearity			
Consider two signals, x_1 (n) and x_2 (n).			
Let y_1 (n) and y_2 (n) be the response of the system for inputs x_1 (n) and x_2 (n) respectively.			
$y_1(n) = x_1(n^2) + x_1(n)$			
$y_2(n) = x_2(n^2) + x_2(n)$ $y_2(n) = x_1y_2(n^2) + x_2y_2(n) + h_{12}y_2(n^2) + h_{12}y_2(n)$			
$x_3(n) = a x_1(n^2) + a x_1(n) + b x_2(n^2) + b x_2(n)$			
Let, y_3 (n) be the response the system for input x_3 (n).			
$x_3(n) = a x_1(n) + b x_2(n)$			
Therefore,			
$y_3(n) = a x_1(n^2) + a x_1(n) + b x_2(n^2) + b x_2(n)$			
The condition to be satisfied for linearity is,			
$y_3(n) = a y_1(n) + b y_2(n)$			
The given system is linear.			
Time invariance			
Response for delayed input			
$x(n)$ Delay $x(n - N)$ System $y_1(n) = x(n^2-N) + x(n-1)$			
N)			
input signal delayed input response for delayed input			


Delayed response		
x (n)	$y(n) = x(n^2) + x(n)$ $y_2(n) = x(n-N)^2 + x(n-N)$	
Syste	em Delay	
input signal	delayed response	
Hence $y_1(n) \neq y_2(n)$, therefore the	e system is time variant	
Stability		
The given system is an LTI system	m, so the stability can be determined from impulse response.	
The system is stable.		
Result	(4M)	
Non- Causal		
Linear		
Time variant		
Stable		
Given that $y(n) = [\log x(n)]$		
Linearity		
Consider two signals, x_1 (n) and x_2 (n).		
Let y_1 (n) and y_2 (n) be the response of the system for inputs x_1 (n) and x_2 (n) respectively.		
$y_1(n) = \log x_1(n)$		
$y_2(n) = \log x_2(n)$		
$x_3(n) = a \log x_1(n) + b \log x_2(n)$		
Let, y_3 (n) be the response the system. Therefore	stem for input x ₃ (n).	
Therefore,		
$y_3(n) = \log x_3(n)$	(1)	
$y_3(n) = a \log x_1(n) + b \log x_2(n)$		
$y_3(n) = \log [a x_1(n) + b x]$		
The given system i		
Causality When $n = 0$; y (0) = log x (0)	the response at $n = 0$, y (0) depends on the present	
$\begin{array}{l} \text{Input } x(0) = \log x(0) \\ \text{Input } x(0). \end{array}$	the response at $n = 0$, y (0) depends on the present	
When $n = 1$; y (1) = log x (1)	the response at $n = 1$, y (1) depends on the present	
when $n = 1$, $y(1) = \log x(1)$ input x (0).	the response at $n = 1$, y (1) depends on the present	
When $n = 2$; y (2) = log x (2)	the response at $n = 2$, y (2) depends on the present	
input x (2).	the response at $n = 2$, $j(2)$ depends on the present	
From above analysis the response for any value of n depends on the present input. Hence the		
system is causal.	is any same of a depende of the present input. Hence the	
Time invariance		




JIT-JEPPIAAR/ECE/Mrs.S.MARY CYNTHIA/II
nd Yr/SEM 03/EC8352/ SIGNALS AND SYSTEMS /UNIT 1-5/QB+Keys/Ver
2.0


6

 $x_1(n) = \sin 2\pi t + \cos \pi t$ Given that, Let T_1 be the periodicity of x_1 (t). on comparing x_1 (t) with standard form, Find Time period T_1 $x_1(t) = \sin 2\pi t$ $2\pi F_{o1} = 2\pi$ period $T_1 = \frac{1}{F_{0,1}} = 1$ $F_{o1} = 1$ Find Time period T₂ $x_2(t) = \cos \pi t$ $2\pi F_{o2} = \pi$ period T₂ = $\frac{1}{F_{01}}$ = 2 $F_{02} = \frac{1}{2}$ $\frac{T1}{T2} = T_1 * \frac{1}{T2} = \frac{1}{2}$ Since x_1 (t) and x1 (t) are periodic, and the ratio of T_1 and T_2 is a rational number, the signal x (t) is periodic. (4M) $x_2(n) = \sin \frac{n\pi}{3} \cos \frac{n\pi}{5}$ Given that, In DT signal periodic, $N_1 = \frac{2\pi}{\omega} (m)$ $\omega = \frac{\pi}{2}$ $N_1 = \frac{2\pi}{\pi/3} (m)$ $N_1 = 6$ (m) samples. If m = 1 $N_1 = 6$ samples. Hence the x_1 (n) is periodic signals. Fundamental period of 4 samples. In DT signal periodic, $N_2 = \frac{2\pi}{\omega} (m)$ $\omega = \frac{\pi}{5}$ $N_2 = \frac{2\pi}{\frac{\pi}{2}} (m)$ $N_2 = 4$ (m) samples. If m = 1 $N_2 = 4$ samples. Hence the x_2 (n) is periodic signals. (4M)From above analysis x(n) is sum of periodic and periodic signals. Therefore, x(n) will be periodic. Given $x(n) = \{1, 4, 3, -1, 2\}$. Plot the following signals, (16M)[Nov 2015] - BTL2x (-n-1) x (-n/2) x(-2n+1)

A signal which does not satisfy the condition, x (t + T) = x (t) is called an Aperiodic or nonperiodic signal.

In periodic signals, the term T is called the fundamental time period of the signal. Hence, inverse of T is called the fundamental frequency, F_o in Hz, and $2\pi F_o = \Omega_o$ is called the fundamental angular frequency in rad / sec.

The sinusoidal signals and complex exponential signals are always periodic with a periodicity of T,

Where, $T = \frac{1}{Fo} = \frac{2\pi}{\Omega o}$

Symmetric and asymmetric signals

Odd signal or Symmetric

The signals may exhibits symmetry or antisymmetry with respect to t = 0.

When a signal exhibits antisymmetry with respect to t = 0, then it is called an odd signal. Therefore, the odd signal satisfies the condition, x(-t) = -x(t).

$$\mathbf{x}(\mathbf{t}) = \frac{x(t) - x(-t)}{2}$$

Even signal or asymmetric signals

When a signal exhibits symmetry with respect to t = 0, then it is called an even signal. Therefore, the even signal satisfies the condition, x(-t) = x(t).

$$\mathbf{x}(\mathbf{t}) = \frac{x(t) + x(-t)}{2}$$

Energy and power signals

Energy signal

The signals which have finite energy are called energy signal. The nonperiodic signals defined over finite interval will have constant energy and so nonperiodic signals defined over finite interval are energy signals.

The energy E of a continuous time signal x (t) is defined as,

 $\mathbf{E} = \lim_{t \to \infty} \int_{-T}^{T} |x(t)|^2 dt$

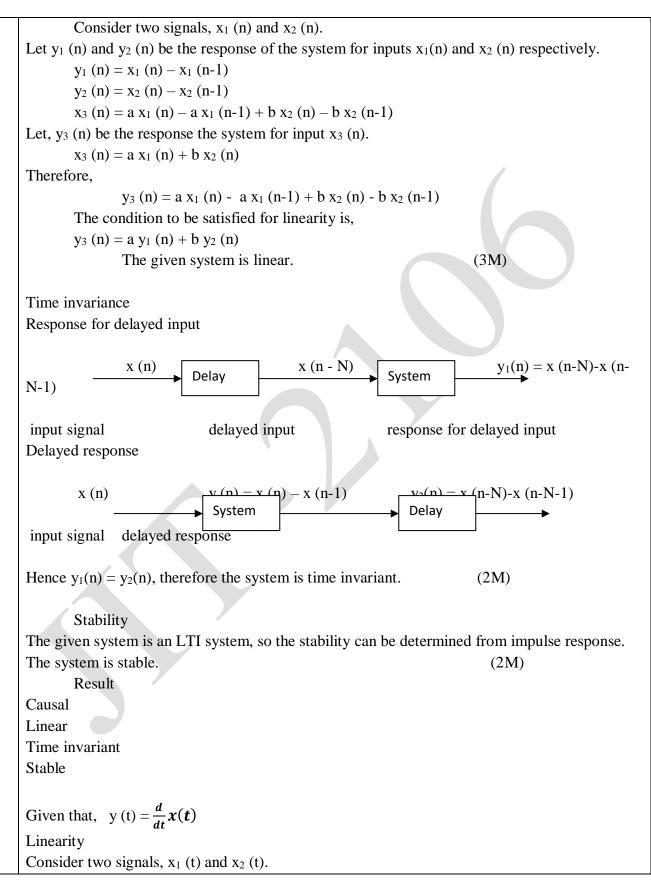
Power signals

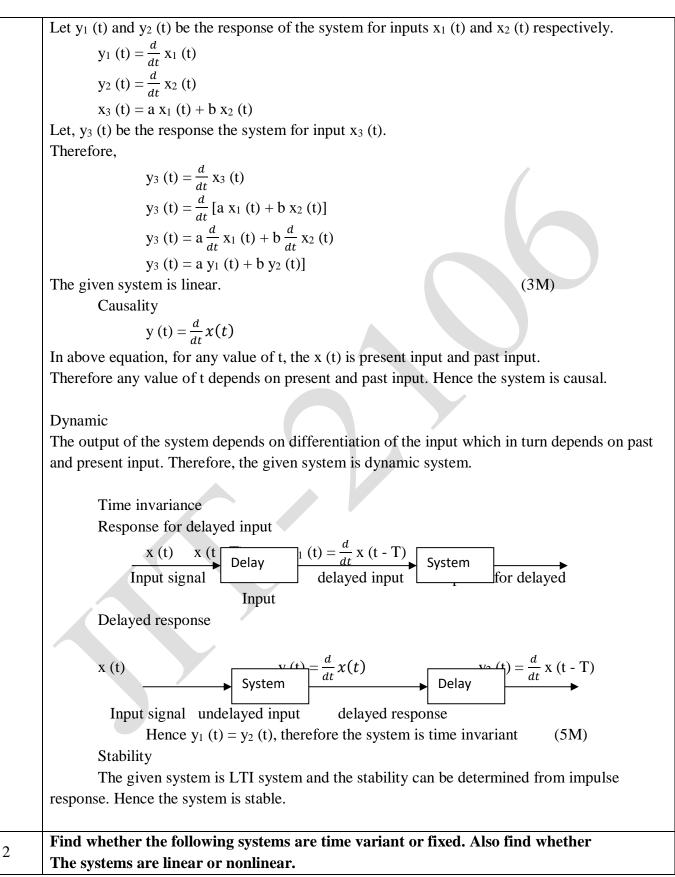
The signals which have finite average power are called power signals. The periodic signals like sinusoidal and complex exponential signals will have constant power so periodic signals are power signals,

The average power of a continuous time signal x(t) is defined as,

$$P = \lim_{t \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

Note: for energy signals, the energy will be finite or constant and average power will be Zero.


For power signals the average power is finite or constant and energy will be infinite. Causal and noncausal signal (2M)


A signal is said to be causal, if it is defined for $t \ge 0$.

(4M)

Therefore if x (t) is causal, then x (t) = 0, for t < 0. A signal is said to be noncausal, if it is defined for either $t \le 0$, or both $t \le 0$ and t > 0. Therefore if x (t) is noncausal, then x (t) $\neq 0$, for t < 0. When a noncausal signal is defined only for $t \le 0$, it is called anticausal signal. Check if x (t) = 4 cos $(3\pi t + \frac{\pi}{4}) + 2 cos (4\pi t)$ is periodic (6M)[May2015] -BTL4 Answer: Page 57 - Ramesh babu(Similar Type) Solution $x_1(t) = 4 \cos(3\pi t + \frac{\pi}{4})$ Given that, Let T_1 be the periodicity of x_1 (t). on comparing x_1 (t) with standard form, Find time period T1 $2\pi F_{o1} = 3\pi$ period $T_1 = \frac{1}{Fo1} = \frac{2}{3}$ $F_{01} = \frac{3}{2}$ (3M)9 Find time period T1 $x_1(t) = 2 \cos(4\pi t)$ $2\pi F_{o2} = 4\pi$ period T₂ = $\frac{1}{Fo1} = \frac{1}{2}$ $F_{02} = 2$ $\frac{T_1}{T_2} = T_1 * \frac{1}{T_2} = \frac{4}{3}$ (3M) Since x_1 (t) and x_1 (t) are periodic, and the ratio of T_1 and T_2 is a rational number, the signal x (t) is also periodic. Check whether the following signals are periodic / aperiodic signals. $\mathbf{x}(\mathbf{t}) = \cos 2\mathbf{t} + \sin \mathbf{t}/\mathbf{5}$ $\mathbf{x}(\mathbf{n}) = 3 + \cos\frac{\pi n}{2} + \cos 2\mathbf{n}$ (16M)[Nov 2014]-BTL4 Answer: Page 57 - Ramesh babu(Similar Type) Solution Given that, $x(t) = \cos 2t + \sin t/5$ $x_1(t) = \cos 2t$ Let T_1 be the periodicity of x_1 (t). on comparing x_1 (t) with standard form, $2\pi F_{o1} = 2$ 10 $F_{o1} = \frac{2}{2\pi}$ period $T_1 = \frac{1}{F_{0,1}} = \frac{2\pi}{2} = \pi$ $x_2(t) = \sin t/5$ $2\pi F_{o2} = 1/5$ $F_{02} = \frac{1}{10 \pi}$ period $T_2 = \frac{1}{F_{01}} = 10 \pi$ $\frac{T_1}{T_2} = T_1 * \frac{1}{T_2} = \pi * \frac{1}{10\pi} = \frac{1}{10}$ Since x_1 (t) and x_1 (t) are periodic, and the ratio of T_1 and T_2 is a rational number, the signal x (t) is also periodic. (6M) $x(n) = 3 + \cos\frac{\pi n}{2} + \cos 2n$

r			
	$x_1(n) = \cos\frac{\pi n}{2}$		
	In DT signal periodic,		
	$N_1 = \frac{2\pi}{\omega}$ (m)		
	$\omega = \frac{\pi}{2}$		
	2		
	$N_1 = \frac{2\pi}{\pi/2} (m)$		
	$N_1 = 4$ (m) samples. If $m = 1$		
	$N_1 = 4 \text{ samples.} \tag{5M}$		
	Hence the x_1 (n) is periodic signals. Fundamental period of 4 samples.		
	$\mathbf{x}_1 \left(\mathbf{n} \right) = \cos 2\mathbf{n}$		
	In DT signal periodic,		
	$N_2 = \frac{2\pi}{\omega}$ (m)		
	$\omega = 2^{\omega}$		
	$N_2 = \frac{2\pi}{2}$ (m)		
	$N_2 = \pi$ (m) samples. If m = 1		
	$N_2 = \pi$ samples.		
	Hence the x_2 (n) is non-periodic signals. (5M)		
	From above analysis x (n) is sum of periodic and non-periodic signals. Therefore, x (n) will be		
	non-periodic.		
	PART - C		
Q.No	Questions		
	Check whether the following system is linear, causal, time invariant and stable.		
	y(n) = x(n) - x(n-1)		
	y (t) = $\frac{d}{dt}x(t)$ (15M)[Nov 2014] -BTL4		
	Answer: Page 113 - Ramesh babu (Similar Type)		
	Solution		
	Given that, $y(n) = x(n) - x(n-1)$		
	Causality		
1	When $n = 0$; $y(0) = x(0) - x(-1)$; the response at $n = 0$; $y(0)$ depends on the present		
	input x (0) and past input x (-1)		
When $n = 1$; $y(1) = x(1) - x(0)$; the response at $n = 1$; $y(1)$ depends on the preserved			
	input x (1) and past input x (0)		
	From above analysis for any value of n, the system output depends on present and past inputs.		
	Hence the system is causal.		
1	Linearity		

$$\frac{d^3 y(t)}{dt^3} + 4 \frac{d^2}{dt^2} y(t) + 5 \frac{d y(t)}{dt} + y^2(t) = x(t).$$

y (n) = an² x (n) + bn x (n-2) (15M)[May 2016] -BTL4

Answer: Page 112 - Ramesh babu

Given that

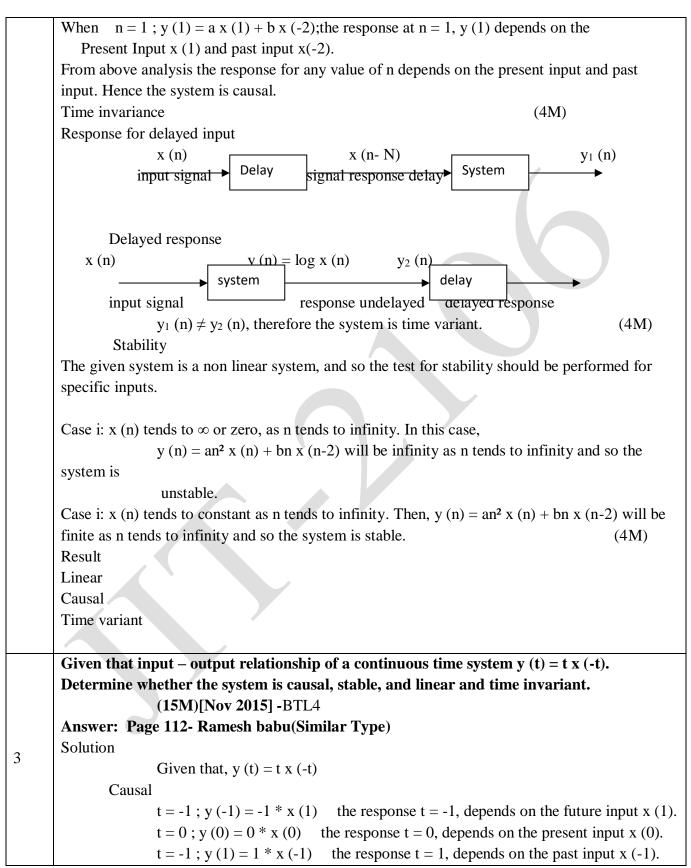
$$\frac{d^3y(t)}{dt^3} + \frac{4 d^2y(t)}{dt^3} + \frac{5dy(t)}{dt^2} + 2y^2(t) = x(t)$$

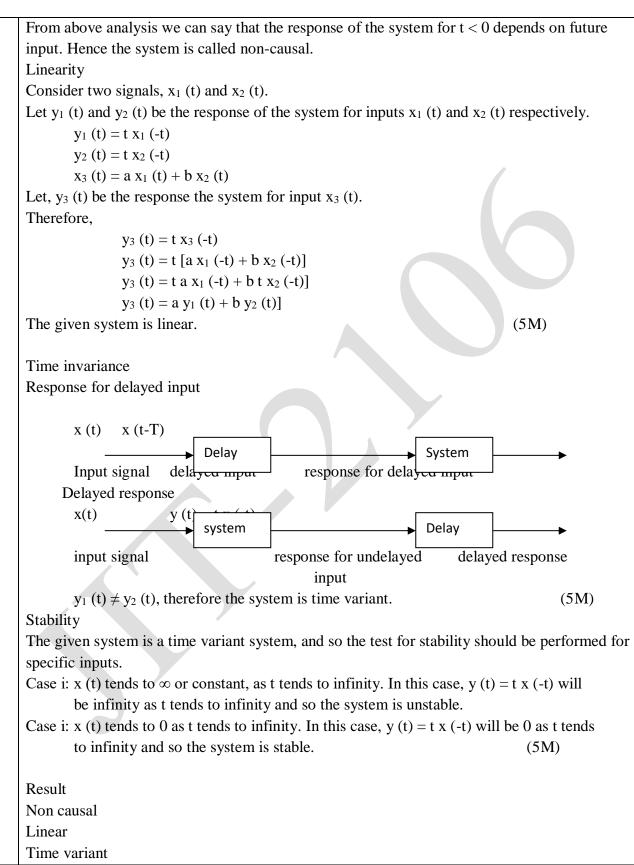
Linearity

$$\frac{d^3y(t)}{dt^3} + \frac{4 d^2y(t)}{dt^3} + \frac{5dy(t)}{dt^2} + 2y^2(t) = x(t)$$

The response y (t) involves square root operation which is non-linear operation so system response is non-linear

Causality

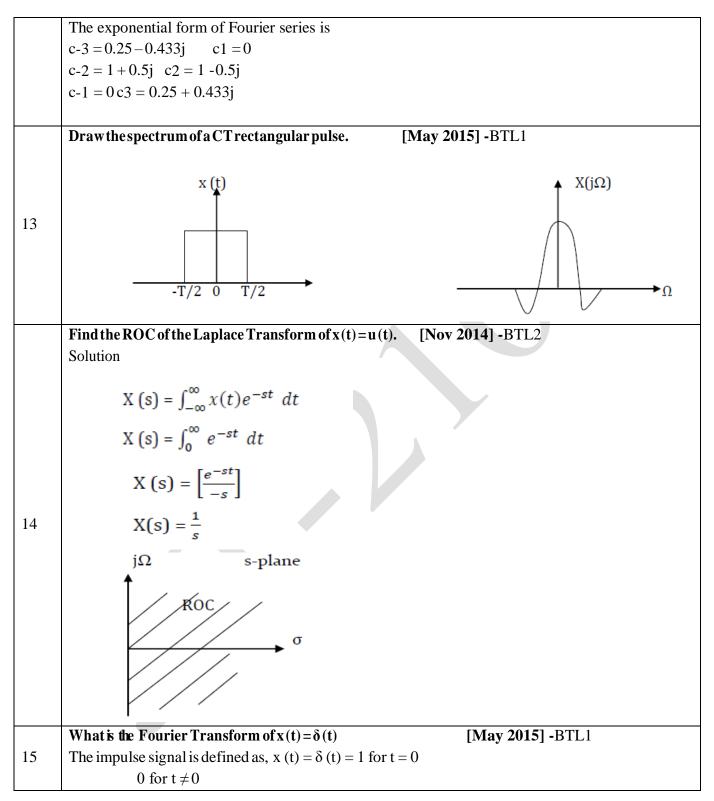

The response of the system depends on differentiation of the input which depends on past and present inputs. Hence the system is causal system.


Dynamic

The output of the system depends on differentiation of the input which depends on past and present inputs. Therefore, the given system is dynamic system.

Result

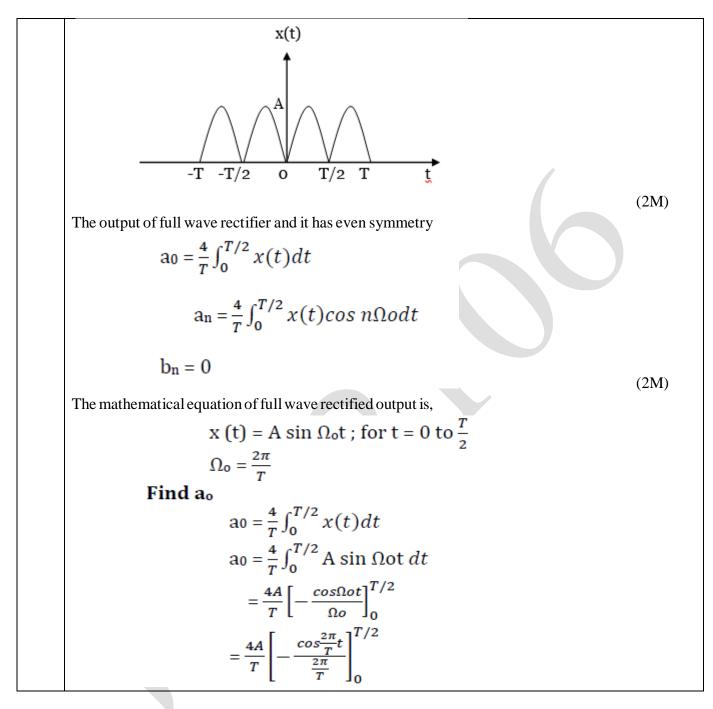
```
Non-Linear
Causal
Time invariant
Dynamic system
Given that, y(n) = an^2 x(n) + bn x(n-2)
Linearity
Consider two signals, x_1 (n) and x_2 (n).
Let y_1 (n) and y_2 (n) be the response of the system for inputs x_1(n) and x_2 (n) respectively.
       y_1(n) = an^2 x_1(n) + bn x_1(n-2)
       v_2(n) = an^2 x_2(n) + bn x_2(n-2)
       y_3(n) = a_1 an^2 x_1(n) + a_1 bn x_1(n-2) + b_1 an^2 x_2(n) + b_1 bn x_2(n-2)
        x_3(n) = a_1 an^2 x_1(n) + a_1 bn x_1(n-2) + b_1 an^2 x_2(n) + b_1 bn x_2(n-2)
       Let, y_3 (n) be the response the system for input x_3 (n).
Therefore.
                 y_3(n) = a_1 an^2 x_1(n) + a_1 bn x_1(n-2) + b_1 an^2 x_2(n) + b_1 bn x_2(n-2)
               The given system is linear.
                                                                           (3M)
Causality
When n = 0; y(0) = a0^2 x(0) + b0 x(0-2); the response at n = 0, y(0) depends on the
   Present Input x (0).
```

Four	UNIT II- ANALYSIS OF CONTINUOUS TIME SIGNALS
r ouri prope	er series for periodic signals - Fourier Transform – properties- Laplace Transforms and rties
prope	PART A
Q.N	Questions
0	
	Find the Fourier series co-efficient for the given signal,(May 2019) -BTL3
	x (t) = $[1 + \cos(2\pi t)] \left[sin \left(10\pi t + \frac{\pi}{6} \right) \right]$
	Solution
	Given that, $x(t) = [1 + \cos(2\pi t)] \left[\sin\left(10\pi t + \frac{\pi}{6}\right) \right]$
	$x(t) = sin\left(10\pi t + \frac{\pi}{6}\right) + \cos\left(2\pi t\right)sin\left(10\pi t + \frac{\pi}{6}\right)$
1	Using Euler form,
	$x(t) = \left(\frac{\frac{j\pi}{e\ddot{o}}}{2j}e^{j2\pi t5} - \frac{e^{-\frac{j\pi}{o}}}{2j}e^{-j2\pi t5}\right) + \left(\frac{e^{j2\pi t}}{2} + \frac{e^{-j2\pi t}}{2}\right) \left(\frac{\frac{j\pi}{e\ddot{o}}}{2j}e^{j2\pi t5} - \frac{e^{-\frac{j\pi}{o}}}{2j}e^{-j2\pi t5}\right)$
	Ans :
	$=\frac{e^{j\pi}}{4j}, \frac{-e^{-j\pi}}{4j}, \frac{e^{j\pi}}{2j}, \frac{e^{j\pi}}{2j}, \frac{-e^{-j\pi}}{2j}$
	Find the Laplace transform of the given signal, (May 2019)-BTL3
	Solution
	1 f (t)
2	T t
	f(t) = u(t) - u(t - T)
	Take Laplace transform of above signal,
	$=\frac{1}{s}-\frac{1}{s}e^{-sT}$
	$=\frac{1}{s}\left(1-e^{-sT}\right)$
	If X (j Ω) is the Fourier transform of the signal x (t), what is the Fourier transform of the signal x (3t
3	in terms of X (jΩ)? (Nov 2018)-BTL3

	Solution
	The Fourier transform of x (3t) is, $\frac{1}{j\Omega} + \pi \delta(\Omega)$
	Find whether the following system with impulse response h (t) are stable or not. $h(t) = t e^{-t} u(t)$ (Nov 2017)-BTL4
	Solution
	$h(t) = t e^{-t} u(t)$
4	h (t) = $\int_{-\infty}^{\infty} t e^{-t} u(t) dt$
	h (t) = $\int_0^\infty t e^{-t} dt$
	h(t) = 1
	Condition $1 < \infty$
	The system is stable, since system is bounded.
	Find the Fourier transform of $x(t) = e^{-at}u(t)$ (Nov 2017) - BTL3Solution
	$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$
	$X(M) = \int_{-\infty} x(t)e^{-y} dt$
5	$X(j\Omega) = \int_0^\infty e^{-at} e^{-j\Omega t} dt$
	$X(j\Omega) = \int_0^\infty e^{-(j\Omega + a)t} dt$
	X (j Ω) = $\left[\frac{e^{-(j\Omega+a)t}}{-(j\Omega+a)}\right]$
	$X(j\Omega) = \frac{1}{j\Omega + a}$
	What is the condition for the existence of Fourier series for a signal? –BTL2
	State Dirichlets conditions. (or) State the conditions for the convergence of Fourier series
	Representation of CT periodic signals.[May 2017, Nov 2015, 2014]
5	The Fourier series exists only if the following Dirichlet's conditions are satisfied.
	The signal $\mathbf{x}(t)$ is well defined and single valued, except possibly at a finite number of points.
	The signal $x(t)$ must possess only a finite number of discontinuities in the period T. The signal must have a finite number of positive and possitive maxima in the period T.
	The signal must have a finite number of positive and negative maxima in the period T.
7	State parseval's theorem for a continuous time aperiodic signal May 2018, [May 2017] - BTL1
/	The parseval's theorem states that, $x(t) = X(j\Omega)$

	$\int_{-\infty}^{\infty}$ 1 $\int_{-\infty}^{\infty}$
	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) ^2$
	$ x(t) ^2 = x(t) x^*(t)$
	$ X(j\Omega) ^2 = X(j\Omega) X^* (j\Omega)$
	Find the Fourier series representation of the $x(t)$ and determine Fourier series coefficient
	(May 2018), [Nov 2016] - BTL3
	$x(t) = \frac{\cos 2\pi t}{3}$
	$x(t) = \frac{e^{j\omega t} + e^{j\omega t}}{2}$
8	$x(t) = \frac{1}{2} e^{j\omega t} + \frac{1}{2} e^{-j\omega t}$ $\omega = 2\pi/3$
	The Exponential form of Fourier series is,
	$X(n) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega t}$
	$x(t) = c_{-1}e^{-jt\omega} + c_0 + c_1e^{j\omega t} +$
	Comparing above equations,
	co = 0 $c1 = c-1 = 1/2$
	Find the Laplace transform of $x(t) = e^{-at} u(t)$ [Nov 2016] -BTL3
	Solution
	$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$
	$X(s) = \int_0^\infty e^{-at} e^{-st} dt$
9	$X(s) = \int_0^\infty e^{-(s+a)t} dt$
	$X(s) = \left[\frac{e^{-(s+a)t}}{-(s+a)}\right]$
	$X(s) = \frac{1}{s+a}$
	Give the Laplace transform of x(t) [May 2016] -BTL1
10	$x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$
	Solution


	$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$
	$X(s) = \frac{3}{s+2} - \frac{2}{s+1}$
	Give the relation between Fourier Transform and Laplace TransformBTL4 [Nov 2015], [Nov 2014], [May 2016] x (t) be a continuous time signal, defined as, The definition of Laplace Transform of x (t) is,
	$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$
11	On substituting $s = \sigma + j\Omega$ in above equation, $X(s) = \int_{-\infty}^{\infty} x(t)e^{-(\sigma + j\Omega)t} dt$
	$\sigma = 0$, the definition of Fourier Transform of x (t) is,
	X (j Ω) = $\int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$
	Find the Fourier coefficients of the signal x (t) = $1 + \sin 2\omega t + 2\cos 2\omega t + \cos(3\omega t + \pi/3)$ [May 2015] -BTL3
	Given: x (t) = 1 + sin 2 ω t + 2 cos 2 ω t + cos $\left(3\omega t + \frac{\pi}{3}\right)$
	$x(t) = 1 + \frac{e^{j2\omega t} - e^{-j2\omega t}}{2j} + 2\left(\frac{e^{j2\omega t} + e^{-j2\omega t}}{2}\right) + \frac{e^{j(3\omega t + \frac{\pi}{3})} - e^{-j(3\omega t + \frac{\pi}{3})}}{2}$
	$=1+\frac{1}{2j}e^{j2\omega t}\cdot\frac{1}{2j}e^{-j2\omega t}+e^{j2\omega t}+e^{-j2\omega t}+\frac{1}{2}\left(e^{j3\omega t}e^{\frac{j\pi}{3}}\right)+\frac{1}{2}\left(e^{-j3\omega t}e^{\frac{-j\pi}{3}}\right)$
12	$=1+\frac{1}{2j}e^{j2\omega t}\cdot\frac{1}{2j}e^{-j2\omega t}+\left e^{j2\omega t}+e^{-j2\omega t}+\frac{1}{2}\left\{e^{j3\omega t}\left(\cos\frac{\pi}{3}+j\sin\frac{\pi}{3}\right)\right\}+$
	$\frac{1}{2}\left\{e^{-j3\omega t}\left(\cos\frac{\pi}{3}-j\sin\frac{\pi}{3}\right)\right\}$
	$= 1 + e^{j2\omega t} \left(1 + \frac{1}{2j}\right) + e^{-j2\omega t} \left(1 - \frac{1}{2j}\right) + \frac{1}{2} \left\{e^{j3\omega t} \left(0.5 + j0.866\right)\right\} + \frac{1}{2} \left\{e^{-j3\omega t} \left(0.5 - j0.866\right)\right\}$
	$= 1 + (1 \cdot 0.5j) e^{j2\omega t} + (1 + 0.5j) e^{-j2\omega t} + (0.25 + 0.433j) e^{j3\omega t} + (0.25 \cdot 0.433j) e^{-j3\omega t}$
	$= (0.25 - 0.433j) e^{-j3\omega t} + (1 + 0.5j) e^{-j2\omega t} + 1 + (1 - 0.5j) e^{j2\omega t} + (0.25 + 0.433j) e^{j3\omega t}$

	$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$
	X (j Ω) = $\int_{-\infty}^{\infty} 1. e^{-j\Omega t} dt$
	$X(j\Omega) = 1$
	Obtain Fourier Series Coefficients for $x(n) = sinwn$ [May 2015] -BTL3
	$x(n) = \frac{e^{j\omega n} + e^{j\omega n}}{2j}$
	$x(n) = \frac{1}{2j} e^{j\omega n} - \frac{1}{2j} e^{-j\omega n}$
	The Exponential form of Fourier series is,
16	$x(n) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega t}$
	$x(n) = c_{-1}e^{-jt\omega} + c_0 + c_1e^{j\omega t} + \dots$
	Comparing above equations,
	$c_0 = 0$ $c_1 = c_{-1} = 1/2$
	$c_0 = 0$ $c_1 = c_{-1} = 1/2$
	State any two properties of ROC of Laplace transform X(s) of a Signal x (t). [May 2014] -BTL1
	Convolution property
	Laplace transform of convolution of two functions are equivalent to multiplications of their Laplace Transform.
17	Laplace Transform of, x_1 (t) = X1 (s) Laplace Transform of, x_2 (t) = X2 (s)
	Laplace Transform of, x1 (t) * x2 (t) = X1 (s) * X2 (s)
	Time shifting property
	The Time shifting property of Laplace Transform says that, $x(t) = X(s)$
	Laplace Transform of, $x(t+a) = e^{as}X(s)$ Laplace Transform of, $x(t-a) = e^{-as}X(s)$
	Give the equation for trigonometric Fourier series. <i>[Nov 2013]</i> -BTL1 The trigonometric form of Fourier series of a periodic signal, x(t) with period T is Defined as,
	$x(t) = \frac{ao}{2} + \sum_{n=1}^{\infty} a_n \cos n\Omega_0 t + \sum_{n=1}^{\infty} b_n \sin n\Omega_0 t$
18	Where,
	$\Omega_{\rm O} = 2\pi f_{\rm O} = Fundamental frequency$
	$F_0 =$ Fundamental frequency $n =$ Harmonic order
	$n\Omega o = Harmonic frequency$
	a_{n,a_n} and $b_0 =$ Fourier coefficients of trigonometric form of Fourier series.

	C4-44b-4b		
	States the time scaling property of Laplace tra		
	The time scaling property of Laplace transform says that, $\mathbf{L} = \mathbf{L} $		
19	Laplace transform of $x(t) = X(s)$		
	$x (at) = \frac{1}{ a } X \left(\frac{s}{a}\right)$		
	What is a FT of a DC signal of amplitude 1?	[May 2013] -BTL2	
	Let $x(t) = A$, where A is constant Where		
	$A = \lim A e^{-a t }$		
20	<i>a</i> –0		
	$\mathbf{x}(\mathbf{t}) = \lim A e^{-a \mathbf{t} }$		
	<i>a</i> –0		
	$X(j\Omega) = \delta(\Omega)$		
	Give the synthesis and analysis equations of C	TFT. [Nov 2012] -BTL1	
	Synthesis equation:		
	$\mathbf{x}(\mathbf{t}) = {}^{1} \int_{0}^{\infty} X(j\Omega) e^{jn\Omega t} d\Omega$		
	$2\pi - \infty$		
21	It is also called as inverse Fourier Transform	n.	
	Analysis equation:		
	$X (j\Omega) = \int^{\infty} x(t) e^{-jn\Omega_t} dt$		
	It is also called as Fourier Transform		
	Define the region of convergence of the Laplac	e transform. [Nov 2012] -BTL1	
		et of set all values of σ for which the Laplace	
	Transform converges.		
	Condition for convergence:		
22	The necessary condition for convergence of the Laplace transform is absolutely integrable of $x(t)$		
	exist if,		
	$\int_{0}^{\infty} \int_{0}^{\infty} dx = \sigma t + c $		
	$\int x(t)e^{-\sigma t} < \infty$		
	-00		
	Distinguish between Fourier series and Fo	ourier Transform. –BTL2	
	Fourier series	Fourier Transform	
	Defined only for periodic signals	Defined both periodic and non-periodic	
23	Defined only for periodic signals	Signals	
	The spectrum is discrete		
	The spectrum is discrete Parseval's relation of Fourier series is	The spectrum is continuous Parseval's relation of Fourier Transform is	
	used to calculate power spectral density	used to calculate power spectral density	

	Determine the Laplace transform of the signal $\delta(t-5)$ and $u(t-5)$ [May 2012] –BTL3
	$\delta(t-5)$
	$X(s) = \int^{\infty} x(t)e^{-st} dt$
	$-\infty$
	$X(s) = \int^{\infty} \delta(t-5)e^{-st} dt$
	If $t = 5$ X (s) = e^{-s^5}
24	$\frac{x(s) - e^{-s}}{u(t-5)}$
24	$X(s) = \int^{\infty} x(t)e^{-st} dt$
	$\begin{array}{c} x(t) = j x(t) e^{-t} u t \\ -\infty \end{array}$
	$X(s) = \int^{\infty} u(t-5)e^{-st} dt$
	$X(s) = \int_{5}^{\infty} e^{-st} dt$
	$X(s) = \frac{e^{-5s}}{s}$
	S
	Compare double sided and single sided spectrums. BTL2
	The method of representing spectrums of positive as well as negative frequencies are called
25	double sided spectrums.
	The method of representing spectrums only in the positive frequencies is known as single sided spectrums.
	spectrums.
	PART-B
Q.N	Questions
0.	
1	Obtain the Fourier co-efficient and write the Quadrature form of a fully rectified sine wave. [May 2017] -BTL3(13M)
	Answer: Page 165- Ramesh babu

$$\begin{aligned} &= \frac{44}{T} \left[-\frac{\cos \frac{2\pi}{T}t}{\frac{2\pi}{T}} \right]_{0}^{T/2} \\ &= \frac{44}{T} \left[\frac{\cos \frac{2\pi}{T}t}{\frac{2\pi}{T}} + \frac{\cos \theta}{\frac{2\pi}{T}} \right] & \cos \pi = -1 \\ &= \frac{24}{\pi} \left[-\cos \pi + \cos \theta \right] & \cos \theta = 1 \\ &= \frac{24}{\pi} \left[1 + 1 \right] = \frac{44}{\pi} \end{aligned} \tag{4M}$$

Find a. (4M)
Find a. (4M)
$$&= \frac{4}{T} \int_{0}^{T/2} \sin (\Omega t \cos n\Omega o dt) & ; 2 \sin A \sin B = \sin (A+B) + \sin (A-B) \\ &= \frac{4}{T} \int_{0}^{T/2} \sin (\Omega t \cos n\Omega o dt) & ; 2 \sin A \sin B = \sin (A+B) + \sin (A-B) \\ &= \frac{4}{T} \int_{0}^{T/2} \sin (\Omega t \cos n\Omega o dt) & ; 2 \sin A \sin B = \sin (A+B) + \sin (A-B) \\ &= \frac{4}{T} \int_{0}^{T/2} \sin (\Omega t - n\Omega n o t) & ; 2 \sin A \sin B = \sin (A+B) + \sin (A-B) \\ &= \frac{4}{T} \int_{0}^{T/2} \sin (\Omega t - n\Omega n o t) & ; 2 \sin A \sin B = \sin (A+B) + \sin (A-B) \\ &= \frac{24}{T} \left[\frac{-\cos(1+n)\Omega t}{(1+n)\Omega n} \frac{\pi}{2} + \frac{24}{T} \left[\frac{-\cos(1-n)\Omega t}{(1-n)\Omega n} \right]_{0}^{T} \\ &= \frac{24}{T} \left[\frac{-\cos(1+n)\frac{2\pi}{T} \frac{\pi}{2}}{(1+n)\frac{2\pi}{T}} \frac{\cos \theta}{(1+n)\frac{2\pi}{T}} \right] + \frac{24}{T} \left[\frac{-\cos(1-n)\frac{2\pi}{T} \frac{\pi}{2}}{(1-n)\frac{2\pi}{T}} \frac{\cos \theta}{(1-n)\frac{2\pi}{T}} \right] \\ &= \frac{-A\cos(1+n)\pi}{(1+n)\pi} + \frac{A}{(1+n)\pi} - \frac{A\cos(1-n)\pi}{(1-n)\pi} + \frac{A}{(1-n)\pi} \\ &= -\frac{A}{(1+n)\pi} + \frac{A}{(1+n)\pi} = 1 \end{aligned}$$
(3M)
When n is even integer, (1+n) and (1-n) will be even.
Therefore, $\cos (1+n)\pi = 1$; $\cos (1-n)\pi = 1$

Fourier series equation The trigonometric form Fourier series of x(t) is,

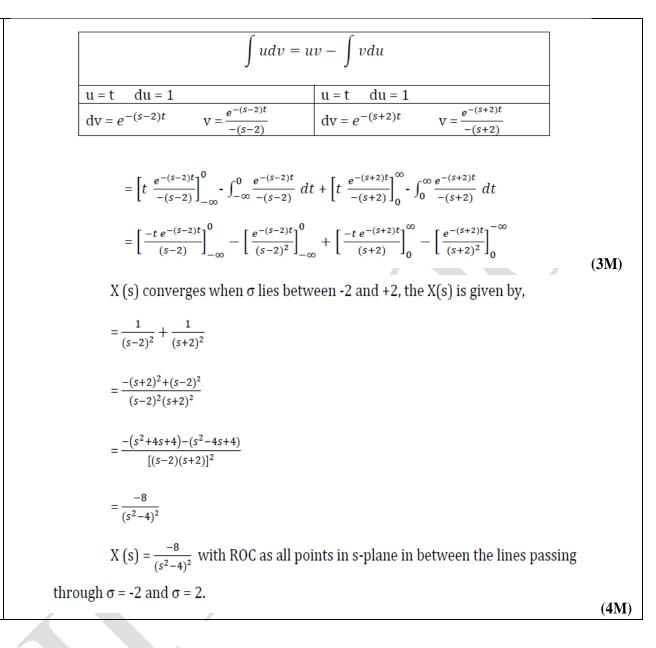
$$x (t) = \frac{ao}{2} + \sum_{n=1}^{\infty} an \cos n\Omega ot + \sum_{n=1}^{\infty} bn \sin n\Omega ot$$
here, bn = 0 and an exists only for even values of n
$$x (t) = \frac{ao}{2} + \sum_{n=1}^{\infty} an \cos n\Omega ot$$

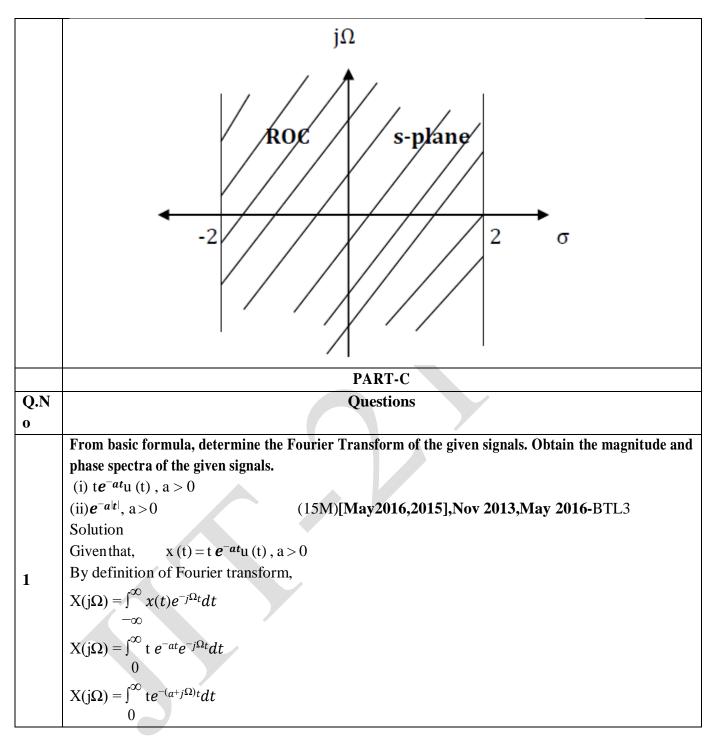
$$x (t) = \frac{ao}{2} + \sum_{n=even}^{\infty} an \cos n\Omega ot$$
(2M)
$$x (t) = \frac{ao}{2} + \sum_{n=even}^{\infty} an \cos n\Omega ot$$

$$x (t) = \frac{ao}{2} + \sum_{n=even}^{\infty} an \cos n\Omega ot$$
(2M)
Determine the inverse Laplace transform of the following
(13M) [May 2017] -BTL3
i. $x (s) = \frac{1-2s^2-14s}{s(s+3)(s+4)}$
ii. $x (s) = \frac{2s^2+10s+7}{(s+1)(s^2+3s+2)}$
Answer: Page 404 - Ramesh babu(Similar Type)
Solution
Given that,
$$x (s) = \frac{1-2s^2-14s}{s(s+3)(s+4)}$$
By partial fraction expansion technique, X (s) can be expressed as,
$$X(s) = \frac{1-2s^2-14s}{s(s+3)(s+4)} = \frac{A}{s} + \frac{B}{(s+3)} + \frac{c}{(s+4)}$$
Case i
Given that ROC lies between lines passing through s = -5 to s = 3. Hence x (t) will be two sided signal. The term pole -5 will be causal and term 3 will be anticausal
$$x (t) = \frac{-1}{8} e^{-5t} u(t) - \frac{1}{8} e^{3t} u(-t)$$
case ii
Given that ROC is right of the line passing through s = 3, hence x (t) will be causal signal. (6M)

$$x (t) = \frac{-1}{\pi} e^{-5t} u(t) - \frac{1}{\pi} e^{3t} u(t)$$
Find the Fourier transform of the signal $x(t) = \cos \Omega O t u(t)$
Answer: Page 306- Ramesh babu
Solution
Given that, $x(t) = \cos \Omega O t u(t)$
By definition of Fourier transform,
 $X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$
 $x(j\Omega) = \int_{0}^{\infty} \cos \Omega o t e^{-j\Omega t} dt$
 $z (j\Omega) = \int_{0}^{\infty} e^{j\Omega e^{t} + e^{-j\Omega t}} dt$
 $z (j\Omega) = \int_{0}^{\infty} e^{j\Omega e^{t} + e^{-j\Omega t}} dt$
The complex exponential signal is defined as, $x(t) = e^{i\Omega t}$
on taking Fourier transform,
 $X (j\Omega) = 2\pi\delta (\Omega - \Omega_0)$
Similarly,
 $x(t) = e^{-j\Omega t}$
(3)
on taking Fourier transform, $X (j\Omega) = 2\pi\delta (\Omega + \Omega_0)$
 $= \frac{1}{2}[2\pi\delta (\Omega - \Omega_0) + 2\pi\delta (\Omega + \Omega_0]$
 $= \pi [2\pi\delta (\Omega - \Omega_0) + 2\pi\delta (\Omega + \Omega_0]$
(4M)
State and prove the multiplication and convolution property of Fourier transform.(13M)
[Nov 2016] - BTL1
Answer: Page 320-327- Ramesh babu
Multiplication property
It is also called frequency convolution
Let, fourier transform of $x(t) = -Xt(j\Omega)$
4.
The frequency convolution
Let, fourier transform of $x(t) = Xt(j\Omega)$
(4M)
Proof
By definition of Fourier transform

$$X (j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$$


$$X_1 (j\Omega) X_1 (j\Omega) = \int_{t=-\infty}^{t=\infty} x_1(t)x_2(t)e^{-j\Omega t} dt$$
By definition of inverse Fourier transform,
Convolution property
The convolution theorem of Fourier transform says that, Fourier transform of convolution of two
signals is given by the product of the Fourier transform of the individual signals,
Let, fourier transform of x1 (t) = X1 (j\Omega) Let, fourier transform of x2 (t) = X2(j\Omega)
x1 (t) * x2(t) = X1 (j\Omega) X1 (j\Omega)
This above equation is known as convolution property of Fourier transform. By definition of
convolution of CT signals,


$$x_1 (t) * x_2(t) = \int_{\tau=-\infty}^{\tau=\infty} x_1(\tau)x_2(t-\tau)d\tau$$
(4M)
t is a dummy variable used for integration.
Proof
By definition of Fourier transform
X1 (j\Omega) = $\int_{0}^{\infty} x_2(t)e^{-j\Omega t} dt$
 $-\infty$
X2 (j\Omega) = $\int_{0}^{\infty} x_2(t)e^{-j\Omega t} dt$
 $-\infty$
X1 (t) * x2(t) = $\int_{t=0}^{t=\infty} x(t)e^{-j\Omega t} dt$
 $t=-\infty$
x1 (t) * x2(t) = $\int_{t=0}^{t=\infty} x(t)e^{-j\Omega t} dt$
 $t=-\infty$
5
State and prove Parseval's theorem of Fourier Transform? State and prove Rayleigh's
theorem.(6M) [May 2016]R13, May 2013, May 2016]rBTL1
Answer: Page 322 - Ramesh babu
The parseval's theorem states that, x (t) = X(j\Omega)

	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) ^2$
	$ x(t) ^2 = x(t) x^*(t)$
	$ X(j\Omega) ^2 = X(j\Omega) X^*(j\Omega)$
	By definition of inverse Fourier transform,
	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega $ (3M)
	on taking conjugate of the above equation, $x^*(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(j\Omega) e^{j\Omega t} d\Omega$
	$x^*(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(j\Omega) \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt d\Omega$
	$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X^*(j\Omega) \ X(j\Omega) d\Omega$
	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) ^2$
	Hence it was proved.
	(3M)
	If $x(t) = X(\omega)$. Then using time shifting property show the $x(t+T) + x(t-T) = 2X(\omega) \cos \omega T$ (6M)[May 2015]-BTL3 Answer: Page 329 - Ramesh babu(Similar Type)
	Solution
	Given that, $x(t) = X(j\Omega)$
	The time shifting property of Fourier transform says that, $F \{x (t - t_0)\} = e^{-j\Omega_{t_0}} X(j\Omega)$
6	$F \{x (t+T)\} = e^{j\Omega T} X(j\Omega) $ $= -i^{\Omega T} V(i\Omega) $ (210)
	$F \{x (t - T)\} = e^{-j\Omega T} X(j\Omega) $ $F \{x (t + T) + x (t - T)\} = e^{j\Omega T} X(j\Omega) + e^{-j\Omega T} X(j\Omega) $ (3M)
	$F \{X (t+1) + X (t-1)\} = e^{j\Omega T} X (j\Omega) + e^{j\Omega T} X (j\Omega)$ $= X (j\Omega) [e^{j\Omega T} + e^{-j\Omega T}]$
	$= X (j\Omega) [2 \cos\Omega T]$
	$F \{x (t+T) + x (t-T)\} = 2 X (j\Omega) \cos\Omega T $ (3M)
	Find the Fourier transform of $x(t) = te^{-at}u(t)$ (6M)[Nov 2015]-BTL5
	Answer: Page 332 - Ramesh babu
7	Solution
	Given that, $\mathbf{x}(t) = t e^{-at} \mathbf{u}(t) = t e^{-at}; t \ge 0$
	By definition of Fourier transform,
	$X(j\Omega) = \int^{\infty} x(t)e^{-j\Omega_t}dt$

	∞	
	$X(j\Omega) = \int_{0}^{\infty} t e^{-at} e^{-j\Omega t} dt$	
	$X(j\Omega) = \int^{\infty} t e^{-(a+j\Omega)t} dt$	
	0 (3M)	
	$=\frac{te^{-(a+j\Omega)t}}{-(a+j\Omega)} - \int \left[\frac{e^{-(a+j\Omega)t}}{-(a+j\Omega)}dt\right]_0^\infty$	
	$= \left[\frac{-t \ e^{-(a+j\Omega)t}}{(a+j\Omega)} \ \frac{e^{-(a+j\Omega)t}}{(-(a+j\Omega))^2}\right]_0^{\infty}$	
	$X(j\Omega) = \frac{1}{(a+j\Omega)^2}$	
	(3M)	
	Find the Laplace transform and its associated ROC for the signal	
	x (t) = $te^{-2 t }$ (13M)[May 2016, 2015]R13, Nov 2013, May 2016-BTL5	
	Answer: Page 395 - Ramesh babu(Similar Type)	
	Solution	
	Given that,	
	$ x(t) = te^{-2 t } = \begin{cases} te^{2t}; -\infty \le t \le 0\\ te^{-2t}: 0 \le t \le \infty \end{cases} $	
8		
	By definition of Laplace transform,	
	$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$	
	$X(s) = \int_{-\infty}^{0} t e^{2t} e^{-st} dt + \int_{0}^{\infty} t e^{-2t} e^{-st} dt$	
	$= \int_{-\infty}^{0} t e^{-(s-2)t} dt + \int_{-\infty}^{0} t e^{-(s+2)t} dt$	
		(6M)

REGULATION: 2017

$$=\frac{te^{-(a+j\Omega)t}}{-(a+j\Omega)} - \int \left[\frac{e^{-(a+j\Omega)t}}{-(a+j\Omega)}dt\right]_{0}^{\infty}$$

$$=\left[\frac{-te^{-(a+j\Omega)t}}{(a+j\Omega)}\frac{e^{-(a+j\Omega)t}}{(-(a+j\Omega))^{2}}\right]_{0}^{\infty}$$

$$X(j\Omega) = \frac{1}{(a+j\Omega)^{2}}$$
Given that, $x(t) = e^{-att}$

$$x(t) = \begin{cases} e^{att}; for t = -\infty to 0\\ e^{-at}; for t = 0 to \infty \end{cases}$$
By definition of Fourier transform,
$$X(j\Omega) = \int^{0} e^{ate^{-j\Omega t}}dt$$

$$-\infty$$

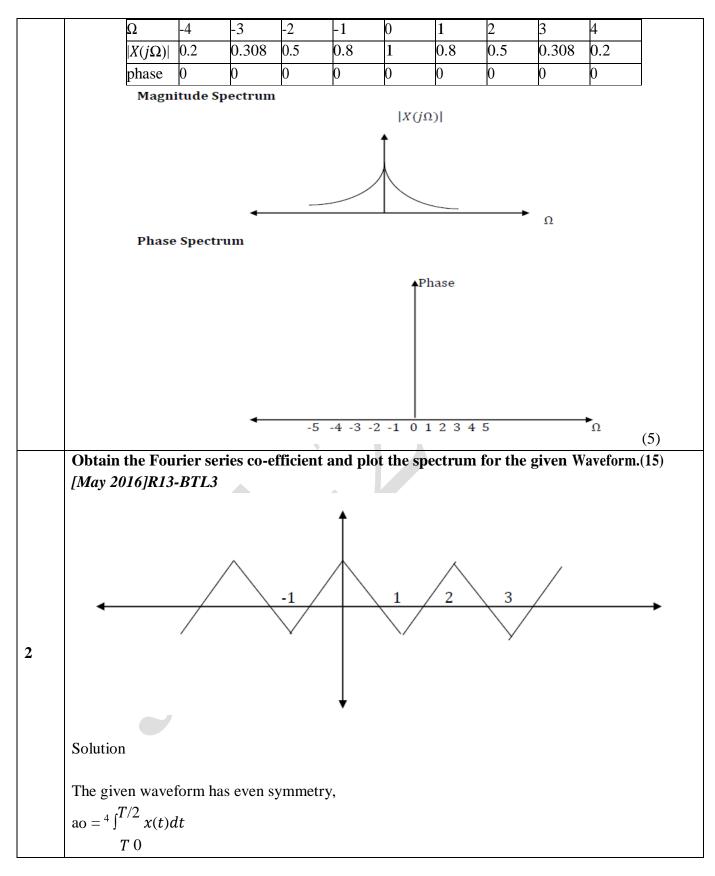
$$X(j\Omega) = \int^{0} e^{ate^{-j\Omega t}}dt + \int^{\infty} e^{-ate^{-j\Omega t}}dt$$

$$-\infty$$

$$X(j\Omega) = \int^{0} e^{ate^{-j\Omega t}}dt + \int^{\infty} e^{-ate^{-j\Omega t}}dt$$

$$-\infty$$

$$= \left[\frac{e^{(a-j\Omega)t}}{(a-j\Omega)}\right]_{-\infty}^{0} + \left[\frac{e^{-(a+j\Omega)t}}{(-(a+j\Omega))}\right]_{0}^{\infty}$$


$$= \left[\frac{e^{0}}{a-j\Omega} - \frac{e^{-\infty}}{a-j\Omega} + \frac{e^{-\infty}}{(-(a+j\Omega))} - \frac{e^{0}}{(-(a+j\Omega))}\right]$$

$$= \frac{1}{a-j\Omega} + \frac{1}{a+j\Omega}$$

$$= \left(\frac{a+j\Omega}{(a-j\Omega)(a+j\Omega)}\right)$$

$$= \frac{a^{2}}{a^{2}+\Omega^{2}}$$
(5)

ACADEMIC YEAR: 2019-2020

$$an = {}^{4} \int_{-T/2}^{T/2} x(t) \cos n\Omega \, dt$$

$$T = 0$$

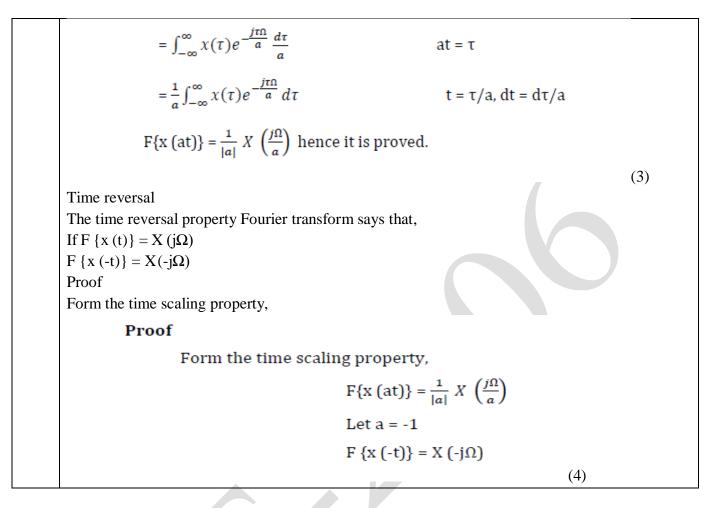
$$bn = 0$$
from the waveform
$$x (t) = \frac{2t}{T} \text{ for } t = 0 \text{ to } T/2$$
Find ac
$$a_{0} = \frac{4}{T} \int_{0}^{T/2} x(t) \, dt$$

$$a_{0} = \frac{4}{T} \int_{0}^{T/2} \frac{-2t}{T} \, dt$$

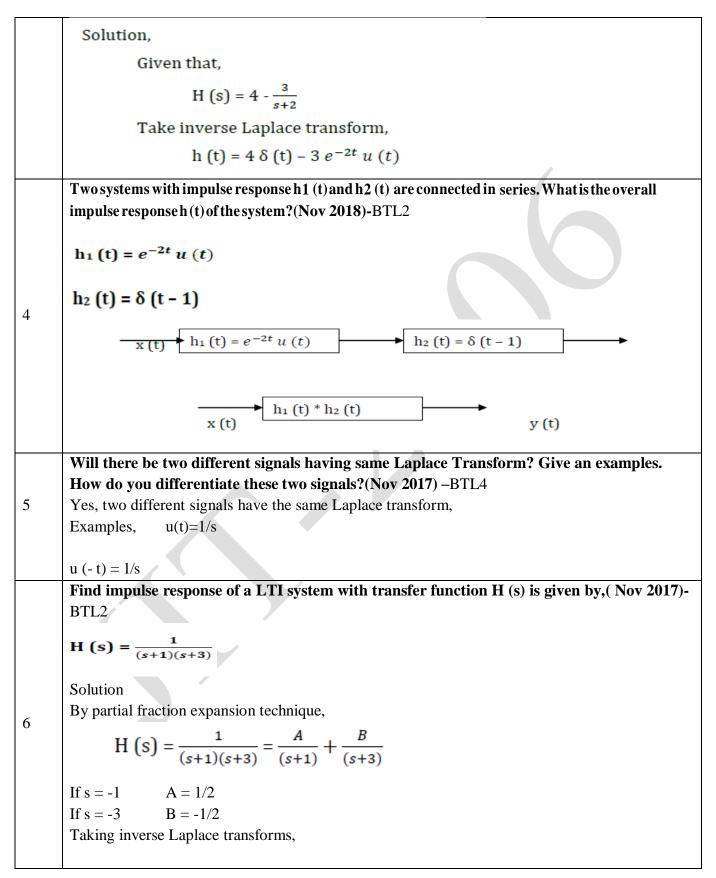
$$= \frac{8}{T^{2}} \int_{0}^{T/2} t \, dt$$

$$= \frac{8}{T^{2}} \left[\frac{t^{2}}{2} \right]_{0}^{T/2} = \frac{8}{T^{2}} \left[\frac{T^{2}}{8} - 0 \right]$$

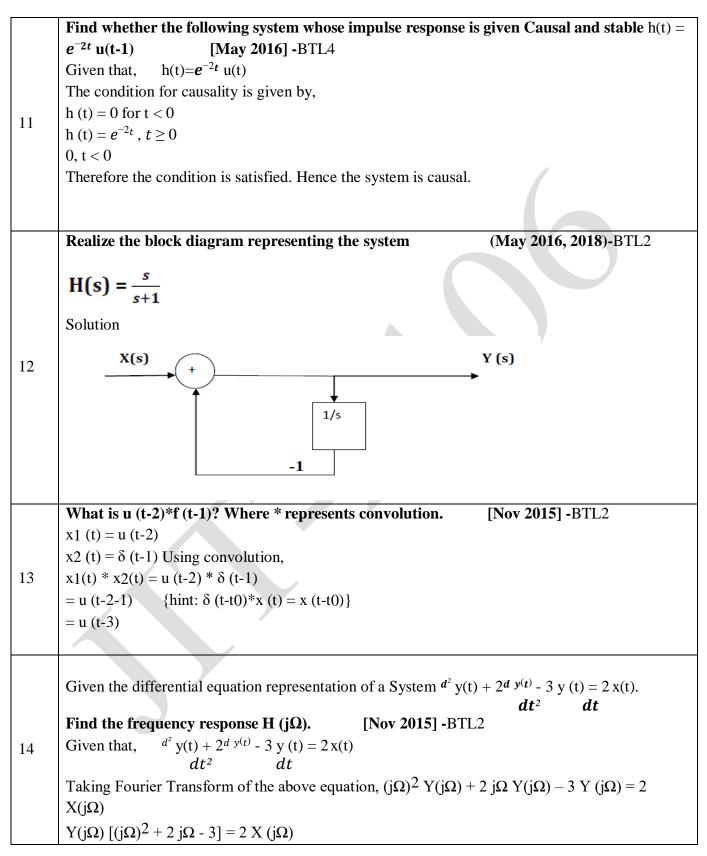
$$a_{0} = 1$$


$$(4)$$
Find an
$$a_{0} = \frac{4}{T} \int_{0}^{T/2} x(t) \cos n\Omega \, dt$$

$$a_{0} = \frac{4}{T} \int_{0}^{T/2} \frac{2t}{T} \cos n\Omega \, dt$$


$$a_{0} = \frac{8}{T^{2}} \int_{0}^{T/2} t \cos n\Omega \, dt$$

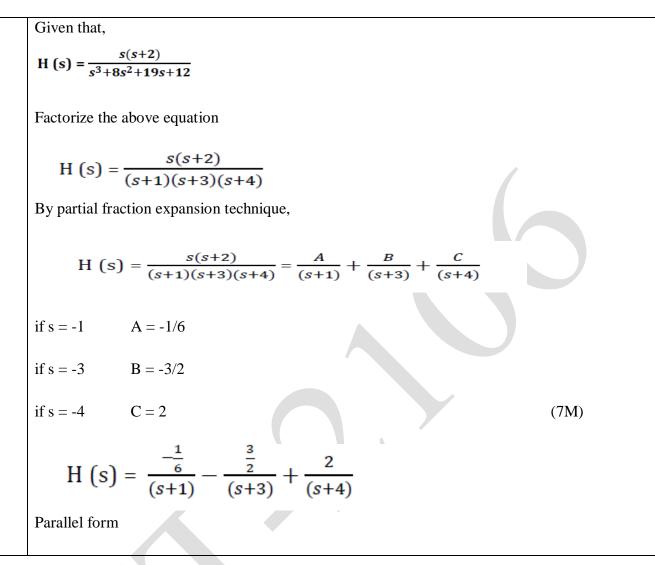
	$\int u dv = uv - \int v du$		
	u = t $du = 1$		
	$dv = \cos n\Omega dt$ $v = \frac{\sin n\Omega t}{n^2}$		
	$=\frac{8}{T^2}\left[\frac{t\sin n\Omega t}{n\Omega} - \int \left(\frac{\sin n\Omega t}{n\Omega}\right) dt\right]_0^{T/2}$		
	$= \frac{8}{T^2} \left[\frac{t \sin n\Omega t}{n\Omega} - \left(\frac{-\cos n\Omega t}{n^2 \Omega^2} \right) dt \right]_0^{T/2} \qquad \qquad \Omega = \frac{2\pi}{T}$		
	$= \frac{8}{T^2} \left[\frac{t \sin n \frac{2\pi}{T} t}{n \frac{2\pi}{T}} + \left(\frac{\cos n \frac{2\pi}{T} t}{n^2 (\frac{2\pi}{T})^2} \right) dt \right]_0^{T/2}$		
	for even integer values of n, $\cos n\pi = 1$ for odd integer values of n, $\cos n\pi = -1$ an = 0; for even values of n	(4)	
	Fourier series equation The trigonometric form Fourier series of x(t) is,		
	$x(t) = \frac{ao}{2} + \sum_{n=1}^{\infty} an \cos n\Omega ot + \sum_{n=1}^{\infty} bn \sin n\Omega ot$		
	here $b_n = 0$ and a_n exists only for odd values of n		
	$x(t) = \frac{ao}{2} + \sum_{n=1}^{\infty} an cosn\Omega ot$		
	$x(t) = \frac{1}{2} + \frac{2}{n^2 \pi^2} [\cos n \pi - 1]$		
			(4)
	State and prove any four properties of Fourier Transform $(15)[Nov 2015]R13$ Let, Fourier transform of x1 (t) = X1(j Ω)Let, Fourier transform of x2 (t) = X2(j Ω)		
	The linearity property of Fourier transform says that,		
	Fourier transform of $\{a x 1 (t) + b x 2 (t)\} = a X 1 (j\Omega) + b X 2 (j\Omega)$		
	Proof		
3	By definition of Fourier transform		
	X1 (j Ω) = $\int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$ $-\infty$ 1		
	X2 (j Ω) = $\int_{0}^{\infty} x(t)e^{-j\Omega t}dt$		
	$-\infty$ 2		
	Consider the linear combination, a1 x1 (t) + a2 x2 (t). on taking Fourier transform of this signal,		


$$F \left\{ a1 x1 (t) + a2 x2 (t) \right\} = \int_{-\infty}^{\infty} [a1 x1 (t) + a2 x2 (t)]e^{-j\Omega_{t}} dt \\ -\infty = -\infty \\ = a1\int_{-\infty}^{\infty} 1x1 (t)e^{-j\Omega_{t}} dt + f^{\infty} a2 x2 (t)e^{-j\Omega_{t}} dt \\ -\infty = -\infty \\ = a1\int_{-\infty}^{\infty} 1(t)e^{-j\Omega_{t}} dt + a2\int_{-\infty}^{\infty} x2 (t)e^{-j\Omega_{t}} dt \\ -\infty = -\infty \\ F \left\{ a1 x1 (t) + a2 x2 (t) \right\} = a1x1 (j\Omega) + a2x2 (j\Omega)$$
(4)
Time shifting property of Fourier transform says that, If F {x (t)} = X (j\Omega) \\ F {x (t+\alpha)} = e^{-j\Omega_{t0}} X (j\Omega) \\ Proof \\ By definition of Fourier transform, \\ F {x (t+\alpha)} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t+\alpha)} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t+\alpha)} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \quad t = t + to \text{ on } \\ -\infty \\ = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \quad t = t + to \text{ on } \\ -\infty \\ = e^{-j\Omega_{t0}}\int_{-\infty}^{\infty} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t+\alpha)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t+\alpha)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t+\alpha)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t+\alpha)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t+\alpha)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F {x (t)} = \int_{-\infty}^{0} x(t)e^{-j\Omega_{t}} dt \\ -\infty \\ F

UNIT III- LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS	
Impulse response - convolution integrals- Differential Equation- Fourier and Laplace transforms in Analysis of CT systems - Systems connected in series / parallel.	
Q.N	Questions
,	Check whether the given system is stable and causal? (May 2019)-BTL4 h (t) = $e^{-4t} u (t + 10)$
	Solution,
	$u(t + 10) = 1 \text{ for } t \ge -10$
	h (t) = e^{-4t} for $t \ge -10$
	h (t) \neq 0 for t < 0, is is non-causal.
	$\int_{-\infty}^{\infty} h(t)dt = \int_{-\infty}^{\infty} e^{-4t} u(t+10)dt$
	$u(t + 10) = 1 \text{ for } t \ge -10$
	$\int_{-\infty}^{\infty} h(t) dt = \int_{-10}^{\infty} e^{-4t} dt$
	Integrating above equation,
	$=\frac{1}{4}e^{40} < \infty$, the system is stable.
	State Dirichlet's condition for Region of Convergence.(May 2019)-BTL1
	• x (t) is absolutely integrable,
2	$\int_{-\infty}^{\infty} x(t) dt < \infty$
	• x (t) has finite number of maxima and minima within any finite interval.
	• x (t) has finite number of discontinuities within any finite interval, and each of the
	discontinuities must be finite.
	Find the impulse response h (t). (NOV 2018)-BTL2
3	H (s) = $4 - \frac{3}{s+2}$; Re (s) > -2
	$H(s) = 4 - \frac{1}{s+2}; \text{ Re}(s) > -2,$

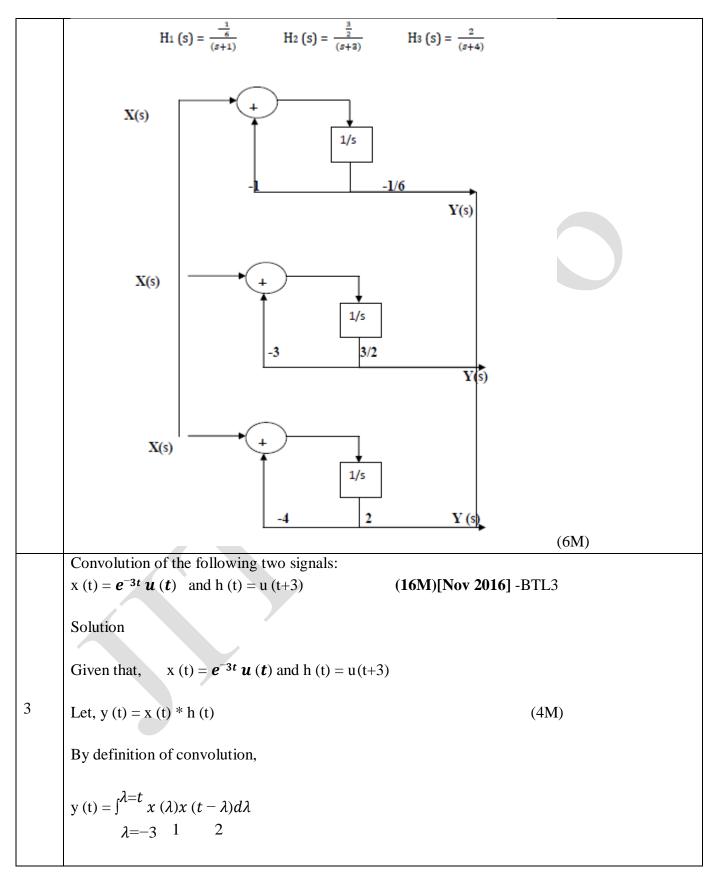
	1
	h (t) = ${}^{1} e^{-t} u(t) - {}^{1} e^{-3t} u(t)$
	2 2
	Give the expression for convolution integral. [May 2017] -BTL2
	The convolution of two continuous time signals $x_1(t)$ and $x_2(t)$ is defined as,
	$x_3(t) = \int_{-\infty}^{\infty} x_1(\lambda) x_2(t-\lambda)$
7	$\frac{1}{-\infty}$
7.	Where,
	x3(t) is the signal obtained by convolving x1(t) and x2(t) λ is a dummy variable used for
	integration.
	Symbol * indicates convolution operation.
	Given h (t), what is the step response of a CT LTI system [May 2017] -BTL1
	Input and output of an LTI system are related by,
	$y(t) = \int_{0}^{\infty} x(\tau) h(t - \tau)$
8.	$\int \frac{1}{2} $
	It is a convolution. where,
	$x(\tau)$ is the input variable function
	$h(t - \tau)$ is the delay impulse response
	Convolve the following signal u (t- 1) and δ (t-1) [May 2018], [Nov 2016]- BTL2
	x1(t) = u(t-1)
0	x2 (t) = δ (t-1) Using convolution,
9	$x1(t) * x2(t) = u (t-1) * \delta (t-1)$
	= u (t-1-1) {hint: δ (t-t0)*x (t) = x (t-t0)}
	= u (t-2)
	Find the differential equation representation for the signal. [Nov 2016] -BTL3
	$H(s) = \frac{1}{s^2 + 2s + 1}$
	Solution
	Given that,
	$H(S) = \frac{1}{(s)^2 + 2s + 1}$
10	
	$\frac{Y(s)}{X(s)} = \frac{1}{(s)^2 + 2s + 1}$
	On cross multiplying the above equation, $(s)^2 Y (s) + 2 s Y (s) + Y (s) = X (s)$
	On taking inverse Laplace Transform of the above equation, $(3) = 1 (3) + 1 (3) = X (3)$
	$\frac{d^2}{dt^2}y(t) + 2\frac{dy(t)}{dt} + y(t) = x(t)$
	at at at

	$\frac{Y(j\Omega)}{X(j\Omega)} = \frac{2}{(j\Omega)^2 + 2 \ j\Omega - 3}$
	Frequency response,
	$H(j\Omega) = \frac{2}{(j\Omega+3)(j\Omega-1)}$
15	Given $x (t) = \delta (t)$. Find $X(s)$ and $X (\omega)$.[May 2015] -BTL3SolutionIt is defined as
	$x(t) = \delta(t) = \begin{cases} 1; t = 0 \\ 0; t \neq 0 \end{cases}$
	$X(s)$ and $X(\omega)=1$
	State convolution integral.[May 2015], May 2013, 2015-BTL1
	The convolution of two continuous time signals $x_1(t)$ and $x_2(t)$ is defined as,
	$x_3(t) = \int_{-\infty}^{\infty} x_1(\lambda) x_2(t-\lambda)$
16	-∞-
	Where,
	x3(t) is the signal obtained by convolving x1(t) and x2(t) λ is a dummy variable used for
	integration. Symbol * indicates convolution operation.
	Draw the block diagram of the LTI system described By[No 2014] -BTL2
	$\frac{d y(t)}{dt} + y(t) = 0.1 x(t).$
	Solution
17	H (s) = $\frac{0.1}{s+1}$
17	$X(\overline{s})$ + $1/\overline{s}$. $1/\overline{s}$. -1 0.1 $Y(\overline{s})$
	s Y(s) + Y (s) = 0.1 X (s)
	Find $y(n) = x (n-1) * \delta (n-2)$. [Nov 2014] -BTL3
18	Solution Circum that $\sigma(n) = \sigma(n, 1) \neq S(n, 2)$
	Given that, $y(n) = x (n-1) * \delta (n-2)$ = $\sum_{n=1}^{\infty} x(m-1) \delta(n-m+2)$
	$=\sum_{-\infty}^{\infty} x(m-1\delta(n-m+2))$


	$=x(m-1\delta(n-m+2))$		
	= x (n+2-1)		
	= x (n+1)		
State the necessary and sufficient condition for an LTI CT system to be causal			
	[May 2014, 2015] -BTL1		
19	A system said to be causal if the output of the system at any time't' depends only on the present		
	input, past inputs and past outputs but does not depend on the future inputs and outputs.		
	If the system output at any time t depends on future inputs or outputs then the system is called a		
	non-causal.		
	List the properties of convolution integral. [Nov 2014]- BTL1		
	The convolution of continuous time signals will satisfy the following properties,		
	Commutative property:		
	x1(t) * x2(t) = x2(t) * x1(t)		
20	Associative property:		
20	[x1(t) * x2(t)] * x3(t) = x1(t) * [x2(t) * x3(t)]		
	Distributive property:		
	$x_1(t) * [x_2(t) + x_3(t)] = [x_1(t) * x_2(t)] + [x_1(t) * x_3(t)]$		
	State the significance of impulse response. [Nov 2014]- BTL1		
	let, x (t) = input of a LTI CT system		
	y (t) = output of the LTI CT system for the input x (t) h (t) = Impulse response		
	now, the response y (t) of the CT system is given by convolution of input and impulse response.		
	$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\lambda)h(t-\lambda)d\lambda$		
21	∞		
21	When the input to a continuous time system is a unit impulse signal δ (t) then the output is called		
	an impulse response of the system and it is denoted by h(t).		
	Impulse response, $h(t) = \delta(t)$		
	Impulse input $\delta(t)$ impulse response h (t)		
	CT SYSTEM		
	Find the differential equation relating the input and output a CT System represented by		
	[<i>May</i> 2014] -BTL3		
22	$H(j\Omega) = \frac{4}{(i\Omega)^2 + 8i\Omega + 4}$		
22	Given that, $H(j\Omega) = \frac{4}{(j\Omega)^2 + 8j\Omega + 4}$		
	$\frac{Y(j\Omega)}{X(j\Omega)} = \frac{4}{(j\Omega)^2 + 8j\Omega + 4}$		

	$-\infty$ It is a convolution.
25	$y(t) = \int_{0}^{\infty} x(\tau) h(t - \tau)$
	What are the conditions for a system to be LTI system? -BTL1 Input and output of an LTI system are related by,
	What is the relationship between input and output of an LTI system?(or)
	$\int_{-\infty}^{\infty} h(t) dt < \infty$
24	impulse response, h (t). For BIBO stability of an LTI continuous time system, the integral of impulse response should be finite.
	What is the condition for a LTI system to be stable?[May 2013,2015]-BTL1For an LTI system, the condition for BIBO stability can be transformed to a condition on
	What is the condition for a LTL system to be stable? [May 2012 2015] DTL 1
	x2(t)
	x1(t) (t) $x1(t) + x2(t)$
	Signal Adder
23	
	Constant Multiplier x (t) a x (t)
	Integrator $x(t)$ INT $\int x(t)dt$
	List and draw the basic elements for the block diagram Representation of the CT system. [Nov 2012, 2013] -BTL1
	$\frac{d^2}{dt^2}y(t) + 8\frac{dy(t)}{dt} + 4y(t) = 4x(t)$
	On cross multiplying the above equation, $(j\Omega)^2 Y (j\Omega) + 8 j\Omega Y (j\Omega) + 4 Y (j\Omega) = 4 X (j\Omega)$ On taking inverse Fourier Transform of the above equation,

1.


2

A causal LTI system having a frequency response H (j Ω) =1/ j Ω +3	is producing an
output y (t) = $e^{-3t} u(t) - e^{-4t} u(t)$ for a particular input x (t). Determ	nine x (t). (13M) [May
2017] - BTL3	
Solution	
Given that,	
$H(j\Omega) = \frac{1}{j\Omega + 3}$	
$y(t) = e^{-3t} u(t) - e^{-4t} u(t)$	
Determine x (t)	
$y(t) = e^{-3t} u(t) - e^{-4t} u(t)$	
Taking Fourier transform of above equation,	
$Y(j\Omega) = \frac{1}{j\Omega+3} - \frac{1}{j\Omega+4}$	
$\mathbf{x}(\mathbf{t}) = \frac{\mathbf{y}(t)}{h(t)}$	
$X (j\Omega) = \frac{Y(j\Omega)}{H(j\Omega)}$	
$X(j\Omega) = \frac{\frac{1}{j\Omega+3} - \frac{1}{j\Omega+4}}{\frac{1}{j\Omega+3}}$	(5M)
$X (j\Omega) = \frac{\frac{j\Omega+4-j\Omega-3}{(j\Omega+3)(j\Omega+4)}}{\frac{1}{j\Omega+3}}$	
$X(j\Omega) = \frac{1}{(j\Omega+4)}$	(5M)
Taking inverse Fourier transform	
$x(t) = e^{-4t} u(t)$	(3M)
Realize the given system in parallel form (13M) [May 2017] -BTL	3
H (s) = $\frac{s(s+2)}{s^3+8s^2+19s+12}$	
Solution	

REGULATION: 2017

ACADEMIC YEAR: 2019-2020

	y (t) = $\int_{\lambda=-3}^{\lambda=t} e^{-3\lambda} e^{-3(t-\lambda)} d\lambda$ $\lambda=-3$
	$y(t) = \int_{\lambda=-3}^{\lambda=t} e^{-3\lambda} e^{-3t} e^{3\lambda} d\lambda$ $\lambda = -3$
	$y(t) = e^{-3t} \int_{\lambda=-3}^{\lambda=t} e^{-3\lambda} e^{3\lambda} d\lambda $ (6M)
	$= e^{-3t} \int_{\lambda=-3}^{\lambda=t} e^{-3\lambda+3\lambda} d\lambda$ $\lambda=-3$
	$= e^{-3t} \int_{\lambda=-3}^{\lambda=t} d\lambda$
	$= e^{-3t} [\lambda]^t -3$
	$=e^{-3t}u(t-3)$; t \ge -3
	$y(t) = e^{-3t}u(t+3)u(t+3)$
	A system is described by the differential equation
	$\frac{d^2}{dt^2}y(t) + 6\frac{dy(t)}{dt} + 8y(t) = \frac{dx(t)}{dt} + x(t).$
4	Find the transfer function and the Output signal y (t) for x (t) = δ (t). (16M)[Nov 2016]- BTL3
	Solution
	on taking the Laplace transform of the above equation
	$s^{2} Y(s) + 6s Y(s) + 8 Y(s) = s X(s) + X(s)$
	Y(s) [$s^2 + 6s + 8$] = X(s) [$s + 1$]

$$H(s) = \frac{Y(s)}{x(s)}$$

$$H(s) = \frac{s+1}{s^2+6s+8}$$

$$H(s) = \frac{s+1}{(s+2)(s+4)}$$
(6M)
By partial fraction expansion technique,

$$H(s) = \frac{s+1}{(s+2)(s+4)} = \frac{A}{(s+2)} + \frac{B}{(s+4)}$$
If $s = -2$ $A = -1/2$
If $s = -4$ $B = 3/2$
Taking inverse Laplace transforms,

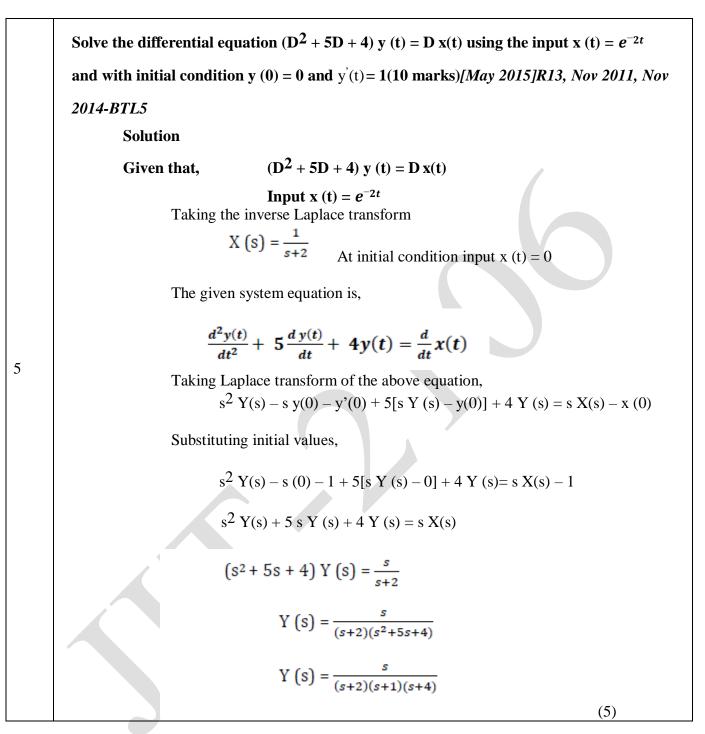
$$h(t) = \frac{-1}{2}e^{-2t}u(t) + \frac{3}{2}e^{-4t}u(t)$$
Response of the system

$$x(t) = \delta(t)$$

$$X(s) = 1$$

$$Y(s) = X(s) H(s)$$

$$Y(s) = \frac{s+1}{(s+2)(s+4)}$$
(SM)


$$Y(s) = \frac{s+1}{(s+2)(s+4)}$$
By partial fraction expansion technique,

$$H(s) = \frac{s+1}{(s+2)(s+4)}$$
By partial fraction expansion technique,

$$H(s) = \frac{s+1}{(s+2)(s+4)} = \frac{A}{(s+2)} + \frac{B}{(s+4)}$$
If $s = -2$ $A = -1/2$
If $s = -4$ $B = 3/2$

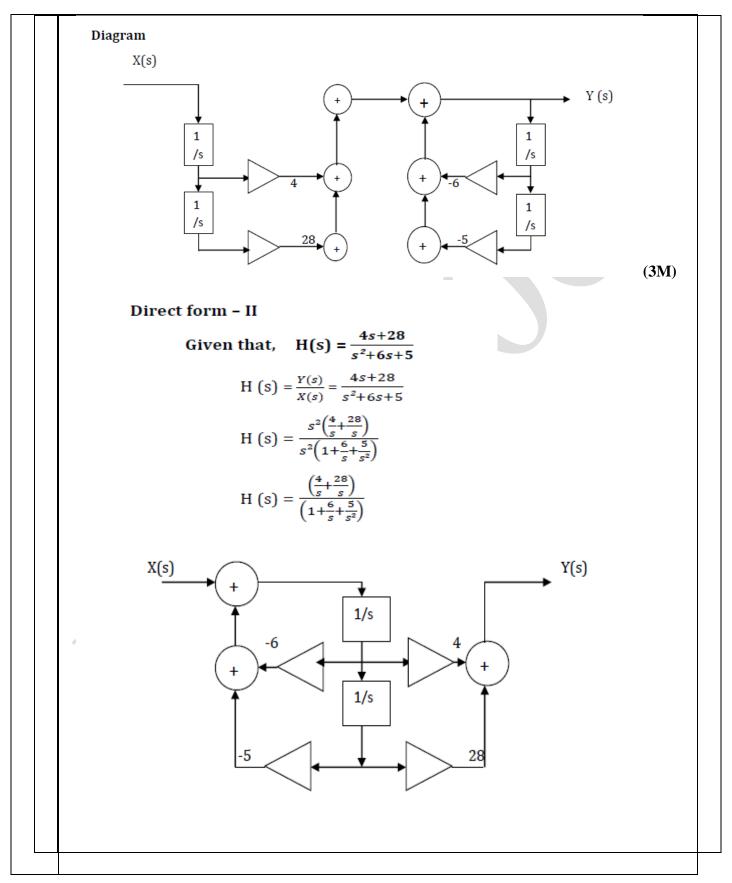
$$Y(s) = \frac{-2t}{(s+2)} + \frac{2}{(s+4)}$$
Taking inverse Laplace transforms,

$$y(t) = -\frac{1}{2}e^{-2t}u(t) + \frac{3}{2}e^{-4t}u(t)$$
(SM)

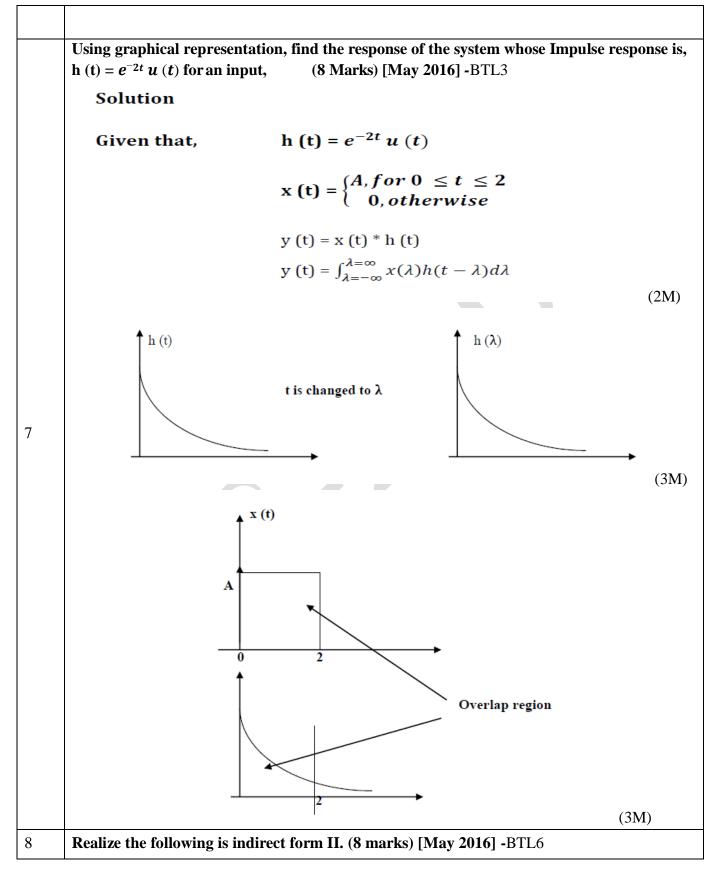
$$Y(s) = \frac{s}{(s+1)(s+2)(s+4)}$$
By partial fraction expansion technique,

$$Y(s) = \frac{s}{(s+1)(s+2)(s+4)} = \frac{A}{(s+1)} + \frac{B}{(s+2)} + \frac{C}{(s+4)}$$
If $s = -1$ $A = -1/3$
If $s = -2$ $B = 1$
If $s = -4$ $C = -2/3$

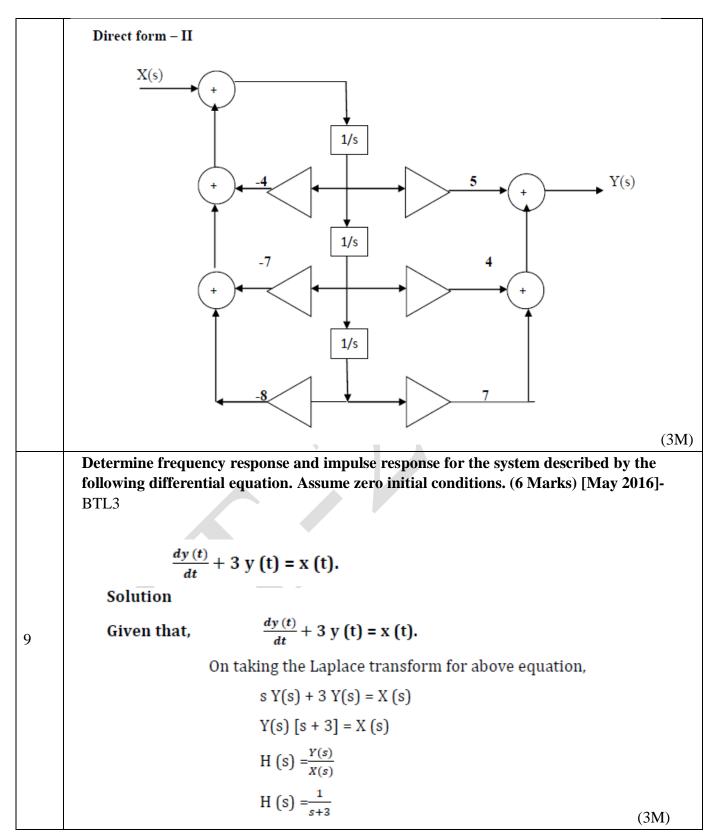
$$Y(s) = \frac{-\frac{1}{2}}{(s+1)} + \frac{1}{(s+2)} - \frac{2}{(s+4)}$$
Taking inverse Laplace transforms,

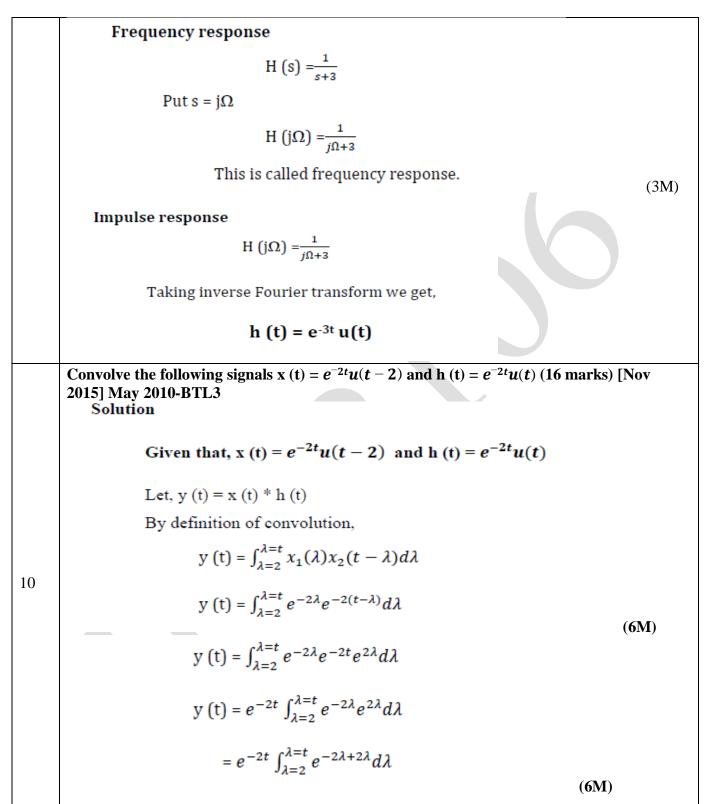

$$y(t) = -\frac{1}{3}e^{-t}u(t) + e^{-2t}u(t) - \frac{2}{2}e^{-4t}u(t)$$
Taking inverse Laplace transforms,

$$y(t) = -\frac{1}{3}e^{-t}u(t) + e^{-2t}u(t) - \frac{2}{2}e^{-4t}u(t)$$
Solution Direct form - I
Given that,


$$H(s) = \frac{4s+28}{x^2(6s+5)}$$

$$H(s) = \frac{s^2(\frac{4}{s}+\frac{28}{x^2})}{x^2(1+\frac{6}{s}+\frac{5}{x^2})}$$


$$H(s) = \frac{(\frac{4}{s}+\frac{28}{x})}{(1+\frac{6}{s}+\frac{5}{x^2})}$$
(3M)



JIT-JEPPIAAR/ECE/Mrs.S.MARY CYNTHIA/IInd Yr/SEM 03/EC8352/ SIGNALS AND SYSTEMS /UNIT 1-5/QB+Keys/Ver2.0

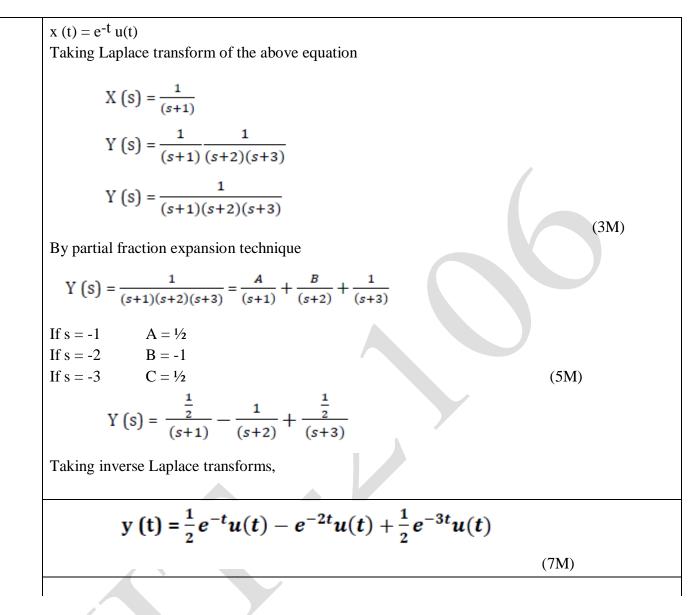
$$\frac{d^{3}y(t)}{dt^{2}} + 4\frac{d^{2}}{dt^{2}}y(t) + 7\frac{dy(t)}{dt} + 8y(t) = 5\frac{d^{2}x(t)}{dt^{2}} + 4\frac{dx(t)}{dt} + 7x(t).$$
Solution
Given that, $\frac{d^{3}y(t)}{dt^{2}} + 4\frac{d^{2}}{dt^{2}}y(t) + 7\frac{dy(t)}{dt} + 8y(t) = 5\frac{d^{2}x(t)}{dt^{2}} + 4\frac{dx(t)}{dt} + 7x(t).$
on taking Laplace transform of the above equation,
 $s^{3}Y(s) + 4s^{2}Y(s) + 7sY(s) + 8Y(s) = 5s^{2}X(s) + 4sX(s) + 7X(s)$
 $Y(s)[s^{3} + 4s^{2} + 7s + 8] = X(s)[5s^{2} + 4s + 7]$
 $H(s) = \frac{y(s)}{x(s)}$
(3M)
 $H(s) = \frac{5s^{2} + 4s + 7}{s^{3} + 4s^{2} + 7s + 8}$
on dividing both side s^{3} we get
 $H(s) = \frac{\frac{5}{s} + \frac{4}{s^{2}} + \frac{7}{s^{3}}}{1 + \frac{4}{s} + \frac{7}{s^{2}} + \frac{8}{s^{3}}}$
(2M)

	EGULATION: 2017	ACADEMIC 1 EAK: 2019-2020
	$=e^{-2t}\int_{\lambda=2}^{\lambda=t}d\lambda$	
	$=e^{-2t}[\lambda]_2^t$	
	$=e^{-2t}u(t-2)$; t ≥ 2	
	$y(t) = e^{-2t}u(t-2)u(t-2)$	(4M)
	Define convolution integral and derive its equation	(8 marks) (Nov 2013)
	What is impulse response? Show that the response of an l	LTI system is convolution
	integral of its impulse response with input	
	signal? (Nov 2012) –BTL1	
	Solution	
	In an LTI continuous time system, the responsible arbitrary input	onse y(t) of the system for an
	x (t) is given by convolution of input x (t) with imp	ulse response h (t) of the system. It
	is expressed as,	
	y(t) = x(t) * h(t)	
	y (t) = x (t) * h (t) y (t) = $\int_{-\infty}^{\infty} x(\lambda)h(t - \lambda)d\lambda$	
11	Where * represents convolution ope	ration
	Proof	(3M)
	Let y (t) be the response of system H for an input x	(t)
	$y(t) = \int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda) d\lambda$	
	$y(t) = \int_{-\infty}^{\infty} H x(\lambda)\delta(t - \lambda)d\lambda$ $y(t) = \int_{-\infty}^{\infty} x(\lambda) H \{\delta(t - \lambda)\}d\lambda$ $y(t) = \int_{-\infty}^{\infty} x(\lambda)h(t - \lambda)d\lambda$	
	$y(t) = \int_{-\infty}^{\infty} x(\lambda) H \{\delta(t-\lambda)\} d\lambda$	
	$y(t) = \int_{-\infty}^{\infty} x(\lambda)h(t-\lambda)d\lambda$	(5M)
	The above equation represents the convolution of input to yield the output y (t).	t x (t) with the impulse response $h(t)$
	Hence it is proved that the response $y(t)$ of LTI continue input $x(t)$ is given by convolution of input $x(t)$ with im-	

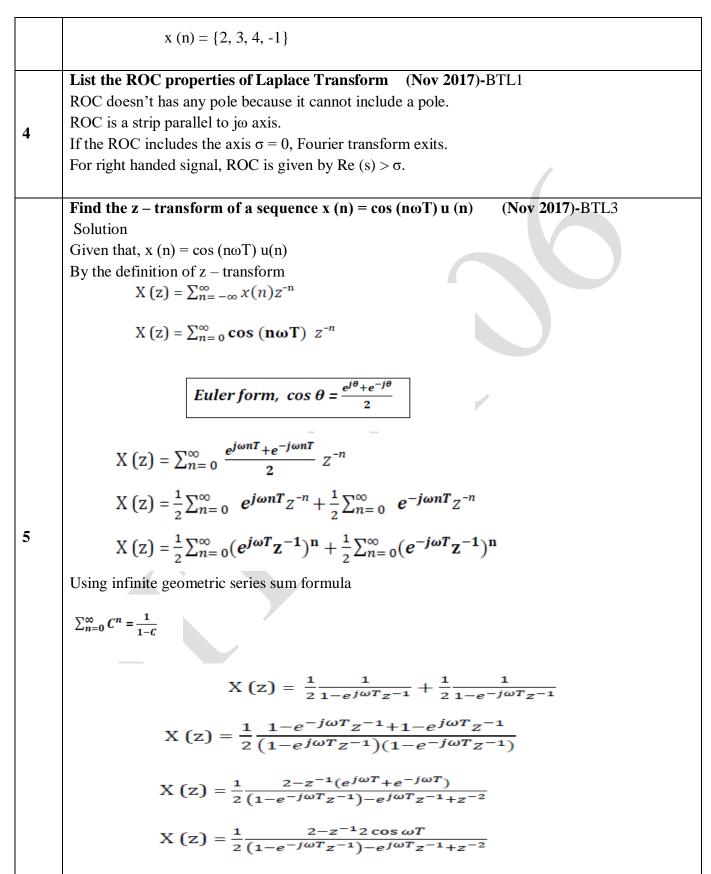
	PART-C	
Q.N o	Questions	
	Using Laplace transform determine the response of the system described by the equilibrium of the system described by the s	
	with initial conditions $y(0) = 0$; $dy(t)/dt = 1$ for the input x (t) = e ^{-2t} u(t). (15M)[M -BTL3	ay 2017]
	$\frac{d^{2}}{dt^{2}}y(t) + 5\frac{dy(t)}{dt} + 4y(t) = dx(t)/dt$	
	Solution	
	Taking the Laplace transform	
	$X(s) = \frac{1}{s+2}$	
	At initial condition input $x(t) = 0$ The given system equation is,	
	$\frac{d^2 y(t)}{dt^2} + 5 \frac{d y(t)}{dt} + 4y(t) = \frac{d}{dt} x(t)$	
	$s^{2} Y(s) - s y(0) - y'(0) + 5[s Y (s) - y(0)] + 4 Y (s) = s X(s) - x (0)$ Substituting initial values,	
	$s^{2} Y(s) - s(0) - 1 + 5[s Y(s) - 0] + 4 Y(s) = s X(s) - 1$	(4)
	$s^{2} Y(s) + 5 s Y(s) + 4 Y(s) = s X(s)$	
1	$(s^2 + 5s + 4) Y(s) = \frac{s}{s+2}$	
	$Y(s) = \frac{s}{(s+2)(s^2+5s+4)}$	
	$Y(s) = \frac{s}{(s+2)(s+1)(s+4)}$	
	$Y(s) = \frac{s}{(s+1)(s+2)(s+4)}$	
	By partial fraction expansion technique,	
	Y(S) = $\frac{s}{(s+1)(s+2)(s+4)} = \frac{A}{(s+1)} + \frac{B}{(s+2)} + \frac{C}{(s+4)}$	
	If $s = -1$ $A = -1/3$	
	If $s = -2$ $B = 1$	
	If $s = -4$ $C = -2/3$ (8)	
	Taking inverse Laplace transforms,	
	$Y(s) = \frac{-\frac{1}{2}}{(s+1)} + \frac{1}{(s+2)} - \frac{\frac{2}{2}}{(s+4)}$	

$$y(t) = \frac{-1}{3}e^{-t}u(t) + e^{-2t}u(t) - \frac{2}{3}e^{-4t}u(t)$$
(3)
The input-output of a causal LTI system are related by the differential equation
$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$$
i. Find the impulse response h (t)
ii. Find the response y (t) of the system if x (t) = u (t)
Use Fourier transform(15 marks) [Nov 2015,] Nov 2012-BTL3
Solution
Given that,
$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$$
Impulse response of the system
$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$$
Impulse response of the system
$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$$
2 On taking Fourier transform of above equation we get,
$$(j\Omega)^2 Y(j\Omega) + 6(j\Omega) Y(j\Omega) + 8 Y(j\Omega) = 2 X(j\Omega)$$

$$\frac{Y(j\Omega)}{X(j\Omega)} = \frac{2}{(j\Omega)^2 + 6j\Omega + 8]} = 2 X (j\Omega)$$


$$\frac{Y(i\Omega)}{X(j\Omega)} = \frac{2}{(j\Omega)^2 + 6j\Omega + 8]}$$
Factorize the above form we get,
$$\frac{Y(\Omega)}{X(j\Omega)} = \frac{2}{(j\Omega)^2 + 6j\Omega + 4]}$$
By partial fraction expansion technique,
$$H (j\Omega) = \frac{2}{(j\Omega + 2)(j\Omega + 4)} = \frac{A}{(j\Omega + 2)} + \frac{B}{(j\Omega + 4)}$$
If $j\Omega = -2$

$$A = 1$$
If $j\Omega = -4$

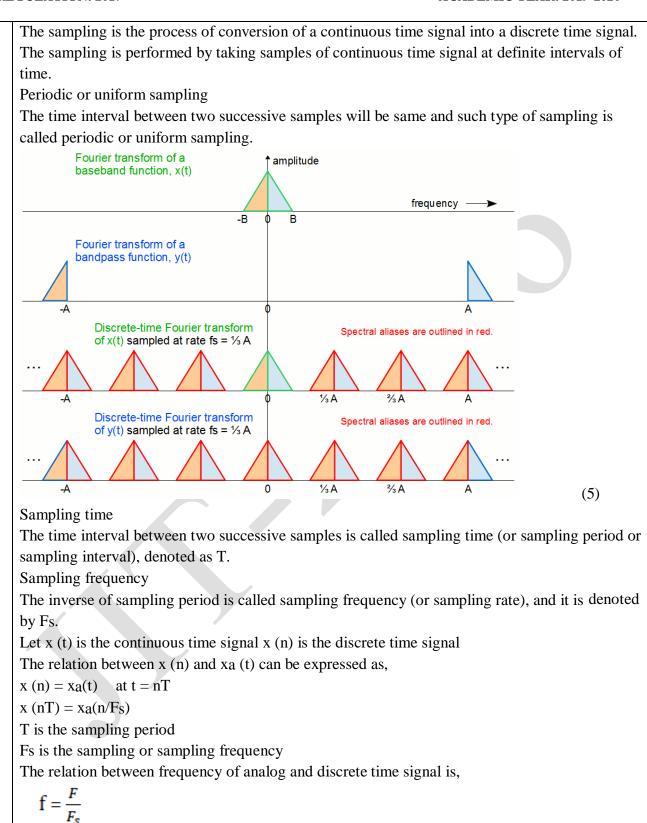

$$B = -1$$
(6M)

 $H(j\Omega) = \frac{1}{(j\Omega+2)} - \frac{1}{(j\Omega+4)}$ On taking inverse Fourier transform, h (t) = $e^{-2t}u(t) - e^{-4t}u(t)$ **Response of the system** Given that, x(t) = u(t)Taking inverse Fourier transform $X(j\Omega) = {1 \atop j\Omega}$ $Y(j\Omega) = X(j\Omega) H(j\Omega)$ $Y(j\Omega) = X(j\Omega)\frac{2}{(j\Omega+2)(j\Omega+4)} = \frac{1}{j\Omega}\frac{2}{(j\Omega+2)(j\Omega+4)}$ By partial fraction expansion technique, $Y(j\Omega) = \frac{A}{i\Omega} + \frac{B}{(i\Omega+2)} + \frac{C}{(j\Omega+4)}$ If $j\Omega = 0$ (4M) A = 0.25If $j\Omega = -2$ B = -0.5If $j\Omega = -4$ C = 0.25 $Y(j\Omega) = \frac{0.25}{i\Omega} - \frac{0.5}{(i\Omega+2)} + \frac{0.25}{(i\Omega+4)}$ By taking inverse Fourier transform $y(t) = 0.5 u(t) - 0.5 e^{-2t}u(t) + 0.25e^{-4t}u(t)$ (5M) Find the response y(t) of a continuous time system using Laplace transform with transfer function $H(s) = \frac{1}{(s+2)(s+3)}$ 3 for an input x (t) = e^{-t} u(t). (15M)[Nov 2016] -BTL3 Solution Response of the system y(t) = x(t) h(t)Y(s) = X(s) H(s)JIT-JEPPIAAR/ECE/Mrs.S.MARY CYNTHIA/IInd Yr/SEM 03/EC8352/ SIGNALS AND SYSTEMS /UNIT 1-

5/QB+Keys/Ver2.0

	UNIT IV- ANALYSIS OF DISCRETE TIME SIGNALS	
	Baseband signal Sampling – Fourier Transform of discrete time signals (DTFT) – Properties of DTFT - Z Transform & Properties	
	PART A	
Q.N	Questions	
0		
	Define sampling theorem. (May 2019)-BTL1	
	• Sampling is a process in which a continuous signal is converted into a sequence of discrete samples, with each sample representing the amplitude of the signal at a particular instant of time.	
	Fs > 2 Fm	
1		
	Analog Signal Sampling	
	• In this process, it is necessary to choose the sampling rate properly. So, the	
	 sampling theorem stated that, A bandwidth signal which has no spectral components above the frequency fm Hz is uniquely determine by its values at uniform intervals less than ¹/₂ fm seconds apart. 	
	Write the relationship between DTFT and Z transform. (May 2019)-BTL2	
	Solution	
	H (z) = $\sum_{n=-\infty}^{\infty} h(n) z^{-n}$	
	$H(r e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n) r e^{j\omega^{-n}}$	
2	$z = r e^{j\omega} \qquad r = 1$	
	H $(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n) e^{-j\omega n}$	
	$H(e^{j\omega}) = H(z)$	
	ROC must include the unit circle.	
3	The DTFT of a discrete time signal $x(n)$ is given as $X(e^{jw}) = 2e^{j^2w} + 3 + 4e^{-j^2w} - 2e^{-j^2w}$. Find the time domain signal $x(n)$. (Nov 2018)-BTL3 Solution	

	$1-z^{-1}\cos\omega T$
	$X(z) = \frac{1 - z^{-1} \cos \omega T}{(1 - e^{-j\omega}Tz^{-1}) - e^{j\omega}Tz^{-1} + z^{-2}}$
	What is the z transform of a unit step sequence? [May 2017]R13-BTL1
	while is the 2 transform of a diffestep sequence. [huly 2017] it is bill
	Solution
	Given that, unit step sequence
(x(n) = u(n)
6	$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
	$X(z) = \sum_{n=0}^{\infty} z^{-n}$
	$X(2) - \Delta n = 0^{2}$
	$X(z) = \frac{z}{z-1}$
	Find x (∞) of the signal for with the z-transform is given by [May 2017]-BTL3
	\mathbf{v} (-) $\mathbf{z+1}$
7	$X(z) = \frac{z+1}{3(z-1)(z+0.9)}$
	$x(\infty)=0$
	Find the nyquist rate of the signal x (t) = sin 200 π t – cos 100 π t (May 2018, Nov 2016)-
	BTL3
	Solution
	Given that,
8	$x(t) = \sin 200 \pi t - \cos 100 \pi t$
	$2\pi F1 = 200 \pi$ F1 = 100
	$2\pi F2 = 100 F2 = 50$
	Nyquist sampling rate $Fs = 2 F_{max}$
	Fs = 2 * 100 Fs = 200 Hz.
	Find the z transform of the signal and associated ROC.BTL3
	x(n) = [2, -1, 3, 0, 2] (Nov 2016)-BTL3
0	Solution
9	
	From the given converse
	From the given sequence,
	From the given sequence, x (-2) = 2, x (-1) = -1, x (0) = 3, x (1) = 0, x (2) = 2 Definition of z – Transform,


	$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
	$X(z) = \sum_{n=-2}^{2} x(n) z^{-n}$
	X (z) = $2z^2 - z + 3 + 2z^2$ The ROC is entire z – plane except z = 0 and z = ∞
	Write the condition for existence of DTFT. [May 2016] -BTL1
	DTFT The Fourier transform of discrete signal is called Discrete time Fourier Transform
	The Fourier transform of discrete signal is called Discrete time Fourier Transform
10	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$
10	Inverse DTFT
	$X(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n}$ for $n = -\infty$ to ∞
	Find the final value of the given signal,[May 2016]-BTL3
	$\mathbf{V}(\mathbf{r}) = 1$
	$X(z) = \frac{1}{1 + 2z^{-1} + 3z^{-2}}$
	Solution
	Given that, X (z) = $\frac{1}{1+2z^{-1}+3z^{-2}}$
11	$x(\infty) = \lim_{z \to 1} (1 - z^{-1}) X(z)$
	$x(\infty) = \lim_{z \to 1} (1 - z^{-1}) \frac{1}{1 + 2z^{-1} + 3z^{-2}}$
	$x(\infty) = \lim_{z \to 1} (1 - z^{-1}) \frac{z^2}{z^2 + 2z + 3}$
	$\mathbf{x}\left(\infty\right) = \lim_{z \to 1} \frac{z^2 - z}{z^2 + 2z + 3}$
	x (∞) = 0
	State the need for sampling. [Nov 2015] -BTL1
12	The sampling is needed for processing of continuous time signal using its sampled version of digital systems.
12	When sampling frequency F_s is equal to $2F_{max}$, the sampling rate is called nyquist rate.

	Find the z 'Frenctorm and its associated RO(' for $y(n) = 11 - 1 - 2 - 3 - 41 = 1$ New 2015
	Find the z – Transform and its associated ROC for, $x(n) = \{1, -1, 2, 3, 4\}$ [Nov 2015]
	-BTL3
	Solution
	Given that, $x(n) = \{1, -1, 2, 3, 4\}$
	From the given sequence,
	x (-3) = 1, x (-2) = -1, x (-1) = 2, x (0) = 3, x (1) = 4
13	Definition of z – Transform,
	$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
	$X(z) = \sum_{n=-3}^{1} x(n) z^{-n}$
	$X(z) = z^3 - z^2 + 3z + 3 + 4z^{-1}$
	The ROC is entire $z - plane$ except $z = 0$ and $z = \infty$
14	Determine the nyquist sampling rate for, $x(t) = sin (200 \pi t) + 3 sin^2 (120\pi t)$ [May 2015] - BTL3 Solution Given that, $x(t) = sin (200 \pi t) + 3 sin^2 (120\pi t)$ $x_1 (t) = sin (200 \pi t)$ $2\pi F1 = 200 \pi$ F1 = 100 $x_2 (t) 3 sin^2 (120\pi t)$ $2\pi F2 = 120 \pi$ F2 = 60
	Nyquist sampling rate $Fs = 2$ Fmax Fs = 2 * 100
	$Fs = 2^{+1}100$ Fs = 200 Hz.
	List out the methods for finding the inverse z – Transform. [May 2015] - BTL1
	They are three methods for finding inverse $z - transform$
15	Long division method Partial fraction method
	Residue method
	Residue memou
	Find the DTET of $\mathbf{x}(n) = \delta(n) \pm \delta(n-1)$ [Nov 2014] DTI 2
16	Find the DTFT of x (n) = δ (n) + δ (n-1) [Nov 2014] -BTL3 Solution

	By definition of Fourier transform,
	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$
	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \{\delta(n) + \delta(n-1)\}e^{-j\omega n}$
	= $\sum_{n=-\infty}^{\infty} \delta(n) e^{-j\omega n} + \sum_{n=-\infty}^{\infty} \delta(n-1) e^{-j\omega n}$
	$= 1^* e^0 + 1^* e^{-j\omega}$
	$X(e^{j\omega}) = \frac{e^{j\omega}+1}{e^{j\omega}}$
	State and prove the time folding property of z- Transform. [Nov 2014]= BTL1
	Time reversal property If z transform of x (n) = X(z) x (-n) = X (z-1) Proof By definition of z – transform
17	$X(z) = \sum_{n=\infty}^{\infty} x(n) z^{-n}$
	$= \sum_{n=\infty}^{\infty} x(-n) z^{-n} = \sum_{p=\infty}^{\infty} x(p) z^{p}$
	$= \sum_{p=\infty}^{\infty} x(p)(z^{-1})^{-p}$
	$X(z) = X(z^{-1})$
18	State sampling theorem.[May 2015,2010] -BTL1A band limited continuous time signal with maximum frequency F_m can be fully recovered fromits samples provided that the sampling frequency F_s is greater than or equal to twice themaximum frequency F_m . $F_s > 2$ F_m
19	What is meant by ROC of z – Transform?[May 2015]-BTL1

	Write a note on ROC.[Nov 2014]
	The z – Transform is an infinite power series, it exists only for those values of z for which the series converges. The region of convergence of X (z) is the set of all values of z, for which X (z) attains a finite value.
	Every X (z) there will be a set of values of z for which X (z) can be computed. Such a set of values will lie in a particular region of z – plane and this region is called Region of Convergence (ROC) of X (z).
	What is aliasing? [May 2013,2016,Nov 2013,2014] -BTL1
20	The phenomenon of high frequency component getting the identity of low frequency component during sampling is called aliasing.
20	Due to overlap of frequency spectrum, the high frequency components get the identity of low frequency components. This phenomenon is called aliasing.
21	What is an anti – aliasing filter? [May 2014] -BTL1 A continuous time signal with large bandwidth can be band limited by passing through a filter before sampling. When the frequency range of the output signal of the filter is chosen to prevent aliasing due to sampling, the filter is called anti-aliasing filter. in order to avoid aliasing the sampling frequency F_S should be greater than twice the maximum frequency Fm of continuous time signal.
	State the multiplication property of DTFT.[May 2014] -BTL1Multiplication property of DTFT
	Z transform of $x_1(n) = X_1(e^{j\omega})$
	Z transform of $x_2(n) = X_2(e^{j\omega})$
22	The complex convolution theorem state that
	$x_1(n) x_2(n) = \frac{1}{2\pi j} \oint X 1(v) X 2(\frac{z}{v}) v^{-1} dv$
	v is the dummy variable used for contour integration.
23	Define unilateral and bilateral z – Transform. [Nov 2013, May 2016] -BTL1

	Bilateral z Transform
	$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
	Z is a complex variable
	Unilateral z Transform
	$X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$
24	Find the z – Transform and its associated ROC for x (n) = {1, -1, 2, 3, 4} [Nov 2015, 2016] -BTL3 From the given sequence, x (-3) = 1, x (-2) = -1, x (-1) = 2, x (0) = 3, x (1) = 4 Definition of z – Transform, X (z) = $\sum_{n=-\infty}^{\infty} x(n) z^{-n}$ X (z) = $\sum_{n=-3}^{1} x(n) z^{-n}$
	$X(z) = z3 - z2 + 2z + 3 + 4z^{-1}$ The ROC is entire z – plane except z = 0 and z = ∞
25	Define circularly folded sequences. BTL1 A circularly folded sequence is represented as $x((-n))N$. It is obtained by plotting $x(n)$ in clockwise direction along the circle.
	PART-B
Q.N o	Questions
1	State and explain sampling theorem both in time domain and frequency domain with necessary quantitative analysis and illustrations. (10 marks & 16 marks) (or)State and prove sampling theorem for a band limited signal. (16 marks) [May 2017]R13, [May 2016] R13, [Nov 2015] R13[Nov 2014]R13 [Nov 2012, Nov 2015, 2014, 2012, 2011]R08-BTL2 Base band sampling The term base band signal is used to indicate the unmodulated signal which has the original frequency components. Therefore a signal in its original form is called base band sampling. The sampling of unmodulated or original signal is called base band sampling.

The range of frequency of discrete time signal is, $-1/2 \leq f \leq 1/2$

$$\begin{aligned} -\frac{Fs}{2} &\leq \frac{F}{F_{g}} &\leq \frac{Fs}{2} \end{aligned} (3) \\ \text{Alias} \\ \text{Infinite number of higher frequency continuous time signals will be represented by a single discrete time signal. Such signals are called alias \\ \text{Aliasing} \\ \text{The phenomenon of high frequency component getting the identity of low frequency component during sampling is called aliasing \\ Folding frequency \\ \text{Sampling an analog signal with frequency F by choosing a sampling frequency Fs such that Fs/2 > F will not result in alias. But sampling frequency is selected such that Fs/2 < F that the frequency above Fs/2 will have alias with frequency below Fs/2. Hence the point of reflection is Fs/2, and the frequency Fs/2 is called folding frequency. For unique representation of analog signal with maximum frequency Fmax, the sampling frequency bis greater than 2Fmax. (4) When the sampling frequency Fs is equal to 2 Fmax, the sampling rate is called Nyquist rate. Sampling theorem A band limited continuous time signal with maximum frequency Fm can be fully recovered from its samples provided that the sampling frequency Fs is greater than or equal to twice the maximum frequency Fm. Fs > 2 Fm Frequency spectrum of Discrete Time Signal For Fourier transform of X(ej00) is called frequency spectrum of discrete time signal or on the frequency spectrum of discrete time signal or o the frequency spectrum can be divided into two components, Magnitude spectrum Maising in frequency spectrum due to sampling Let x (t) be an analog signal and X (j\Omega) be Fourier transform of x (t). The definition of continuous time inverse Fourier transform, X (t) = $\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$.$$

	$x(nT) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$ at $t = nT$
	The frequency spectrum of a discrete time signal obtained by sampling continuous time signal will be sum of frequency shifted and amplitude scaled spectrum continuous time signal. In order to avoid aliasing the sampling frequency Fs should be greater than twice the maximum frequency Fm of continuous time signal. Fs > 2 Fm Anti-aliasing filter (4) A continuous time signal with large bandwidth can be band limited by passing through a filter before sampling. When the frequency range of the output signal of the filter is chosen to prevent aliasing due to sampling, the filter is called anti-aliasing filter. Signal Reconstruction
	If the sampling frequency $F_S > 2$ Fm, then the spectrum $X(e^{j\Omega})$ of the sampled continuous time signal will have aliased components of the spectrum $X(j\Omega)$ of original continuous time signal. The aliasing of spectral components prevents the recovery of original signal x (t) from the sampled signal x (t).
2.	State and prove the following properties of DTFT i.Differentiation in frequency ii.Convolution in frequency domain (13M)[May 2017] -BTL1 Differentiation in frequency

If DTFT of x (n) = X (
$$e^{j\omega}$$
)

Then

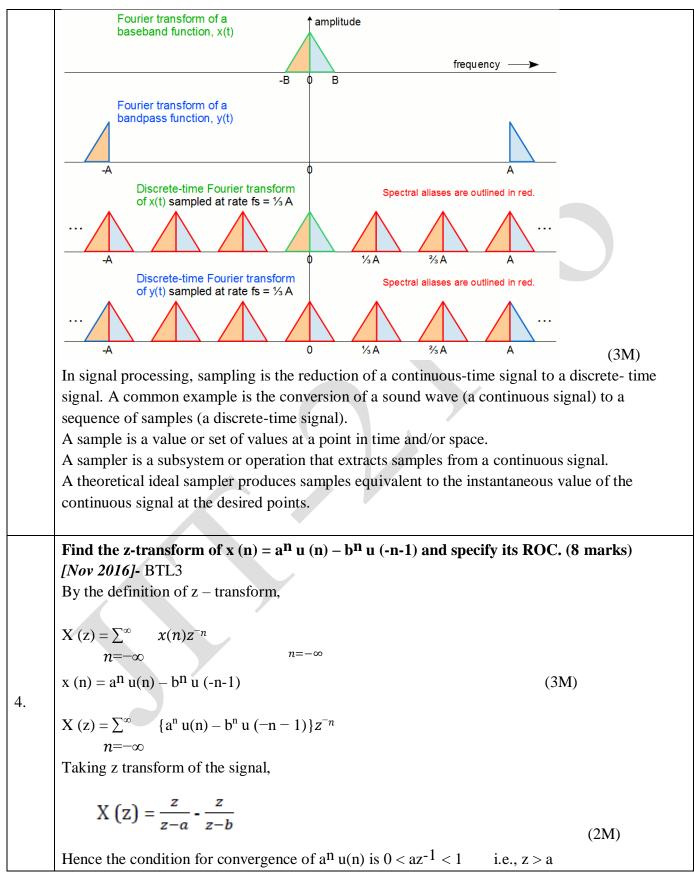
n x (n) =
$$j \frac{d}{d\omega} X(e^{j\omega})$$

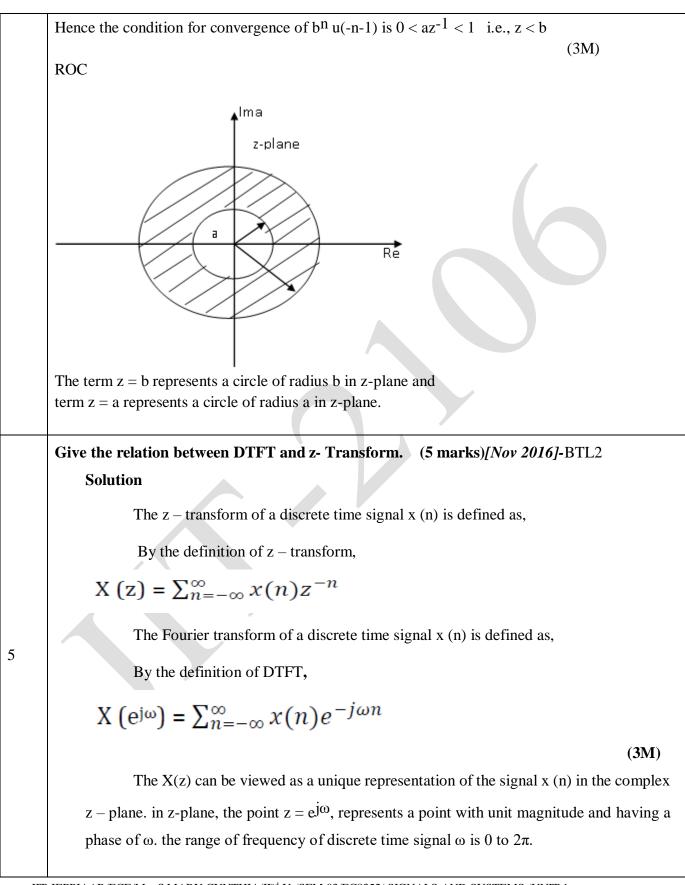
Proof

By the definition of Fourier transform,

$$X (e^{j\omega}) = n x (n) = \sum_{n=-\infty}^{\infty} nx(n)e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} n x(n)j X (-j)e^{-j\omega n}$$

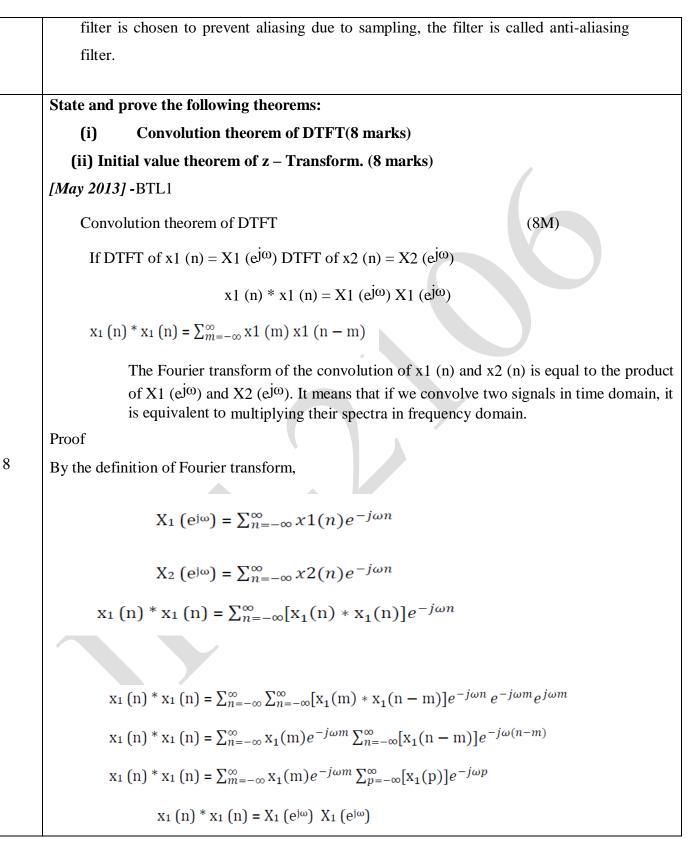

$$= j \sum_{n=-\infty}^{\infty} x(n)[-j n e^{-j\omega n}] \quad \text{note} :-jn = \frac{d}{d\omega}$$

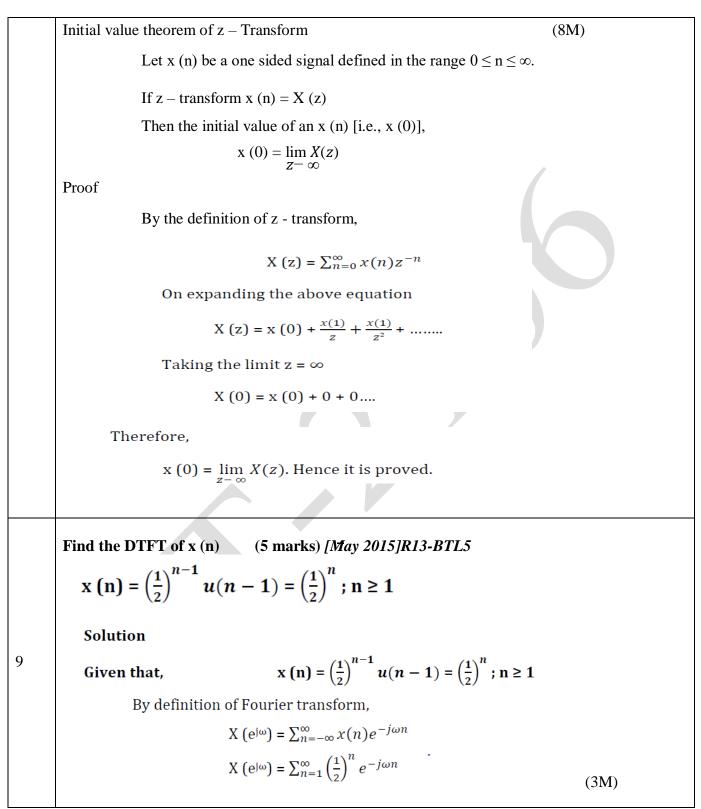

$$= j \sum_{n=-\infty}^{\infty} x(n)[\frac{d}{d\omega}e^{-j\omega n}]$$

$$= j \frac{d}{d\omega} \sum_{n=-\infty}^{\infty} x(n)[e^{-j\omega n}]$$

$$n x (n) = j \frac{d}{d\omega} X (e^{j\omega})$$
Convolution in frequency domain
By using the Fourier transform in discrete signal
If DTFT of x (n) = X (e^{j\omega})
If DTFT of x1 (n) = X1 (e^{j\omega})
DTFT of x2 (n) = X2 (e^{j\omega})
x1 (n) * x1 (n) = \sum_{m=-\infty}^{\infty} x1 (m) x1 (n - m)
(7M)
The Fourier transform of the convolution of x1 (n) and x2 (n) is equal to the product of

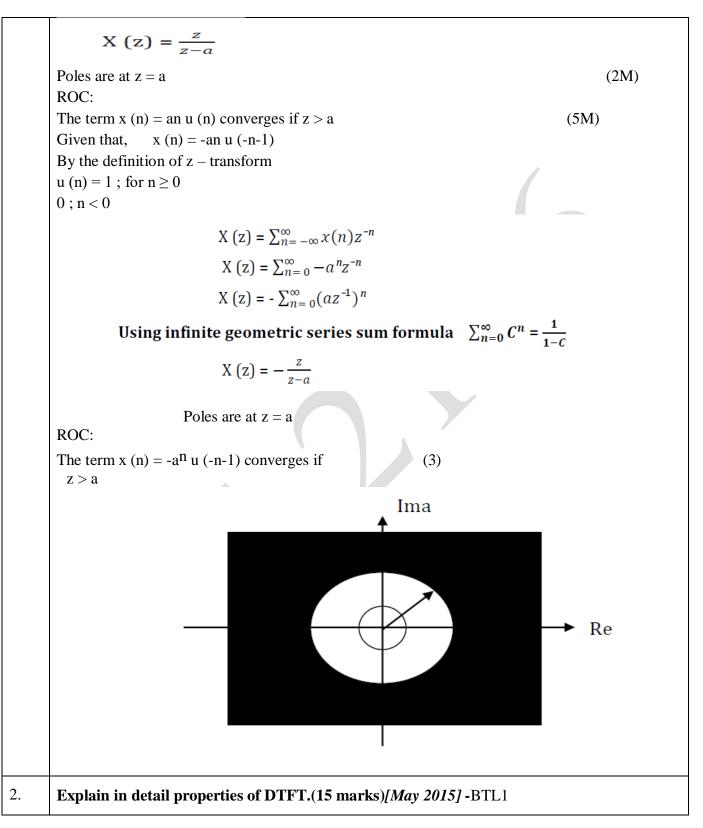
	X1 ($e^{j\omega}$) and X2 ($e^{j\omega}$). it means that if we convolve two signals in time domain, it is equivalent
	to multiplying their spectra in frequency domain.
	Proof
	By the definition of Fourier transform,
	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$
	X1 ($e^{j\omega}$) = $\sum_{n=-\infty}^{\infty} x 1(n) e^{-j\omega n}$
	$X_2 (e^{j\omega}) = \sum_{n=-\infty}^{\infty} x 2(n) e^{-j\omega n}$
	$x_1(n) * x_1(n) = \sum_{n=-\infty}^{\infty} [x_1(n) * x_1(n)] e^{-j\omega n}$
	$\mathbf{x}_1(\mathbf{n}) * \mathbf{x}_1(\mathbf{n}) = \sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} [\mathbf{x}_1(\mathbf{m}) * \mathbf{x}_1(\mathbf{n}-\mathbf{m})] e^{-j\omega n} e^{-j\omega m} e^{j\omega m}$
	$x_1(n) * x_1(n) = \sum_{n=-\infty}^{\infty} x_1(m) e^{-j\omega m} \sum_{n=-\infty}^{\infty} [x_1(n-m)] e^{-j\omega(n-m)}$
	$x_1(n) * x_1(n) = \sum_{m=-\infty}^{\infty} x_1(m) e^{-j\omega m} \sum_{p=-\infty}^{\infty} [x_1(p)] e^{-j\omega p}$
	$x_1(n) * x_1(n) = X_1(e^{j\omega}) X_1(e^{j\omega})$
	(6M)
	Discuss the effect of under sampling a signal using necessary diagrams. (5 marks)
	[Nov 2016] -BTL2
	In signal processing, under sampling or band pass sampling is a technique where one samples a
3	band pass-filtered signal at a sample rate below its Nyquist rate (twice the upper cutoff
	frequency), but is still able to reconstruct the signal. (2M)
	When one under samples a band pass signal, the samples are indistinguishable from the samples
	of a low-frequency alias of the high-frequency signal. Such sampling is also known as band pass sampling, harmonic sampling, IF sampling, and direct IF-to-digital conversion.





	Hence, the points on unit circle in z-plane are given by, $z = e^{j\omega}$. When ω is varies from 0 to 2π . (2M)
	It is important to note that $X(z)$ exists for $z = e^{j\omega}$ if unit circle is included in
	ROC of $X(z)$. Therefore the Fourier transform can be obtained from z-transform by
	evaluating X(z) at $z = e^{j\omega}$, if and only if ROC of X(z) includes the unit circle.
	State and prove the time shifting property and time reversal property of Z-transform. (8 marks)[Nov 2016]-BTL1
	Time shifting property (4M)
	Let DTFT of x (n) = X ($e^{j\omega}$)
	$x (n - m) = e^{-j\omega m} X(e^{j\omega})$
	$x (n + m) = e^{j\omega m} X(e^{j\omega})$
	This relation means that if a signal shifted in time domain by m samples, its magnitude spectrum remains unchanged.
	Proof
	By definition of Fourier transform,
	X ($e^{j\omega}$) = $\sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$
6	$x (n-m) = \sum_{n=-\infty}^{\infty} x(n-m)e^{-j\omega n}$
0	$= \sum_{p=-\infty}^{\infty} x(p) e^{-j\omega(m+p)}$
	$= \sum_{p=-\infty}^{\infty} x(p) e^{-j\omega m} e^{-j\omega p}$
	$= \sum_{p=-\infty}^{\infty} x(p) e^{-j\omega m} e^{-j\omega p}$ $= e^{-j\omega m} \sum_{p=-\infty}^{\infty} x(p) e^{-j\omega p}$
	$= e^{-j\omega m} \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$
	$x (n - m) = e^{-j\omega m} X(e^{j\omega})$
	Time reversal property (4M)
	If z transform of x (n) = $X(z)$
	$x(-n) = X(z^{-1})$
	Proof
	By definition of z – transform

ACADEMIC YEAR: 2019-2020


	$= \sum_{n=\infty}^{\infty} x(-n) z^{-n} = \sum_{p=\infty}^{\infty} x(p) z^{p}$
	-
	$= \sum_{p=\infty}^{\infty} x(p) (z^{-1})^{-p}$
	$X(z) = X(z^{-1})$
(6 mar	is aliasing? Explain the steps to be taken to avoid aliasing. ks)[May 2016]R13, Nov 2012-BTL2 iasing (3M)
	> The phenomenon of high frequency component getting the identity of low
	frequency component during sampling is called aliasing.
	> Due to overlap of frequency spectrum, the high frequency components get the
	identity of low frequency components. This phenomenon is called aliasing.
Folding frequency	
	Sampling an analog signal with frequency F by choosing a sampling
fre	equency Fs such that $Fs/2 > F$ will not result in alias. But sampling frequency is
se	lected such that $F_s/2 < F$ that the frequency above $F_s/2$ will have alias with
fre	equency below Fs/2. Hence the point of reflection is Fs/2, and the frequency Fs/2
is	called folding frequency.
	For unique representation of analog signal with maximum frequency Fmax,
	the sampling frequency should be greater than 2Fmax.
To avo	id aliasing $Fs \ge 2Fmax$. When the sampling frequency Fs is equal to 2 $Fmax$, the sampling rate is
	called Nyquist rate.
Sampli	ng theorem (3M)
	A band limited continuous time signal with maximum frequency Fm
	can be fully recovered from its samples provided that the sampling
	frequency F_s is greater than or equal to twice the maximum frequency F_m .
	Fs > 2 Fm
Anti-al	iasing filter
	A continuous time signal with large bandwidth can be band limited by passing
th	rough a filter before sampling. When the frequency range of the output signal of the

	Using infinite geometric series sum formula $\sum_{n=0}^{\infty} C^n = \frac{1}{1-C}$	
	$X(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}} - 1$	
	X (e ^{jω}) = $\frac{-1+1+\frac{1}{2}e^{-j\omega}}{1-\frac{1}{2}e^{-j\omega}}$	
		2M)
	$X (e^{j\omega}) = \frac{\frac{1}{2}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$	
	$X(e^{j\omega}) = \frac{e^{-j\omega}}{2 - e^{-j\omega}}$	
	Using suitable z – Transform properties find X(z) (6 marks)[May 2015] –BTL3	
	x (n) = (n-2) $\left(\frac{1}{3}\right)^{n-2} u(n-2)$	
	Solution Given that,	
	Let x (n) = $\left(\frac{1}{3}\right)^n u(n)$; n ≥ 0	
	By definition of z - transform,	
10	$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$	
	$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n z^{-n}$	
	X (z) = $\sum_{n=0}^{\infty} \left(\frac{1}{3} z^{-1}\right)^n$	
	(3) Using infinite geometric series sum formula $\sum_{n=0}^{\infty} C^n = \frac{1}{1-C}$	
	$X(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}$	
	$X(z) = \frac{z}{z - \frac{1}{3}}$	(3M)

By differentiation in z - domain property of z - transform $n x (n) = -z \frac{d}{dz} X(z)$ $n \ge (n) = -z \frac{d}{dz} \left\{ \frac{z}{z - \frac{1}{z}} \right\}$ n x (n) = $-z \left\{ \frac{\left\{z - \frac{1}{\beta}\right\} - z}{\left(z - \frac{1}{\beta}\right)^2} \right\}$ $n \ge (n) = \left\{ \frac{\frac{1}{3}z}{\left(z - \frac{1}{3}\right)^2} \right\}$ By shifting in z - domain property of z - transform (n-2) $\left(\frac{1}{3}\right)^{n-2} u(n-2) = \left\{\frac{\frac{1}{3}}{z(z-\frac{1}{2})^2}\right\}$ **PART-C** Q.N Questions 0 Determine the z-transform of the following signal and plot the ROC. i. $\mathbf{x}(\mathbf{n}) = \mathbf{a}^{\mathbf{n}} \mathbf{u}(\mathbf{n})$ ii. $x(n) = -a^n u(-n-1)(15 marks)$ [May 2015]-BTL3 Solution Given that, $x(n) = a^n u(n)$ (5M)By the definition of z – transform u(n) = 1; for n > 00: n < 0 $X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$ $X(z) = \sum_{n=0}^{\infty} a^{n} z^{-n}$ $X(z) = \sum_{n=0}^{\infty} (az^{-1})^n$ Using infinite geometric series sum formula $\sum_{n=0}^{\infty} C^n = \frac{1}{1-C}$

(2M)

Properties of DTFT Linearity

The linearity property of Fourier transform states that the Fourier transform of a linear weighted combination of two or more signals is equal to the similar linear weighted combination of the Fourier transform of the individual signals.

DTFT of x (n) = X ($e^{j\omega}$)

DTFT of x1 (n) = X1 ($e^{j\omega}$)

DTFT of x2 (n) = X2 ($e^{j\omega}$)

$$a x1 (n) + b x2 (n) = a X1 (e^{j\omega}) + b X2 (e^{j\omega})$$

Time shifting property

Let DTFT of x (n) = X ($e^{j\omega}$)

 $x (n - m) = e^{-j\omega m} X(e^{j\omega})$

 $x (n + m) = e^{j\omega m} X(e^{j\omega})$

This relation means that if a signal shifted in time domain by m samples, its magnitude spectrum remains unchanged.

(4M)

Proof

By definition of Fourier transform

$$X (e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$x (n-m) = \sum_{n=-\infty}^{\infty} x(n-m)e^{-j\omega n}$$

$$= \sum_{p=-\infty}^{\infty} x(p)e^{-j\omega(m+p)}$$

$$= \sum_{p=-\infty}^{\infty} x(p)e^{-j\omega m}e^{-j\omega p}$$

$$= e^{-j\omega m} \sum_{p=-\infty}^{\infty} x(p) e^{-j\omega p}$$

$$= e^{-j\omega m} \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$$

$$x (n-m) = e^{-j\omega m} X(e^{j\omega})$$
DTFT (4M)

Convolution theorem of DTFT

If DTFT of x1 (n) = X1 ($e^{j\omega}$)

DTFT of x2 (n) = X2 ($e^{j\omega}$)

$$x_{1} (n) * x_{1} (n) = X_{1} (e^{j\omega}) X_{1} (e^{j\omega})$$

$$x_{1} (n) * x_{1} (n) = \sum_{m=-\infty}^{\infty} x_{1} (m) x_{1} (n - m)$$
The Fourier transform of the convolution of x1 (n) and x2 (n) is equal to the product of X1 (e^{j\omega})
and X2 (e^{j\omega}). It means that if we convolve two signals in time domain, it is equivalent to
multiplying their spectra in frequency domain.
Proof
By the definition of Fourier transform,

$$X_{1} (e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_{1}(n)e^{-j\omega n}$$

$$X_{2} (e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_{2}(n)e^{-j\omega n}$$

$$x_{1} (n) * x_{1} (n) = \sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} [x_{1}(n) * x_{1}(n)]e^{-j\omega n}$$

$$x_{1} (n) * x_{1} (n) = \sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} [x_{1}(m) * x_{1}(n - m)]e^{-j\omega n}e^{-j\omega m}e^{j\omega m}$$

$$x_{1} (n) * x_{1} (n) = \sum_{n=-\infty}^{\infty} x_{1}(m)e^{-j\omega m} \sum_{n=-\infty}^{\infty} [x_{1}(n - m)]e^{-j\omega(n-m)}$$

$$x_{1} (n) * x_{1} (n) = \sum_{m=-\infty}^{\infty} x_{1}(m)e^{-j\omega m} \sum_{n=-\infty}^{\infty} [x_{1}(p)]e^{-j\omega p}$$

$$x_{1} (n) * x_{1} (n) = X_{1} (e^{j\omega}) X_{1} (e^{j\omega})$$
Differentiation in frequency (5M)

If DTFT of x (n) = X (ej ω), then

n x (n) =
$$j \frac{d}{d\omega} X(e^{j\omega})$$

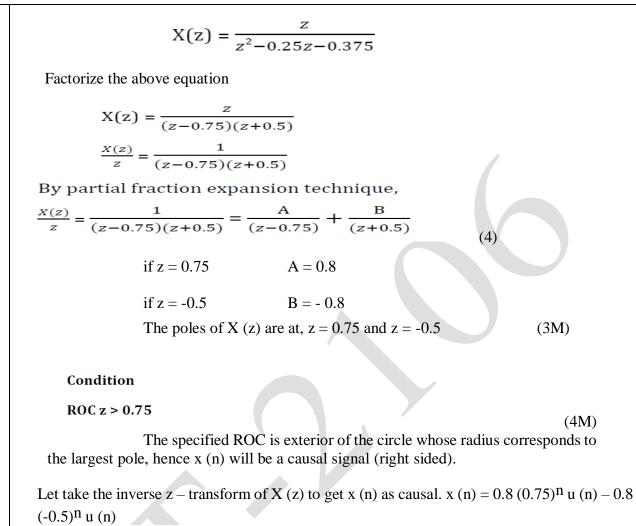
Proof

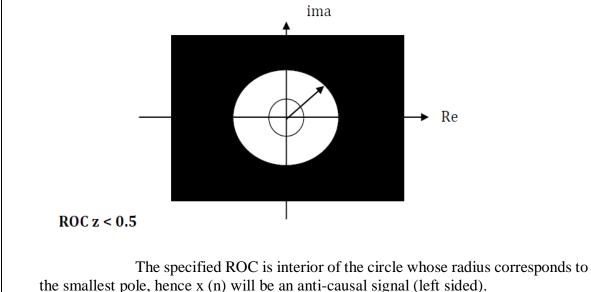
By the definition of Fourier transform,

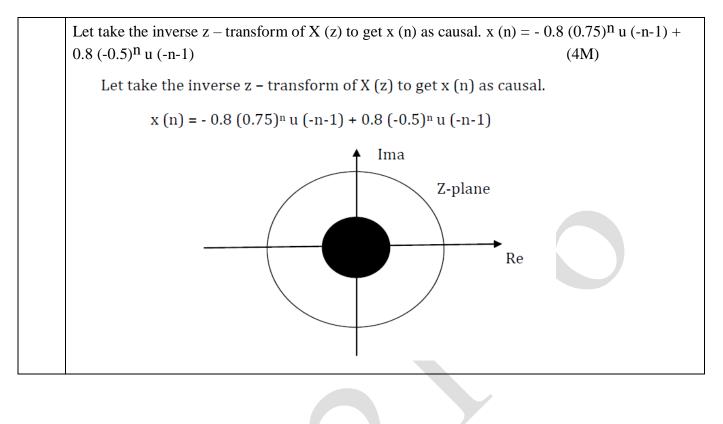
$$X(e^{j\omega}) = n x (n) = \sum_{n=-\infty}^{\infty} nx(n)e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} nx(n)[J X(-j)e^{-j\omega n}]$$

$$= j \sum_{n=-\infty}^{\infty} x(n)[-j n e^{-j\omega n}]$$

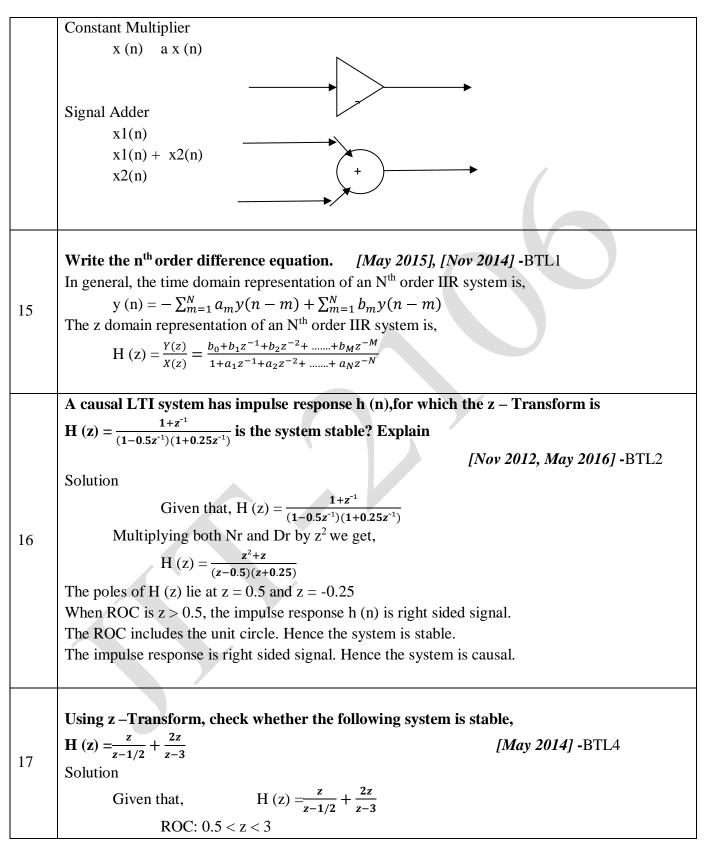

$$= j \sum_{n=-\infty}^{\infty} x(n)[e^{-j\omega n}]$$


$$= j \frac{d}{d\omega} \sum_{n=-\infty}^{\infty} x(n)[e^{-j\omega n}]$$


$$nx(n) = j \frac{d}{d\omega} X(e^{j\omega})$$
Time reversal property
If DTFT transform of x (n) = X (e^{j\omega})
$$x(-n) = X (e^{-j\omega n})$$
Proof
By definition of z - transform
X(z) = $\sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$

$$= \sum_{n=-\infty}^{\infty} x(-n)e^{-j\omega n} = \sum_{p=-\infty}^{\infty} x(p)e^{-j\omega n^{p}}$$

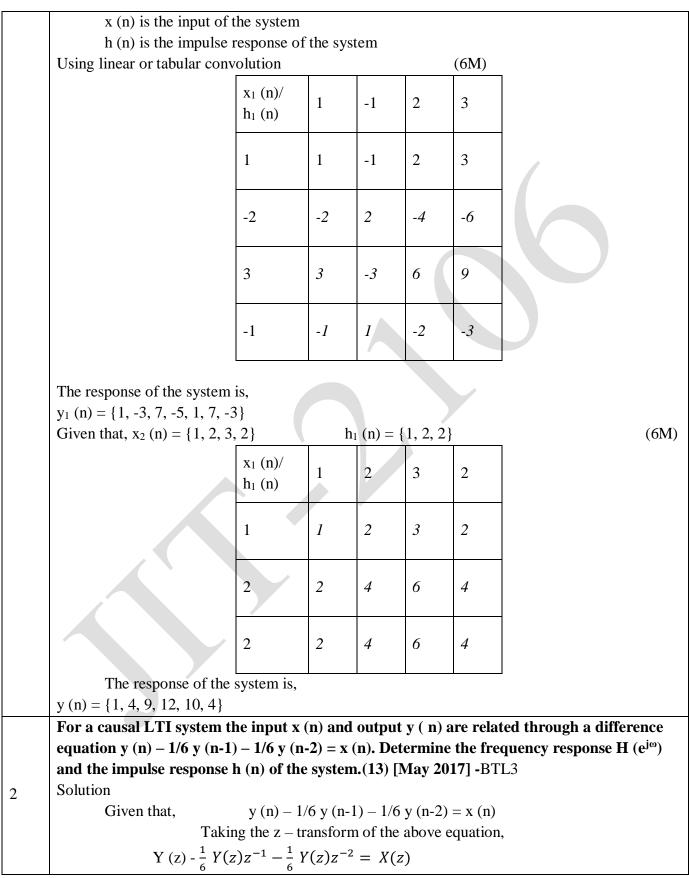
$$= \sum_{p=-\infty}^{\infty} x(n)(e^{-j\omega n})^{-p}$$
X(z) = X (e^{-j\omega n})
Find inverse z - Transform of X(z)
X(z) = $\frac{z^{-1}}{1-0.25z^{-1}-0.375z^{-2}}$
For (i) ROC:z > 0.75 and
z < 0.5 (15 marks) [Nov 2014]-BTL3
Solution
Given that,
X(z) = $\frac{z^{-1}}{1-0.25z^{-1}-0.375z^{-2}}$
Multiplying both side on z² we get,

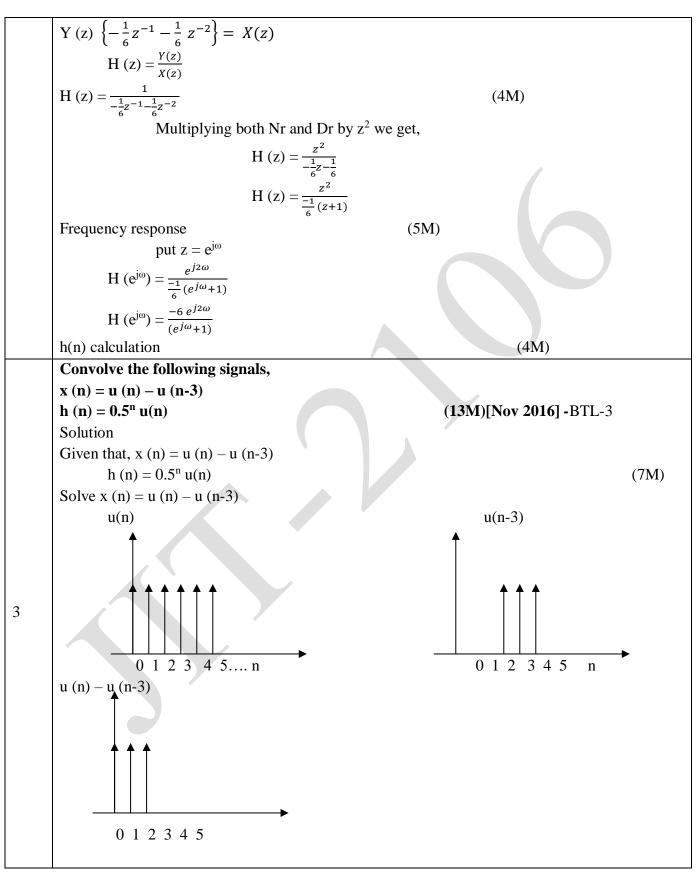


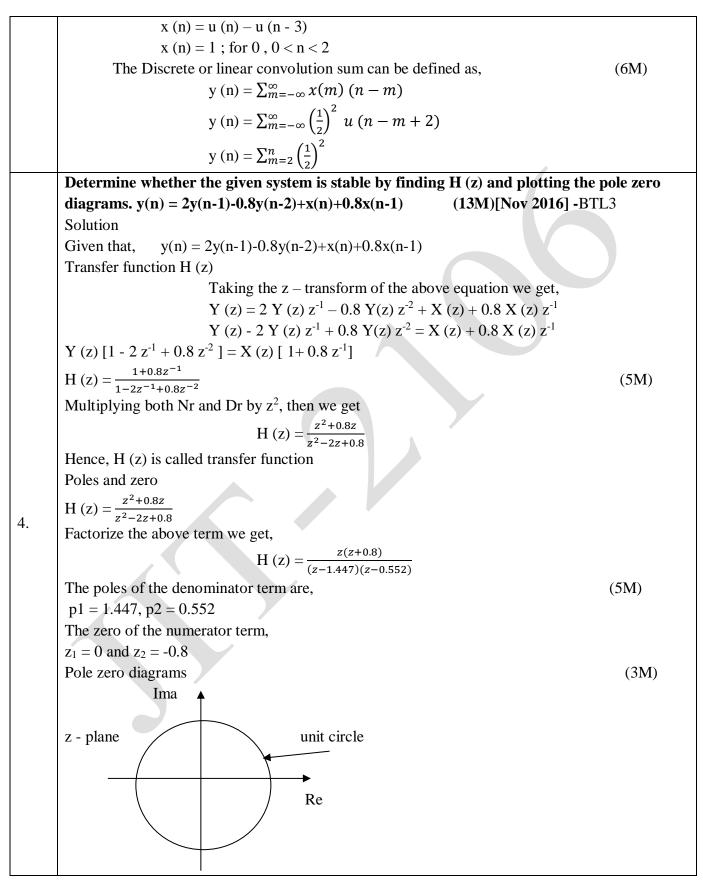
	UNIT V- LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS		
	llse response – Difference equations-Convolution sum- Discrete Fourier Transform and Z		
	sform Analysis of Recursive & Non-Recursive systems-DT systems connected in series and		
paral	parallel. PART A		
Q.N	Questions		
0			
	Determine the Z-Transform of the following two signals. Note that the Z-Transform for both have the same algebraic expression and differ only in the ROC.(May 2019)-BTL3		
	i. $x(n) = \left(\frac{1}{2}\right)^n u(n)$		
	ii. $x(n) = -\left(\frac{1}{2}\right)^n u(-n-1)$		
	Solution		
1.	$X(Z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$		
	$X(Z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}Z^{-1}\right)^n$		
	X (Z) = $\frac{z}{z - \frac{1}{2}}$; Z > $\frac{1}{2}$		
	X (Z) = $\frac{z}{z - \frac{1}{2}}$; Z < $\frac{1}{2}$		
	Find the initial and final value of the function,(May 2019)-BTL1		
	$X(z) = \frac{1+z^{-1}}{1-0.25z^{-2}}$		
	Solution		
	Initial value		
2.	$\mathbf{x}\left(0\right) = \lim_{z \to \infty} X(z)$		
	$x(0) = \lim_{z \to \infty} \frac{1 + z^{-1}}{1 - 0.25z^{-2}}$		
	x (0) = 1		
	Final value theorem		
	$\mathbf{x}(\infty) = \lim_{z \to \infty} (1 + z^{-1}) X(z)$		
	$x(\infty) = 0$		

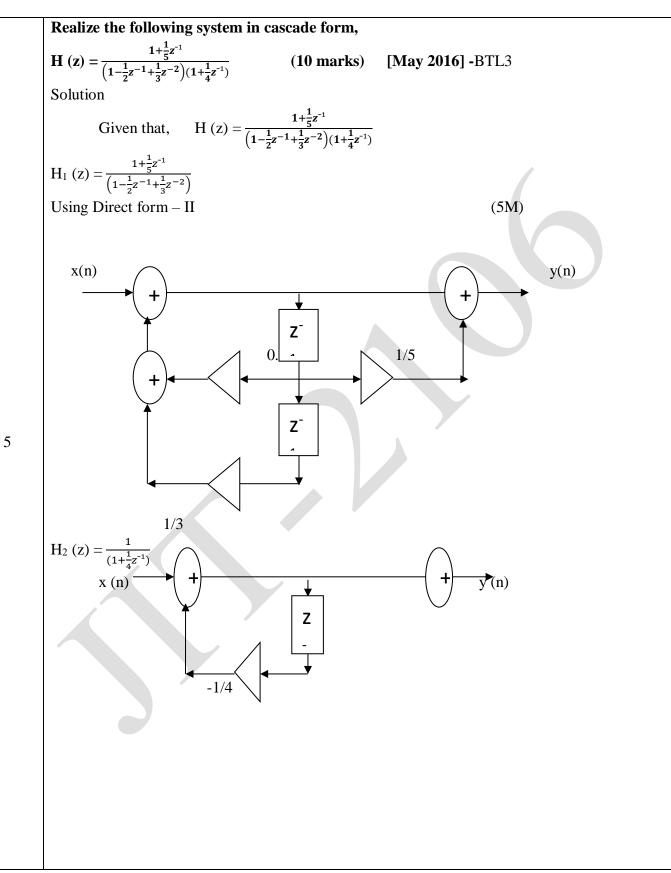
	The input x (n) and output y (n) of a discrete time LTI system is given as $x(n) = \{1, 2, 3, 4\}$ and $y(n) =$
	$\{0, 1, 2, 3, 4\}.$ Find the impulse response h (n). (Nov 2018)-BTL3
3	$h(n) = \frac{y(n)}{x(n)}$
	$X(z) = 1 + 2 z^{-1} + 3 z^{-2} + 4 z^{-3}$
	$Y(z) = z^{-1} + 2z^{-2} + 3z^{-3} + 4z^{-4}$
	Find the difference equation representation of the system.(Nov 2018)-BTL3
	H (z) = $\frac{z^{-1}}{z^{-2}+2z^{-1}+4}$.
	$z^{-2+2z^{-1}+4}$
4.	Solution
	Difference equation,
	y (n-2) + 2 y (n-1) + 4 y (n) = x (n-1)
	Write the condition for stability of a DT-LTI system with respect to the Position of poles.
	(Nov 2017)-BTL1
	Solution
	LTI system is stable,
5	\sum^{∞} $ h(\mathbf{n}) < \infty$ Absolutely integral.
	$\frac{n=-\infty}{ROC \text{ of } H(s)}$
	An LTI system is stable if and only if ROC of the system function H (s) include $j\omega$ axis.
	Realize the difference equation $y(n) = x(n) - 3x(n-1)$ in direct form -1 (Nov 2017)-BTL6
	y(n) = x(n) - 3x(n - 1)
	$x(n) \longrightarrow y(n)$
6	
	Z [_]
	↓ -3
	What is the personny and sufficient condition on impulse response for Stability of a correct TI
	What is the necessary and sufficient condition on impulse response for Stability of a causalLTI system? [May 2017] -BTL1
7	(or)
	In terms of ROC, state the condition for an LTIDT system to be Causal and stable. [Nov 2014]R13
	Define stability in LTI system. [May 2015]
	A stable discrete time system the ROC of impulse response should include the unit circle.

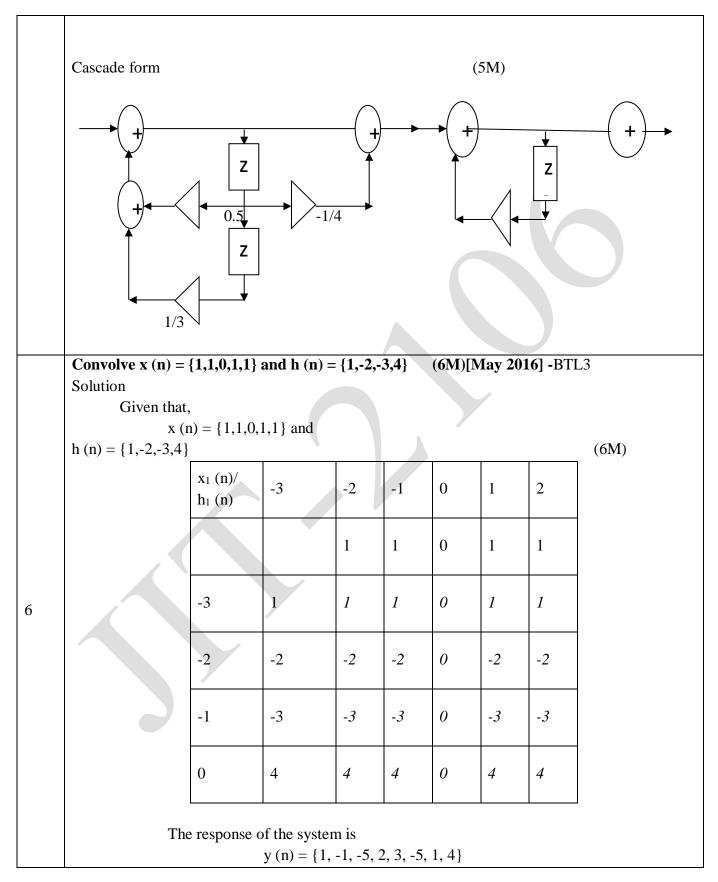
	Condition for stability					
	On combining the condition for location of poles a	nd the R	OC, for a	stable LTI d	liscrete time	
	system the poles should lie inside the unit circle as	nd the u	nit circle	should be in	cluded in ROC of	
	impulse response of the system.					
	What is the difference between recursive and non-re	ecursive	systems?	[May 2017]		
		Distinguish between recursive and non – recursive systems.[Nov 2015]-BTL2				
	Recursive systems	Non	Dooursiy	e systems		
	A system whose output y (n) at time n		A system whose output does not depend on past output but depends only on the present			
8	depends on any number of past output values as well as present and past inputs is called	-		-	ecursive system.	
	recursive system.	und pu	st input is		cedisive system.	
	IIR system are called recursive system	n FIR system are called non-recursive		ecursive system		
	$y(n) = y(n-1), y(n-2), \dots, x(n), x(n-1), \dots$	y (n) =	x (n), x ((n-1)		
		ſ				
9	Define the non-recursive system.May 2010Non recursive system.A system whose output does not depend on past our input is called non-recursive system.FIR system are called non-recursive system Examp	tput but	depends of		resent and past	
	Convolve following sequence x (n)={1,2,3} h (n)={1,1			$\frac{(1-1)}{2018, Nov 2}$	<i>016-</i> BTL3	
	Solution	, ,				
	Given that, $x(n) = \{1, 2, 3\} \& h(n) = \{1, 1, 2\}$					
	x (n)/	1	1	b	7	
	h(n)	1	1	2		
		1	1	2	-	
10		1	1	2		
	2	2	2	4	-	
	3	3	3	6	-	
			1	I		
	$y(n) = \{1, 3, 7, 7, 6\}$					

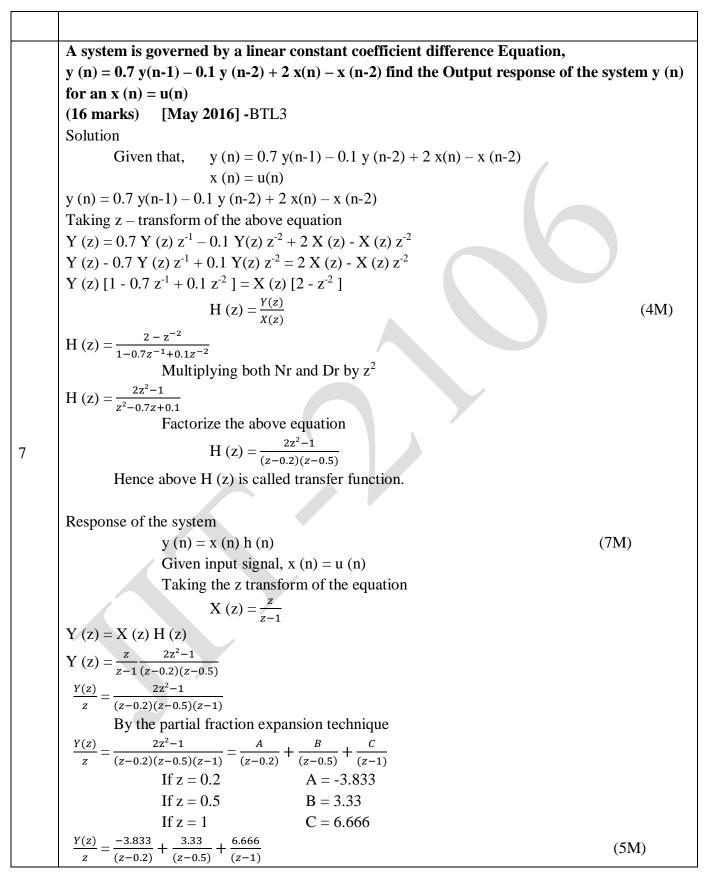

11	Given the system function H (z) = 2+3z ⁻¹ +4z ⁻³ -5z ⁻⁴ . Determine impulse Response h (n). [Nov 2016]R13-BTL2 Solution Given that, H (z) = 2+3z ⁻¹ +4z ⁻³ -5z ⁻⁴ Impulse response h(n) H (z) = 2+3z ⁻¹ +4z ⁻³ -5z ⁻⁴ Take the inverse z transform h (n) = {2, 3, 4, -5}
12	From discrete convolution sum, find the step response in terms of h (n). [May 2016]R13-BTL3 Solution The Discrete or linear convolution sum can be defined as, $X(z) = \sum_{m=-\infty}^{\infty} x1(n) x2(n-m)$ In terms of h (n)? H (z) = $\sum_{m=-\infty}^{\infty} h1(n) h2(n-m)$
13	Convolve the following signals, $x(n) = \{1,1,3\}$ and $h(n) = \{1,4,-1\}$ [Nov 2015] - BTL3 Solution Given that, $x(n) = \{1,1,3\}$ and $h(n) = \{1,4,-1\}$ $\boxed{x(n)/1 + 4 - 1 - 1}$ $\frac{x(n)/1 + 4 - 1}{1 + 4 - 1}$ $\boxed{x(n)/1 + 4 - 1}$ $y(n) = \{1, 5, 6, 11, -3\}$ $y(n) = \{1, 5, 6, 11, -3\}$
14	Name the basic building blocks used in LTIDT system block diagram.[May 2015] -BTL1 unit delay $x(n)$

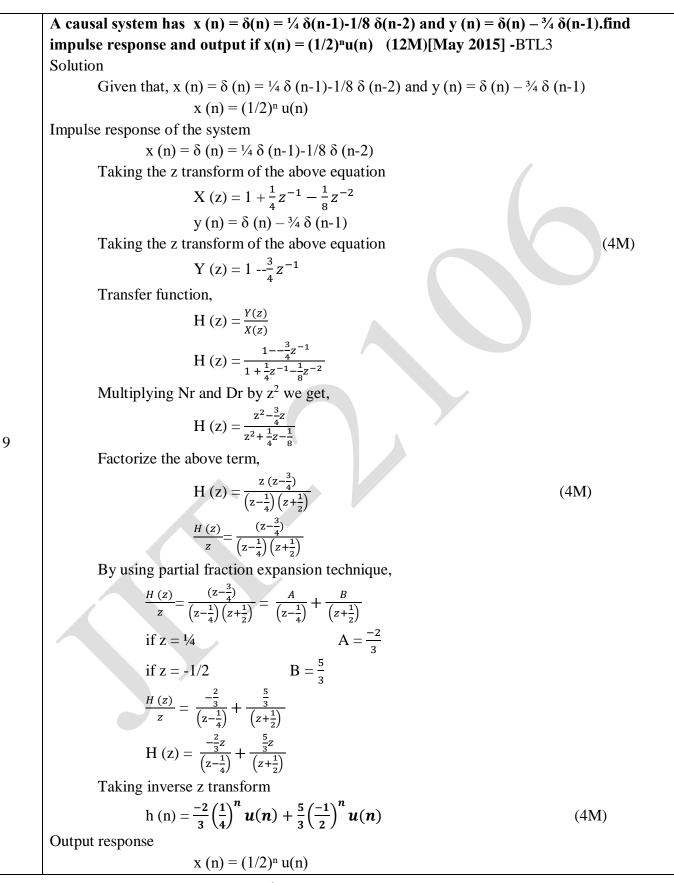


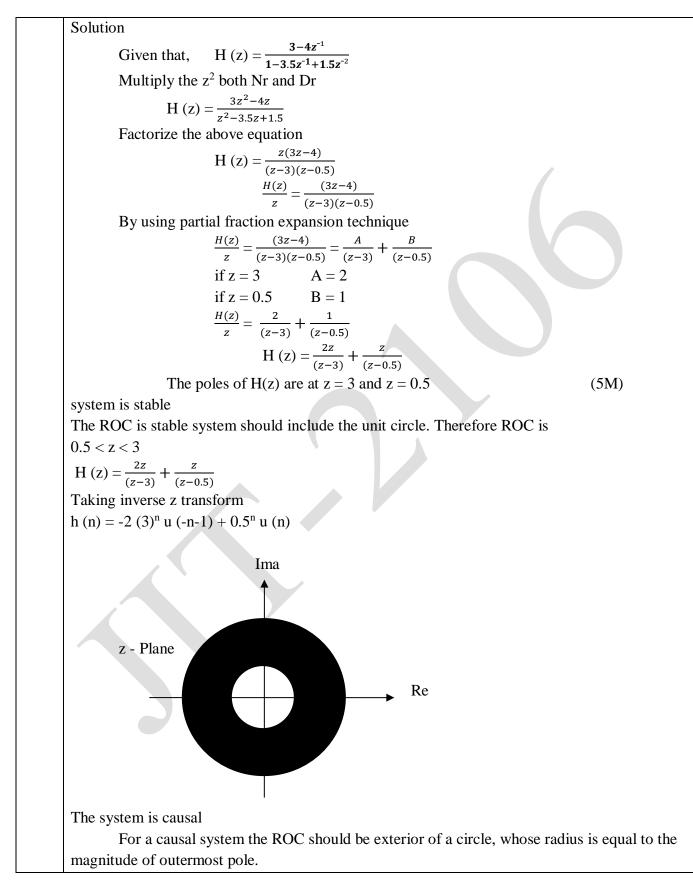

	The impulse response h (n) is two sided signal. Since $z > 0.5$, the term with pole $z = 0.5$
	corresponds to right sided signal. Since $z < 3$, term with pole $z = 3$ corresponds to left sided
	signal.
	H (z) = $\frac{z}{z-1/2} + \frac{2z}{z-3}$
	Take inverse z transform,
	h (n) = $(0.5)^n u(n) - 2 (3)^n u(-n-1)$
	Here the ROC includes the unit circle but one of the pole lie outside the unit circle and
	hence the system is unstable.
	Define convolution sum with its equation.[Nov 2013] -BTL1
	Convolution sum
	The Discrete or linear convolution sum can be defined as,
	$x_3(n) = \sum_{m=-\infty}^{\infty} x 1(n) x 2(n-m)$ (or)
	$x_3 (n) = \sum_{m=-\infty}^{\infty} x^2(n) x^1(n-m)$
	Where,
18	x_3 (n) is the sequence obtained by convolving x_1 (n) and x_2 (n)
	m is a dummy variable
	The convolution relation can be expressed as, (x) = (x) +
	$x_3(n) = x_1(n) * x_2(n) = x_2(n) * x_1(n)$
	Where, * indicates convolution operation.
	If X(ω) is the DTFT of x (n), what is the DTFT of x* (-n) [May 2013] -BTL1
	Solution
	By time reversal property,
	$x(n) = X(e^{j\omega})$, then
19	$x(-n) = X(e^{j\omega})$
	By conjugation property,
	$x(n) = X(e^{j\omega}),$ then
	$x^{*}(n) = X^{*}(e^{-j\omega})$
	$x^{*}(-n) = X^{*}(e^{j\omega})$
	Give the impulse response of a linear time invariant as $h(n) = \sin \pi n$. Check whether the system is
	stable or not. [Nov 2014]-BTL2
20	Solution
20	
	Given that, $h(n) = \sin \pi n$
	The condition for the stability of a system is,

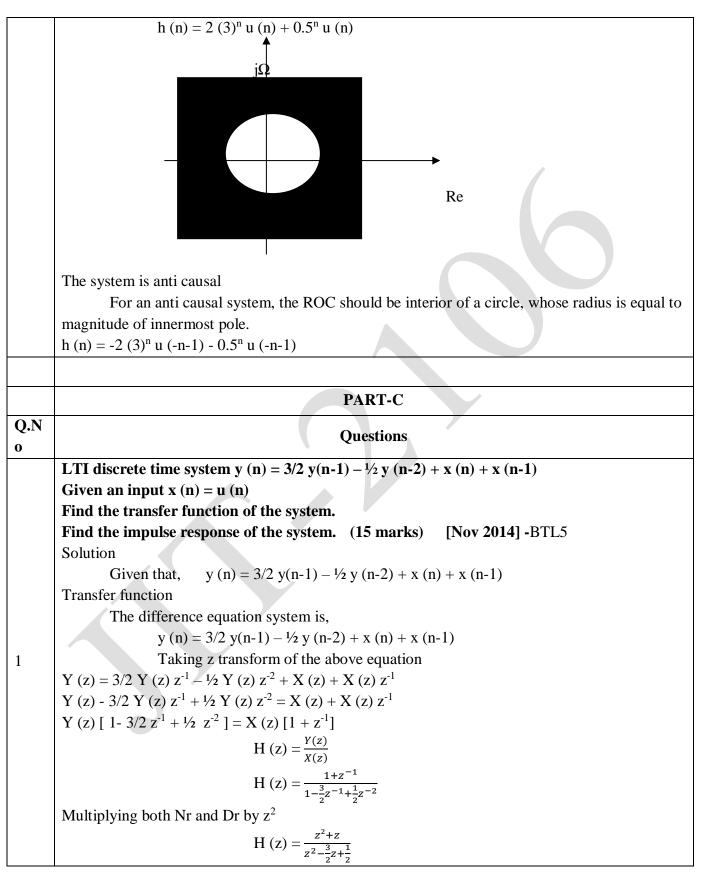

	$\sum_{n=1}^{\infty} h(n) < \infty$
	$n=-\infty$ $\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \sin \pi n $ $n=-\infty$ Sin θ lies between -1 and 1 for all θ . The output is bounded for any value of input and therefore the given system is stable.
21	Convolve the following two sequences: x (n) = {1,1,1,1,} h (n) = {3,2}[Nov 2012, May 2016] – BTL3 Solution Given that, x (n) = {1, 1, 1, 1, } and h (n) = {3, 2} $\overline{x(n)}/$ 1 1 1 3 3 3 3 2 2 2 2 $y(n) = {3, 5, 5, 5, 2}$ $y(n) = {3, 5, 5, 5, 2}$
22	List the steps involved in linear convolution. [May 2015]R08-BTL1 • Procedure • change of index • folding • shifting • multiplication • summation
23	Find the overall impulse response $h(n)$ when two systems $h_1(n) = u(n)$ $h_2(n) = \delta(n) + 2\delta(n-1)$ are in series.[May 2014]R08-BTL3SolutionGiven that, $h_1(n) = u(n)$ and $h_2(n) = \delta(n) + 2\delta(n-1)$ Let $h(n)$ be the impulse response of the cascade system. Now $h(n)$ is given byconvolution of $h_1(n)$ and $h_2(n)$. $h(n) = h_1(n) * h_2(n)$


	$-u(n) * \{\delta(n) \pm 2\delta(n, 1)\}$			
	$= u (n) * \{\delta (n) + 2\delta (n-1)\}$ Note : x (n) * δ (n) = x (n)			
	Note: $x(n) + \delta(n) = x(n)$ $x(n) + \delta(n-1) = x(n-1)$			
	x(n) = 0(n-1) - x(n-1)			
	$= u(n) * \delta(n) + 2 u(n) \delta(n-1)$			
	h (n) = u (n) + 2 u (n-1) What is the relationship between Fourier Transform and DFT? –BTL2			
	what is the relationship between Fourier Transform and DFT: -DTE2			
	Fourier TransformDFT			
24	Obtained by performing sampling			
	• Gives the frequency information operation in both the time and			
	for an aperiodic signal frequency spectrum			
	Continuous frequency spectrum Discrete frequency spectrum			
	State the properties of DFT? -BTL1			
	• Periodicity			
	Linearity and symmetry			
	Multiplication of two DFTs			
25	Circular convolution			
	• Time reversal			
	Circular time shift and frequency shift			
	Complex conjugate			
	Circular correlation			
	PART B			
Q,N	Questions			
0	Questions			
	Perform convolution to find the response of the system $h_1(n)$ and $h_2(n)$ for the input			
	sequences x_1 (n) and x_2 (n) respectively.			
	$\mathbf{x}_{1} (\mathbf{n}) = \{1, -1, 2, 3\} \qquad \mathbf{h}_{1} (\mathbf{n}) = \{1, -2, 3, -1\}$			
1	$ x_2 (n) = \{1, 2, 3, 2\} $ $h_1 (n) = \{1, 2, 2\} $ [May 2017] -BTL3 (13M) Solution			
	Solution Given that, x_1 (n) = {1, -1, 2,3} h_1 (n) = {1, -2, 3, -1}			
	$\begin{array}{l} \text{Given that, } x_1(n) = \{1, -1, 2, 3\} \\ \text{y}(n) = x(n) * h(n) \end{array}$			
	$\begin{array}{c} y(n) = x(n) & n(n) \\ \text{Where} \end{array}$			
	y(n) is the response of the system			

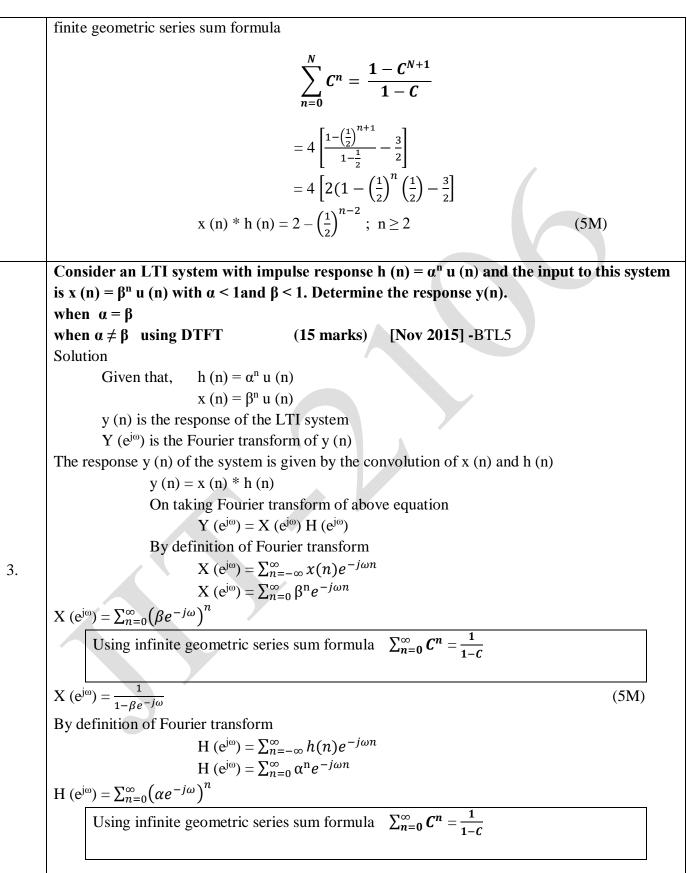








	$Y(z) = \frac{-3.833z}{(z-0.2)} + \frac{3.33z}{(z-0.5)} + \frac{6.666z}{(z-1)}$	
	Taking the inverse z $-$ transform	
	y (n) = $-3.833 (0.2)^n u (n) + 3.33 (0.5)^n u (n) + 6.66 (1)^n u (n)$	
	$y(n) = 5.055(0.2)^{-1} u(n) + 5.55(0.5)^{-1} u(n) + 0.00(1)^{-1} u(n)$	
	Determine the impulse response and step response	
	y(n) + y(n-1)-2y(n-2) = x (n-1) + 2 x (n-2) (10 marks) [May 2015] -BTL-3	
	Solution	
	Given that, $y(n) + y(n-1)-2y(n-2) = x(n-1) + 2x(n-2)$	
	Impulse response	
	The difference equation system is,	
	y(n) + y(n-1)-2y(n-2) = x(n-1) + 2x(n-2)	
	Taking z transform of the above equation	
	$(z) + Y(z) z^{-1} - 2 Y(z) z^{-2} = X(z) z^{-1} + 2 X(z) z^{-2}$	
	Y (z) [$1+z^{-1}-2z^{-2}$] = X (z) [$z^{-1}+2z^{-2}$]	
	$H(z) = \frac{Y(z)}{X(z)}$	
	H (z) = $\frac{z^{-1} + 2z^{-2}}{1 + z^{-1} - 2z^{-2}}$	(5M)
	Multiplying both Nr and Dr by z^2	
	H (z) = $\frac{z+2}{z^2+z-2}$	
	Factorize the above term we get	
8	H (z) = $\frac{z+2}{(z-1)(z+2)}$	
	$H(z) = \frac{1}{(z-1)}$	
	Hence H (z) is called transfer function	
	Taking the inverse z transform	
	h(t) = u(n)	
	Step response	
	Input, $x(n) = u(n)$	(5M)
	$X(z) = \frac{z}{(z-1)}$	
	Output response,	
	Y(z) = X(z) H(z)	
	Y (z) = $\frac{z}{(z-1)} \frac{1}{(z-1)}$	
	Y (z) = $\frac{z}{(z-1)^2}$	
	Taking the inverse z transform we get	
	$\mathbf{y}\left(\mathbf{n}\right)=\mathbf{n}\;\mathbf{u}\left(\mathbf{n}\right)$	



	$\mathbf{V}(\mathbf{z}) = \mathbf{Z}$
	$X(z) = \frac{z}{z - \frac{1}{2}}$
	Y(z) = X(z) Y(z)
	$Y(z) = \frac{z}{z - \frac{1}{2}} \frac{z (z - \frac{3}{4})}{(z - \frac{1}{4})(z + \frac{1}{2})}$
	$\frac{Y(z)}{z} = \frac{z (z - \frac{3}{4})}{(z - \frac{1}{2})(z - \frac{1}{2})(z + \frac{1}{2})}$
	$\frac{1}{z} - \frac{1}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)\left(z + \frac{1}{2}\right)}$
	By using partial fraction expansion technique,
	$\frac{Y(z)}{z} = \frac{z(z-\frac{3}{4})}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)\left(z+\frac{1}{2}\right)} = \frac{A}{\left(z-\frac{1}{4}\right)} + \frac{B}{\left(z-\frac{1}{2}\right)} + \frac{C}{\left(z+\frac{1}{2}\right)}$
	If $z = \frac{1}{4}$ A = 1 If $z = \frac{1}{2}$ B = $\frac{-1}{2}$
	If $z = \frac{1}{2}$ $B = \frac{-1}{2}$
	If $z = -\frac{1}{2}$ B = $\frac{10}{2}$
	3
	$\frac{Y(z)}{z} = \frac{1}{\left(z - \frac{1}{4}\right)} - \frac{\frac{1}{2}}{\left(z - \frac{1}{2}\right)} + \frac{\frac{10}{3}}{\left(z + \frac{1}{2}\right)}$
	$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
	$Y(z) = \frac{z}{(z-\frac{1}{4})} - \frac{\frac{1}{2}z}{(z-\frac{1}{2})} + \frac{\frac{10}{3}z}{(z+\frac{1}{2})}$
	The output $y(n)$ is obtained by using inverse z transform,
	y (n) = $\left(\frac{1}{4}\right)^n u(n) + \frac{1}{2} \left(\frac{1}{2}\right)^n u(n) + \frac{10}{3} \left(\frac{-1}{2}\right)^n$
	Determine the range of value of the parameter 'a' for which the LTI system with impulse
	response h (n) = $a^n u$ (n) is stable. (6 marks) [May 2013] -BTL-3
	Solution
	Given that,
	The condition to be satisfied for the stability of the system is, $\sum_{i=1}^{\infty} f_i(x_i) = 1$
	$\sum_{n=-\infty}^{\infty} h(n) < \infty$
10	$h(n) = a^{n} u(n)$ $\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=0}^{\infty} a^{n} $ (3M)
	$\sum_{n=-\infty} n(n) - \sum_{n=0} n(n) $ The summation of infinite terms in the above equation converges if,
	0 < a < 1. Hence by using infinite geometric series formula,
	$\sum_{n=-\infty}^{\infty} h(n) = \frac{1}{1- a } $ (3M)
	- 101
	Therefore, the constant is stable if $a < 1$
	A LTI system is described by the system function. Specify the ROC Of
	H (z) = $\frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$ and determine h (n) for the following
	Conditions:
14	The system is stable
	The system is causal
	The system is anti-causal. (10 marks) [Nov 2012, May 2016] -BTL-5
L	C-JEPPIAAR/ECE/Mrs.S.MARY CYNTHIA/II nd Yr/SEM 03/EC8352/ SIGNALS AND SYSTEMS /UNIT 1-

	H (z) = $\frac{z^2 + z}{z^2 - 1.5z + 0.5}$	
	Factorize the above term we get	
		-
	H (z) = $\frac{z(z+1)}{(z-1)(z-0.5)}$ (*	7)
	Hence H (z) is called transfer function	
	By using partial fraction expansion technique,	
	$\frac{H(z)}{z} = \frac{(z+1)}{(z-1)(z-0.5)} = \frac{A}{(z-1)} + \frac{B}{(z-0.5)}$	
	$ \begin{array}{c} z & (z-1)(z-0.5) & (z-1) & (z-0.5) \\ \text{If } z = 1 & A = 4 \end{array} $	
	$H = \frac{1}{2}$ $H = \frac{1}{2}$ $H = -3$	
		(7)
	$\frac{H(z)}{z} = \frac{4}{(z-1)} - \frac{3}{(z-0.5)}$	(5)
	H (z) = $\frac{4z}{(z-1)} - \frac{3z}{(z-0.5)}$	
	$\begin{array}{c} (z-1) & (z-0.5) \\ & \text{Taking the inverse z transform} \end{array}$	
	h (n) = 4 u (n) – 3 (0.5) ⁿ u (n) (3)	
	Convolve the following signals: $x(n) = (1/2)^{n-2} u(n-2)$ and $h(n) = u(n+2)$	
	(15 marks) [Nov 2015] $R13$ BTL3	
	Solution	
	Given that, : $x(n) = (1/2)^{n-2} u(n-2)$ and $h(n) = u(n+2)$	
	$x(n) = \left(\frac{1}{2}\right)^{n-2} u(n-2)$	
	$x(n) = \left(\frac{1}{2}\right)^{n-2}; n \ge 2$	
	$x (m) = \left(\frac{1}{2}\right)^{m-2} u(n-2)$	
	$x(m) = {\binom{1}{2}}^{m-2}; m \ge 2$	
	$x(m) = (\frac{1}{2})$; $m \ge 2$ h (n) = u (n+2) = 1; n \ge -2	
	=0; n < -2	
2.	$h(m) = u(m+2) = 1; m \ge -2$	
	= 0 : m < -2	(5M)
	The Discrete or linear convolution sum can be defined as,	(0111)
	$x (n) * h (n) = \sum_{m=-\infty}^{\infty} x(m) h(n-m)$	
	$x (n) * h (n) = \sum_{m=-\infty}^{\infty} \left(\frac{1}{2}\right)^{m-2} u(n-m+2)$	
	$=\sum_{m=2}^{n}\left(\frac{1}{2}\right)^{m}\left(\frac{1}{2}\right)^{-2}$	
	$=\left(\frac{1}{2}\right)^{-2}\sum_{m=2}^{n}\left(\frac{1}{2}\right)^{m}$	
	$= \left(\frac{1}{2}\right)^{-2} \sum_{m=0}^{n} \left(\frac{1}{2}\right)^m - \left(\frac{1}{2}\right)^0 - \left(\frac{1}{2}\right)^1$	
	$= 2^{2} \sum_{m=0}^{n} \left(\frac{1}{2}\right)^{m} - 1 - \left(\frac{1}{2}\right)^{1}$	(5M)

$$\begin{array}{l} H\left(e^{j\omega}\right) = \frac{1}{1-ae^{-j\omega}} \\ Y\left(e^{j\omega}\right) = \frac{1}{1-ae^{-j\omega}} \frac{1}{1-ae^{-j\omega}} \\ Y\left(e^{j\omega}\right) = \frac{e^{j\omega}e^{j\omega}}{(e^{j\omega}-\beta)(e^{j\omega}-\alpha)} \end{array} \\ Condition \\ \alpha = \beta \\ Y\left(e^{j\omega}\right) = \frac{e^{j\omega}e^{j\omega}}{(e^{j\omega}-\beta)^2} \\ \end{array} \\ \begin{array}{l} By \text{ partial fraction expansion technique} \\ \frac{Y\left(e^{j\omega}\right)}{e^{j\omega}} = \frac{e^{j\omega}}{(e^{j\omega}-\beta)^2} \\ \frac{Y\left(e^{j\omega}\right)}{e^{j\omega}} = \frac{e^{j\omega}}{(e^{j\omega}-\beta)^2} \\ \end{array} \\ \begin{array}{l} If e^{j\omega} = \beta \\ B = 1 \\ \frac{Y\left(e^{j\omega}\right)}{e^{j\omega}} = \frac{\beta}{(e^{j\omega}-\beta)^2} + \frac{1}{(e^{j\omega}-\beta)} \\ B = 1 \\ \frac{Y\left(e^{j\omega}\right)}{e^{j\omega}} = \frac{\beta}{(e^{j\omega}-\beta)^2} + \frac{1}{(e^{j\omega}-\beta)} \\ F\left(e^{j\omega}-\beta\right) \\ F\left(e^{j\omega}\right) = \frac{\beta e^{j\omega}}{(e^{j\omega}-\beta)^2} + \frac{e^{j\omega}}{(e^{j\omega}-\beta)} \\ The response y (n) is obtained by taking inverse Fourier transform, \\ y(n) = n \beta^n u (n) + \beta^n u (n) \end{array}$$
 (5M)

EC8392

DIGITAL ELECTRONICS

OBJECTIVES:

To present the Digital fundamentals, Boolean algebra and its applications in digital systems To familiarize with the design of various combinational digital circuits using logic gates

To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits

To explain the various semiconductor memories and related technology

To introduce the electronic circuits involved in the making of logic gates

UNIT I - DIGITAL FUNDAMENTALS

Number Systems – Decimal, Binary, Octal, Hexadecimal, 1_s and 2_s complements, Codes – Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map Minimization and Quine-McCluskey method of minimization.

UNIT II - COMBINATIONAL CIRCUIT DESIGN

Design of Half and Full Adders, Half and Full Subtractors, Binary Parallel Adder – Carry look ahead Adder, BCD Adder, Multiplexer, Demultiplexer, Magnitude Comparator, Decoder, Encoder, Priority Encoder.

UNIT III - SYNCHRONOUS SEQUENTIAL CIRCUITS

Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF, Analysis and design of clocked sequential circuits – Design - Moore/Mealy models, state minimization, state assignment, circuit implementation – Design of Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register.

UNIT IV - ASYNCHRONOUS SEQUENTIAL CIRCUITS

Stable and Unstable states, output specifications, cycles and races, state reduction, race free assignments, Hazards, Essential Hazards, Pulse mode sequential circuits, Design of Hazard free circuits.

UNIT V-MEMORY DEVICES AND DIGITAL INTEGRATED CIRCUITS

Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM Programmable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using PLA, PAL.Digital integrated circuits: Logic levels, propagation delay, power dissipation, fan-out and fan- in, noise margin, logic families and their characteristics-RTL, TTL, ECL, CMOS TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course:

Use digital electronics in the present contemporary world

Design various combinational digital circuits using logic gates

Do the analysis and design procedures for synchronous and asynchronous sequential circuits

Use the semiconductor memories and related technology

Use electronic circuits involved in the design of logic gates

TEXT BOOKS:

1. M. Morris Mano and Michael D. Ciletti, -Digital Designl, 5th Edition, Pearson, 2014.

REFERENCES

- 1. Charles H.Roth. -Fundamentals of Logic Designl, 6th Edition, Thomson Learning, 2013.
- 2. Thomas L. Floyd, -Digital Fundamentalsl, 10th Edition, Pearson Education Inc, 2011
- 3. S.Salivahanan and S.Arivazhagan-Digital Electronicsl, Ist Edition, Vikas Publishing House pvt Ltd, 2012.
- 4. Anil K.Maini -Digital Electronics, Wiley, 2014.
- 5. A.Anand Kumar -Fundamentals of Digital Circuits^I, 4th Edition, PHI Learning Private Limited, 2016.
- 6. Soumitra Kumar Mandal Digital Electronicsl, McGraw Hill Education Private Limited, 2016.

JIT-JEPPIAAR/ECE/Ms.R.ANANTHI REETA/IInd Yr/SEM 03/EC8392/DIGITAL ELECTRONICS UNIT1-5/QB+Keys/Ver2.0

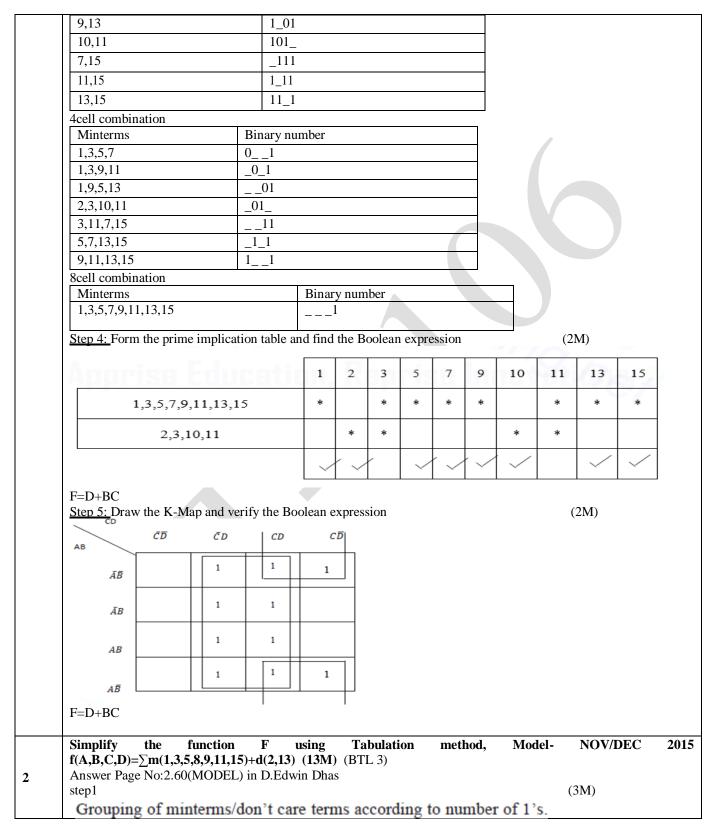
L T P C 3003

9

9

9

9


9

SUBJECT CODE: EC8392 YEAR/SEMESTER : II /03 SUBJECT NAME: DIGITAL ELECTRONICS SUBJECTHANDLER :MS.R.ANANTHI REETA **UNIT I - DIGITAL FUNDAMENTALS** Number Systems – Decimal, Binary, Octal, Hexadecimal, 1 s and 2 s complements, Codes – Binary, BCD, Excess 3, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map Minimization and Quine-McCluskey method of minimization. PART * A State Demorgan's Theorem.[April/May-2010,2011,May/June-2013, Nov/Dec- 2010](BTL1) De Morgan suggested two theorems that form important part of Boolean algebra. They are, 1. 1) The complement of a product is equal to the sum of the complements. (AB)' = A' + B'2) The complement of a sum term is equal to the product of the complements. (A + B)' = A'B'Why NAND and NOR gates are called Universal gates?(BTL - 1) NAND and NOR are the gates that can be used alone to generate remaining gates such as NOT, AND and OR. Thus, 2. with only any of the two gates, we can implement the logic circuit. Hence, they are called universal gates. What are called don't care conditions?(MAY/JUNE 2013)(BTL1) In some logic circuits certain input conditions never occur, therefore the Corresponding output never appears. In such 3. cases the output level is not defined, it can be either high or low. These output levels are indicated by 'X' or 'd' in the truth tables and are called don't care conditions or incompletely specified functions. Apply De-Morgan's theorem to [(A+B)+C] '.[May/June-2014] (BTL 3) 4. Given [(A+B)+C]' = (A+B)'.C' = (A'.B').C'[(A+B)+C]' = A'B'C'Convert 0.35 to equivalent hexadecimal number. [May/June-2014] (BTL 3) Given (0.35)₁₀ =0.35 x 16=5.60=0.60 x 16=9.60 5. =0.60 x 16=9.60 $(0.35)_{10} = (0.599)_{16}$ Convert Y=A+BC'+AB+A'BC into canonical form. [April/May-2015](BTL 3) Given 6. Y=A+BC'+AB+A'BC Y=ABC+ABC'+AB'C+AB'C'+A'BC'+A'BC Name the two canonical forms for Boolean Algebra.(BTL - 1) 7. Standard SOP and Standard POS forms Define 'min term' and 'max term'. [April/May-2015)(BTL 1) A product term containing all the variables of the function in either complemented or uncomplemented form is called a min term. 8. A sum term containing all the variables of the function in either complemented or uncomplemented form is called a max term. State the Associative Law of Boolean Algebra.(BTL - 1) Law 1 (The Associative Law of Addition) In the ORing of the several variables, the result is the same regardless of the grouping of the variables. For three variables, A ORed with B OR C is the same as A OR B Ored with C. i.e., A + (B + C) = (A + B) + C9. Law 2 (The Associative Law of Multiplication) It makes no difference in what order the variables are grouped when ANDing several variables. For three variables, A AND B ANDed with C is the same as A ANDed with B and C i.e., (AB)C = A(BC)

	sum of these minterms are given by (BTL 1) F= A'B'+A'B+AB'+AB
10.	A = A'(B'+B)+A(B'+B)(B'+B=1)
	= A'(1)+A(1)(A'+A=1)
	F=1
	Hence it is to be proved.
	Show that a positive logic NAND gate is a negative logic NOR gate. [Nov/Dec- 2009] (BTL 1)
	Truth table of NAND gate
	A B Y
	0 0 1
	0 1 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Truth table of positive logic NAND gate A B Y
	LOW LOW LOW
	LOW HIGH LOW
	HIGH LOW LOW
	HIGH HIGH HIGH
11.	TRUTH TABLE OF NOR GATE
	A B Y
	Truth table for positive logic NOR gate
	A B Y
	LOW LOW HIGH
	LOW HIGH HIGH
	HIGH LOW HIGH
	HIGH HIGH LOW
	What is the significance of high impedance state in tri-state gates? [Nov/Dec- 2010](BTL 1)
	High impedance state of a three-state gate provides a special feature not available in other gates.
12.	Because of this features a larger number of three state gate output can be connected with wires to form a common
	without endangering loading effects.
	Simplify the following Boolean Expression to a minimum number of literals.(BTL 3)
	(BC'+A'D)(AB'+CD')[Nov/Dec-2011]
13.	F = (BC' + A'D)(AB' + CD')
13.	=BC'AB'+BC'CD'+A'DAB'+A'DCD'(A.A'=0)
	= AB B'C' + BCC'D' + AA' B'D + A'CDD'

	Its states that the complement of a product is equal to the sum of the complements. $A^2D^2 = A^2 + D^2$
	A'B'=A'+B' Simplify the given Boolean Expression F=x'+xy+xz'+xy'z'.[Nov/Dec-2012] (BTL3)
	F = x' + xy + xz' + xy'z'
15.	= x'+x(y+z'+y'z') (A+A'B=A+B) = x'+y+z'+y'z'
	-x + y + z + yz = $x' + y + z'(1+y')$ (1+A'=1)
	F = x' + y + z'
16.	Implement the given function using NAND gates $F(x,y,z)=\Sigma m(0,6)$. [Nov/Dec- 2012] (BTL 3) F(x,y,z)=x'y'z'+xyz'
	State Distributive Law. [Nov/Dec-2013] (BTL 1)
	Distributive law of dot(.) over plus(+) is given by $a.(b+c) = a.b + a.c$
17.	Distributive law of dot(.) over $pus(+)$ is given by $a(0+c) = a(0+a)c$ Distributive law of $plus(+)$ over $dot(.)$ is given by
	a+b.c = (a+b).(a+c)
	What is a Logic gate? (BTL 1)
19	Logic gates are the basic elements that make up a digital system. The electronic gate is a circuit that is able to operate
10.	on a number of binary inputs in order to perform a particular logical function.
	What are the basic digital logic gates? (BTL 1) The three basic logic gates ere
10	The three basic logic gates are AND gate
19.	OR gate
	NOT gate
20	Which gates are called as the universal gates? What are its advantages? (BTL 1) The NAND and NOR gates are called as the universal gates. These gates are used to perform any type of logic
20.	
	application. What is a karnaugh map? State the limitations of karnaugh map.(BTL 1)
	A karnaugh map or k map is a pictorial form of truth table, in which the map diagram is made up of squares, with each
	squares representing one minterm of the function.
	LIMITATION:
21.	i) Generally it is limited to six variable map (i.e) more then six variable
	involving expression are not reduced.
	ii) The map method is restricted in its capability since they are useful for
	simplifying only Boolean expression represented in standard form.
	What are the methods adopted to reduce Boolean function? (BTL1)
	i) Karnaug map
22.	ii) Tabular method or Quine Mc-Cluskey method
	iii) Variable entered map technique.
	Prove that $ABC + ABC' + AB'C + A'BC = AB + AC + BC$ (BTL 3)
	ABC + ABC' + AB'C + A'BC = AB(C + C') + AB'C + A'BC
	=AB + AB'C + A'BC
	=A(B + B'C) + A'BC
23.	=A(B+C) + A'BC
	=AB + AC + A'BC
	=B(A+C)+AC
	=AB + BC + AC
	$=AB + AC + BC \dots$ Proved
	Explain the principle of duality with the help of example. (BTL - 1)
	The duality theorem states that, starting with a Boolean relation, you can derive another Boolean relation by,
•	Changing each OR sign to an AND sign
24.	Changing each AND sign to an OR sign
24.	Changing each AND sign to an OR sign Complementing any 0 to 1 appearing in the expression

25				utive numbers. This is useful in grouping pair, al expression. Hence gray code is used to label					
		s in \mathbf{K} – Maps and u columns of \mathbf{K} – Map.		a expression. Hence gray code is used to label					
	PART*B Simplify the function F using Quine Mccluskey method and verify the result using KMap. F (ABCD)=								
	(123,5,7,9,10,11,1	13,15) Model MAY 201	6,2015,2014 (13M) (BTL1)						
		No:2.65 in D.Edwin							
		he minterm in binary Binary number	/ torm	(2M)					
	Minterm 1	0001							
	2	0010							
	3	0011							
	5	0101							
	7	0111							
	9	1001							
	10	1010							
	11	1011							
	13	1101							
	15	1111							
			ding to number of 1's	(3M)					
	No of 1's	Minterm	Binary Number						
	1	1	0001						
		2	0010						
	2	3	0011						
		5	0101						
1		9	1001						
		10	1010						
	3	7	0111						
		11	1011						
		13	1101						
	4	15	1111						
	Step 3: Compare each binary number in each group with every term in the adjacent higher group for they differ on								
	by one position. Repeat this step for various cell combinations (4M)								
	2 cell combination								
	Minterms		Binary number						
	1,3		00_1						
	1,5		0_01						
	1,9								
	2,3		001_						
	2,10								
			0_11						
	3,7								
	3,11		_011						
	5,7		01_1						
	5,13		_101						

Group	Minterm/	Variables				Check for inclusion
	don't care term	A	В	С	D	in group of 2
	1	0	0	0	1	✓
1	2*	0	0	1	0	~
	8	1	0	0	0	✓
	3	0	0	1	1	✓
2	5	0	1	0	1	~
	9	1	0	0	1	~
	11	1	0	1	1	✓
3	13*	1	1	0	1	✓
4	15	1	1	1	1	~

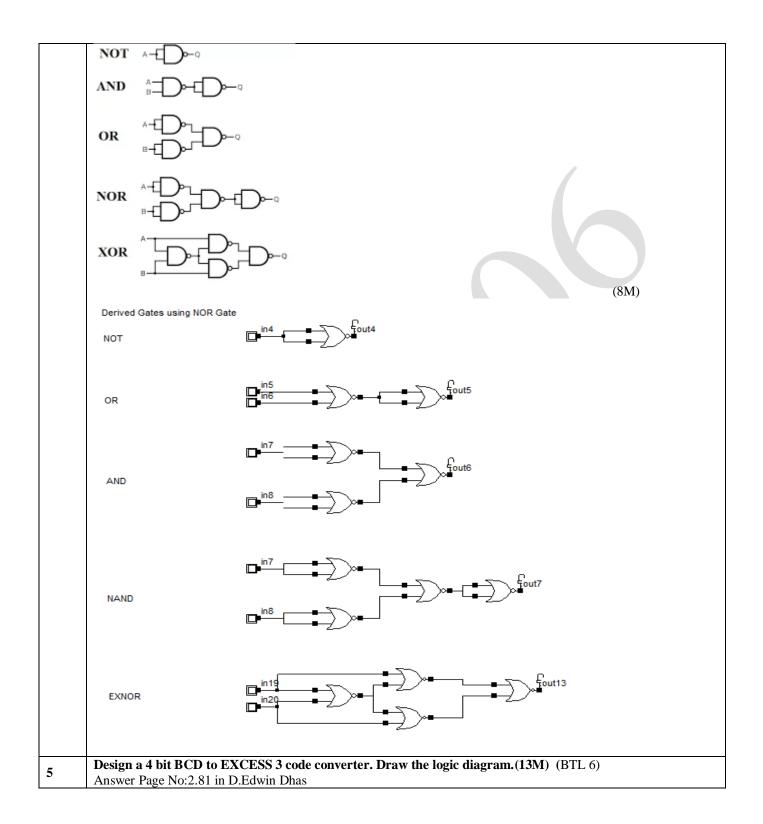
Step 2

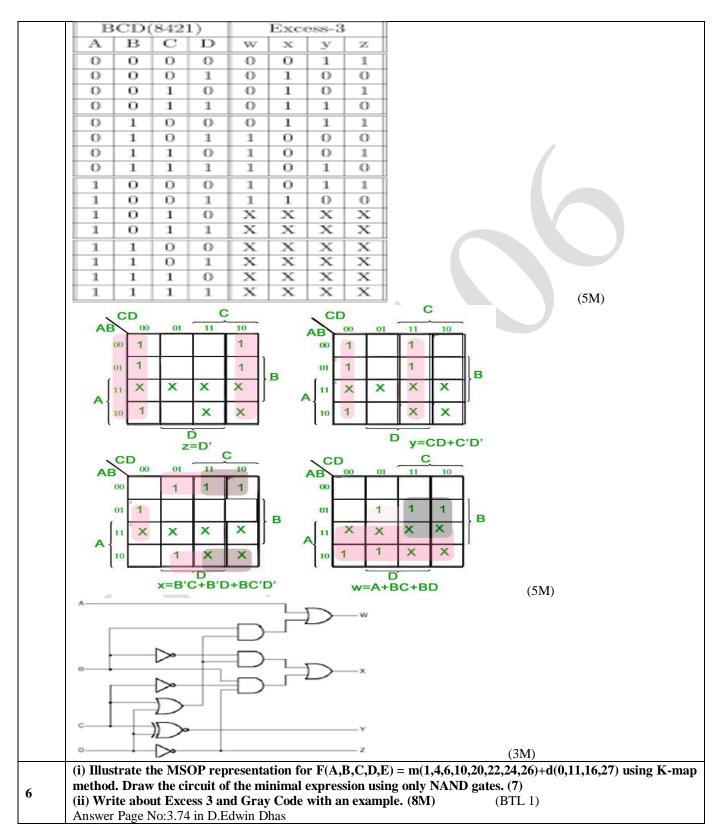
Grouping of 2 minterms/don't care terms

Group	Minterms/ don't care terms	Variables				Check for inclusion
		A	В	С	D	in group of 4
	1, 3	0	0		1	~
	1, 5	0	-	0	1	1
1	1.9	-	0	0	1	1
	2*.3	0	0	1	-	
	8,9	1	0	0	-	
	3, 11	-	0	1	1	
	5, 13*	-	1	0	1	1
2	9, 11	1	0		1	V
	9, 13*	1	-	0	1	1
3	11, 15	1	_	1	1	✓
	13, 15	1	1		1	~

(3M)

Step 3

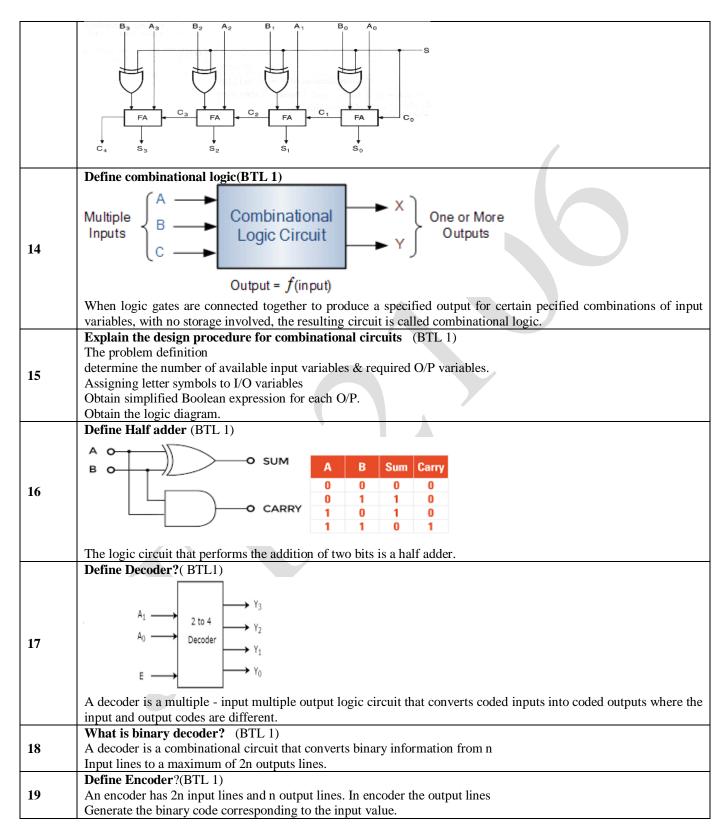

Grouping of 4 minterms/don't care terms

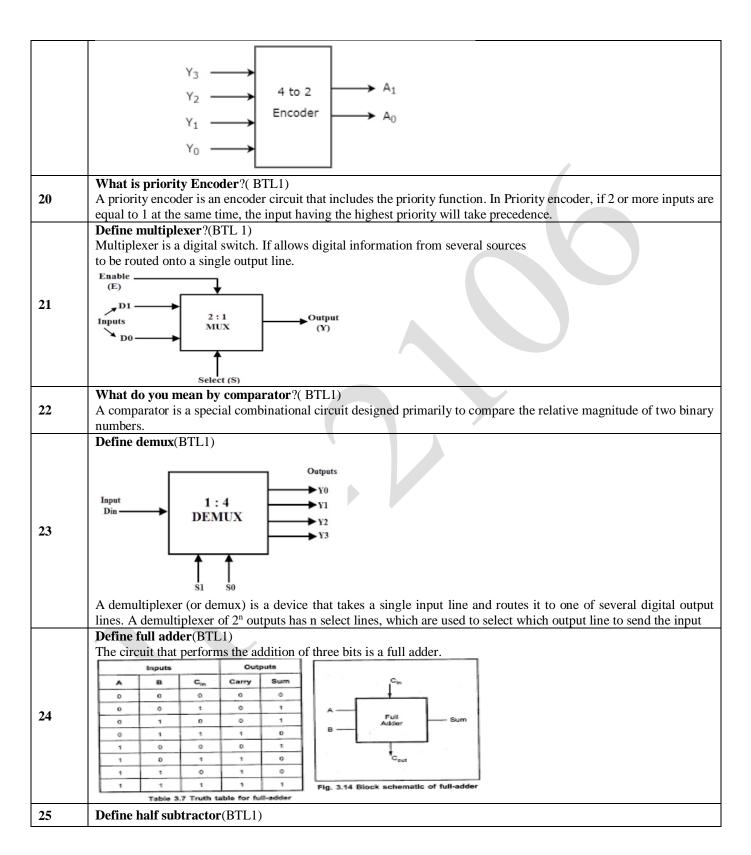

Minterms/ Variables Group don't care terms В С A D 1, 3, 9, 11 0 1 _ ____ 1, 5, 9, 13* 1 1 0 _ 1, 9, 3, 11 0 1 _ _ 1, 9, 5, 13* 1 0 _ 9, 11, 13*, 15 1 1 9, 13*, 11, 15 2 1 1 Step 4 Prime Implication Table and Boolean Expression

(3M)

(4M)

PIDecimal Minterms/don't care terms numbers 2* 3 5 8 9 11 13* 15 terms 1 $\overline{B}D$ 1, 3, 9, 11 × × × × $\overline{C}D$ 1, 5, 9, 13* ✓ × \otimes × × 9, 11, 13*, 15 ✓ AD × × \otimes \overline{ABC} 2*.3 × × ABC 8, 9 \otimes × 1 ~ 1 $f(A, B, C, D) = \overline{B}D + \overline{C}D + AD + A\overline{B}\overline{C}$ **3.Simplify the function in SOP and POS using K-Map f=∑m(0,2,3,6,7)+d(8,10,11,15)(13M)** (BTL3) Answer Page No:2.50(MODEL) in D.Edwin Dhas Solution: (i)Sum of Products (SOP) (4M)ĒD CD ĒΒ СD АВ ĀĒ 1 1 1 ĀВ 1 1 AB х АĒ х x х $F = A^{|}C + B^{|}D^{|}$ (3M) 3 Product of Sum (POS) (3M) ĒD ĒD CD $C\overline{D}$ AB ĀĒ 0 ĀΒ 0 0 AB 0 0 0 х AB 0 х X х F=A+BC+C[|]D (3M) Implement basic logic gates using UNIVERSAL gates. NOV 2015, MAY 2015 (13M) (BTL 3) Answer Page No:2.92 in D.Edwin Dhas 4 Implementation using NAND gate: (7M)





	K-MAP (3M) Logic diagram (4M)						
	Simplify the following Boolean expression $\mathbf{F} = \mathbf{x}^{"}\mathbf{y}^{"}\mathbf{z}^{"} + \mathbf{x}^{"}\mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{y}\mathbf{z}^{"}$. (13m) (BTL - 3)						
	Answer Page No:2.29 in D.Edwin Dhas						
7	Key Points:						
<i>'</i>	Group the 1's cells (6m)						
	Identify the Boolean Expression (7m)						
	Simplify using K-map to obtain a minimum POS expression. (7m) (BTL - 3)						
	$(A^{"}+B^{"}+C+D)(A+B^{"}+C+D)(A+B+C+D^{"})(A+B+C^{"}+D^{"})(A^{"}+B+C^{"}+D^{"})(A+B+C^{"}+D)$						
	Answer Page No:2.39 in D.Edwin Dhas						
	Key Points:						
	Group the 0's cells (3m)						
0	Identify the Boolean Expression (4m)						
8	State and Prove Demorgan's theorem. (8m) (BTL - 1)						
	Answer Page No:2.4 in D.Edwin Dhas						
	Key Points:						
	Theorem (2m)						
	Truth Table (2m)						
	Proof - (4m)						
	Find a Min SOP and Min POS for $f = b^{\circ}c^{\circ}d + bcd + acd^{\circ} + a^{\circ}b^{\circ}c + a^{\circ}bc^{\circ}d$ (13m) (BTL - 3)						
	Answer Page No:2.32 in D.Edwin Dhas						
9	Key Points:						
	Group the 1's cells – (6m)						
	Identify the Boolean Expression – (7m)						
	PART*C						
	Simplify the Boolean function $F(A,B,C,D) = \Sigma m (1,3,7,11,15) + \Sigma d (0,2,5)$ if don't care conditions are not taken						
	care, What is the simplified Boolean function .What are your comments on it? Implement both circuits. (15m)						
	(BTL - 3)						
1	Answer Page No:2.50 in D.Edwin Dhas						
	Key Points:						
	Group the 0's cells – (8m)						
	Identify the Boolean Expression. $-(7m)$						
	i). Implement Y = (A+C) (A+D") (A+B+C") using NOR gates only (15m) (BTL - 3) ii) Find a network of AND and OR gate to realize $f(a,b,c,d) = \Sigma m (1,5,6,10,13,14)$						
	Answer Page No:2.102 in D.Edwin Dhas						
2	Key Points:						
4	Group the 1's cells – (4m)						
	Identify the Boolean Expression – (4m)						
	Logic Diagram – (5m)						
	Simplify the following Boolean function using Tabulation method. (15m) (BTL - 3)						
	$F(w,x,y,z) = \Sigma (2,3,10,11,12,13,14,15).$						
	Answer Page No:2.76 in D.Edwin Dhas						
	List the minterms in binary form $-(2m)$						
3	Arrange the minterms according to categories of 1 's $-(2m)$						
	Compare each binary number with every term in the next higher category $-(3m)$						
	List the prime implicants $-(3m)$						
	Select the minimum number of prime implicants which must cover all minterms – (3m)						

	UNIT II - COMBINATIONAL CIRCUIT DESIGN			
	of Half and Full Adders, Half and Full Subtractors, Binary Parallel Adder – Carry look ahead Adder, BCD Multiplexer, Demultiplexer, Magnitude Comparator, Decoder, Encoder, Priority Encoder.			
PART *	Α			
1	Write an expression for borrow and difference in a full subtractor circuit. [April/May-2010] (BTL 1) Difference=A'B+AB', Borrow=A'B			
	Draw the circuits diagram for 4-bit odd parity generator.[April/May-2010] (BTL 6)			
2				
	A3			
3	Design a single bit magnitude comparator to compare two words A and B. (BTL 6) $A = B = A < B = A > B$ $A > B = AB^{I}$ $A < B = A^{T}B$ $A = B = A^{T}B^{T} + AB$ $A = B = A^{T}B^{T} + AB$			
4	What is an encoder?[May/June-2012] (BTL 1) An encoder has 2 ⁿ input lines and n output lines. In encoder the output lines generate the binary code correspondin to the input value.			
5	List few applications of multiplexer.[May/June-2012, Nov/Dec-2013] (BTL 1) Data Selector. Implement combinational logic circuit. Time multiplexing systems Frequency multiplexing systems. D/A and A/D converter Data acquisition systems.			

	Design a half subtractor using basic gates.[May/June-2013, Nov/Dec-2010] (BTL 6)				
6	Difference=A'B+AB'=A⊕B Borrow=A'B What is priority Encoder?[May/June-2014] (BTL 1) A priority encoder is an encoder circuit that includes the priority function. In priority encoder, if 2 or more inputs are				
7			ving the highest priority will take precedence.		
	Write down		multiplexer and decoder.[April/May-2015] (BTL 4)		
		Demultiplexer	Decoder		
	Definition	1 data input 2 ⁿ outputs	It has n inputs 2^n outputs It has n control inputs		
8	Characteristi	Connects the data input t	oSelects one of the 2 ⁿ outputs by decoding the binary		
	c	the data output	value on the basis of n inputs		
	Reverse of	Multiplexer	Encoder		
9	Give examples for combinational circuit.[April/May-2015, Nov/Dec-2013] (BTL 1) Adders Subtractors Multiplexers Demultiplexers Encoders				
10	Give the log		carry in full adder circuit.[April/May- 2015] (BTL 1)		
		B)xorC _{in} Carry=AB+BC _{in} +A	A C _{in} me the limitation on the speed of an adder.[Nov/Dec- 2009] (BTL 1)		
11	It is possible	to increase speed of adder	by eliminating inter-stage carry delay. This method utilizes logic gates to		
	look at the lower-order bits of the augend and addend to see if a higher-order carry is to be generated.Design of three bit parity generator.[Nov/Dec-2012](BTL 6)				
12	Odd parity generator				
13	Construct a	two-4-bit parallel adder/s	ubtractor using Full Adders and XOR gates. [Nov/Dec-2014] (BTL 6)		

	Half subtractor is the most essential combinational logic circuit which is used in digital						
	electronics. The subtractor circuit uses binary numbers (0,1) for the subtraction.						
	A B D B ₀						
	0 0 0 A → Half → D=A-B						
	0 1 1 1 Subtractor B_0						
	$A \longrightarrow D=A-B$						
	B_0						
	PART * B						
1.	Consider the combinational circuit shown.(13M) (BTL - 3)						
	Derive the Boolean expressions for T1 through T4. Evaluate the outputs F1 and F2 as a function of the four						
	inputs.						
	List the truth table with 16 binary combinations of the four input variables. Then list the binary values for T1						
	through T4 and outputs F1 and F2 in the table.						
	Plot the Boolean function obtained in part (ii) on maps show that simplified Boolean expression are equivalent						
	to the ones obtained in part (i)						
	Answer Page No:3.3 in D.Edwin Dhas						
	Key Points:						
	Boolean expression derivation $-(4m)$						
	Truth table $-(4m)$						
-	K - Map - (5m)						
2.	Design half subtractor and full subtractor circuit and implement using NAND gates. (13m) (BTL - 4) (Nov –						
	Dec 2015)						
	Answer Page No: 3.13-3.15 in D.Edwin Dhas						
	Key Points: Half Subtractor – (2m)						
	Truth table for Half Subtractor $-(1m)$						
	K Man Simplification (2m)						
	K - Map Simplification - (2m)						
	Full Subtractor – (2m)						
	Full Subtractor – (2m) Truth table for Full Subtractor –(2m)						
	Full Subtractor – (2m) Truth table for Full Subtractor –(2m) K – Map Simplification – (1m)						
3	Full Subtractor – (2m) Truth table for Full Subtractor –(2m) K – Map Simplification – (1m) Implementation using NAND gates. – (3m)						
3.	Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2)						
3.	Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas						
3.	Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points:						
3.	Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m)						
3.	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) 						
3.	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) 						
3.	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) Answer Page No: 3.19 in D.Edwin Dhas 						
3.	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) Answer Page No: 3.19 in D.Edwin Dhas 4 - bit parallel adder with look ahead carry generator - (2m) Key Points: 						
	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) Answer Page No: 3.19 in D.Edwin Dhas 4 - bit parallel adder with look ahead carry generator - (2m) Key Points: 4 - bit parallel adder/subtractor - (8m) 						
3.	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) Answer Page No: 3.19 in D.Edwin Dhas 4 - bit parallel adder with look ahead carry generator - (2m) Key Points: 4 - bit parallel adder/subtractor - (8m) Construct the 4 - bit adder with look ahead carry adder. (7m) (BTL - 5) (April - May 2015) 						
	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) Answer Page No: 3.19 in D.Edwin Dhas 4 - bit parallel adder with look ahead carry generator - (2m) Key Points: 4 - bit parallel adder/subtractor - (8m) Construct the 4 - bit adder with look ahead carry adder. (7m) (BTL - 5) (April - May 2015) Answer Page No: 3.20 - 3.22 in D.Edwin Dhas 						
	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) Answer Page No: 3.19 in D.Edwin Dhas 4 - bit parallel adder with look ahead carry generator - (2m) Key Points: 4 - bit parallel adder with look ahead carry adder. (7m) (BTL - 5) (April - May 2015) Answer Page No: 3.20 - 3.22 in D.Edwin Dhas Key Points: 						
	 Full Subtractor - (2m) Truth table for Full Subtractor -(2m) K - Map Simplification - (1m) Implementation using NAND gates (3m) Draw and explain the block diagram of 4 - bit parallel adder and subtractor. (13m)(BTL - 2) Answer Page No: 3.17-3.19 in D.Edwin Dhas Key Points: Block diagram of n - bit parallel adder - (7m) Block diagram of n - bit parallel subtractor - (6m) Draw and explain the block diagram of 4 - bit parallel adder/subtractor. (8m)(BTL - 2) Answer Page No: 3.19 in D.Edwin Dhas 4 - bit parallel adder with look ahead carry generator - (2m) Key Points: 4 - bit parallel adder/subtractor - (8m) Construct the 4 - bit adder with look ahead carry adder. (7m) (BTL - 5) (April - May 2015) Answer Page No: 3.20 - 3.22 in D.Edwin Dhas 						

	Design an 8 – bit BCD adder using 4 – bit binary adder. (8m) (BTL - 4)
	Answer Page No: 3.23-3.25 in D.Edwin Dhas
	Key Points:
	8 – bit BCD adder using IC 7483
_	With a suitable block diagram explain the operation of BCD adder.(7m) (BTL - 1)
5.	Answer Page No: 3.23-3.25 in D.Edwin Dhas
	Key Points:
	Truth Table
	K - Map simplification - (4m)
	Block Diagram of BCD adder – (3m)
	With neat diagram explain BCD subtractor using 9's and 10's complement method(8M). (BTL 6)
	Answer Page No: 3.23 in D.Edwin Dhas
	Key Points:
	subtractor using 9's complement -
	4 – bit BCD subtractor using 9's complement method (4M)
6.	subtractor using 10's complement
	4 – bit BCD subtractor using 10's complement method (4M)
	Design a multiple circuit to multiply the following binary number A = A0A1A2A3 and B=B0B1B2B3 using
	required number of binary parallel adders. (7M)(BTL - 4)
	Answer Page No: 3.25 - 3.26 in D.Edwin Dhas
	Key Points:
	Use two 4 – bit binary adders (7M)
	With suitable block diagram explain binary multiplier. (13m) (BTL - 2)
	Answer Page No: 3.25-3.26 in D.Edwin Dhas
	Key Points:
7	2*2 Multiplier – 3m
	4*4 Multiplier – 4m
	4 – bit by 4 – bit binary multiplier – 6m
	Draw the circuit for 3 to 8 decoder and explain. (8m) (BTL - 2)
	Answer Page No: 3.54 - 3.56 in D.Edwin Dhas
	Key Points:
	Truth Table – (4m)
8	Logic Diagram – (4m)
	Implement the Boolean function $F = \sum m(1,2,3,7)$ using 3:8 decoder. (7m) (BTL - 2)
	Answer Page No: 3.54 - 3.56 in D.Edwin Dhas
	Key Points:
	Connect function variables as input to the decoder $-(3m)$
	Logically OR the outputs correspond to present minterms to obtain the output. – (4m)
	Explain the working of 2:4 binary decoder(7m) (BTL - 2)
	Answer Page No: 3.53-3.54 in D.Edwin Dhas
	Key Points:
	Truth Table – (3m)
9	Logic Diagram – (4m)
	Design a 4 – input priority encoder (8m) (BTL - 4)
	Answer Page No: 3.70-3.71 in D.Edwin Dhas
	Key Points:
	Truth Table - (2m)
	K - Map Simplification - (3m)
	Logic Diagram – (3m)
	Implement the following boolean function using 8 to 1 Multiplexer F(A,B,C,D)= A'BD'+ACD+B'CD+A'C'D.
	Also implement the function using 16 to 1 Multiplexer.(BTL - 5) (13m) (May – June 2014)
	Answer Page No: 3.38-3.39 in D.Edwin Dhas

10	Key Points:
	Implementation table $-(6m)$
	Implementation – (7m)
	Implement the following Boolean function with 8:1 Multiplexer (7m) (BTL - 3)
	$F(A,B,C,D) = \sum m(0, 2, 6, 10, 11, 12, 13) + d(3, 8, 14)$
	Answer Page No: 3.40-3.41 in D.Edwin Dhas
	Key Points:
	Implementation table $-(3m)$
11	Implementation $-(4m)$
	Realize $F(w, x, y, z) = \sum (1, 4, 6, 7, 8, 9, 10, 11, 15)$ using 4 to 1 MUX (7m) (BTL - 3)
	Answer Page No: 3.37-3.38 in D.Edwin Dhas
	Key Points:
	Implementation table $-(3m)$
	Implementation $-(4m)$
	Implement 1:16 Demultiplexer using 1:4 Demultiplexer. (13m) (BTL - 3)
	Answer Page No: 3.51-3.52 in D.Edwin Dhas
12	Key Points:
	Connect two least significant select lines (S1, S0) to select lines of four 4:1 DEMUX – (6m)
	Connect one more 4:1 Demultiplexer – (7m)
	PART C
	Design full adder with inputs x, y, z and two outputs S and C. The circuits performs x+y+z, z is the input carry,
	C is the output carry and S is the Sum. (15m) (BTL - 4) (May – June 2016)
	using only Nor Gates
1	using two half adders
1	Answer Page No: 3.9 – 3.11 in D.Edwin Dhas
	Key Points:
	Full Adder using NOR gate implementation - (7M)
	Full Adder design using two half adders - (8M)
	Design a 2 – bit Magnitude comparator using Gates (15m) (BTL - 2) (Nov – Dec 2014)
	Answer Page No: 3.94 – 3.96 in D.Edwin Dhas
2	Key Points:
2	Truth Table $-(3m)$
	K – Map Simplification – (5m)
	Logic Diagram – (5m)
	Explain carry look ahead adder(15M) (BTL 1)
	Answer Page No: 3.20 in D.Edwin Dhas
2	Definition –(2m)
3	Logic diagram –(5m)
	Derivation –(5M)
	Eplanation-(3M)

clock	UNIT III - SYNCHRONOUS SEQUENTIAL CIRCUITS flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF, Analysis and design of ted sequential circuits – Design - Moore/Mealy models, state minimization, state assignment, circuit implementation sign of Countors – Binnle Countors – Ding Countors – Shift projectors
– Des	sign of Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register. PART * A
1	Mention any two differences between the edge triggering and level triggering. [April/May2010] (BTL1) Level Triggering: The input signal is sampled when the clock signal is either HIGH or LOW. It is sensitive to Glitches. Example: Latch. Edge Triggering: The input signal is sampled at the RISING EDGE or FALLING EDGE of the clock signal. It is not-sensitive to Glitches. Example: Flipflop.
2	What is meant by programmable counter? Mention its application. [April/May- 2010] (BTL 1) A counter that divides an input frequency by a number which can be programmed into decades of synchronous down counters. Decades, with additional decoding and control logic, give the equivalent of a divide- by N counter system, where N can be made equal to any number. Appication: Microprocessor. Traffic light controller. Street light controller.
3	Write the characteristic equation of a JK flip-flop. [April/May-2011, Nov/Dec- 2009](BTL 1) The characteristic equation of a JK flip-flop is given by Q(next) = JQ' + K'Q Realise T-FF from JK-FF. [April/May-2012](BTL 3)
4	Realise First from the first frequencies of the product of the prod
5	How many flip-flops are required to build a binary counter that counts from 0 to 1023? [April/May-2013](BTL3)If the number of flip-flops required is n, then 2 ⁿ -1=1023n=10 since 2 ¹⁰ =1024
6	Compare the logics of synchronous counter and ripple counter. [April/May-2014, Nov/Dec-2009](BTL 4) Asynchronous counter: In this type of counter flipflop are connected in such a way that output of first flip-flop drives the clock for next flip-flop. All the flip-flop are not clocked simultaneously. Logic circuit is very simple even for more number of states. synchronous counter: In this type there is no connection between output of first flip-flop and clock input of the next flip-flop. All the flip-flop are clocked simultaneously. Logic circuit is very simple even for more number of states. synchronous counter: In this type there is no connection between output of first flip-flop and clock input of the next flip-flop. All the flip-flop are clocked simultaneously. Design involves complex logic circuit as number of states increases.
7	Sketch the logic diagram of a clocked SR flip-flop. [April/May-2014](BTL 6)

	S Q			
	— R Q'—			
	How do you eliminate the race around condition in a JK flip-flop?[Nov/Dec- 2010] (BTL 1)			
	When the input to the JK flip-flop is $j=1$ and $k=1$, the race around condition occurs, i.e it occurs when the time period			
	of the clock pulse is greater than the propagation delay of the flip flop.			
8	the output changes or toggles in a single clock period. If it toggles even number of times the output is same but if it			
	toggles odd number of times then the output is complimented. To avoid race around condition we cant make the clock pulse smaller than the propagation delay so we use			
	Master slave JK flip flop			
	Positive or negative edge triggering			
9	Draw the state table and excitation table of T flip-flop. [Nov/Dec-2010](BTL 2)			
	A 4-bit binary ripple counter is operated with clock frequency of 1KHz. What is the output frequency of its			
10	third Flip flop? [Nov/Dec-2011](BTL 4)			
10	The output frequency of third flip-flop is:			
	$\frac{1}{2^3} = \frac{1}{8}$ KHz.			
	Realize JK flip-flop using D flip-flop. [Nov/Dec-2011](BTL 1)			
	J-K Flip Flop to D Flip Flop			
11	Conversion Table K-maps Logic Diagram			
11	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	1 0 1 1 X 1 1 0 X 0			
	Design a 3-bit ring counter and find the mod of the designed counter. [Nov/Dec- 2012] (BTL 6)			
10				
12	(110) (010)			
	(100)			
	Define latches. [Nov/Dec-2013](BTL 1)			
13	Latch is a simple memory element, which consists of a pair of logic gates with their inputs and outputs inter connected			
	in a feedback arrangement, which permits a single bit to be stored.			
	Write short notes on Digital Clock. [Nov/Dec-2013](BTL 1)			
14	A digital clock is a simplified logic diagram of a digital clock that displays seconds, minutes, and hours. First, a 60			
14	Hz sinusoidal ac voltage is converted to a 60 Hz pulse waveform and divided own to a 1Hz pulse waveform by a divide-by-60 counter formed by a divide-by-10 counter allowed by a divide-by-6 counter. Both the seconds and			
	minutes counts are also produced by divide-by-60 counters.			
	Define latches. [Nov/Dec-2013] (BTL 1)			
15	Latch is a simple memory element, which consists of a pair of logic gates with their inputs and outputs inter connected			
	in a feedback arrangement, which permits a single bit to be stored.			
	Write short notes on Digital Clock. [Nov/Dec-2013] (BTL 1)			
16	A digital clock is a simplified logic diagram of a digital clock that displays seconds, minutes, and hours. First, a 60			
	Hz sinusoidal ac voltage is converted to a 60 Hz pulse waveform and divided own to a 1Hz pulse waveform by a			

	divide-by-60 counter formed by a divide-by-10	counter allowed by a divide-by-6 counter. Both	the seconds and					
	minutes counts are also produced by divide-by-60 counters.							
	Difference between flipflop and latches (B)	FL 4)	1					
17	Latches	Flip Flops						
	Latches are building blocks of sequential circuits and these can be built from logic gates	Flip flops are also building blocks oof sequential circuits. But, these can be built from the latches.						
	Latch continuously checks its inputs and changes its output correspondingly.							
	The latch is sensitive to the duration of the pulse and can send or receive the data when the switch is on							
	It is based on the enable function input	It works on the basis of clock pulses						
	It is a level triggered, it means that the output of the present state and input of the next state depends on the level that is binary input 1 or 0.	It is an edge triggered, it means that the output and the next state input changes when there is a change in clock pulse whether it may a +ve or -ve clock pulse.						
	What are the classification of sequential circui		<u>I</u>					
	The sequential circuits are classified on the basis	of timing of their signals into						
18	Two types. They are,							
		1)Synchronous sequential circuit.						
	2)Asynchronous sequential circuit.							
	Define Flip flop. What are the different types of							
	The basic unit for storage is flip flop. A flip-flop maintains its output state either							
	at 1 or 0 until directed by an input signal to chang							
	There are various types of flip flops. Some of the	m are mentioned below they						
19	are,							
	_RS flip-flop							
	_SR flip-flop							
		_D flip-flop						
	_JK flip-flop							
	_T flip-flop	<u></u>						
	What is the operation of RS flip-flop? (BTL 1)							
20	When R input is low and S input is high the Q output of flip-flop is set.							
20	When R input is high and S input is low the Q output of flip-flop is reset. When both the inputs R and S are low the output does not change							
	When both the inputs R and S are high the output is unpredictable.							
	What is the operation of SR flip-flop? (BTL 1) When R input is low and S input is high the Q output of flip-flop isset.							
21	When R input is high and S input is low the Q output of flip-flop is reset.							
41	When both the input is high and S are low the output does not change.							
	When both the inputs R and S are high the output is unpredictable.							
	Define race around condition.(BTL 1)							
••	In JK flip-flop output is fed back to the input. Therefore change in the output results change in the input. Due to this							
22	in the positive half of the clock pulse if both J and K are high then output toggles continuously. This condition is called							
	'race around condition'.							
•••	What is a master-slave flip-flop?(BTL 1)							
23	A master-slave flip-flop consists of two flip-flops where one circuit serves as a master and the other as a slave.							
24	Define shift registers.(BTL 1)							

	The binary information in a register can be moved	from	stage to stage within the register or into or out of the register				
	The binary information in a register can be moved from stage to stage within the register or into or out of the register upon application of clock pulses. This type of bit movement or shifting is essential for certain arithmetic and logic						
	operations used in microprocessors. This gives rise to group of registers called shift registers.						
	What are the different types of shift type?(BTL 1)						
	There are five types. They are,						
	_Serial In Serial Out Shift Register						
25	_Serial In Parallel Out Shift Register						
40	_Parallel In Serial Out Shift Register						
	_Parallel In Parallel Out Shift Register						
	_Bidirectional Shift Register						
	Difference between combinational and sequential circuit (BTL 4)						
	S.NO Combinational circuit		Sequential circuit				
	1 It contains no memory		It contains memory element				
	2 The present value of it's output	are					
26	determined solely by the present value		present value of it's input and it's past value				
	it's input		I				
	3 It's behavior is described by the se	et of	It's behavior is described by the set of next-state(memory)				
	output functions		functions and the set of output functions				
	Difference between moore and mealy (BTL 4)						
	Mealy	Moo	ore				
	1 Output depends on the present state and		outs depends only on the present				
	present inputs	state					
	2 The output changes asynchronously with	Sinc	e the output change when the				
27	the enabling clock edge		changes, and the state change is				
27			hronous with the enabling clock				
			outputs change synchronously				
			this clock edge				
	3 A counter is not a Mealy machine	A co	ounter is a Moore machine				
	4 A mealy machine will have the same or						
	fewer states than a Moore machine						
	PART	* B					
	What is SR latch? Explain its operation. (8m) (BTL - 2)						
	Title: Digital Electronics						
	Author: D.Edwin Dhas						
	Page No:4.43						
	Key Points:						
	SR Latch $-(2m)$						
	Cases of SR Latch $-(4m)$						
1.	Gated SR Latch – (2m)						
	Explain the operation of JK and clocked JK flip-flops with suitable diagrams. (7m) (BTL - 2)						
	Title: Digital Electronics						
	Author: D.Edwin Dhas						
	Page No:4.12 Key Deinter						
	Key Points:						
	J - K Flip Flop – (2m) Operation of W Flip Flop – (3m)						
	Operation of JK Flip Flop $-(3m)$						
	Race – Round Condition – (2m)Draw the clocked RS flip – flop and explain with	h t4	b table $(\mathbf{8m})$ (BTI 2)				
		n trut	II TADIC. (OIII) (D1L - 2)				
2.	Title: Digital Electronics Author: D.Edwin Dhas						
4.	Page No:4.6						
L	1 460 110.7.0						

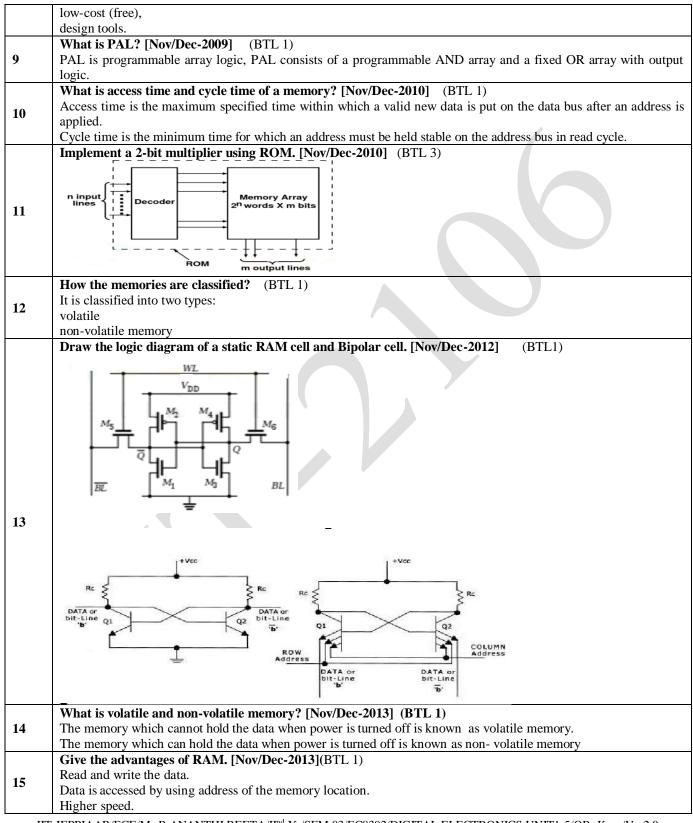
	Key Points:				
	Positive edge triggered SR Flip – $Flop - (4m)$				
	Operation – (2m)				
	Negative Edge triggered SR Flip – Flop – (3m)				
	Draw the logic diagram of a D FF using NAND gates and explain. (7m) (BTL - 2)				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.9				
	Key Points:				
	D Flip – Flop using NAND gates – (3m)				
	Truth Table $-(2m)$				
	Negative Edge triggered D FF $-(2m)$				
	Convert a SR Flip Flop into a D Flip Flop. (7m) (BTL - 3)				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.23				
	Key Points:				
	Excitation table–(3m)				
	K - Map simplification - (2m)				
	Logic Diagram – (2m)				
3.	Convert D Flip – flop to T Flip – Flop. (8m) (BTL - 3)				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.24				
	Key Points:				
	Excitation table – (3m)				
	K - Map simplification - (3m)				
	Logic Diagram – (2m)				
	How will you convert a D Flip – flop into JK Flip – Flop? (7m) (BTL - 1)				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.30				
	Key Points:				
	Excitation table – (3m)				
	K - Map simplification - (2m)				
	Logic Diagram – (2m)				
	A Synchronous Counter with four JK flip – flops has the following connections: (8m) (BTL - 4)				
4.	$J_A = K_A = 1, J_B = Q_A Q_D, K_B = Q_A$				
	$J_C = K_C = Q_A Q_B$				
	$J_D = Q_A Q_B Q_C$ and $K_D = Q_A$				
	Determine the modulus n of the counter and draw the output waveforms of the same.				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.137				
	Key Points:				
	Next state map for JK Flip – Flop –3m				
	Transition table $-(3m)$				
	Output Waveform's – (2m)				
	A sequential circuit with 2D FFs A and B and input X and output Y is specified by the following next state and				
	output equations. (13m) (BTL - 4)				
	A(t+1) = AX + BX				
	$\begin{array}{l} A(t+1) = AA + bA \\ B(t+1) = A'X \end{array}$				
1					

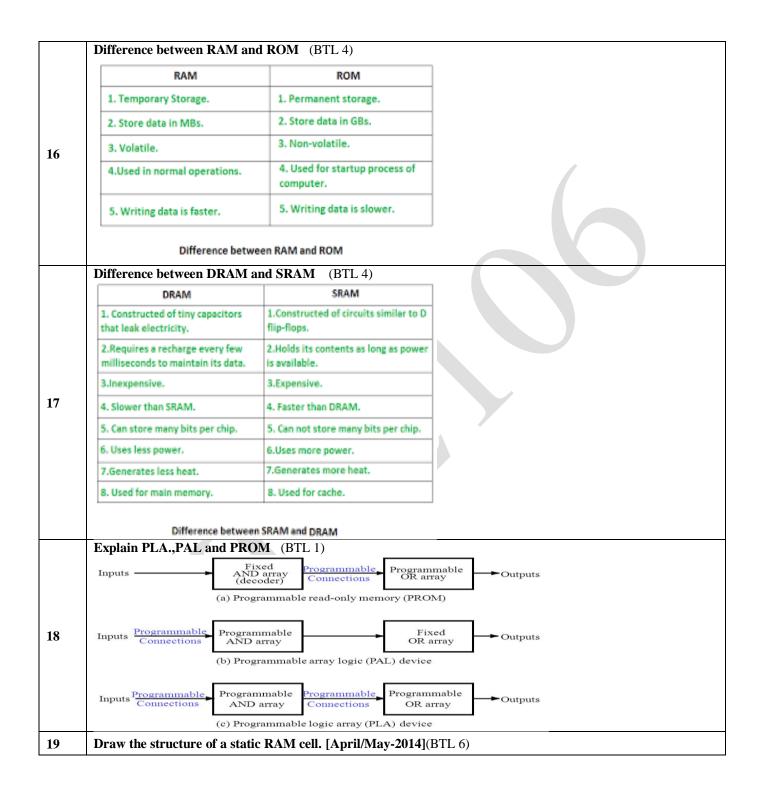
	$\mathbf{Y} = (\mathbf{A} + \mathbf{B})\mathbf{X'}$						
	Draw the logic diagram						
	Derive the state						
	Derive the state diagram						
	Title: Digital Electronics						
	Author: D.Edwin Dhas Page No:4.54						
	Key Points:						
	Logic Diagram – (3m)						
	State table – (3m)						
	Transition Table – (3m)						
	State Diagram – ((4m)					
			e following state	table and tabulat	e the reduced state	e table	
	Present State	Next State	e tonowing state	Output	e the reduced stat		
	1 resent State	$x = 0 \qquad x = 1$		-	1	4	
				$\mathbf{x} = 0$	x = 1		
	Α	f	b	0	0		
	В	d	с	0	0		
	C	f	e	0	0		
	D	g	a	1	0	7	
	Ε	d	c	0	0	-	
	F	f	b	1	1	-	
5.	G		h		-	-	
		g		0	1		
				0010011, determ	ine the output seq	uence for the given and	
		ole. (13m) (BTL - 2	2)				
	Title: Digital Ele						
	Author: D.Edwi	n Dhas					
	Page No:4.84						
	Key Points:						
		valent states – (6m)				
	Reduced state table – (7m)						
			RS Flip - Flop for	r the state table a	iven helow using i	ninimum number of flin	
	Design a sequential circuit using RS Flip – Flop for the state table given below using minimum number of flip – flops. (13m) (BTL - 4)						
			Original		- П		
	Present state	Next state	TT 4	Output	TT 4	-	
		X = 0	X = 1	$\mathbf{X} = 0$	X = 1	_	
	Α	Α	В	0	0		
	B	C	D	0	0		
	С	Α	D	0	0		
	D	E	F	0	1	7	
	E	A	F	0	1	-	
6.	F	G	F	0	1	-	
0.				-		-	
	G	Α	F	0	1		
	Title: Digital Electronics						
	Author: D.Edwin Dhas						
	Page No:4.84						
	Key Points:						
	Minimized state table $-(4m)$						
	K - Map Simplification - (6m)						
	Logic Diagram – (3m)						
<u> </u>							
7.	Design a Synchr	onous sequential	circuit using JK f	for the given state	e diagram. (13m) ((BTL - 4)	
1							

	0/1 001				
	111				
	1/1 010 0/0 1/1 011				
	0/1 1/0				
	(100) 0/0 + (110) 0/1				
	1/0				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.82				
	Key Points:				
	Excitation table $-(2m)$				
	K - Map Simplification - (4m)				
	Logic Diagram $-(2m)$				
	Derive Circuit Output and flip – flops considering unused states – (2m)				
	Logic Diagram – (3m)				
	Draw a 4 – bit serial – in – serial – out shift register and draw its waveforms. (7m) (BTL - 2)				
	Title: Digital Electronics Author: D.Edwin Dhas				
	Page No:4.100				
	Key Points:				
	Shift Register – (2m)				
8.	Shift Left operation $-(3m)$				
	Waveforms – (2m)				
	Draw a 4 – bit parallel – in – serial – out shift register and explain briefly. (8m) (BTL -2) Title: Digital				
	Electronics				
	Author: D.Edwin Dhas				
	Page No:4.103				
	Key Points:				
	PISO Shift Register – (8m)				
	Draw and explain the operation of parallel – in – parallel – out shift registers. (7m) (BTL - 2)				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.104				
	Key Points:				
	PIPO Shift Register – (7m)				
9	Draw a six stage ring counter and explain its operation. (8m) (BTL - 2)				
	Title: Digital Electronics				
	Author: D.Edwin Dhas				
	Page No:4.107				
	Key Points:				
	Diagram for six stage ring counter – (4m)				
	Illustrating operation for six – stage ring counter – $(4m)$				
<u> </u>	Draw a 4 – bit Johnson counter and explain its operation. (13m) (BTL - 2)				
	Title: Digital Electronics Author: D.Edwin Dhas				
10.					
	Page No:4.109				
	Key Points: Diagram for four bit Johnson counter (4m)				
	Diagram for four – bit Johnson counter – (4m) -JEPPIAAR/ECE/Ms.R.ANANTHI REETA/II nd Yr/SEM 03/EC8392/DIGITAL ELECTRONICS UNIT1-5/QB+Keys/Ver2.0				
JĽI	-JEPPTAAK/EUP/WS.K.ANANTHTREETA/II ^{ma} Yt/SEM103/EUX392/DIGITAL ELECTRONICS UNITT-5/OR+Keve/Ver2.0				

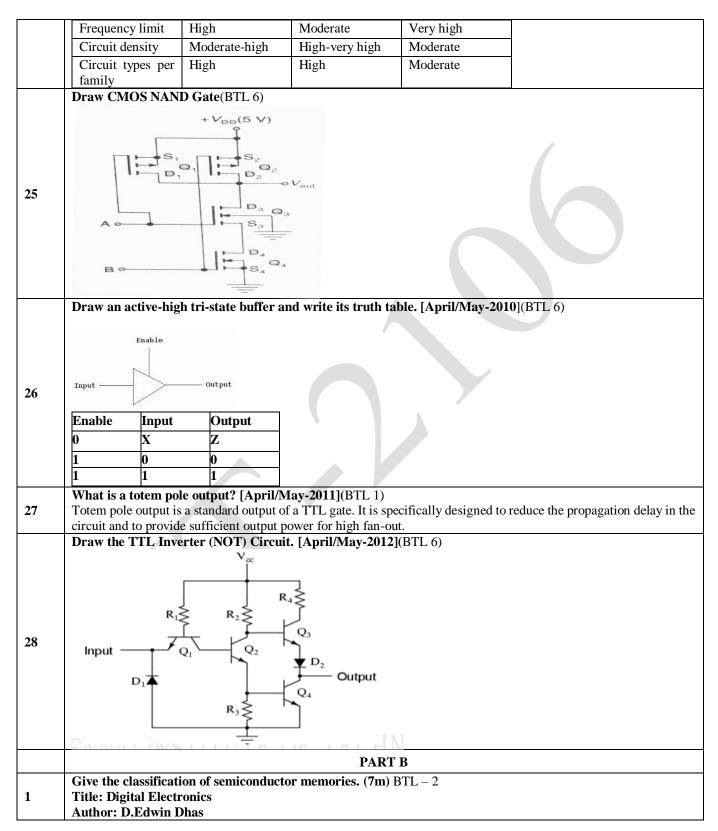
	Four – bit John son Sequence – (5m)			
	Timing Sequence $-(4m)$			
	Explain in detail the operation of a 4 – bit binary ripple counter (13m) (BTL - 2) Title: Digital Electronics			
	Author: D.Edwin Dhas			
11.	Page No:4.38			
	Key Points:			
	Diagram of $4 - bit$ ripple counter $- (6m)$			
	Timing Diagram – (7m)			
	PART C			
	Explain the working of 4 – bit synchronous binary up counter (15m) (BTL - 2)			
	Title: Digital Electronics			
	Author: D.Edwin Dhas			
1	Page No:4.43-4.45			
1	Key Points:			
	Three – bit synchronous binary counter – (5m)			
	Timing Diagram – (5m)			
	State sequence $-(5m)$			
	Design a synchronous 3 bit up/down counter using T flip flop. (15m) (BTL - 4)			
	Title: Digital Electronics Author: D.Edwin Dhas			
	Author: D.Edwin Dhas Page No:4.64-4.67			
2	State table $-(3m)$			
	Excitation table – (3m)			
	Next state table $-(3m)$			
	Diagram. – (4m)			
	Design and explain the working of an up – down ripple counter (15m) (BTL - 4)			
	Title: Digital Electronics			
	Author: D.Edwin Dhas			
3	Page No:4.40-4.41			
	Key Points:			
	Diagram of $4 - bit up/down ripple counter - (6m)$			
	Timing Diagram for up/down counter $-(7m)$			

	e and Unstable states, output specifications, cycles and races, state reduction, race free assignments, Hazards
	ntial Hazards, Pulse mode sequential circuits, Design of Hazard free circuits.
PAR	Γ*A
1	What are hazard free digital circuits? [April/May-2010] (BTL 1)
I	A circuit which has no hazard like static-0-hazard and static-1-hazard is called hazard free digital circuit.
2	What are the basic building blocks of a algorithmic state machine chart? [April/May-2011](BTL 1)
3	What is state table? [April/May-2012] (BTL 1) The state table representation of a sequential circuit consists of three sections labelled present state, next state and output. The present state designates the state of flip-flops before the occurrence of a clock pulse. The next state shows the states of flip-flops after the clock pulse, and the output section lists the value of the output variables during the present state.
4	What are Hazards? [April/May-2013, Nov/Dec-2009] (BTL 1)
-	The unwanted switching transients (glitches) that may appear at the output of a circuit are called Hazards.
5	 Distinguish between a flowchart and an ASM chart. [April/May-2013, Nov/Dec- 2009] (BTL 1) A conventional flow chart describes the square of procedural steps and decision paths for an algorithm without concern for their time relationship. The ASM chart describes the sequence of event as well as timing relationship between the states of a sequentia controller and the events that occur while going from one state to the next.
6	What is a state diagram? Give an example. [April/May-2014] (BTL 1) A state diagram is a type of diagram used in computer science and related fields to describe the behaviour of systems State diagrams require that the system described is composed of a finite number of states; sometimes, this is indeed the case, while at other times this is a reasonable abstraction. Many forms of state diagrams exist, which differ slightly and have different semantics.
7	Under what circumstances asynchronous circuits are prepared. [Nov/Dec-2011] (BTL 1) Fundamental mode asynchronous circuits Pulse mode asynchronous circuits
8	Differentiate fundamental mode and pulse mode asynchronous sequential circuits. [Nov/Dec-2012](BTL 1) Fundamental mode sequential circuits Pulse mode sequential circuits. (i)Memory elements are clocked flip-flops (i) Memory elements are either unlocked flip - flops or time delay elements. (ii)Easier to design (ii)More difficult to design
9	What is synchronous sequential circuit? [Nov/Dec-201] (BTL 1) In synchronous circuits the input are pulses (or levels and pulses) with certain restrictions on pulse width and circuit propagation delay. Therefore synchronous circuits can be divided into clockedsequential circuits and uncklocked or pulsed sequential circuits. In a clocked sequential circuit which has flip-flops or, in some instances, gated latches, for its memory elements there is a (synchronizing) periodic clock connected to the clock inputs of all the memory elements of the circuit, to synchronize all internal changes of state
10	Write short notes on Hazards. [Nov/Dec-2013] (BTL 1) The unwanted switching transients (glitches) that may appear at the output of a circuit are called Hazards. Static-0-Hazard Static-1-Hazard


11		race condition occur? (BTL 1)			
	-two or more binary state variables change their value in response to the change in i/p Variable				
	What is non critical race? (BTL 1)				
12	-final stable state does not depend on the order in which the state variable changes				
	-race condition is not harmful What is critical race? (BTL 1)				
10					
13		ble state depends on the order in which the state variation	able changes		
		dition is harmful			
14		e the different techniques used in state assignmen	t?(B1L1)		
14		by state assignment			
		state assignment static 1 hazard?(BTL 1)			
15		oes momentarily 0 when it should remain at 1			
		e static 0 hazards?(BTL 1)			
16		oes momentarily 1 when it should remain at 0			
		dynamic hazard?(BTL 1)			
17		hanges 3 or more times when it changes from 1 to 0	or 0 to 1		
10		the cause for essential hazards?(BTL 1)			
18		delays along 2 or more path from same input			
		a cycle?(BTL 1)			
19	A cycle o	ccurs when an asynchronous circuit makes a transition	on through a series of unstable states. If a cycle does not		
	contain a	stable state, the circuit will go from one unstable to	stable to another, until the inputs are changed.		
		short note on fundamental mode asynchronous ci			
20			change only when the circuit is stable. Only one input		
		can change at a given time and inputs are levels and	not pulses.		
		short note on pulse mode circuit.(BTL 1)			
21			instead of level. The width of the pulses is long enough		
			t not be so long that it is still present after the new state		
	is reached	ate table.(BTL 1)			
22			at states and next states. The table, which represents the		
		hip between present states and next states, is called s			
		state equivalence theorem?(BTL 1)			
	Two states SA and SB, are equivalent if and only if for every possible input X sequence, the outputs are the same and				
23	the next states are equivalent				
	i.e., if SA $(t + 1) =$ SB $(t + 1)$ and ZA = ZB then SA = SB.				
		the cause for essential hazards?(BTL 1)			
24	-unequal	delays along 2 or more path from same input			
	What are the significance of state assignment?(BTL 1)				
25	In synchr	onous circuits-state assignments are made with the c	bjective of circuit		
		n Asynchronous circuits-its objective is to avoid crit			
		ce between synchronous sequential circuit and as			
	S.NO	Synchronous sequential	Asynchronous sequential		
	1	Synchronous sequential circuit is a system whose	The circuit in which the changes in the input		
	1	behaviou can be defined from the knowledge of	signals can affect memory elements at any		
26		the signals at discrete instants of time	instants of the time is called asynchronous		
26			circuit		
	2	The signals can affect the memory elements only	In this circuit, clock is absent and hence the state		
		at discrete instant of time	changes can occur according to delay time of		
			the logic		
	3	Easier to design	More difficult to design		


	4 Memory elements are clocked flipflops Memory elements are either unclocked flipflop or time delay elements	28
	PART * B	
1.	Illustrate the Types of Asynchronous Sequential Circuits(7m) (BTL - 2) Title: Digital Electronics Author: D.Edwin Dhas Page No:6.17-6.29	
	Key Points: Fundamental Mode Circuits – (3m) Pulse Mode Circuits – (4m)	
	An asynchronous sequential circuit is described by the following excitation and output function. (Dec 1 (13M) (BTL 6)	.4)
	$Y = X_1 X_2 + (X_1 + X_2) Y, Z = Y$	
	Draw the logic diagram of the circuit $1 - \frac{1}{1} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	
	Derive the transition table and output map	
	Describe the behavior of the circuit	
-	Title: Digital Electronics	
2.	Author: D.Edwin Dhas	
	Page No:6.35-6.39	
	Key Points:	
	Logic Diagram – (13m)	
	State table $-(4m)$	
	Transition Table – (3m)	
	Output Map $-(3m)$	
	An asynchronous sequential circuit has two internal states and one output. The excitation and output for	unction
	describing the circuit are as follows. (13m) (BTL - 4)	
	$Y_1 = x_1 x_2 + x_1 y_2 + x_2 y_1$	
	$Y_2 = x_2 + x_1 y_1 y_2 + x_1 y_1$	
	$Z = x_2 + y_1$	
	Title: Digital Electronics	
3.	Author: D.Edwin Dhas	
	Page No:6.45-6.50	
	Key Points:	
	Logic Diagram – (3m)	
	State table $-(4m)$	
	Transition Table $-(3m)$	
	Output Map – (3m)	T 7 1 4
	Design an asynchronous sequential circuit with two inputs X and Y and with one output Z. Whenever $X_{in} = X_{in} = X_$	• Y is 1,
	input X is transferred to Z. When Y is 0, the output does not change in X. (13m) (June – 16 /BTL - 4)	
	Title: Digital Electronics	
	Author: D.Edwin Dhas	
4	Page No:6.35-6.39	
4.	Key Points:	
	Draw the state Diagram $-(3m)$	
	Derive the Primitive Flow Table $-(3m)$ State Assignment $-(3m)$	
	State Assignment – (3m) Realization of circuit using logic elements – (2m)	
	Realization of circuit using SR latch $-(2m)$	
	Design a two – input (x_1, x_2) , two – output (z_1, z_2) fundamental – mode circuit that has the fo	llowing
5.	besign a two – input (x_1, x_2) , two – output (z_1, z_2) fundamental – mode circuit that has the forspecifications. When $x_1x_2 = 00$, $z_1z_2 = 00$. The output 10 will be produced following the occurrence of the	
э.	specifications. When $x_1x_2 = 00$, $z_1z_2 = 00$. The output 10 will be produced following the occurrence of the sequence $00 - 01 - 11$. The output will remain at 10 until the input returns to 00 at which it becomes	
	sequence vv – v1 – 11. The output will remain at 10 until the input returns to vv at which it becomes	UU. All

	output of 01 will be produced following the receipt of the input sequence $00 - 10 - 11$. And once again, the
	output will remain at 01 until a 00 input occurs, which returns the output to 00. (13m) (BTL - 4)
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:6.17-6.20
	Key Points:
	Draw the state $Diagram - (3m)$
	Derive the Primitive Flow Table $-(3m)$
	State Assignment – (3m)
	K - Map Simplification - (2m)
	Logic Diagram – (2m)
	Design a T Flip – flop from logic gates. (7m) (BTL - 4)
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:4.15-4.17
6.	Key Points:
	Draw the state $Diagram - (2m)$
	Derive the Primitive Flow Table – (1m)
	State Assignment – (1m)
	K - Map Simplification - (2m)
	Logic Diagram – (1m)
	Design a asynchronous D – type latch with two inputs G and D and output Q. Assume fundamental mode of
	operation. (13m) (BTL - 4)
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:6.17-6.20
7.	Key Points:
	Draw the state $Diagram - (3m)$
	Derive the Primitive Flow Table – (3m)
	State Assignment – (3m)
	K - Map Simplification - (2m)
	Logic Diagram – (2m)
	What is a hazard? Explain the different types of hazards. What is an essential hazard? Discuss in detail how
	hazards can be eliminated. (13m) (BTL - 1)
	Title: Digital Electronics
	Author: D.Edwin Dhas
8.	Page No:6.63-6.70
	Key Points:
	Hazard – Definition-(4M)
	Types of Hazards(4M)
	Essential Hazard(3M)
	Hazard elimination(2M)
	Give the hazard – free realization for the Boolean function. $f(A, B, C, D) = \sum m (0, 2, 6, 7, 8, 10, 12) (8m)$ BTL -
	4
	Title: Digital Electronics
0	Author: D.Edwin Dhas
9.	Page No:6.70
	Key Points:
	K - Map Simplification(4M)
	Logic Diagram(4M)
	PART C


1	Find a static and dynamic hazard free realization for the following function using i) NAND gates ii) NOR gates F(a, b, c, d) = ∑m(1, 5, 7, 14, 15). (15m) (BTL - 4) Title: Digital Electronics Author: D.Edwin Dhas Page No:6.67-6.68 Key Points:
	Circuit realization using NOR gates – (8m) Circuit Realization gates using NAND gates – (7m)
2	Write the analysis procedure for an asynchronous fundamental sequential circuit with example. (15m)(BTL - 4) Title: Digital Electronics Author: D.Edwin Dhas Page No:6.17-6.20 Steps for analysis procedure (7m) Example (8m)
3	Write the design procedure for an asynchronous fundamental sequential circuit with example. (15m)(BTL - 4) Title: Digital Electronics Author: D.Edwin Dhas Page No:6.34-6.39 Steps for procedure (7m) Example -(8m)

	UNIT V-MEMORY DEVICES AND DIGITAL INTEGRATED CIRCUITS
Progr Progr integr	memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM ammable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field ammable Gate Arrays (FPGA) - Implementation of combinational logic circuits using PLA, PAL.Digital ated circuits: Logic levels, propagation delay, power dissipation, fan-out and fan- in, noise margin, logic families heir characteristics-RTL, TTL, ECL, CMOS
	PART * A
1	What is meant by memory Expansion? Mention its limit. [April/May-2010(BTL 1)] The memory expansion can be achieved in two ways: by expanding word size and expanding memory capacity. Limitations: Memory capacity upto 16Mbytes. 24 address lines and 16 data lines.
2	What are the advantages of static RAM and Dynamic Ram? [April/May- 2010,Nov/Dec-2009](BTL 1) Static RAM: Access time is less. Fast operation. DYNAMIC RAM: It consumes less power. Cost is low.
3	What is difference between PAL and PLA? [April/May-2011, 2013, Nov/Dec- 2010](BTL 4) PLA: Both AND and OR arrays are programmable and Complex Costlier than PAL PAL: AND arrays are programmable OR arrays are fixed Cheaper and Simpler
4	Implement the exclusive or function using ROM. [April/May-2011](BTL 3)Can implement multi-input/multi-output logic functions inside of ROM.Data outputs are the logic functions and the address lines are the logic function inputs.We create a ROM Table to store the logic functions.When an input (or address) is presented, the value stored in the specified memory location appears at the data outputs.Each data output represents the correct value for its logic function
5	Compare Dynamic RAM with Static RAM. [April/May-2012](BTL 4) Static Ram is very costly. Dynamic Ram is cheaper. Static Ram contains Transistors. Dynamic Ram contains Capacitors. Static Ram is used in L1 and L2 cache. Dynamic Ram is used in system RAM.
6	Mention few applications of PLA and PAL. [April/May-2012] (BTL 1) Implement combinational circuits Implement sequential circuits Code converters Microprocessor based systems
7	What are the different types of programmable logic devices? [April/May-2013] (BTL 1) PROM PLA PAL GAL
8	List the advantages of PLDs. [April/May-2014, Nov/Dec-2010](BTL 1) low and fixed (two gate) propagation delays (typically down to 5 ns), simple,

	WL Word Line (Row Line)					
		constant voltage		-		
	BL Bit Line	- <u>T</u>	BL Bit Line			
	(Column Line)	Grital IC (PTI 1)	(Column Line)		
	List the Characteristics of Di					
20	Characteristics of Digital IC → Propagation Delay → Power dissipation					
20	> Fan-in					
	Fan-out					
	 Noise Margin Operating temperatur 	es				
	 Speed Power Product 					
	Dfine TTL(BTL 1) Transistor-Transistor Logic					
21	The TTL is so named because The TTL uses transistors opera It is the fastest of saturated log The basic TTL logic circuit is Good speed, low manufacturin Tight VCC tolerance, relativel susceptibility to power transier Compare TTL,CMOS and E	of its independence on ating in saturated mode. ic families. the NAND gate. g cost, wide range of ci y high power consump ths are its disadvantages CL with characteristic	rcuits and the ava tion, moderate par cs(BTL 4)	ilability in SS cking density,	I and MSI are its a generation of noi	advantages. ise spikes and
21	The TTL is so named because The TTL uses transistors opera It is the fastest of saturated log The basic TTL logic circuit is Good speed, low manufacturin Tight VCC tolerance, relativel susceptibility to power transier	of its independence on ating in saturated mode. ic families. the NAND gate. og cost, wide range of ci y high power consump nts are its disadvantages CL with characteristic Power	rcuits and the ava tion, moderate parts	ilability in SS	I and MSI are its a	advantages.
	The TTL is so named becauseThe TTL uses transistors operaIt is the fastest of saturated logThe basic TTL logic circuit isGood speed, low manufacturinTight VCC tolerance, relativelsusceptibility to power transierCompare TTL,CMOS and ELogicPropagation	of its independence on ating in saturated mode. ic families. the NAND gate. g cost, wide range of ci y high power consump nts are its disadvantages CL with characteristic N Power ns) dissipation	rcuits and the ava tion, moderate par cs(BTL 4) Noise	ilability in SS cking density,	I and MSI are its a generation of noi	advantages. ise spikes and
	The TTL is so named because The TTL uses transistors opera It is the fastest of saturated log The basic TTL logic circuit is Good speed, low manufacturin Tight VCC tolerance, relativel susceptibility to power transier Compare TTL,CMOS and E Logic Propagation Family delay time (s	of its independence on ating in saturated mode. ic families. the NAND gate. g cost, wide range of ci y high power consump nts are its disadvantages CL with characteristic ns) Power dissipation per gate (mW)	rcuits and the ava tion, moderate par <u>s(BTL 4)</u> Noise Margin (V)	ilability in SSI cking density, Fan-in	I and MSI are its a generation of noi Fan-out	advantages. ise spikes and Cost
	The TTL is so named becauseThe TTL uses transistors operaIt is the fastest of saturated logThe basic TTL logic circuit is the fastest of saturated logThe basic TTL logic circuit is the fastest of saturated logThe basic TTL logic circuit is the fastest of saturated logThe basic TTL logic circuit is the fastest of saturated logTogo of speed, low manufacturinTight VCC tolerance, relativelsusceptibility to power transierCompare TTL,CMOS and ELogicPropagationFamilydelay time (not speed to the second to	of its independence on ating in saturated mode. ic families. the NAND gate. g cost, wide range of ci y high power consump nts are its disadvantages (CL with characteristic ns) Power dissipation per gate (mW) 10 0.01 50	rcuits and the ava tion, moderate par <u>s(BTL 4)</u> Noise Margin (V) 0.4	ilability in SSI cking density, Fan-in 8	I and MSI are its a generation of noi Fan-out	Advantages. Ise spikes and Cost
	The TTL is so named becauseThe TTL uses transistors operaIt is the fastest of saturated logThe basic TTL logic circuit isGood speed, low manufacturinTight VCC tolerance, relativelsusceptibility to power transierCompare TTL,CMOS and ELogicPropagationFamilydelay time (not state)TTL9CMOS<50	of its independence on ating in saturated mode. ic families. the NAND gate. g cost, wide range of ci y high power consump nts are its disadvantages CL with characteristic model of the characteristic	rcuits and the ava tion, moderate parts cs(BTL 4) Noise Margin (V) 0.4 5 0.25 r Current Steering whereby a fixed preferred to as Cu	Ilability in SSI cking density, Fan-in Fan-in 8 10 5 Logic. bias current le from one dev	I and MSI are its a generation of noi Fan-out 10 50 10 ess than IC switch ogic (CML). ice to another.	Advantages. ise spikes and Cost Low Low High
22	The TTL is so named because The TTL uses transistors opera It is the fastest of saturated log The basic TTL logic circuit is a Good speed, low manufacturin Tight VCC tolerance, relativel susceptibility to power transierCompare TTL,CMOS and E LogicLogicPropagation delay time (not be the family)TTL9CMOS<50ECL1Definr Emitter-Coupled Log This logic family is also called It is the fastest of all logic famile EcL operates on the principle transistor's collector to another Because of this mode operation It is also called Current Steerin The ECL family is used in veryCompare TTL,CMOS and ECompare TTL,CMOS and E	of its independence on ating in saturated mode. ic families. the NAND gate. g cost, wide range of ci y high power consump nts are its disadvantages CL with characteristic ns) Power dissipation per gate (mW) 10 0.01 50 ic (ECL)(BTL 1) Current Mode Logic of ilies. e of current switching, r. n, this logic form is also g Logic (CSL), because y high frequency applic CL(BTL 4)	rcuits and the ava tion, moderate parts cs(BTL 4) Noise Margin (V) 0.4 5 0.25 r Current Steering whereby a fixed preferred to as Cu	Ilability in SSI cking density, Fan-in Fan-in 8 10 5 Logic. bias current le from one dev	I and MSI are its a generation of noi Fan-out 10 50 10 ess than IC switch ogic (CML). ice to another.	Advantages. ise spikes and Cost Low Low High
22	The TTL is so named because The TTL uses transistors opera It is the fastest of saturated log The basic TTL logic circuit is a Good speed, low manufacturin Tight VCC tolerance, relativel susceptibility to power transierCompare TTL,CMOS and E Logic FamilyTTL9CMOS<50ECL1Definr Emitter-Coupled Log This logic family is also called It is the fastest of all logic family ECL operates on the principle transistor's collector to another Because of this mode operation It is also called Current Steerin The ECL family is used in very	of its independence on ating in saturated mode. ic families. the NAND gate. g cost, wide range of ci y high power consump nts are its disadvantages CL with characteristic Nover dissipation per gate (mW) 10 10 0.01 50 ic (ECL) (BTL 1) Current Mode Logic of ilies. e of current switching, r. n, this logic form is also g Logic (CSL), because y high frequency applic CL(BTL 4) CMSO	rcuits and the ava tion, moderate parts cs(BTL 4) Noise Margin (V) 0.4 5 0.25 r Current Steering whereby a fixed preferred to as Cu	ilability in SSI cking density, Fan-in 8 10 5 Logic. bias current la rrent Mode Lo from one devoeed is superior	I and MSI are its a generation of noi Fan-out 10 50 10 ess than IC switch ogic (CML). ice to another.	Advantages. ise spikes and Cost Low Low High

	Page No:5.2-5.9		
	Key Points:		
	Non Volatile Memory		
	ROMRead/Write Memory (NVRA		
	Mask – programmable ROM	EPROM	
	Programmable ROM	EEPROM	
	_	Flash	(3M)
	Volatile Memory		
	Read/Write Memory (RWM)		
	Random Access	Non – random Access	
	SRAM	FIFO	
	DRAM	LIFO	
	DIAW	Shift Register	(4M)
	Explain in datail about the type	es of Random Access Memories (l	
		es of Random Access Memories (1	RAM) (1311) $B1L - 2$.
	Title: Digital Electronics		
	Author: D.Edwin Dhas		
	Page No:5.6-5.9		
2	Key points:		
-	Static RAM (SRAM)	(2M)	
	Logic Diagram	(2M)	
	Block Diagram	(3M)	
	Dynamic RAM (DRAM)	(4M)	
	Comparison	(2M)	
	List the Characteristics of Dig	tal IC (BTL 1)(13M)	
3	from one logic level to the other Propagation Delay(1M) A pulse through a gate takes a ce as the propagation delay of the g Power dissipation(2M) The power dissipation of a logic frequency and is expressed in mi Fan-in(2M) The fan-in of a logic gate is defin Fan-out(2M) The fan-out (loading factor) of a gate can drive without impairing Noise Margin(2M) When the digital circuits operate	rtain amount of time to propagate fro ate. gate is the power required by the g ill watts. ned as the number of inputs that the logic gate is defined as the maximum its normal operation. in noisy environment the gates may rcuit refers to the circuit's ability to	e which causes a change in the state of the output om input to output. This interval of time is known gate to operate with 50% duty cycle at a specified or gate is designed to handle. Im number of standard loads that the output of the y malfunction if the noise is beyond certain limits. tolerate noise voltages at its input. A quantitative
	Operating temperatures(2M)		

	The IC gates and other circuits are temperature sensitive being semiconductor devices. However they are designed to operate satisfactorily over a specified range of temperatures. The range specified for commercial applications is 0 to 70°C, for industrial it is 0 to 85°C and for military applications it is -55°C to 125°C.
	Speed Power Product(2M)
	A common means for measuring and comparing the overall performance of an IC family is the speed power product
	which is obtained by multiplying the gate propagation delay by the gate power dissipation. The smaller the product,
	the better the overall performance.
	Determine the single error – correcting codes for the information code 10111 for odd parity. (7m) BTL – 2.
	Key Points
4.	Number of parity bits (2M)
	Construct a bit location table(2M)
	Determine the parity bits (3M)
	Assume that the even hamming code in example (0110011) is transmitted and that 0100011 is received. The
	receiver does not know what was transmitted. Determine bit location where error has occurred using received
	code. (7m) BTL - 4
5.	Key Points
	Number of parity bits(2M)
	Construct a bit location table(3M)
	Determine the parity bits(2M)
	Define ROM Cell. Describe in detail about the types of ROM. (8m) BTL – 2
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:5.1-5.6
6.	Key Points
	Masked ROM (2M)
	PROM(2M)
	EPROM(2M)
	EEPROM(2M)
	Using ROM realize the following expressions. $(7m)$ BTL – 4
	$F_1(a, b, c) = \sum m(0, 1, 3, 5, 7)F_2 = \sum m(1, 2, 5, 6)$
	Title: Digital Electronics
-	Author: D.Edwin Dhas
7.	Page No:5.43-5.44
	Key Points
	Block Diagram (3M)
	ROM truth Table (2M)
	Logic Diagram(2M)
	Design a combinational circuit using ROM. The circuit accepts 3 – bit number and generates an output binary
	number equal to square of input number. (7m) BTL - 4
	Title: Digital Electronics
0	Author: D.Edwin Dhas
8.	Page No:5.44-5.45
	Key Points
	Block Diagram (3M) POM truth Table (2M)
	ROM truth Table (2M)
	Logic Diagram(2M)
	Designing a switching circuit that converts a 4 – bit binary code into a 4 – bit gray code using ROM array.
0	(7m)(BTL - 4)
9.	Key Points
	ROM truth Table $-(3m)$
	Implementation – (4m)

	A combinational circuit is defined by the functions:
	$F_1 = \sum m(3, 5, 7)$
	$F_2 = \sum m(4, 5, 7)$
	Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs. (BTL - 4) (7m)
10	Title: Digital Electronics
10	Author: D.Edwin Dhas
	Page No:5.20-5.21
	Key Points
	Simplify the Boolean functions using $K - Map - (2m)$
	Write PLA Program table – (2m)
	Implementation – (3m)
	Draw a PLA circuit to implement the logic functions (BTL - 3) (7m)
	A'BC+AB'C+AC' and A'B'C'+BC
11	Key Points
	Simplify the Boolean functions using K – Map – (3m)
	Implementation – (4m)
	Implement the following multiboolean function using 3*4*2 PLA PLD. (BTL - 3) (7m)
	$f_1(a_2, a_1, a_0) = \sum m(0, 1, 3, 5) \text{ and } f_2(a_2, a_1, a_0) = \sum m(3, 5, 7)$
	Title: Digital Electronics
12	Author: D.Edwin Dhas
	Page No:5.26-5.27
	Key Points
	Simplify the Boolean functions using $K - Map - (3m)$
	Implementation – (4m)
	Design a BCD to Excess – 3 code converter and implement using suitable PLA. (BTL - 4) (13m)
	Title: Digital Electronics
	Author: D.Edwin Dhas
10	Page No:5.30-5.32
13	Key Points
	Truth table of BCD to Excess -3 Converter $-(3m)$
	Simplify the Boolean functions using $K - Map - (3m)$
	Write PLA Programmable Table $-(3m)$
	Implementation – (4m) Design and implement 3 – bit binary to gray code converter using PLA. (BTL - 4) (13m)
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Addror: D.Edwin Dhas Page No:5.51
14	Key Points
	Truth table of BCD to Excess – 3 Converter – (4m)
	Simplify the Boolean functions using $K - Map - (4m)$
	Simplify the Boolean functions using $\mathbf{K} - Map - (4m)$ Implementation - (5m)
	A combinational circuit is defined by the functions
	Fractional curves of the functions $F_1(A, B, C) = \sum (3, 5, 6, 7)$
	$F_1(A, B, C) = \sum (3, 3, 6, 7)$ $F_2(A, B, C) = \sum (0, 2, 4, 7)$
	Implement the circuit with a PLA having three inputs, four product terms and two outputs. (BTL - 4) (13m)
	Title: Digital Electronics
15	Author: D.Edwin Dhas
	Page No:5.45-5.49
	Key Points
	Simplify the Boolean functions using K – Map – (6m)
	Implementation – $(7m)$
16	
16	Implement the Boolean function with a PLA. (BTL - 4) (13m)

	$F_1(A, B, C) = \sum (0, 1, 2, 4)$
	$F_2(A, B, C) = \sum (0, 5, 6, 7)$
	$\overline{F_3}(A, B, C) = \overline{\Sigma}(0, 3, 5, 7)$
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:5.43-5.44
	Key Points
	Simplify the Boolean functions using $K - Map - (7m)$
	Implementation – (6m)
	Implement the switching functions: (BTL - 4) (7m)
	$Z_1 = ab'd'e + a'b'c'd'e' + bc + de$ $Z_1 = a'c'c'a$
	$Z_2 = a'c'e$
	$Z_3 = bc + de + c'd'e' + bd$
	$Z_4 = a'c'e + ce$
17	Using a 5*8*4 PLA
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:5.45-5.49
	Key Points
	Implementation – (7m)
	PART C
	Write short notes on FPGA.(BTL - 1) (15m)
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:5.51-5.54
1	Key Points
	Basic Architecture of FPGA – (4m)
	An LUT programmed to produce the SOP function $-(3m)$
	Basic block in an FPGA – (4m)
	A simplified typical FPGA logic element – (4m)
	Generate the following Boolean functions with a PAL with 4 inputs and 4 outputs (BTL - 4) (15m)
	$Y_3 = A'BC'D' + A'BCD' + ABC'D$
	$Y_2 = A'BCD' + A'BCD + ABCD$
	$Y_1 = A'BC' + A'BC + AB'C + ABC'$
	$Y_0 = ABCD$
2	Title: Digital Electronics
-	Author: D.Edwin Dhas
	Page No:5.40-5.43
	Key Points
	Simplify the Boolean functions using K – Map –(6m)
	Implementation – (7m) Concerned the following Region functions with a DAL with Airputs and Acutauts (DTL – 4) (15m)
	Generate the following Boolean functions with a PAL with 4 inputs and 4 outputs (BTL – 4) (15m)
	$Y_3 = A'BC'D' + A'BCD' + ABC'D$
	$Y_2 = A'BCD' + A'BCD + ABCD$
	$Y_1 = A'BC' + A'BC + AB'C + ABC'$
3.	$Y_0 = ABCD$
	Title: Digital Electronics
	Author: D.Edwin Dhas
	Page No:5.40-5.43
	Key Points
	Simplify the Boolean functions using $K - Map - (6m)$

Implementation – (7m)	
Implement the following Boolean	1 functions using PLA. (15m) (BTL - 4) (Nov – Dec 2015)
$wA, B, C, D = \sum m0, 2, 6, 7, 8, 9, 12, 13$	3
$x(A, B, C, D) = \sum m(0, 2, 6, 7, 8, 9)$	(, 12 , 13 , 14)
$y(A, B, C, D) = \sum m(2, 3, 8, 9, 10)$	
$z(A, B, C, D) = \sum m(1, 3, 4, 6, 9, 1)$	
Key Points	
Simplify the Boolean functions usi	ng K – Map – (4m)
Array Logic for $PAL - (4m)$	
PAL Program table – (4m)	
Implementation $-(3m)$	

EC8391

CONTROL SYSTEMS ENGINEERING

L T P C 3 0 0 3

9

9

OBJECTIVES:

- > To introduce the components and their representation of control systems
- To learn various methods for analyzing the time response, frequency response and stability of the systems.
- > To learn the various approach for the state variable analysis.

SYLLABUS:

UNIT I SYSTEMS COMPONENTS AND THEIR REPRESENTATION

Control System: Terminology and Basic Structure-Feed forward and Feedback control theory, Electrical and Mechanical Transfer Function Models-Block diagram Models-Signal flow graphs models-DC and AC servo Systems-Synchronous -Multivariable control system

UNIT II TIME RESPONSE ANALYSIS

Transient response-steady state response-Measures of performance of the standard first order and second order system-effect on an additional zero and an additional pole-steady error constant and system- type number-PID control-Analytical design for PD, PI,PID control systems

UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS

Closed loop frequency response-Performance specification in frequency domain-Frequency response of standard second order system- Bode Plot - Polar Plot- Nyquist plots-Design of compensators using Bode plots-Cascade lead compensation-Cascade lag compensation-Cascade lag-lead compensation

UNIT IV CONCEPTS OF STABILITY ANALYSIS

Concept of stability-Bounded - Input Bounded - Output stability-Routh stability criterion-Relative stability-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion.

UNIT V CONTROL SYSTEM ANALYSIS USING STATE VARIABLE METHODS 9 State variable representation-Conversion of state variable models to transfer functions-Conversion of transfer functions to state variable models-Solution of state equations-Concepts of Controllability and Observability-Stability of linear systems-Equivalence between transfer function and state variable representations-State variable analysis of digital control system-Digital control design using state feedback.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Identify the various control system components and their representations.
- Analyze the various time domain parameters.
- Analysis the various frequency response plots and its system.
- Apply the concepts of various system stability criterions.
- Design various transfer functions of digital control system using state variable models.

TEXT BOOK:

• M.Gopal, —Control System – Principles and Design, Tata McGraw Hill, 4th Edition, 2012. **REFERENCES:**

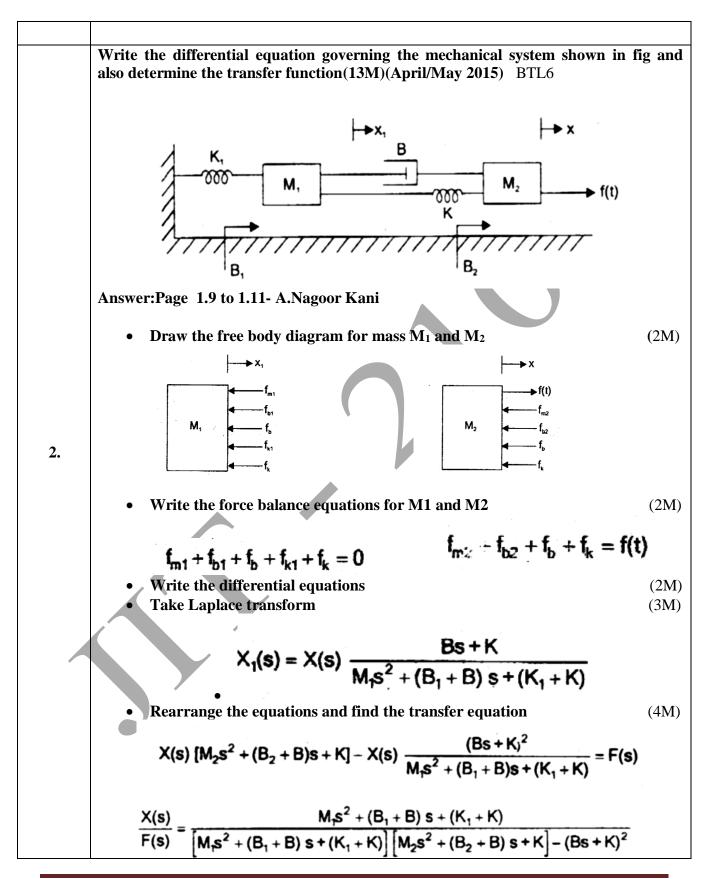
- J.Nagrath and M.Gopal, —Control System Engineering, New Age International Publishers, 5 th Edition, 2007.
- K. Ogata, _Modern Control Engineering', 5th edition, PHI, 2012.
- S.K.Bhattacharya, Control System Engineering, 3rd Edition, Pearson, 2013.
- Benjamin.C.Kuo, —Automatic control systems, Prentice Hall of India, 7th Edition, 1995.

	Subject Code: EC8391 Year/Semester: II/03		
	Subject Name: Control Systems EngineeringSubject Handler: Mrs. T.Muthukumari		
	UNIT I - SYSTEMS COMPONENTS AND THEIR REPRESENTATION		
	Control System: Terminology and Basic Structure-Feed forward and Feedback control theory, Electrical, and Mechanical Transfer Function Models-Block diagram Models-Signal flow graphs models-DC and AC servo Systems-Synchronous -Multivariable control system.		
	PART * A		
Q.No	Questions		
1.	What is a system? BTL1 When a group of elements or components is connected in sequence to perform a specific function, the group thus formed is called a system.		
2.	What is a control system? (Nov Dec 2016) BTL1 A system consists of number of components connected together to perform a specific function. In a system when the output quantity is controlled by varying the input quantity then the system is called control system. The output quantity is called controlled variable Or response and the input quantity is called command signal or excitation. Examples: Control of temperature, liquid level, velocity. Transportation systems, power systems, robotics etc.		
3.	 What are the different classifications of control system? BTL4 Open loop control system Closed loop control system 		
4.	 Closed loop control system What are the classifications of electrical system? BTL4 Linear and Nonlinear system Time invariant and Time variant system Continuous time and Discrete time system SISO and MIMO system Lumped and Distributed parameter system Deterministic and Stochastic system Static and Dynamic system 		
5.	What are the components of control system? BTL4 The components of control system are plant, feedback path elements, error detector, and controller.		
6.	Define open loop and closed loop control system. BTL1 The control systems in which the output quantity has no effect upon the input quantity are called open loop control system. This means that the output is not feedback to the input for correction. The control systems in which the output quantity has an effect upon the input quantity in order to maintain the desired output value are called closed loop control system. Give practical example of open loop systems. BTL3		
7.	The practical examples of open loop control systems are, sprinkler used to water a lawn,		

JIT-JEPPIAAR/ECE/Mrs.T.MUTHU KUMARI IIndYr/SEM 03 /EC8391/CONTROL SYSTEMS ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

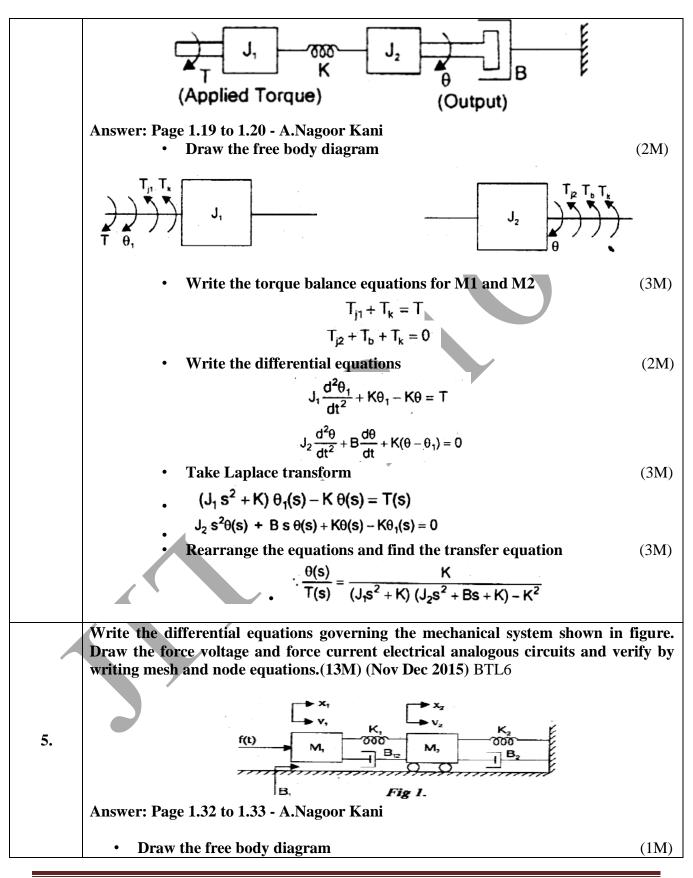
		automatic toaster, traffic light controller, automatic door opening and closing system.		
8.	Give practical example of closed loop systems. BTL3 The practical examples of closed loop control systems are, human being, home heating system, speed control systems, ship stabilization system, missile launching system, voltage stabilizer, temperature control systems.			
	· · ·	ages of closed loop system. BTLA	4	
9.	• Closed loop systems are accurate and reliable.			
	• Changes in output due to external disturbances are corrected automatically.			
	Ŭ	ages of open loop system(Nov/D		
10.	 The open loop system are simple and economical The open loop system are easier to construct Generally the open loop systems are stable 			
			em.(April May 2016),(Nov Dec 2017)	
	BTL4	the loop and closed loop byse	cm.(April 19/4y 2010),(100 Dec 2017)	
	SL no	Open loop	Closed loop	
	1	In accurate and unreliable	Accurate and reliable	
	2	Simple and economical	Complex and costly	
11.	3	Changes in output due to		
		external disturbances are not		
		corrected automatically	corrected automatically	
	4	They are generally stable	Great efforts are needed to	
			design a stable system	
		k control system?(April May 2		
	 Measure the controlled variable to determine the control strategy 			
	• The output of the plant/process is measured with the help of sensor and then given			
12.		troller to take the proper action.	with the reference size of and comments the	
			with the reference signal and generate the	
	actuating or control signal.Controller action will be zero until the process variable meets set point.			
		for feedback control system. B		
	Draw the mode.	Distu		
			ariables	
		Desired Error Manipulate value Control variable	variable variable	
13.		value (+) value Control values	Process	
		Measured value	<u></u> Г	
		Sensor		
			_	
	What are the ch	aracteristics of negative feedba	ck? BTL2	
	The characteristics of negative feedback are as follows			
14.	• Accuracy in tracking steady state value.			
	 Rejection of disturbance signals. 			
	• Low sensitivity to parameter variations.			
	Reductio	n in gain at the expense of better s	stability.	

	What is effect of positive feedback on stability? BTL4 The positive feedback increases the error signal and drives the output to instability. The		
15.	positive feedback is used in minor loops in control systems to amplify certain internal		
	signals or parameters.		
	Why negative feedback is preferred in control system? BTL4		
16	The negative feedback results in better stability in steady state and rejects any disturbance		
16.	signals. It also has low sensitivity to parameter variations. Hence negative feedback is		
	preferred in closed loop control system.		
	What is feedforward control system? BTL1		
	 Measures disturbance variable to determine the control strategy. 		
	FFC avoids the slowness of the feedback controller		
17.	• In FFC, a sensor is used to detect process load changes or disturbances as they		
1/•	enter the system.		
	• Sensors measure the values of the load variables, and a computer calculates the		
	correct control signal for the existing load conditions and process set point.		
	Here set point is fixed in the feed forward controller.		
	Draw the model for feedforward control system. BTL6		
	Load Changes		
	Feedforward Manufacture		
	Set Point		
18.			
	$ \downarrow $		
	Input		
	Control Valve		
	What is a mathematical model? What are its different type? DTL 1		
	What is a mathematical model? What are its different types? BTL1 A mathematical model consists of a collection of equations describing behaviour of the		
	system. There are two types of mathematical modelling		
19.	• Input /output representations describing relations between the input and output of		
1).	the system		
*	• State model describing the relations between the input ,state variable and output of		
	the system		
	What is the need to study mathematical modelling of a system? BTL2		
20.	A control system is a collection of components to meet a required objective. In order to		
	meet the objective, it is very useful to have a mathematical modeling of the system.		
	Define transfer function of the system.(Nov Dec 2017) BTL1		
21.	The transfer function of a system is defined as the ratio between Laplace transform of the		
	output and Laplace transform of the input when taking initial condition as zero		
	$TF = \frac{C(S)}{R(S)}$		
	R(S)		

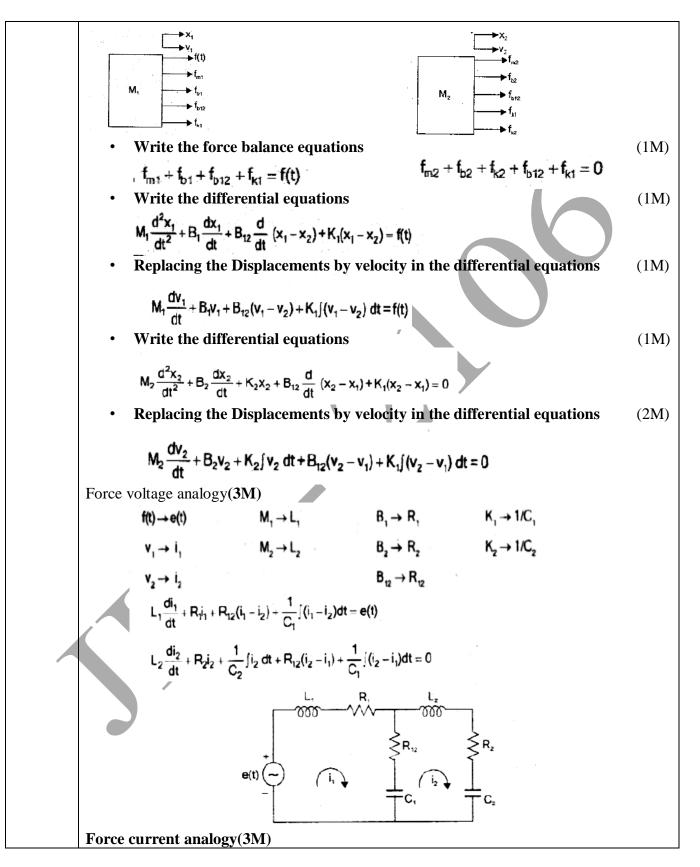

	What are the basic elements used for modelling of electrical system? BTL2
22.	• Resistor (R)
	• Inductor (L)
	Capacitor(C)
	State whether transfer function technique is applicable to nonlinear system and
22	whether the transfer function is independent of the input of the system. BTL1
23.	• The transfer function technique is not applicable to nonlinear system
	• The transfer function of a system is independent of input and depends only on
	system parameters but the output of a system depends on input.
	What are the basic elements used for modelling of mechanical translational system?(Nov Dec 2016) BTL2
24.	
24.	Mass(M) Spring (V)
	• Spring (K)
	• Dashpot(B)
	Write the force balance equation of an ideal mass, dashpot, spring element of an mechanical translational system. BTL1
25.	a. $F = M d2x/dt2$ for mass element.
25.	b. $F = B dx/dt$ for dashpot element.
	c. $F = kx$ for spring element.
	What are the basic elements used for modelling of mechanical rotational system?
	BTL2
26.	Mass with moment of inertia J
20.	 Dashpot with rotational friction coefficient B
	 Torsional spring with stiffness K
	Write the torque balance equation of an ideal mass, dashpot and spring element of
	mechanical rotational system. BTL1
27.	• $F = M d2\theta/dt2$ for mass element.
<i>4</i> 7.	• $\mathbf{F} = \mathbf{B} \mathbf{d}\theta/\mathbf{d}t$ for dashpot element.
	• $F = k\theta$ for spring element.
	Name the two types of electrical analogous for mechanical translational system. BTL1
28.	• Force voltage analogy
	Force current analogy
	Write the analogous electrical elements in force voltage analogy for the elements of
	mechanical translational system. BTL1
	a. Force-voltage e.b. Velocity v-current i.
29.	c. Displacement x-charge q.
	d. Frictional coefficient B-Resistance R.
	e. Mass M- Inductance L.
	f. Stiffness K-Inverse of capacitance 1/C.
	Write the analogous electrical elements in force current analogy for the elements of
30.	mechanical translational system. BTL1
	a. Force-current I.
	b. Velocity v-voltage v.
L	

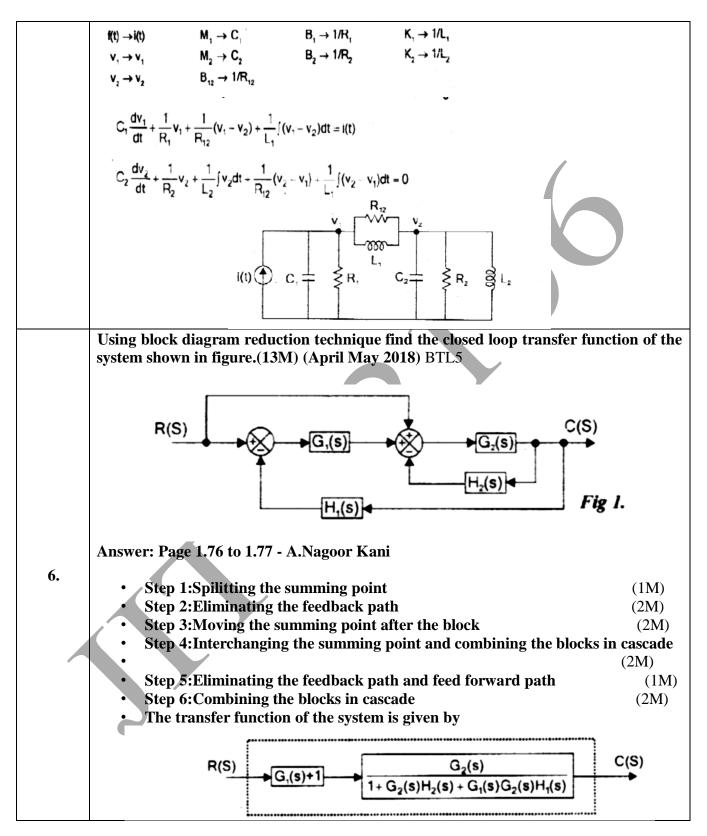
JIT-JEPPIAAR/ECE/Mrs.T.MUTHU KUMARI IIndYr/SEM 03 /EC8391/CONTROL SYSTEMS ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

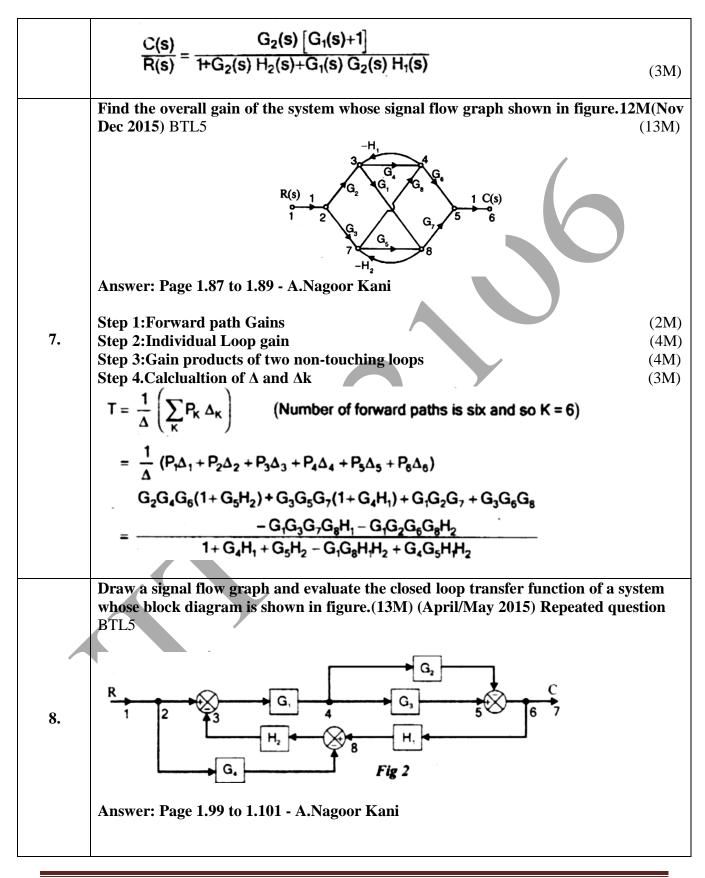
	c. Displacement x-flux φ.				
	d. Frictional coefficient B-conductance 1/R.				
	e. Mass M- capacitance C.				
	f. Stiffness K-Inverse of inductance 1/L.				
	What is Block diagram? What are its basic components? (Nov/Dec 2015) BTL1				
31.	A block diagram of a system is a pictorial representation of the functions performed by				
	each components of the system and shows the flow of signals. The basic elements of the				
	block diagram are blocks, branch points, and summing points.				
	What is the basis for framing rules of block diagram reduction technique? BTL1				
32.	The rules for block diagram reduction technique are framed such that any modification				
	made on the diagram does not alter the input and output relations.				
	What are the basic components of block diagram representations? BTL2				
33.	• Block				
551	Branch point				
	Summing point				
	Write the rule for elimination of negative feedback.BTL1				
	(R-CH) (R-CH)G				
34.	$R \xrightarrow{G} G \xrightarrow{G} R$				
	CH IIIC				
	What are the disadvantages of block diagram representation? BTL2				
35.	• It is a tedious method of calculating transfer function.				
	Overall gain of the system cannot be computed.				
	What is a signal flow graph? BTL1				
	A signal flow graph is a diagram that represents a set of simultaneous linear algebraic				
36.	equations. By taking Laplace, transform the time domain differential equations governing s				
	a control system can be transferred to a set of algebraic equations in s domain. The signal				
	flow graph of the system can be constructed using these equations,				
	What are the properties of signal flow graph? BTL2				
	The basic properties of signal flow graph are				
	• Signal flow graph is applicable to linear systems.				
	• It consists of nodes and branches. A node is a point representing a variable or				
37.	signal. A branch indicates functional dependence of one signal to other.				
57.	• A node adds the signals of all incoming branches and transmits this sum to all				
*	other branches.				
	• Signals travel along branches only in the marked direction and when it travels it				
	gets multiplied by the gain or transmittance of the branch.				
	• The algebraic equations must be in the form of cause and effect relationship.				
	State Mason's Gain formula. (April/May 2010) BTL1				
20	Overall gain, $T = \frac{1}{\Delta} \sum_{K} P_{K} \Delta_{K}$				
38.	Overall gain, $I = -\sum_{K} P_{K} \Delta_{K}$				
	$\Delta \frac{1}{K}$				
	·				

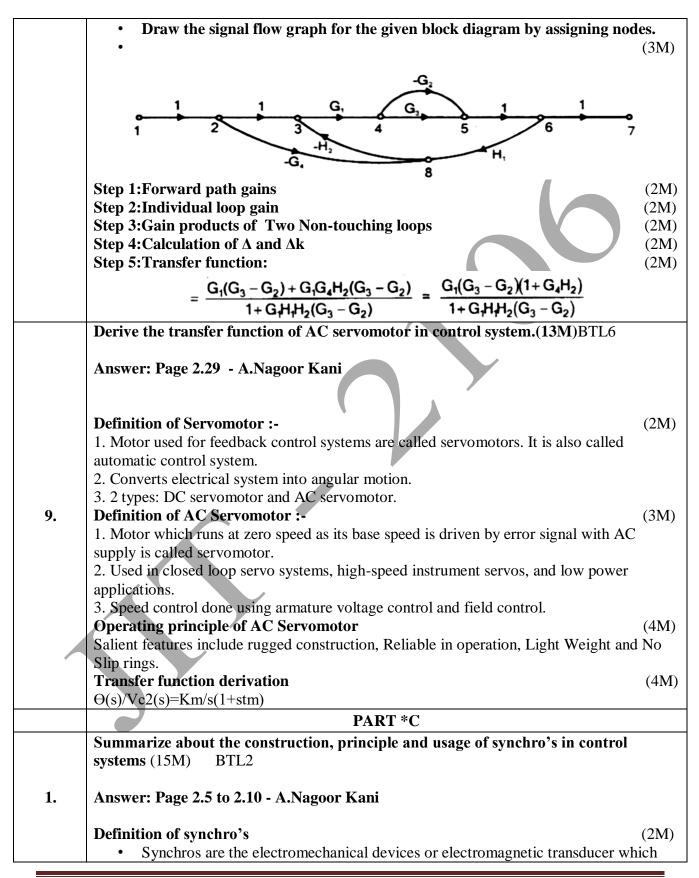

	Where Pk= Forward path gain of Kth forward path				
	K =Number of forward paths in the signal flow graph				
	$\Delta = 1$ -(sum of individual loop gains)+(Sum of gain products of all possible combinations				
	of two non-touching loop)-(sum of gain products of a	all possible combination of three non-			
	touching loops)+				
	$\Delta k = \Delta$ for that part of the graph which is not touching	g the Kth forward path.			
	What is called servo motor? BTL1				
39.	• The motors that are used in automatic control systems are called servomotors.				
57.	The motors are used for feedback control system are called servomotor				
	It converts electrical signal into angular displ	acement of the shaft.			
	What are the features of servomotors? BTL4				
	• Linear relationship between the speed and ele	ectric control signal			
	• Steady state stability				
40.	• Wide range of speed control				
	• Linearity of mechanical characteristic throug	shout the entire speed range			
	• Low mechanical and electrical inertia				
	• Fast response.				
	What are the classifications of servomotors? BTL	2			
	Depending on the supply required to run the motor, t				
41.	 DC servo motors 				
	AC servo motors				
	What are the applications of DC and AC servome	tors? BTL3			
	• The DC servomotors are generally used for				
42.	machine tools and robotics	ange power applications such as in			
720	• The AC servomotors are best suited for 1	ow nower applications such as X-Y			
	recorders, Disk drives, tape drivers, printers e				
	Compare AC and DC servo motor BTL2				
	Sl.No DC SERVO MOTOR	AC SERVO MOTOR			
	1 For small size, they deliver high	They are designed for low			
	output	power output			
	2 Amplifier is used for DC motor	Amplifier have no drift			
	has a drift				
43.	3 More efficient	Efficiency is less as rotor			
		resistance is large			
*	4 More maintenance is required	Less maintenance			
	5 No slip rings. Hence slip losses	Slip losses are not zero			
	are zero	Shp losses are not zero			
	6 Brushes produces radio frequency	No radio frequency noise			
	interference	The function frequency fields			
	What is a synchro? BTL1				
	• Synchro's are the electromechanical devices	s or electromagnetic transducer which			
44.	produces an output voltage depending upon t	e			
	 It is formed by interconnection of the syn 	•			
	transformer. They are also called synchro pai				

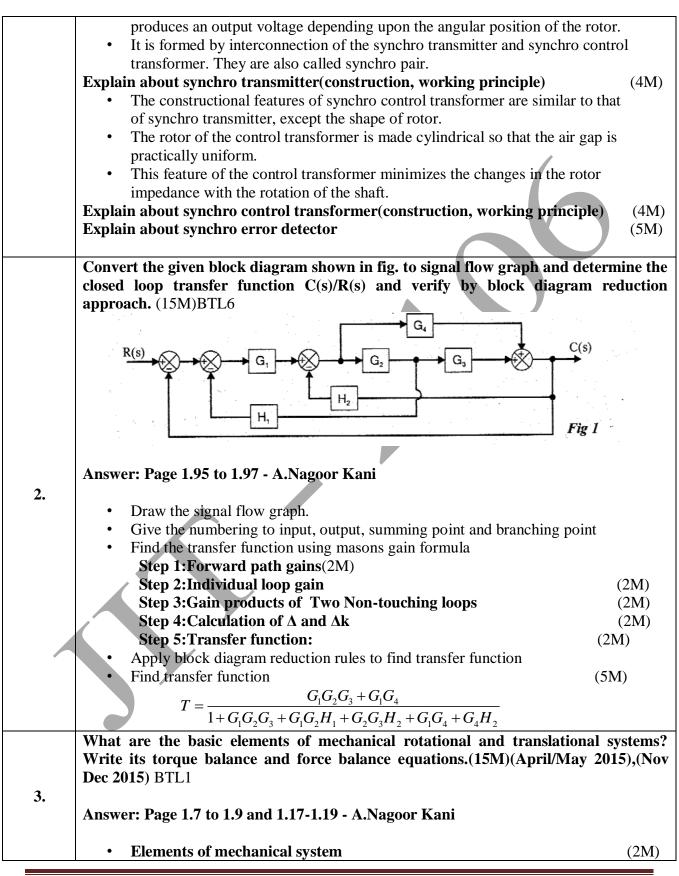
45.	 What are the uses of synchro's? BTL3 They can be used in the following two ways. To control the angular position of load from a remote place / long distance. For automatic correction of changes due to disturbance in the angular position of the load.
46.	 What are the differences between synchro transmitter and synchro control transformer? BTL2 Rotor of synchro transmitter is of dumb bell shape and the rotor of control transformer is cylindrical. The rotor winding of synchro transmitter is excited by an AC voltage. In control transformer, the induced emf in the rotor is used as an output signal (error signal).
	PART * B
1.	May 2018) BTL6 R_1 R_2 e_i C_1 Q_2 e_o e_i e_i R_2 e_i e_i e_i e_i e_i Answer: Page 1.23 to 1.24 - A.Nagoor Kani • Apply KCL at node 1 $\frac{V_1}{R_1} + C_1 \frac{dV_1}{dt} + \frac{V_1 - V_2}{R_2} = \frac{e}{R_1}$ (2M) • Take Laplace transform of the equation(1) (3M)
	$V_{1}(s) \left[\frac{1}{R_{1}} + sC_{1} + \frac{1}{R_{2}} \right] - \frac{V_{2}(s)}{R_{2}} = \frac{E(s)}{R_{1}}$ • Apply KCL at node 2 $\frac{v_{2} - v_{1}}{R} + C_{2} \frac{dv_{2}}{dt} = 0$ (2M)
	• Take Laplace transform of the equation(2) (3M)
	$V_1(s) = [1 + sC_2R_2]V_2(s)$ • Substituting V ₁ (s) from equation(2) in equation(1) we get (3M)
	$\frac{V_2(s)}{E(s)} = \frac{R_2}{\left[(1 + sR_2C_2)(R_1 + R_2 + sC_1R_1R_2) - R_1\right]}$

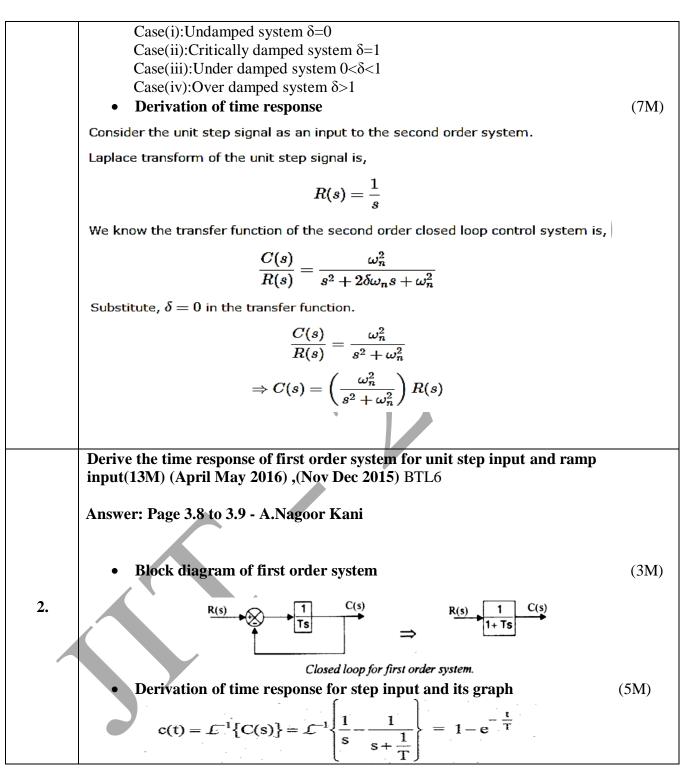


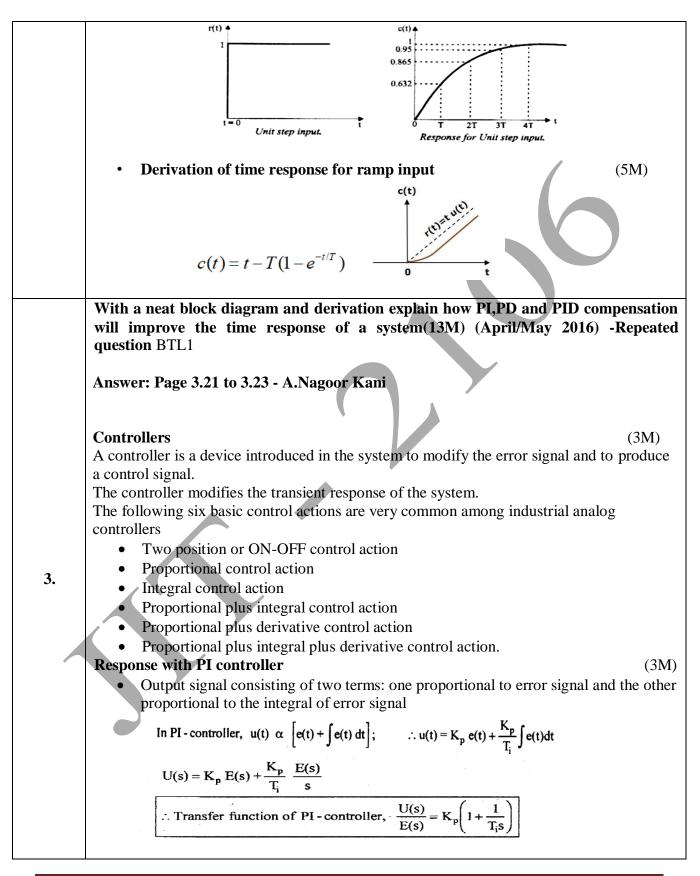

JIT-JEPPIAAR/ECE/Mrs.T.MUTHU KUMARI IIndYr/SEM 03 /EC8391/CONTROL SYSTEMS ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

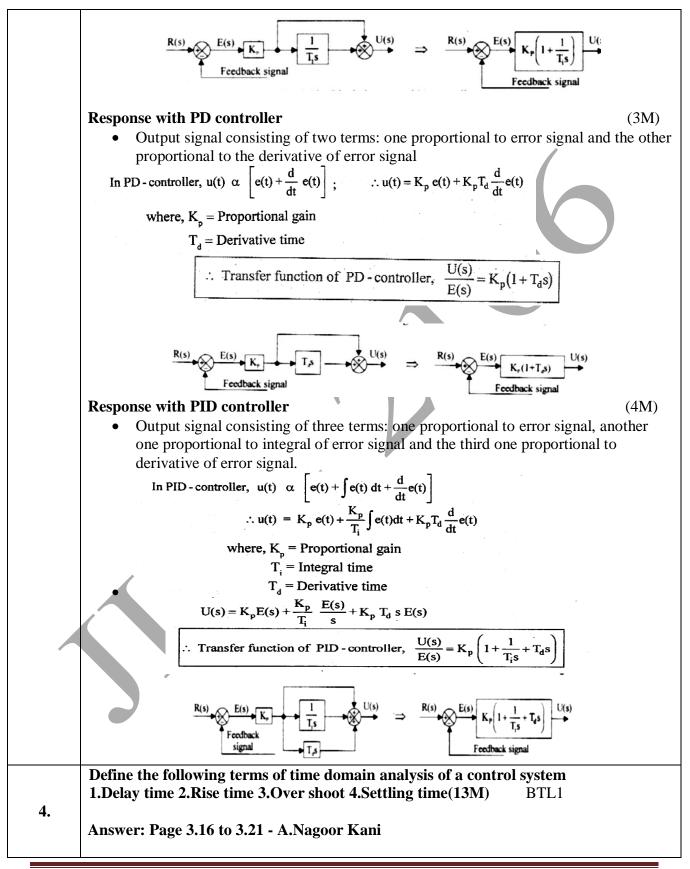


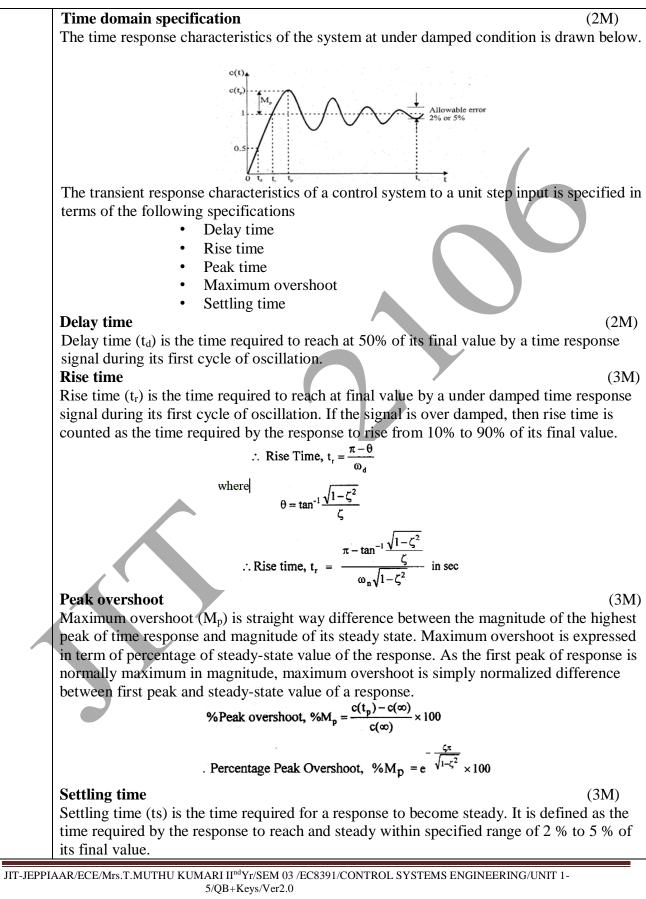


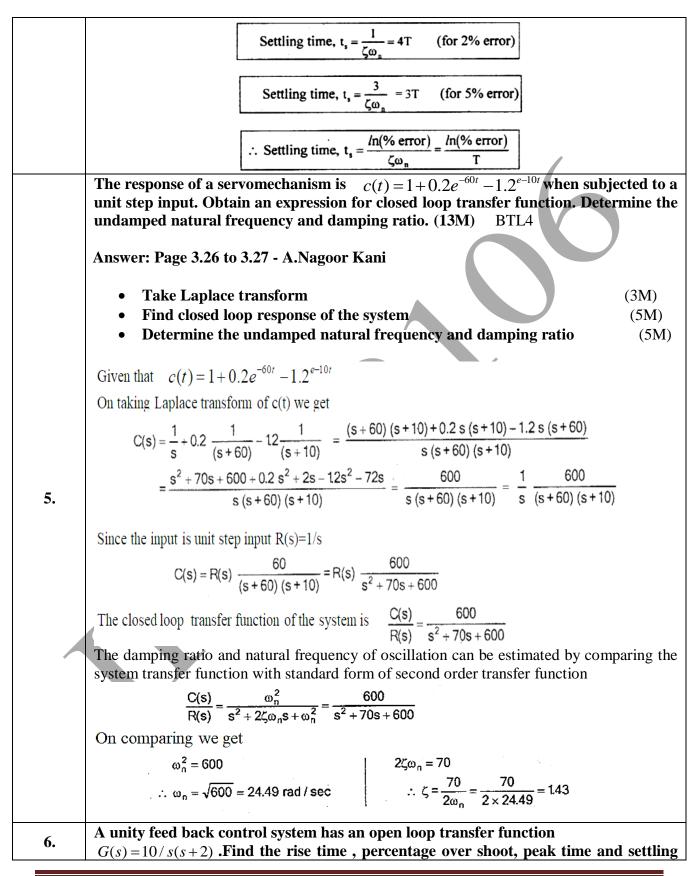

JIT-JEPPIAAR/ECE/Mrs.T.MUTHU KUMARI IIndYr/SEM 03 /EC8391/CONTROL SYSTEMS ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

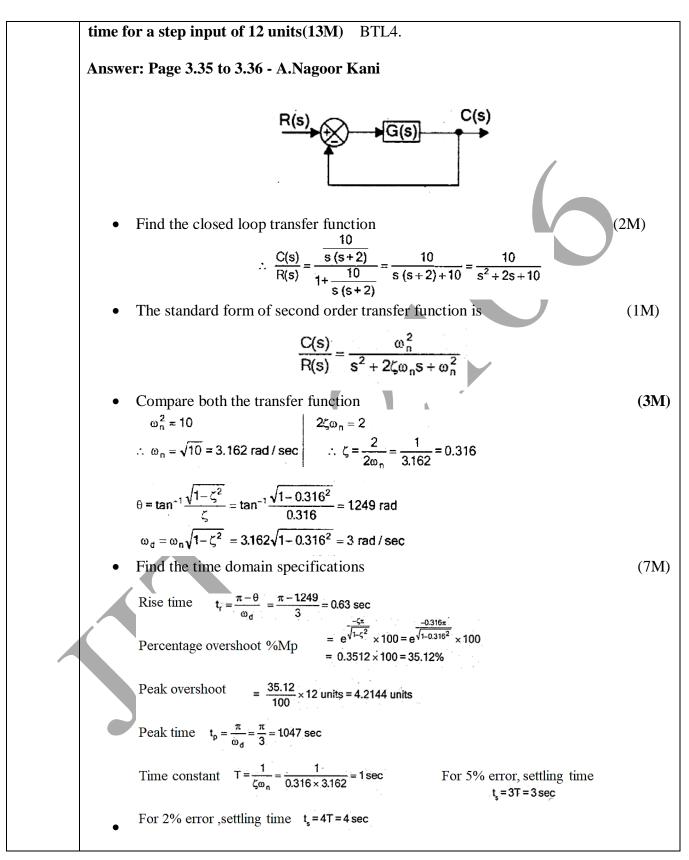

1 M (M) D 1 (D) C (U)	
1. Mass(M), Dashpot(B), Spring(K)	
2. Moment of inertia (J), Dashpot(F), Spring(K)	
Draw the free body diagram	(2M)
Apply Newton's second law	(1M)
Write differential equations	(2M)
1. $F(t) = M d^2\theta/dt^2 + B d\theta/dt + k\theta$	
2. $T(t) = M d^2\theta/dt^2 + B d\theta/dt + k\theta$	
Force balance equation of translational system	(4M)
$F = M d^2x/dt^2$ for mass element.	
F = B dx/dt for dash pot element.	
F = kx for spring element.	
Force balance equation of rotational system	(4M)
1. Mechanical Rotational system can be obtained using three basic elements Mor	nent of
Inertia (J), Spring (K), Damper (B).	
2. $F = M d2\theta/dt2$ for mass element.	
3. $F = B d \theta / dt$ for dash pot element.	
4. $F = k \theta$ for spring element.	
Torque-voltage rule:	
1. Angular Velocity v-current i.	
2. Angular Displacement x-charge q.	
3. Frictional coefficient F-Resistance R.	
4. Mass J- Inductance L.	
5. Stiffness K-Inverse of capacitance 1/C.	
Torque -current rule:	
1. Angular Velocity v-voltage v.	
2. Angular Displacement x-flux φ .	
3. Frictional coefficient F conductance 1/R.	
4. Mass J- capacitance C.	


	UNIT II – TIME RESPONSE ANALYSIS
	Transient response-steady state response-Measures of performance of the standard first order and second order system-effect on an additional zero and an additional pole-steady error constant and system- type number-PID control-Analytical design for PD, PI,PID control systems
	PART * A
Q.No	Questions
1.	What is time response analysis?BTL1 The time response of the system is the output of the closed loop system as a function of time. It is denoted by C(t).The time response can be obtained by solving the differential equation governing the system.
2.	What is the need for time domain analysis? BTL2 Most of the control system use time as the independent variable, so it is important to analyze the response given by the system for the applied excitation, which is the function of the time.
3.	Define transient and steady state response BTL1 The transient response The response of the system when the input changes from one state to another Steady state response Response of the system when time t approaches infinity
4.	 What are the standard tests signals employed for time domain studies?(April May 2015),(Nov/Dec 2015) repeated question BTL1 Step signal, Unit step signal Ramp signal, Unit ramp signal Parabolic signal, Unit parabolic signal Impulse signal Sinusoidal signal
5.	Define damping ratio BTL1 The damping ratio is defined as the ratio of actual damping to the critical damping
6.	 Define order of a system BTL 1 Order of the differential equation governing the system. If the system is governed by nth order differential equation then the system is called nth order system.
7.	Classify the system based on the value of damping? BTL2 Case(i):Undamped system $\delta=0$ Case(ii):Critically damped system $\delta=1$ Case(iii):Under damped system $0 < \delta < 1$ Case(iv):Over damped system $\delta > 1$
8.	What will be the nature of the response of the second order system with different types of damping? BTL2

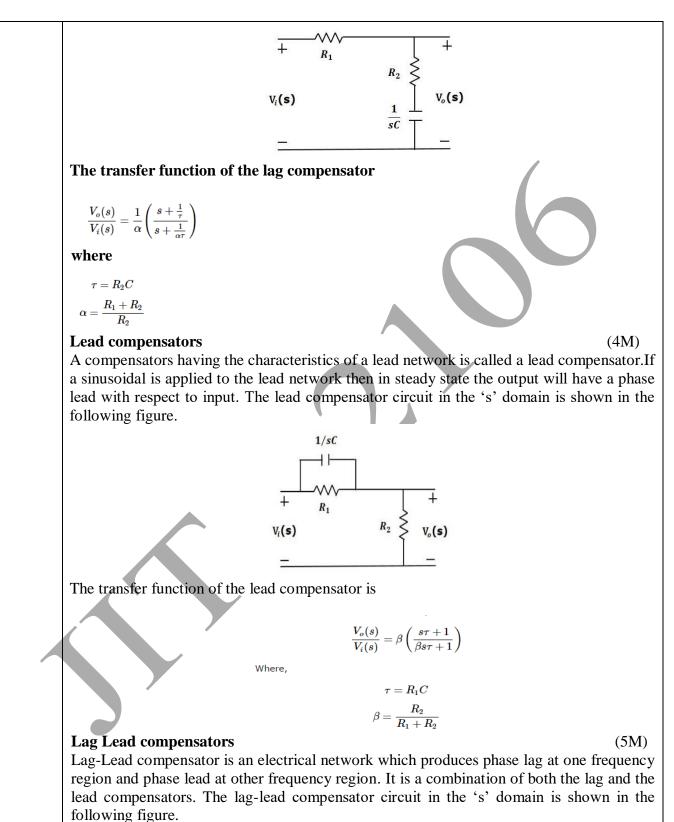

	For undamped system the response is oscillatory
	 For under damped system the response is damped oscillatory
	• For critically damped system the response is exponential rising
	• For over damped system the response is exponentially rising but the rise time wi
	be very large
	Sketch the response of a second order under damped system? BTL3
9.	
	$(0 < \zeta < 0)$ underdamped
	What is damped frequency of oscillation? BTL1
10.	In underdamped system, the response is damped oscillatory. The frequency of dampe
	oscillation is given by $\omega_d = \omega_n \sqrt{1 - \delta^2}$
	What is the effect of adding a pole to a second order system? BTL4
11.	The second order system is generally stable. If a pole is added to it, it becomes third order
	due to which it becomes less stable in nature. It increases peak overshoot and settling time
	What is type number of the system?(April/May 2015) BTL2
12.	The type number is given by number of poles of loop transfer function at the origin. The
	type number of the system decides the steady state error.
	What is type 0 and type 1 system? BTL2 The value of N in the denominator polynomial of loop transfer function decides the type
	number of the system
13.	N- Number of poles at origin.
1.5.	• $N = 0$, then the system is type 0 system,
	• $N = 1$, the system is type 0 system, • $N = 1$, the system is type 1 system.
	• $N = 2$, then the system is type 2 system and so on.
	What is the difference between type and order of the system BTL2
14.	Type number indicates the number of poles at the origin whereas the order of the system
	indicates the order of the differential equation governing the dynamics of the system.
Ψ	What are static error constants ? BTL1
	The Kp,Kv,Ka are called static error constants.
	Positional error constant, $K_p = Lt_0 G(s) H(s)$
15.	3-70
	Velocity error constant, $K_v = \underset{s \to 0}{\text{Lt}} s G(s) H(s)$
	Acceleration error constant, $K_a = \underset{s \to 0}{\text{Lt}} s^2 G(s) H(s)$
	Outline the time domain specifications. (Nov Dec 2016) BTL2
16.	The transient response characteristics of a control system to a unit step input is specified i

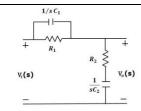

	• Delay time to
	Delay time tdRise time tr
	Peak time tp
	Maximum overshoot Mp
	 Settling time ts
	e e e e e e e e e e e e e e e e e e e
17.	Draw the unit step response curve for the second order system and show the time domain specifications. (April May 2018) BTL3 $c(t) = \frac{c(t)}{1 + \frac{c(t_p)}{1 + \frac{c(t_p)}$
	Write the definition for peak overshoot? BTL1
10	Maximum overshoot (M_p) is straight way difference between the magnitude of the highest
18.	peak of time response and magnitude of its steady state. Maximum overshoot is expressed
	in term of percentage of steady-state value of the response.
	Define peak time. BTL1
10	The time at which the peak overshoot occurs in the time response of a second order system
19.	is called a peak time.
	How would you define rise time? BTL 1
	It is the time required for the response to rise from 10% to 90% of the final value for over
20.	damped systems and 0 to 100% of the final value for under damped systems. The rise time
	is reciprocal of the slope of the response at the instant, the response is equal to 50% of the
	final value.
	How can the maximum overshoot of a system be decreased without affecting the
	steady state error? BTL4
21.	With the use of PD i.e. proportional plus derivative controller, it can be observed that
	transient response and value of damping ratio increases without affecting steady state error.
	As damping ratio increases, the maximum overshoot decreases. So, using PD controller it
	is possible to decrease maximum overshoot without affecting the steady state error.
	Define steady state error.(April May 2017),(Nov Dec 2015) repeated question BTL1
22.	The steady state error is the value of error signal e(t) when t tends to infinity. The steady
	state error is a measure of system accuracy. These errors arise from the nature of inputs type of the system and from the non-linearity of the system components.
	inputs, type of the system and from the non-linearity of the system components. What are generalized error coefficients?(April May 2018) (Nov Dec 2017) BTL1
	They are coefficients of generalised error series. The generalised error series is given by
23.	They are coefficients of generalised error series. The generalised error series is given by
	$\mathbf{e}_{ss} = \underset{t \to \infty}{\text{Lt}} \left[\mathbf{r}(t) \ \mathbf{C}_0 + \dot{\mathbf{r}}(t) \ \mathbf{C}_1 + \ddot{\mathbf{r}}(t) \ \frac{\mathbf{C}_2}{2!} + \ddot{\mathbf{r}}(t) \ \frac{\mathbf{C}_3}{3!} + \dots + \ddot{\mathbf{r}}(t) \ \frac{\mathbf{C}_n}{n!} + \dots \right]$
	State the advantages of generalized error coefficients. BTL 2
24.	• It gives variation of error as a function of time.
	• It uses any input other than the standard input.
	······································


	• As variation of error as a function of time is available, the design of the system becomes easy and optimum
	What is the function of controller? BTL1
25.	A controller accepts error as its input, manipulates the error according to the requirement
	of the system, and gives output to the plant or the process to be controlled.
	What did you infer when a proportional controller is introduced in a system?BTL4
	The following aspects of the system behavior are improved by increasing the loop gain
	 Steady state tracking accuracy
26.	 Disturbance signal rejection
	Relative stability
	The drawback of the P controller is, it produces the constant the steady state error.
	Draw the transfer function model for PID control (April May 2017) BTL6
27.	$R(s) \frown E(s)$ $U(s)$ $R(s) \frown E(s)$ $U(s)$
21.	$\xrightarrow{\mathbf{C}} \underbrace{\mathbf{K}_{\mathbf{P}}}_{\mathbf{T},\mathbf{S}} \xrightarrow{\mathbf{F}} \underbrace{\mathbf{K}_{\mathbf{P}}} \xrightarrow{\mathbf{F}} \underbrace{\mathbf{K}} \underbrace{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \underbrace{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \underbrace{\mathbf{K}} \xrightarrow{\mathbf{K}} \mathbf{K$
	Feedback
	signal $T_s s$ Feedback signal
	Mention the characteristics of PI controller. (April May 2015) BTL2
	• The advantages of both P and I controller are combined in PI controller
28.	 The proportional action increases the loop gain and makes the system less sensitive
20.	to variations of system parameter.
	 The integral action eliminates or reduces the steady state error
	Why derivative controller is not used in the control system? BTL2
	The derivative controller acts only during transient period when the error varies with time
29.	and does not produce any corrective action for a constant error as derivative of a constant
_>,	error is zero. Hence the derivative controller is never used alone but always used along
	with some other type of controller.
	What is the effect of PI controller on the system performance? BTL 2
30.	The PI controller increases the order of the system by one, which results in reducing, the
	steady state error. But the system becomes less stable than the original system.
	PART * B
Q.No	Questions
	Draw the block diagram of second order system. Classify it.Derive the time response
*	of any one of the damped system for unit step input.(13 M) (Nov/Dec2018) BTL6
	Answer: Page 3.9 to 3.16 - A.Nagoor Kani
1.	• Block diagram of second order system (3M)
	$\frac{R(s)}{\omega_n^2} \qquad \frac{\omega_n^2}{C(s)} \qquad \frac{R(s)}{\omega_n^2} \qquad \frac{C(s)}{C(s)}$
	$\Rightarrow \qquad s^2 + 2\zeta \omega_n s \Rightarrow \qquad \Rightarrow \qquad s^2 + 2\zeta \omega_n s + \omega_n^2$
	• Classification of second order system based on damping ratio (3M)



	PART * C
Q.No	Questions
	For a unity feedback control system the open loop transfer function $G(s) = 10(s+2)/s^2(s+1)$ Find, (a)The position, velocity and acceleration error constant.(b)The steady state error when the input is $R(s) = \frac{3}{s} + \frac{2}{s^2} + \frac{1}{3s^3}$ (15M BTL3
	Answer: Page 3.45 to 3.48 - A.Nagoor Kani
	 Find static error constants(position error constant, Velocity error constant, Acceleration error constant) 10(a + 2)
	Position error constant, $K_p = \underset{s \to 0}{\text{Lt}} G(s)H(s) = \underset{s \to 0}{\text{Lt}} G(s) = \underset{s \to 0}{\text{Lt}} \frac{10(s+2)}{s^2(s+1)} = \infty$
	Velocity error constant, $K_v = \underset{s \to 0}{\text{Lt } s} G(s)H(s) = \underset{s \to 0}{\text{Lt } s} G(s) = \underset{s \to 0}{\text{Lt } s} \frac{s \frac{10(s+2)}{s^2(s+1)}}{s^2(s+1)} = \infty$
1.	Acceleration error constant, $K_a = \underset{s \to 0}{\text{Lt}} s^2 G(s) H(s) = \underset{s \to 0}{\text{Lt}} s^2 G(s)$
1.	$= \lim_{s \to 0} s^2 \frac{10(s+2)}{s^2(s+1)} = \frac{10 \times 2}{1} = 20$ (7M)
	The error signal is $e(t) = r(t)C_0 + \dot{r}(t)C_1 + \ddot{r}(t)\frac{C_2}{2!} + \dots + f(t)\frac{C_n}{n!} + \dots$
	$r(t) = \mathcal{L}^{-1}\left\{R(s)\right\} = \mathcal{L}^{-1}\left\{\frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}\right\}$
	$= 3 - 2t + \frac{1}{3}\frac{t^2}{2!} = 3 - 2t + \frac{t^2}{6}$
	$C_0 = \underset{s \to 0}{\text{Lt }} F(s); \qquad C_1 = \underset{s \to 0}{\text{Lt }} \frac{d}{ds} F(s); \qquad C_2 = \underset{s \to 0}{\text{Lt }} \frac{d^2}{ds^2} F(s)$ $C_0 = 0, C_1 = 0 \text{ and } C_2 = 0.1 \text{ then } ess = 1/60$
	C0-0,01-0 and C2-0.1 then C55-1/00
	For servomechanism with open loop transfer function given below explains what typ input signal give rise to a constant steady state error and calculate their values
2.	a) $G(s) = \frac{20(s+2)}{s(s+1)(s+3)}$; b) $G(s) = \frac{10}{(s+2)(s+3)}$; c) $G(s) = \frac{10}{s^2(s+1)(s+2)}$ (15M)
	(5M+5M+5M) BTL3 Answer: Page 3.48 to 3.49 - A.Nagoor Kani


	UNIT III FREQUENCY RESPONSE ANALYSIS
	Closed loop frequency response-Performance specification in frequency domain- Frequency response of standard second order system- Bode Plot - Polar Plot- Nyquist plots-Design of compensators using Bode plots-Cascade lead compensation-Cascade lag compensation-Cascade lag-lead compensation
	PART * A
Q.No	Questions
1.	What is frequency response? BTL1 The frequency and phase function of sinusoidal transfer function of a system are real function of frequency so they are called frequency response.
2.	 What are the advantages of frequency response anlaysis? BTL2 The absolute and relative stability of the closed loop system can be estimated from the knowledge of their open loop frequency response The practical testing of the systems can be easily done with available sinusoidal generators and precise measurements equipments. The transfer function of the complicated systems can be determined experimentally by frequency response tests. The effects of noise disturbances and parameter variations are relatively easy to visualize and incorporate corrective measures. Analysis can be extended to certain non linear system.
3.	 State any four-frequency domain specification. (April May 2016,Nov Dec 2015) BTL1 Resonant Peak Resonant frequency Cut-off region Phase Margin Gain Margin Phase cross over frequency Gain cross over frequency
4.	Define gain Margin. (April May 2017, April May 2018) BTL1 The gain margin (G.M.) is defined as the margin in gain allowable by which gain can be increased till system reaches on the verge of instability. Mathematically it can be defined as reciprocal of the magnitude of the G(jw)H(jw) measured at phase crossover frequency.
5.	Define phase margin. (April May 2018) BTL1 The amount of additional phase lags which can be introduced in the system till the system reaches on the verge of instability is called phase margin.
6.	What is gain crossover frequency and phase crossover frequency? BTL1 Gain crossover frequency (Wgc): The frequency at which magnitude of G(jw)H(jw) is unity is called gain crossover frequency. Phase crossover frequency (Wpc): The frequency at which phase angle of G(jw)H(jw) is - 180 deg. is called phase crossover frequency.
7.	What is meant by corner frequency in frequency response analysis? BTL 1 A frequency up to which the magnitude contribution of a factor is negligible and can be


	neglected is called its corner frequency. It is the frequency at which low frequency and
	high frequency asymptotes intersect each other. At the corner frequency, a change in the slope of a magnitude plot occurs. Frequency range and the number of points is chosen
	automatically. How the resonant peak (Mr), resonant frequency (wr), and band width are
	determined from Nichols chart? BTL2
8.	The resonant peak is given by the value of μ . Contour which is tangent to G (jw) locus.
	The resonant frequency is given by the frequency of G (jw) at the tangent point. The
	bandwidth is given by frequency corresponding to the intersection point of G(jw) and –
	3dB M-contour.
0	What is meant by Cut of frequency? BTL 1
9.	it is denoted by ωb . the frequency at which the magnitude of the closed loop response is 3
	dB down from its zero-frequency value is called cut-off frequency.
10	What is meant by resonant peak? (Nov Dec 2018) BTL1
10.	Resonant peak (Mr): It is the maximum value of magnitude of the closed loop frequency
	response.
11	What is meant by resonant frequency? (Nov Dec 2018) BTL1
11.	Resonant frequency (ωr): The frequency at which resonant peak Mr occurs in closed loop
	frequency response is called resonant frequency.
	Write a short note on correlation between the time and frequency response? BTL1
	Correlation between time and frequency response of first order or second order systems.
	The frequency domain specifications can be expressed in terms of the time domain
10	parameters δ and ω_n . For a peak overshoot in time domain there is a corresponding resonant
12.	peak in frequency domain.
	For higher order systems, there is no explicit correlation between time and frequency
	response. But if there is a pair of dominant complex conjugate poles, then the system can
	be approximated to second order system and the correlation between time and frequency
	response can be estimated. What are the graphical techniques available for the frequency response analysis?
	BTL1
10	Bode plot
13.	Polar plot
	Nichols plot
	M and N circles
	Nichols chart
	What are the advantages of Bode plot? BTL 2
	• It shows both low and high frequency characteristics of transfer function in single
	diagram.
	• The plots can be easily constructed using some valid approximations.
14.	• Relative stability of system can be studied by calculating G.M. and P.M. from the
14.	bode plot.
	• The various other frequency domain specifications like cut-off frequency,
	bandwidth etc. can be determined.
	• Data for constructing complicated polar and Nyquist plots can be easily obtained
	from Bode plot.

	• Transfer function of system can be obtained from the bode plot.
	What is polar plot? BTL1
1 =	The polar plot of a sinusoidal transfer function $G(j\omega)$ is a plot of the magnitude of $G(j\omega)$
15.	versus the phase angle/argument of $G(j\omega)$ on polar or rectangular coordinates as ω is varied
	from zero to infinity
	What is minimum phase system? BTL1
16.	The minimum phase systems are system with minimum phase transfer functions. In
	minimum phase transfer functions, all poles and zeros will lie on the left half of s plane.
	In minimum phase system, how start and end of polar plots are identified? BTL2
	For minimum phase transfer functions, with only poles, the type number of the system
	determines the quadrant in which the polar plot starts and the order of the system
	determines the quadrant in which the polar plot ends.
	Start of type-3 ↓ End of 3 rd End of 4 th
17.	order system order system
	Start of type-2
	system System End of 1" End of 1"
	Start of type-1
	system Start of polar plot of all pole Start of polar plot of all pole
	minimum phase system.
	What is the use of Nichol's chart in control system? (April May 2015, Nov Dec 2016)
	BTL2
18.	Nichol's chart used to find closed loop frequency response from open loop frequency
10.	response.
	The frequency domain specifications can be determined from Nichols chart.
	> The gain of the system can be adjusted to satisfy the given specifications.
	What are the characteristics of phase lead network? (April May 2015) BTL4
	Increases system bandwidth which usually correlates to reduce rise and settling times and
19.	susceptibility to high frequency noise.
	The phase of the forward path transfer function in the vicinity of the zero-gain crossove
	frequency. This increases the phase margin of the closed loop system and hence th relative stability.
	What is compensation?(April May 2017, April May 2018, Nov Dec 2018) BTL1
20.	The compensation is the design procedure in which the system behaviour is altered to mee
4 0.	the desired specifications, by introducing additional device called compensator.
	What are compensators? What are the different types of compensator? BTL1
21.	A device inserted into the system for the purpose of satisfying the specifications is calle
41 ,	compensator. The different types of compensators are lag, lead and lag lead compensators.
	What is the basis for selection of a compensator for a system? BTL2
	When the system is to be redesigned to meet the required specifications, it is necessary t
22.	alter the system by adding an external device to it. The system must provide.
22.	 alter the system by adding an external device to it. The system must provide, Attenuation in the high frequency range to give a system enough phase margins.
22.	• Attenuation in the high frequency range to give a system enough phase margins.
22. 23.	

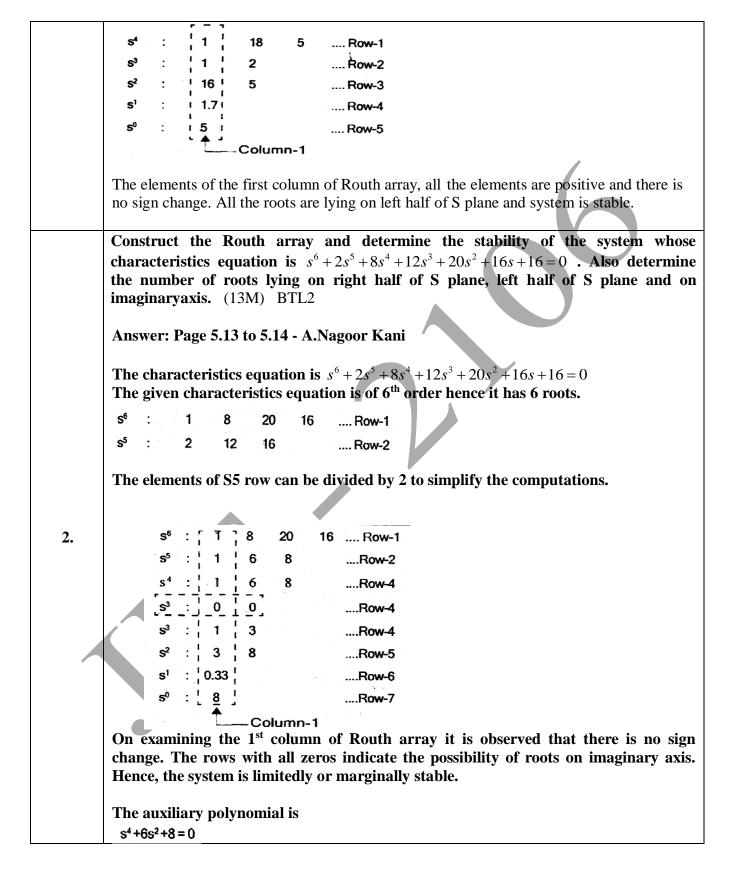
	If a compensator is placed in series with the forward path transfer function of the plant is
	called as series compensation.
	What is parallel compensation? BTL1
24.	Feedback is taken from some internal element and compensator is introduced in such a feedback path to provide an additional internal feedback loop is called parallel compensation.
	What is series parallel compensation? BTL1
25.	In some cases, it is necessary to provide both types of compensations series as well as feedback. Such scheme is called series parallel compensation.
	When lag/lead/lag lead compensation is employed? BTL2
	Lag compensation is employed for a stable system for improvement in steady state performance
26.	Lead compensation is employed for stable /unstable system for improvement in transient state performance
	Lag lead compensation is employed for stable/unstable system for improvement in both steady state and transient state performance.
	Discuss the effect of adding a pole to open loop transfer function of a system? BTL2
27.	The addition of a pole to open loop transfer function of a system will reduce the steady state error. The closer the pole to origin lesser will be the steady state error. Thus, the steady state performance of the system is improved.
	In addition, the addition of pole will increase the order of the system, which in turn makes the system less stable than the original system.
28.	Discuss the effect of adding a zero to open loop transfer function of a system. BTL2 The addition of a zero to open loop transfer function of a system will improve the transient response.The addition of zero reduces the rise time.If the zero is introduced close to origin then the peak overshoot will be larger.If the zero is introduced far away from the origin in the left half of the s plane then the effect of zero on the transient response will be negligible.
	What is lag compensation? BTL1
29.	A compensator having the characteristics of lag network is called lag compensator. The Lag Compensator is an electrical network which produces a sinusoidal output having the phase lag when a sinusoidal input is applied.
	What is lead compensation? BTL1
30.	A compensators having the characteristics of a lead network is called a lead compensator. If a sinusoidal is applied to the lead network then in steady state the output will have a phase lead with respect to input.
	What is lag lead compensation? BTL1
31.	Lag-Lead compensator is an electrical network which produces phase lag at one frequency region and phase lead at other frequency region. It is a combination of both the lag and the lead compensators.
	PART * B
Q.No	Questions
1.	Sketch bode plot for the following transfer function and determine the system gain K for the gain cross over frequency to be 5 rad/sec(13M)BTL3

	Ks ²
	$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$
	Answer: Page 4.22 to 4.24 - A.Nagoor Kani
	 The sinusoidal transfer function G(jω) is obtained by replacing S by jω in the given S domain transfer function (1M) The corner frequencies are 5 and 50 rad/sec (1M) Find slope and change in slop and tabulate the same (2M) Find gain for different values of corner frequencies (2M) Draw the magnitude plot (3M) Draw the phase plot for different values of phase angles. (3M) Calculate gain K=0.0398 (1M)
2.	 The open loop transfer function of a unity feedback system is given by G(s)=1/s(s+1)(1+2s).Sketch the polar plot and determine the gain margin and phase margin(13M)BTL3 Answer: Page 4.44 to 4.46 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in the given S domain transfer function The corner frequencies are 0.5 and 1 rad/sec Find magnitude and phase at different frequencies Calculate gain and phase margin from the polar plot (5M) Gain margin is 1.4286 Phase margin is 12^o
3.	Discuss about lag,Lead,Lag lead compensator.(13M)(Nov Dec 2017)BTL2 Answer: Page 6.4,6.20,6.53 - A.Nagoor Kani An external device which is used to alter the behavior of the system so as to achieve given specifications is called compensator. The compensator provides whatever missing in a system so as to achieve required performance. Lag compensators (4M) A compensator having the characteristics of lag network is called lag compensator.The Lag Compensator is an electrical network which produces a sinusoidal output having the phase lag when a sinusoidal input is applied. The lag compensator circuit in the 's' domain is shown in the following figure.

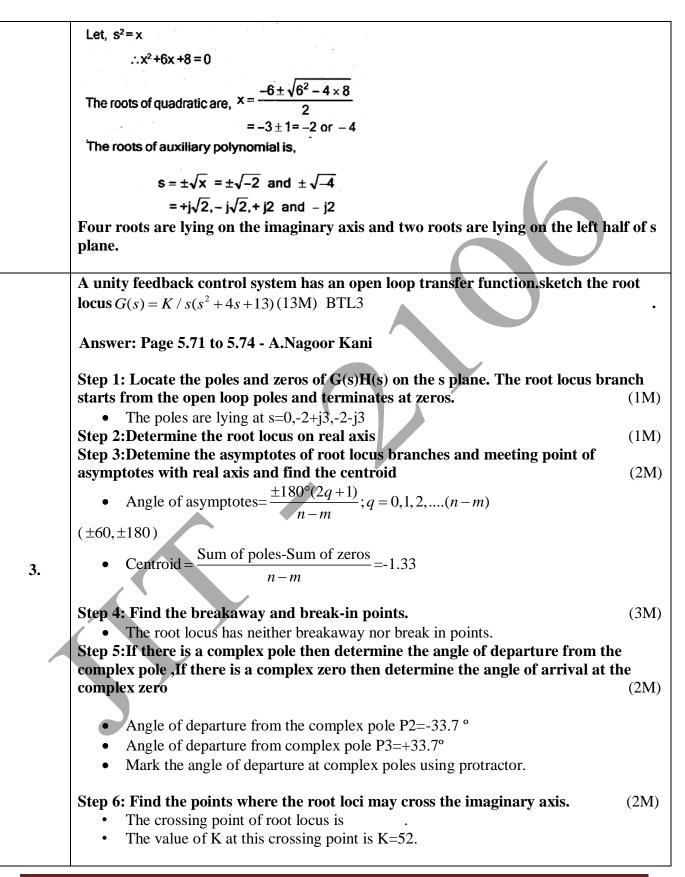
The transfer function of this network is the product of transfer function of the lag and lead network.

	network.
	$rac{V_o(s)}{V_i(s)}=eta\left(rac{s au_1+1}{eta s au_1+1} ight)rac{1}{lpha}\left(rac{s+rac{1}{ au_2}}{s+rac{1}{lpha au_2}} ight)$
	We know $lphaeta=1.$
	$\Rightarrow \frac{V_o(s)}{V_i(s)} = \left(\frac{s+\frac{1}{\tau_1}}{s+\frac{1}{\beta\tau_1}}\right) \left(\frac{s+\frac{1}{\tau_2}}{s+\frac{1}{\alpha\tau_2}}\right)$
	Where,
	$ au_1=R_1C_1$
	$ au_2=R_2C_2$
	Write the procedure for lag compensator design using bode plot.(13M)(Nov Dec
	2016)BTL1
	Answer: Page 6.9 to 6.11 - A.Nagoor Kani
	The following steps may be followed to design a lag compensator using bode plot and to be connected in series with the transfer function of uncompensated system Step 1:Choose the value of K of uncompensated system to meet the steady state requirements
	Step 2:Sketch the bode plot for the uncompensated system
4.	Step 3: Determine the phase margin of the uncompensated system from the bode plot. If
4.	the margin does not satisfy the requirement then lag compensation is required. Step 4: Choose a suitable value for the phase margin of the uncompensated system.
	$\gamma_n = \gamma_d + \xi$
, , , , , , , , , , , , , , , , , , ,	Step 5:Determine the new gain cross over frequency ω_{gen}
	Step 6: Determine the parameter β of the compensator. Find db gain at new gain cross over frequency
	Step 7: Determine the transfer function of the lag compensator.
	Step 8:Determine the open loop transfer function of the compensated system Step 9: Determine the actual phase margin of the compensated system. If the actual phase
	margin is satisfies the given specification then the design is accepted. Otherwise the procedure from step 4 to 9 by taking $\xi = 5$ more than previous design.
	Consider the following system, $G(s)=K/S(1+2S)$. Design a lag compensator so that the
5.	phase margin (PM) is at least 40° and steady state error to a unit step input is ≤ 0.2 (13M)BTL6

	Answer: Page 6.11 to 6.15 - A.Nagoor Kani
	Step 1:Choose the value of K of uncompensated system to meet the steady state requirements $K=5$
	Step 2:Sketch the bode plot for the uncompensated system (2M)
	Step 2.5ketch the bode plot for the uncompensated system (214) Step 3:Determine the phase margin of the uncompensated system from the bode plot. If the
	margin does not satisfy the requirement then lag compensation is required. (2M)
	$\mathbf{Phase margin = 18}$
	Step 4:Choose a suitable value for the phase margin of the uncompensated system. (1M)
	$\gamma_n = \gamma_d + \xi$
	$r_n - r_d + \varsigma$ =45
	Step 5:Determine the new gain cross over frequency ω_{gcn} (2M) =0.5 rad/sec
	Step 6: Determine the parameter β of the compensator. Find db gain at new gain cross over frequency(1M) $\beta = 10$
	Step 7: Determine the transfer function of the lag compensator. (2M) G(s)=10(1+20S)/(1+200S)
	Step 8:Determine the open loop transfer function of the compensated system $G(S)=5(1+20S)/S(1+20OS)(1+2S)$ (2M)
	Step 9:Determine the actual phase margin of the compensated system. (2M)
	$\mathbf{Phase margin = 18}^{\circ}$
	The actual phase margin of the compensated system satisfies the requirement. Hence, the
	design is acceptable.
	Write the procedure for lead compensator design using bode plot.(13 M) (April May
	2016) BTL1
	Answer: Page 6.32 to 6.333 - A.Nagoor Kani
	The following steps may be followed to design a lead compensator using bode plot and to
	be connected in series with the transfer function of uncompensated system
	Step 1: Choose the value of K of uncompensated system to meet the steady state
6.	requirements
0.	Step 2:Sketch the bode plot for the uncompensated system
	Step 3: Determine the phase margin of the uncompensated system from the bode plot. If
	the margin does not satisfy the requirement then lag compensation is required.
	Step 4: Choose a suitable value for the phase margin of the uncompensated system.
	$\gamma_n = \gamma_d - \gamma + \xi$
	Step 5: Determine the transfer function of the lead compensator.
	Step 6:Determine the open loop transfer function of the compensated system
	Step7:Verify the design
	Write the procedure for lag lead compensator design using bode plot(13M)(Nov Dec
	2018) BTL1
7.	
	Answer: Page 6.55 to 6.57 - A.Nagoor Kani


	The following steps may be followed to design a lag compensator using bode plube connected in series with the transfer function of uncompensated system Step 1:Choose the value of K of uncompensated system to meet the steady state requirements Step 2:Sketch the bode plot for the uncompensated system Step 3: Determine the phase margin of the uncompensated system from the bode the margin does not satisfy the requirement then lag compensation is required. Step 4: Choose a suitable value for the phase margin of the uncompensated system $\gamma_n = \gamma_d + \xi$ Step 5:Determine the new gain cross over frequency ω_{gen} Step 6: Determine the parameter β of the lag compensator. Find db gain at new gover frequency Step 7: Determine the transfer function of the lag compensator. Step 8: Determine the transfer function of the lag compensator. Step 9: Determine the transfer function of the lag compensator. Step 10:Determine the open loop transfer function of the compensated system Step 11: Draw the bode plot of the compensated system and verify whether the specifications are satisfied or not. If the specifications are not satisfied then choos choice of α such that $\alpha < 1/\beta$ and repeat steps 8 to 11	e plot. If em. gain cross
	PART*C	
Q.No	Questions	
	Sketch the bode plot for the following transfer function and determine phase	e margin
	and gain margin(15M)BTL3.	e margin
	and gain margin(15M)BTL3.	e margin
	and gain margin(15M)BTL3. $G(s) = \frac{75 (1+0.2s)}{s (s^2 + 16s + 100)}$	e margin
	and gain margin(15M)BTL3.	e margin
	and gain margin(15M)BTL3. $G(s) = \frac{75 (1+0.2s)}{s (s^2 + 16s + 100)}$ Answer: Page 4.25 to 4.28 - A.Nagoor Kani	
	and gain margin(15M)BTL3. $G(s) = \frac{75 (1+0.2s)}{s (s^2 + 16s + 100)}$ Answer: Page 4.25 to 4.28 - A.Nagoor Kani • The sinusoidal transfer function $G(j\omega)$ is obtained by replacing S by $j\omega$ in	n the given
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function 	n the given (1M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec 	n the given (1M) (2M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same 	n the given (1M) (2M) (1M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies 	n the given (1M) (2M) (1M) (2M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot 	n the given (1M) (2M) (1M) (2M) (3M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. 	n the given (1M) (2M) (1M) (2M) (3M) (3M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. Find phase margin and gain margin from the bode plot 	n the given (1M) (2M) (1M) (2M) (3M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s(s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. Find phase margin and gain margin from the bode plot 	n the given (1M) (2M) (1M) (2M) (3M) (3M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s(s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. Find phase margin and gain margin from the bode plot Phase margin=92' Gain margin=Infinity 	n the given (1M) (2M) (1M) (2M) (3M) (3M) (3M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. Find phase margin and gain margin from the bode plot Phase margin=92' Gain margin=Infinity 	n the given (1M) (2M) (1M) (2M) (3M) (3M) (3M)
	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s(s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. Find phase margin and gain margin from the bode plot Phase margin=92° Gain margin=Infinity The open loop transfer function of a unity feedback system is given by the fischer function of a unity feedback system is given by the fischer function of the plase margin (15M) BTL3. 	n the given (1M) (2M) (1M) (2M) (3M) (3M) (3M)
1.	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s(s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. Find phase margin and gain margin from the bode plot Phase margin=92° Gain margin=Infinity The open loop transfer function of a unity feedback system is given by the fischer function of a unity feedback system is given by the fischer function of the plase margin (15M) BTL3. 	n the given (1M) (2M) (1M) (2M) (3M) (3M) (3M)
	 and gain margin(15M)BTL3. G(s) = 75 (1+0.2s)/(s (s²+16s+100)) Answer: Page 4.25 to 4.28 - A.Nagoor Kani The sinusoidal transfer function G(jω) is obtained by replacing S by jω in S domain transfer function The corner frequencies are 5 and 10 rad/sec Find slope and change in slop and tabulate the same Find gain for different values of corner frequencies Draw the magnitude plot Draw the phase plot for different values of phase angles. Find phase margin and gain margin from the bode plot Phase margin=92' Gain margin=Infinity 	n the given (1M) (2M) (1M) (2M) (3M) (3M) (3M)

	$\mathbf{A}_{\mathbf{Y}} = \mathbf{A}_{\mathbf{Y}} $	
	Answer: Page 4.50 to 4.52 - A.Nagoor Kani	
	 The sinusoidal transfer function G(jω) is obtained by replacing S by jω in the S domain transfer function 	he given (1M)
	 Find magnitude and phase at different frequencies 	(8M)
	 Calculate gain and phase margin from the polar plot 	(6M)
	Phase margin is -77	(0111)
	Consider the following system with transfer function Design a lag lead compet	
	C(s) such that the phase margin of the compensated system is at 35 degree .an velocity error constant Kv is 80 (15M) BTL6.	d the
	G(S)=K/s(s+3)(s+6)	
	Answer: Page 6.59 to 6.65 - A.Nagoor Kani	
	Step 1: Choose the value of K of uncompensated system to meet the steady state	
	requirements	(1M)
	K=1440	
	Step 2:Sketch the bode plot for the uncompensated system	(2M)
	Step 3: Determine the phase margin of the uncompensated system from the bode p	
	the margin does not satisfy the requirement then lag compensation is required.	(1M)
	Phase margin =-46(from the bode plot)	(12.5)
	Step 4: Choose a suitable value for the phase margin of the uncompensated system	. (1M)
	$\gamma_n = \gamma_d + \xi$	
3.	Phase margin =40°	
	Step 5:Determine the new gain cross over frequency ω_{gcn}	(1M)
	=4 rad/sec	
	Step 6: Determine the parameter β of the lag compensator. Find db gain at new gain	
	over frequency	(1M)
	=14	$(\mathbf{O}\mathbf{V})$
	Step 7: Determine the transfer function of the lag compensator. $C_{1}(1) = 14(1+2.5c)/(1+2.5c)$	(2M)
	$G_1(s)=14(1+2.5s)/(1+35s)$ Step 8: Determine the transfer function of the lead compensator.	(2M)
	$G_2(s)=0.07(1+0.22s)/(1+0.0154s)$	(2NI)
	Step 9: Determine the transfer function of the lag lead compensator	(2M)
	$G_c(s)=(1+2.5s)(1+0.22s)/(1+35s)(1+0.0154s)$	(2101)
	Step 10:Determine the open loop transfer function of the compensated system	(1 M)
	$G_c(s)=80(1+2.5s)(1+0.22s)/s(1+35s)(1+0.0154s)(1+0.33s)(1+0.167s)$	、 /
	Step 11: Draw the bode plot of the compensated system and verify whether the	
	specifications are satisfied or not.	(1M)
	Phase margin=36	
	The phase margin of the compensated system is satisfactory. Hence the design is acceptable.	
I		

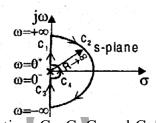

	UNIT IV CONCEPTS OF STABILITY ANALYSIS
	Concept of stability-Bounded - Input Bounded - Output stability-Routh stability criterion- Relative stability-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion.
	PART * A
Q.No	Questions
1.	Define BIBO stability(Nov Dec 2016) BTL1 A linear relaxed system is said to have BIBO stability if every bounded input results in a bounded output
2.	How the roots of the characteristics equation are related to stability? BTL2 It the roots of the characteristics equation has real part then the impulse response of the system is not bounded .Hence the system will be unstable. If the roots has negative real part then the impulse response is bounded .Hence the system will be stable.
3.	What is the necessary condition for stability(April May 2016) BTL1 The necessary condition for stability is that all the coefficient of the characteristics polynomial be positive.
4.	What is Routh stability criterion? BTL1 The necessary and sufficient condition for stability is that all of the elements in the first column of the routh array be positive. If this condition is not met the system is unstable and the number of sign changes in the elements of the first column of the routh array corresponds to the number of roots of the characteristics equation in the right half of S plane
5.	What is auxiliary polynomial? BTL1 In the construction of Routh array a row of all zero indicates the existence of an even polynomial as a factor of the given characteristics equation. In an even polynomial, the exponents of s are even integers are zero only. This even polynomial factor is called auxiliary polynomial. The coefficient of auxiliary polynomial is given by the elements of the row just above the row of all zeros.
6.	What is root locus? BTL1 The path taken by a root locus of characteristics equation when open loop gain K is verified from 0 to infinity is called root locus.
7.	How will you find root locus on real axis?(April May 2016) BTL2 To find the root locus on real axis, choose a test point on real axis. If the total number of poles and zeros on the real axis to the right of this test point is odd number, then the test point lies on the root locus. If it is even then the test point does not lie on the root locus.
8.	What are asymptotes? How will you find the angle of asymptotes? BTL1 Asymptotes are straight lines which are parallel to the root locus going to infinity and meet the root locus at infinity. Angle of Asymptotes $=\frac{\pm 180^{\circ}(2q+1)}{n-m}$; $q = 0, 1, 2,(n-m)$
9.	What is centroid?How the centroid is calculated? BTL1 The meeting point of asymptotes with real axis is called centroid. The centroid is given by $Centroid = \frac{Sum of poles-Sum of zeros}{n-m}$

	How will you find the value of gain K at a point on a reat locus? (April May 2015)
	How will you find the value of gain K at a point on a root locus?(April May 2015) BTL1
10.	The gain K at a point S=Sa on root locus is given by
	$= \frac{\text{Product of lenth of vector from open loop poles to the point Sa}}{\text{Product of lenth of vector from open loop poles to the point Sa}}$
	Product of lenth of vector from open loop zeros to the point Sa
	What is breakaway and break-in points? How to determine them? BTL1
	At breakaway points, the root locus breaks from the real axis to enter into the complex
	plane. At break-in point, the root locus enters the real axis from the complex plane.
11.	To find the breakaway or break in points from an equation for K from the characteristics
	equation and differentiate the equation of K with respect to S.Then find the roots of
	equation dK/ds=0.The roots of dK/ds are breakaway or break-in points ,provided for this
	value of gain K should be positive and real.
12.	How to find the crossing points of root locus in imaginary axis? BTL1
14.	By Routh Hurwitz criterion
	What is dominant pole? (Nov Dec 2015, Nov Dec 2016) Repeated question BTL1
	The dominant pole is a pair of complex conjugate pole which decides transient response of
13.	the system. In higher order systems the dominant poles are very close to the origin and all
13.	other poles of the system are widely separated and so they have less effect on transient
	response of the system.
	What is the relation between stability and coefficient of characteristics polynomial?
	BTL3
14.	If the coefficients of the characteristics polynomial are negative or zero, then some of the
	roots lies on right half of s plane. Hence the system is unstable, If the coefficients of
	characteristics polynomial are positive and if no efficient is zero then there is a possibility
	of the system to be stable provided all the roots of are lying on left half of S plane.
	What is the nature of impulse response when the roots of characteristics equation are
15.	lying on imaginary axis? BTL4
	If the roots of characteristics equation lie on imaginary axis the nature of the impulse
	response is oscillatory.
	What is the principle of argument? BTL1 The principle of argument states that let $F(x)$ as an analytic function and if an arbitrary
	The principle of argument states that let $F(s)$ ne an analytic function and if an arbitrary,
16	closed contour in the clockwise direction is chosen in the s plane so that $F(s)$ is analytic at
16.	every point of the contour. Then the corresponding $F(S)$ plane contour mapped in the $F(s)$
	plane will encircle the origin times in the anticlockwise direction where N is the difference between the symplex of $P(x)$ that are enclosed by the chosen closed
	between the number of poles ,P and zeros Z of $F(s)$ that are enclosed by the chosen closed
	contour in the S plane. What is Nyquist stability criterion?(April May 2017,Nov Dec 2015, Nov Dec 2017)
	BTL1 Repeated question
	Consider an open-loop transfer function GOL(s) that is proper and has no unstable pole-
	zero cancellations. Let N be the number of times that the Nyquist plot for GOL(s) encircles
17.	
	the -1 point in the clockwise direction. Also let P denote the number of poles of GOL(s) that lie to the right of the imaginary axis. Then $Z = N + P$ where Z is the number of roots
	that lie to the right of the imaginary axis. Then, $Z = N + P$ where Z is the number of roots of the characteristic equation that lie to the right of the imaginary axis (that is, its number
	of the characteristic equation that lie to the right of the imaginary axis (that is, its number of "zeros"). The closed-loop system is stable if and only if $Z = 0$
	$101 \ Zeros $). The closed-loop system is stable if and only if $Z = 0$

	Write come important properties of Negatist stability oritorion (April May 2019)
	Write some important properties of Nyquist stability criterion.(April May 2018) BTL2
	 It provides a necessary and sufficient condition for closed-loop stability based on the open-loop transfer function.
	2. The reason the -1 point is so important can be deduced from the characteristic
	equation, $1 + G_{OL}(s) = 0$. This equation can also be written as $G_{OL}(s) = -1$, which
18.	implies that $AR_{OL} = 1$, as noted earlier. The -1 point is referred to as the <i>critical</i>
	point.
	3. Most process control problems are open-loop stable. For these situations, $P = 0$ and
	thus $Z = N$. Consequently, the closed-loop system is unstable if the Nyquist plot for
	$G_{OL}(s)$ encircles the -1 point, one or more times.
	What are the advantages of Nyquist stability criterion over that of Routh's criterion BTL2
	• Routh criterion does not give the sufficient information about relative stability of
	the system
19.	• It does not help much in design problems in which the designer is required to achieve the desired performance by varying one or more system parameters.
	• Nyquist stability criterion gives information about both absolute stability and
	relative stability
	 Nyquist plot of open loop transfer function can be easily obtained. From this plot closed loop stability can be determined.
20	What will be the stability of the system when the roots of the characteristics equation
20.	are lying on imaginary axis?(Nov Dec 2017, April May 2018) Repeated question BTL2
	Marginally stable or limitedly stable.
	PART * B
Q.No	Questions
	Construct the Routh array and determine the stability of the system whose
	characteristics equation is $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$. Also determine the number
	of roots lying on right half of S plane, left half of S plane and on imaginary axis.(13M) (Nov Dec 2018) Repeated question BTL 2
	(Nov Dec 2010) Repeated question DTL 2
	Answer: Page 5.13 - A.Nagoor Kani
1.	
1.	The characteristics equation is $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$
	The given characteristics equation is of 4 th order hence it has 4 roots
	s ⁴ : 1 18 5 Row-1
	s ³ : 8 16Row-2
	The elements of S3 row can be divided by 8 to simplify the computations.

JIT-JEPPIAAR/ECE/Mrs.T.MUTHU KUMARI IIndYr/SEM 03 /EC8391/CONTROL SYSTEMS ENGINEERING/UNIT 1-5/QB+Keys/Ver2.0

(2M)


(2M)

Step 7:Take a series of test points in the broad neighborhoods of the region of the S plane and adjusts the test point to satisfy the angle criterion.Sketch the root locus by joining the test point by smooth curve. (2M)

Draw the Nyquist plot for the system whose open loop transfer function is given below. G(s)H(s) = K / s(s+2)(s+10). Determine the range of K for which the closed loop system is stable.(13M) (April May 2015) Repeated question. BTL3

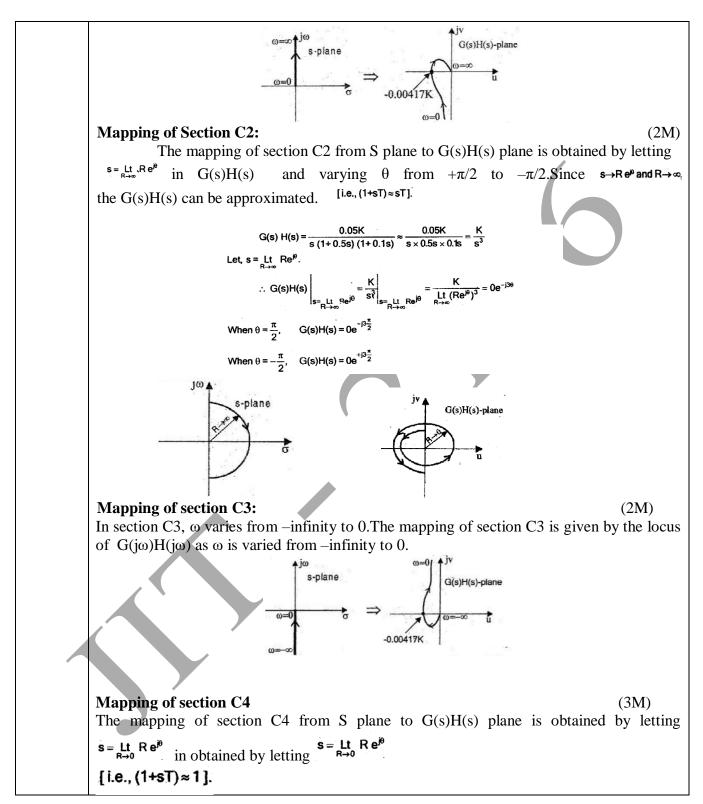
$$G(s)H(s) = \frac{K}{s(s+2)(s+10)} = \frac{K}{s \times 2\left(\frac{s}{2}+1\right) \times 10\left(\frac{s}{10}+1\right)} = \frac{0.05K}{s(1+0.5s)(1+0.1s)}$$

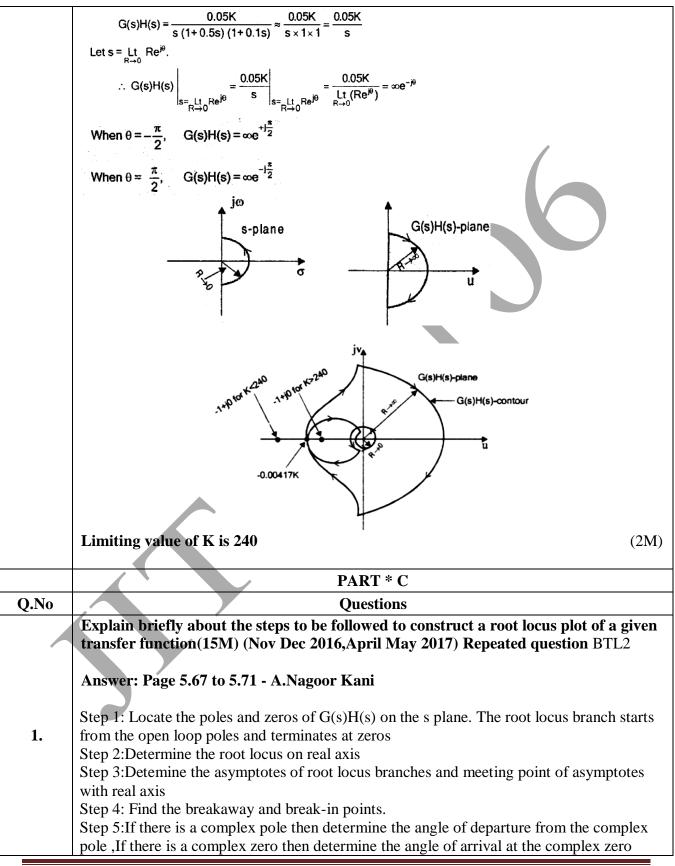
Nyquist contour

The Nyquist contour has four sections C_1 , C_2 , C_3 and C_4 . The mapping of each sections is performed separately and the overall Nyquist plot is obtained by combining the individual sections.

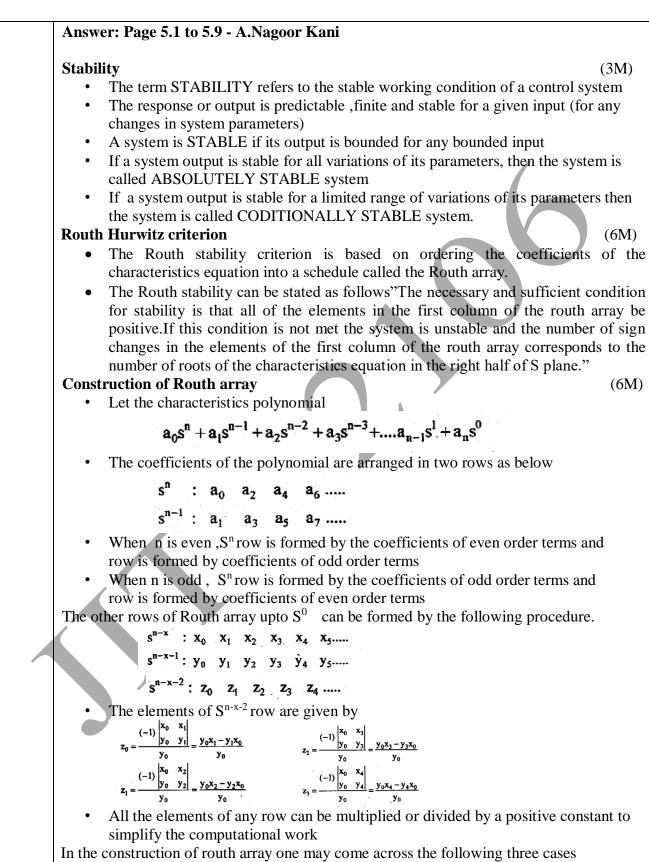
Mapping of Section C1:

4.


In section C1, ω varies from 0 to +infinity. Let s=j ω


$$=\frac{0.05K}{j\omega(1+j0.6\omega-0.05\omega^2)}=\frac{0.05K}{-0.6\omega^2+j\omega(1-0.05\omega^2)}$$

When the locus of $G(j \omega)H(j \omega)$ crosses real axis the imaginary term will be zero and the corresponding frequency is the phase cross over frequency ωpc .


$$\therefore \text{At } \omega = \omega_{\text{pc}}, \quad \omega_{\text{pc}}(1 - 0.05\omega_{\text{pc}}^{2}) = 0 \quad \Rightarrow \quad 1 - 0.05\omega_{\text{pc}}^{2} = 0 \quad \Rightarrow \quad \omega_{\text{pc}} = \sqrt{\frac{1}{0.05}} = 4.472 \text{ rad / sec}$$

At $\omega = \omega_{\text{pc}} = 4.472 \text{ rad / sec}, \qquad \text{G(j}\omega)\text{H(j}\omega) = \frac{0.05\text{K}}{-0.6\omega^{2}} = -\frac{0.05\text{K}}{0.6 \times (4.472)^{2}} = -0.00417\text{K}$

The open loop is Type 1 and third order system. Hence the polar plot of $G(j \omega)H(j \omega)$ starts at -90° axis at infinity crosses real axis at -0.00417 K and ends at origin in second quadrant.

Step 6: Find the points where the root loci may cross the imaginary axis. Step 7: Take a series of test points in the broad neighborhoods of the region of the S plane and adjusts the test point to satisfy the angle criterion. Sketch the root locus by joining the test point by smooth curve. Step 8: The value of gain K at any point on the locus can be determined from the magnitude condition .The value of K at a point S=Sa is given by Product of lenth of vector from open loop poles to the point Sa Product of lenth of vector from open loop zeros to the point Sa State Nyquist stability criterion and explain the three situations while examining the stability of the linear control system(15M) (Nov Dec 2016) BTL2 Answer: Page 5.30 to 5.5.33 - A.Nagoor Kani Nyquist stability criterion: (5M)The Nyquist stability criterion is similar to the Bode criterion in that it determines closed-loop stability from the open-loop frequency response characteristics. The Nyquist stability criterion is based on two concepts from complex variable • theory, contour mapping and the Principle of the Argument. Nyquist Stability Criterion. Consider an open-loop transfer function GOL(s) that is proper and has no unstable pole-zero cancellations. Let N be the number of times that the Nyquist plot for GOL(s) encircles the -1 point in the clockwise direction. Also let P denote the number of poles of GOL(s) that lie to the right 2. of the imaginary axis. Then, Z = N + P where Z is the number of roots of the characteristic equation that lie to the right of the imaginary axis (that is, its number of "zeros"). The closed-loop system is stable if and only if Z = 0. Examining the stability of the linear control system: (10M)No encirclement of -1+i0 point: This implies that the system is stable if there are no poles of G(s)H(s) in the right half of S plane. If there are poles on right half of S plane then the system is unstable Anticlockwise encirclement of -1+j0 point: In this case the system is stable if the number of anticlockwise is same as the number of poles of G(S)H(S) in the right half of S plane. If the number of anticlockwise encirclement is not equal to number of poles on right half of S plane then the system is unstable. **Clockwise encirclement of the -1+j0 point:** In this case the system is always unstable. Also in this case if no poles of G(s)H(s)in right half of S plane, then the number of clockwise encirclement is equal to number of poles of closed loop system on right half of S plane. Define stability .With an example explain the steps to be followed for Routh Hurwitz 3. criterion(15M) (Nov Dec 2017) Repeated question BTL1

• Case (i) Normal Routh array (Non-zero elements in the first column of routh array)
Case (ii) A row of all zeros
• Case(iii) First elements of a row is zero but same or other elements are not zero

	UNIT V CONTROL SYSTEM ANALYSIS USING STATE VARIABLE METHODS
	State variable representation-Conversion of state variable models to transfer functions- Conversion of transfer functions to state variable models-Solution of state equations- Concepts of Controllability and Observability-Stability of linear systems-Equivalence between transfer function and state variable representations-State variable analysis of digital control system-Digital control design using state feedback.
	PART * A
Q.No	Questions
1.	 What are the advantages of state space analysis? BTL2 State space analysis is applicable to any type of systems. They can be used for modeling and analysis of linear & nonlinear system, time variant & time invariant systems and multiple input and multiple output systems The state space analysis can be performed with initial conditions. The variables used to represent the system can be any variables in the system Using this analysis, the internal states of the system at any instant can be predicted.
2.	 What are the drawbacks of transfer function analysis? BTL2 Transfer function is defined under zero initial conditions. Transfer function is applicable to linear time invariant systems. Transfer function analysis is restricted to single input and single output systems. The transfer function modeling is a terminal approach where we can find only the output and not the state of the other variables inside the system.
3.	What is state and state variable?(April May 2016) BTL1 State: It is a group of variables, which summarizes the history of the system in order to predict the future values (outputs). State Variable: The number of the state variables required is equal to the number of the storage elements present in the system.
4.	What is state vector? BTL1 It is a vector, which contains the state variables as elements.
5.	Write the state model for nth order system(Nov Dec 2017) BTL1The most general state-space representation of a linear system with m inputs, p outputsand n state variables are written in the following form: $\dot{X} = AX + BU$ $Y = CX + DU$ Where X= state vector of order n X1. $U =$ input vector of order n X1. $A=System matrix of order n Xm.$ $B=Input matrix of order n Xm.$ $D =$ transmission matrix of order p Xm.
6.	What is state space? BTL1 The set of all possible values which the state vector x(t) can have at time t forms the state space of the system
7.	Define observability of the system.(April May 2015) BTL1

	A control existence is said to be chearwork of it is able to determine the initial states of the
	A control system is said to be observable if it is able to determine the initial states of the control system by observing the outputs in finite duration of time. We can check the
	observability of a control system by using Kaman's test.
	What is state transition matrix and how it is related to state of the system? BTL1
	The matrix exponential e ^{AT} is called state transition matrix. In the expanded form
8.	-
	$e^{AT} = 1 + At + \frac{1}{2!}A^{2}t^{2} + \frac{1}{3!}A^{3}t^{3} + \dots + \frac{1}{i!}A^{i}t^{i}$
	List the main properties of state transition matrix(Nov Dec 2016) BTL2
	1. $\Phi(0) = I$
	2. $\Phi^{-1}(t) = \Phi(-t)$
9.	3. $x(0) = \Phi(-t)x(t)$
	4. $\Phi(t_2 - t_1) \Phi(t_1 - t_0) = \Phi(t_2 - t_0)$
	5. $\Phi(t)^{k} = \Phi(kt)$
10.	What are phase variables? BTL1 The phase variables are defined as the state variables which are obtained from one of the
10.	system variables and its derivatives.
	What is observability? BTL1
11.	A system is said to be completely observable if every state $X(t)$ can be completely
	identified by measurements of the output $Y(t)$ over a finite time interval.
	What is the necessary condition to be satisfied for design using state feedback? BTL1
10	The state feedback design requires arbitrary pole placements to achieve the desire
12.	performance. The necessary and enough condition to be satisfied for arbitrary pole
	placement is that the system is completely state controllable.
	What is the need for controllability test? BTL2
13.	The controllability test is necessary to find the usefulness of a state variable. If the state
13.	variables are controllable then by controlling (i.e. varying) the state variables the desired
	outputs of the system are achieved.
	What is the need for observability test? BTL2
14.	The observability test is necessary to find whether the state variables are measurable or
	not. If the state variables are measurable then the state of the system can be determined by
	practical measurements of the state variables.
	State the condition for controllability by Gilbert's method. BTL2
	Case (i) when the Eigen values are distinct Consider the canonical form of state model shown below which is obtained by using the
	transformation $X=MZ$.
	$\dot{X} = \Lambda Z + U$
	Y=Z+DU
15.	Where, $\Lambda = M-1AM$; = CM, = M-1B and M = Modal matrix.
	In this case the necessary and enough condition for complete controllability is that, the
	matrix must have no row with all zeros. If any row of the matrix is zero, then the
	corresponding state variable is uncontrollable.
	Case (ii) when Eigen values have multiplicity
	In this case the state modal can be converted to Jordan canonical form shown below: $Z=JZ+U$

	Y=Z + DU Where, $J = M-1AM$
	In this case the system is completely controllable, if the elements of any row of that
	correspond to the last row of each Jordan block are not all zero.
	State the condition for observability by Gilbert's method. BTL2
	Consider the transformed canonical or Jordan canonical form of the state model shown
	below:
	which is obtained by using the transformation, $X = MZ$
	$Z = \Lambda Z + U$
16.	Y=Z+DU (Or)
	Z=JZ+U
	Y=Z + DU where =CM and M=modal matrix.
	The necessary and enough condition for complete observability is that none of the columns
	of the matrix be zero. If any of the column has all zeros, then the corresponding state
	variable is not observable.
	State the duality between controllability and observability. BTL2
1.	The concept of controllability and observability are dual concepts and it is proposed by
17.	Kalman as principle of duality. The principle of duality states that a system is completely
	state controllable if and only if its dual system is completely state controllable if and only
	if its dual system is observable or vice versa.
	What is state diagram? Draw the block diagram representation of state model. BTL3
	The pictorial representation of the state model of the system is called state diagram. The
	state diagram of the system can be either in block diagram or in signal flow graph form.
18.	
	$u(t)$ + $\dot{x}(t)$ + $\dot{x}(t)$ + $\dot{y}(t)$
19.	What are the basic elements used to construct the state diagram. BTL2
	The basic elements used to construct the state diagram are scalar, adder, and Integrator.
20.	Sketch the basic elements used to construct the block diagram of a state model. BTL2
	The basic elements used to construct the state diagram are scalar, adder, and Integrator.
	What are phase variable?1
21.	The phase variables defined as those particular state variables, which are obtained from
	one of the system variables and its derivatives. Usually the variables used are the system output and the remaining state variables are then derivatives of the output.
	What are the advantages of state space modeling using phase variable? BTL2
	 The state variable can be utilized for the purpose of feedback
22.	 The implementation of design with state variable feedback becomes straight forward
	• The solution of state equation gives time variation of variables, which have direct relevance to the physical system
	relevance to the physical system. What are the disadvantages in choosing phase variable for state space modelling?
	What are the disadvantages in choosing phase variable for state space modelling? BTL2
23.	The disadvantage in choosing phase variable is that the phase variables are not physical
	variables of the system and therefore are not available for measurement and control
	variables of the system and therefore are not available for measurement and control

	purposes		
24.	What is the advantage and the disadvantage in canonical form of state mo The advantages of canonical form are that the state equations are indepen other. The disadvantage is that the canonical variables are not physical variables.	dent of each	
	other. The disadvantage is that the canonical variables are not physical variables are not available for measurement and control.	ables and so	
25.	What is the solution of homogeneous state equation? BTL1		
	The solution of homogeneous state equation is X(t)=e ^{At} X ₀ What is Jordan canonical form? BTL1		
26	When the eigen values have multiplicity the system matrix cannot be dragoniz	ed .But the	
26.	transformation X=MZ will transform the system matrix to a form called Jordan		
	Where J=M ⁻¹ AM.The transformed state model in this case is called Jordan can	onical form.	
	PART * B		
Q.No	Questions		
	Construct the state model for a system characterized by the different $d^3y/dt^3+6d^2y/dt^2+11dy/dt+6y+u=0$. Give the block diagram representation		
	model. (13M)BTL6	of the state	
	Answer: Page 7.26 - A.Nagoor Kani		
	Convert differential equations in to dot variables	(2M)	
1.	$x_1 = y$		
1.	$x_2 = \frac{dy}{dt} = \dot{x_1} + x_2 = \frac{d^2y}{dt^2} = \dot{x_2}$		
	• Apply the state variables to dot variables	(2M)	
	$1.\dot{x}_1 = x_2$		
	2. $x_2 = x_3$ 3. $x_3 = -6x_1 - 11x_2 - 6x_3 - u$		
	Rearrange the equation and derive state model	(3M)	
	• Draw the block diagram for state equation and output equation	(6M)	
	Obtain the state model of the system whose open loop transfer function is	given as,	
	$Y(s)/U(s)=10/s^3+4s^2+2s+1.(13M)BTL6$		
	Answer: Page 7.29 to 7.30 - A.Nagoor Kani		
2.	• Use inspection, cascade, signal flow graph method	(1M)	
	Take inverse Laplace transform & Convert differential equations in to	dot variables (2M)	
	• Apply the state variables to dot variables	(2M)	
	• Rearrange the equation and derive state model	(3M)	
	• Draw the block diagram for state equation and output equation • foodback system has a closed loop transfer function $\mathbf{V}(z)/\mathbf{U}(z) = 10(z+4)$	(5M)	
3.	A feedback system has a closed loop transfer function Y(s)/U(s) = 10(s+4)/ construct block diagram representation of each state model. (13M)BTL6	5(5+1) (5+3),	

	Answer: Page 7.33 to 7.36 - A.Nagoor Kani			
	 Use inspection, cascade, signal flow graph method Take inverse Laplace transform & Convert differential equations into a 	(1M) lot variables		
	•	(2M)		
	• Apply the state variables to dot variables	(2M)		
	Rearrange the equation and derive state model	(3M)		
	• Draw the block diagram for state equation and output equation	(5M).		
	Determine the canonical state model of the system, whose transfer function is T(s) = 2(s+5)/(s+1) (s+3) (s+4). (13M)BTL6 Answer: Page 7.36 to 7.37 - A.Nagoor Kani			
4.	• Use inspection, cascade, signal flow graph method	(1M)		
	• Take inverse Laplace transform & Convert differential equations in to	dot variables (2M)		
	• Apply the state variables to dot variables	(2M)		
	Rearrange the equation and derive state model	(3M)		
	• Draw the block diagram for state equation and output equation	(5M)		
5.	-2 -3 Answer: Page 7.42 to 7.44 - A.Nagoor Kani			
	• Find aigon values by using SL A =0	$(\mathbf{A}\mathbf{M})$		
	 Find eigen values by using SI - A =0 Find inverse matrix of SI - A 	(4M) (4M)		
	 Use partial fraction method to find A, B, C 	(4M) (2M)		
	 Find inverse Laplace of φ(s) to get φ(t) 	(3M)		
	Test the controllability and observability by using any one method of th space representation model. (13M)BTL4	e given state		
6.	$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \mathbf{u} ; \mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$			
	Answer: Page 7.61 to 7.65- A.Nagoor Kani			

	 From the state model identify A, B, C Matrix (2M) Use Gilberts method or Kalman's method (2M) In Gilberts method Find B and C. The value of B does not contain zero value then the system is completely controllable. The value of C does not contain zero value then the system is completely observable. (5M) In Kalman's method Find Qo and Qc. The value of Qo does not contain zero value then the system is completely controllable. The value of Qo does not contain zero value then the system is completely controllable. The value of Qo does not contain zero value then the system is completely controllable. The value of Qo does not contain zero value then the system is completely observable. (4M) 	
	PART * C	
Q.No	Questions	
1.	 Test the controllability of the following state model by using both the methods. (15M) BTL4 \$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & +2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}. (2M) Answer: Page 7.57 to 7.61- A.Nagoor Kani From the state model identify A, B, C Matrix Use Gilberts method or Kalman's method In Gilberts method Find B and C. The value of B does not contain zero value then the system is completely observable. In Kalman's method Find Qo and Qc. The value of Qo does not contain zero value then the system is completely controllable. The value of Qo does not contain zero value then the system is completely observable. The system is completely observable. 	
	Verify the system is completely controllable and observable.(15M) BTL4	
2.	$\begin{bmatrix} \dot{x}(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} u(t); \ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}.$ Answer: Page 7.57 to 7.61- A.Nagoor Kani	
	 Answer: Page 7.57 to 7.61- A.Nagoor Kan From the state model identify A, B, C Matrix (2M) Use Gilberts method or Kalman's method (2M) In Gilberts method Find B and C. The value of B does not contain zero value then the system is completely controllable. The value of C does not contain zero value 	

then the system is completely observable.	(6M)
• In Kalman's method Find Qo and Qc. The value of Qo does not contain ze	ro value
then the system is completely controllable. The value of Qo does not conta	in zero
value then the system is completely observable.	(5M)